
Věra Kůrková · Yannis Manolopoulos
Barbara Hammer · Lazaros Iliadis
Ilias Maglogiannis (Eds.)

 123

LN
CS

 1
11

39

27th International Conference on Artificial Neural Networks
Rhodes, Greece, October 4–7, 2018
Proceedings, Part I

Artificial Neural Networks
and Machine Learning –
ICANN 2018

Lecture Notes in Computer Science 11139

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Věra Kůrková • Yannis Manolopoulos
Barbara Hammer • Lazaros Iliadis
Ilias Maglogiannis (Eds.)

Artificial Neural Networks
and Machine Learning –

ICANN 2018
27th International Conference on Artificial Neural Networks
Rhodes, Greece, October 4–7, 2018
Proceedings, Part I

123

Editors
Věra Kůrková
Czech Academy of Sciences
Prague 8
Czech Republic

Yannis Manolopoulos
Open University of Cyprus
Latsia
Cyprus

Barbara Hammer
CITEC Bielefeld University
Bielefeld
Germany

Lazaros Iliadis
Democritus University of Thrace
Xanthi
Greece

Ilias Maglogiannis
University of Piraeus
Piraeus
Greece

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-01417-9 ISBN 978-3-030-01418-6 (eBook)
https://doi.org/10.1007/978-3-030-01418-6

Library of Congress Control Number: 2018955577

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Technological advances in artificial intelligence (AI) are leading the rapidly changing
world of the twenty-first century. We have already passed from machine learning to
deep learning with numerous applications. The contribution of AI so far to the
improvement of our quality of life is profound. Major challenges but also risks and
threats are here. Brain-inspired computing explores, simulates, and imitates the struc-
ture and the function of the human brain, achieving high-performance modeling plus
visualization capabilities.

The International Conference on Artificial Neural Networks (ICANN) is the annual
flagship conference of the European Neural Network Society (ENNS). It features the
main tracks “Brain-Inspired Computing” and “Machine Learning Research,” with
strong cross-disciplinary interactions and applications. All research fields dealing with
neural networks are present.

The 27th ICANN was held during October 4–7, 2018, at the Aldemar Amilia Mare
five-star resort and conference center in Rhodes, Greece. The previous ICANN events
were held in Helsinki, Finland (1991), Brighton, UK (1992), Amsterdam, The
Netherlands (1993), Sorrento, Italy (1994), Paris, France (1995), Bochum, Germany
(1996), Lausanne, Switzerland (1997), Skovde, Sweden (1998), Edinburgh, UK
(1999), Como, Italy (2000), Vienna, Austria (2001), Madrid, Spain (2002), Istanbul,
Turkey (2003), Budapest, Hungary (2004), Warsaw, Poland (2005), Athens, Greece
(2006), Porto, Portugal (2007), Prague, Czech Republic (2008), Limassol, Cyprus
(2009), Thessaloniki, Greece (2010), Espoo-Helsinki, Finland (2011), Lausanne,
Switzerland (2012), Sofia, Bulgaria (2013), Hamburg, Germany (2014), Barcelona,
Spain (2016), and Alghero, Italy (2017).

Following a long-standing tradition, these Springer volumes belong to the Lecture
Notes in Computer Science Springer series. They contain the papers that were accepted
to be presented orally or as posters during the 27th ICANN conference. The 27th
ICANN Program Committee was delighted by the overwhelming response to the call
for papers. All papers went through a peer-review process by at least two and many
times by three or four independent academic referees to resolve any conflicts. In total,
360 papers were submitted to the 27th ICANN. Of these, 139 (38.3%) were accepted as
full papers for oral presentation of 20 minutes with a maximum length of 10 pages,
whereas 28 of them were accepted as short contributions to be presented orally in 15
minutes and for inclusion in the proceedings with 8 pages. Also, 41 papers (11.4%)
were accepted as full papers for poster presentation (up to 10 pages long), whereas 11
were accepted as short papers for poster presentation (maximum length of 8 pages).

The accepted papers of the 27th ICANN conference are related to the following
thematic topics:

AI and Bioinformatics
Bayesian and Echo State Networks
Brain-Inspired Computing

Chaotic Complex Models
Clustering, Mining, Exploratory Analysis
Coding Architectures
Complex Firing Patterns
Convolutional Neural Networks
Deep Learning (DL)

– DL in Real Time Systems
– DL and Big Data Analytics
– DL and Big Data
– DL and Forensics
– DL and Cybersecurity
– DL and Social Networks

Evolving Systems – Optimization
Extreme Learning Machines
From Neurons to Neuromorphism
From Sensation to Perception
From Single Neurons to Networks
Fuzzy Modeling
Hierarchical ANN
Inference and Recognition
Information and Optimization
Interacting with the Brain
Machine Learning (ML)

– ML for Bio-Medical Systems
– ML and Video-Image Processing
– ML and Forensics
– ML and Cybersecurity
– ML and Social Media
– ML in Engineering

Movement and Motion Detection
Multilayer Perceptrons and Kernel Networks
Natural Language
Object and Face Recognition
Recurrent Neural Networks and Reservoir Computing
Reinforcement Learning
Reservoir Computing
Self-Organizing Maps
Spiking Dynamics/Spiking ANN
Support Vector Machines
Swarm Intelligence and Decision-Making
Text Mining
Theoretical Neural Computation
Time Series and Forecasting
Training and Learning

VI Preface

The authors of submitted papers came from 34 different countries from all over the
globe, namely: Belgium, Brazil, Bulgaria, Canada, China, Czech Republic, Cyprus,
Egypt, Finland, France, Germany, Greece, India, Iran, Ireland, Israel, Italy, Japan,
Luxembourg, The Netherlands, Norway, Oman, Pakistan, Poland, Portugal, Romania,
Russia, Slovakia, Spain, Switzerland, Tunisia, Turkey, UK, USA.

Four keynote speakers were invited, and they gave lectures on timely aspects of AI.
We hope that these proceedings will help researchers worldwide to understand and

to be aware of timely evolutions in AI and more specifically in artificial neural net-
works. We believe that they will be of major interest for scientists over the globe and
that they will stimulate further research.

October 2018 Věra Kůrková
Yannis Manolopoulos

Barbara Hammer
Lazaros Iliadis

Ilias Maglogiannis

Preface VII

Organization

General Chairs

Věra Kůrková Czech Academy of Sciences, Czech Republic
Yannis Manolopoulos Open University of Cyprus, Cyprus

Program Co-chairs

Barbara Hammer Bielefeld University, Germany
Lazaros Iliadis Democritus University of Thrace, Greece
Ilias Maglogiannis University of Piraeus, Greece

Steering Committee

Vera Kurkova
(President of ENNS)

Czech Academy of Sciences, Czech Republic

Cesare Alippi Università della Svizzera Italiana, Switzerland
Guillem Antó i Coma Pompeu Fabra University, Barcelona, Spain
Jeremie Cabessa Université Paris 2 Panthéon-Assas, France
Wlodzislaw Duch Nicolaus Copernicus University, Poland
Petia Koprinkova-Hristova Bulgarian Academy of Sciences, Bulgaria
Jaakko Peltonen University of Tampere, Finland
Yifat Prut The Hebrew University, Israel
Bernardete Ribeiro University of Coimbra, Portugal
Stefano Rovetta University of Genoa, Italy
Igor Tetko German Research Center for Environmental Health,

Munich, Germany
Alessandro Villa University of Lausanne, Switzerland
Paco Zamora-Martínez das-Nano, Spain

Publication Chair

Antonis Papaleonidas Democritus University of Thrace, Greece

Communication Chair

Paolo Masulli Technical University of Denmark, Denmark

Program Committee

Najem Abdennour Higher Institute of Computer Science and Multimedia
(ISIMG), Gabes, Tunisia

Tetiana Aksenova Atomic Energy Commission (CEA), Grenoble, France
Zakhriya Alhassan Durham University, UK
Tayfun Alpay University of Hamburg, Germany
Ioannis Anagnostopoulos University of Thessaly, Greece
Cesar Analide University of Minho, Portugal
Annushree Bablani National Institute of Technology Goa, India
Costin Badica University of Craiova, Romania
Pablo Barros University of Hamburg, Germany
Adam Barton University of Ostrava, Czech Republic
Lluís Belanche Polytechnic University of Catalonia, Spain
Bartlomiej Beliczynski Warsaw University of Technology, Poland
Kostas Berberidis University of Patras, Greece
Ege Beyazit University of Louisiana at Lafayette, USA
Francisco Elanio Bezerra University Ninth of July, Sao Paolo, Brazil
Varun Bhatt Indian Institute of Technology, Bombay, India
Marcin Blachnik Silesian University of Technology, Poland
Sander Bohte National Research Institute for Mathematics

and Computer Science (CWI), The Netherlands
Simone Bonechi University of Siena, Italy
Farah Bouakrif University of Jijel, Algeria
Meftah Boudjelal Mascara University, Algeria
Andreas Bougiouklis National Technical University of Athens, Greece
Martin Butz University of Tübingen, Germany
Jeremie Cabessa Université Paris 2, France
Paulo Vitor Campos Souza Federal Center for Technological Education of Minas

Gerais, Brazil
Angelo Cangelosi Plymouth University, UK
Yanan Cao Chinese Academy of Sciences, China
Francisco Carvalho Federal University of Pernambuco, Brazil
Giovanna Castellano University of Bari, Italy
Jheymesson Cavalcanti University of Pernambuco, Brazil
Amit Chaulwar Technical University Ingolstadt, Germany
Sylvain Chevallier University of Versailles St. Quentin, France
Stephane Cholet University of Antilles, Guadeloupe
Mark Collier Trinity College, Ireland
Jorg Conradt Technical University of Munich, Germany
Adriana Mihaela Coroiu Babes-Bolyai University, Romania
Paulo Cortez University of Minho, Portugal
David Coufal Czech Academy of Sciences, Czech Republic
Juarez Da Silva University of Vale do Rio dos Sinos, Brazil
Vilson Luiz Dalle Mole Federal University of Technology Parana, Brazil
Debasmit Das Purdue University, USA
Bodhisattva Dash International Institute of Information Technology,

Bhubaneswar, India
Eli David Bar-Ilan University, Israel
Konstantinos Demertzis Democritus University of Thrace, Greece

X Organization

Antreas Dionysiou University of Cyprus, Cyprus
Sergey Dolenko Lomonosov Moscow State University, Russia
Xiao Dong Chinese Academy of Sciences, China
Shirin Dora University of Amsterdam, The Netherlands
Jose Dorronsoro Autonomous University of Madrid, Spain
Ziad Doughan Beirut Arab University, Lebanon
Wlodzislaw Duch Nicolaus Copernicus University, Poland
Gerrit Ecke University of Tübingen, Germany
Alexander Efitorov Lomonosov Moscow State University, Russia
Manfred Eppe University of Hamburg, Germany
Deniz Erdogmus Northeastern University, USA
Rodrigo Exterkoetter LTrace Geophysical Solutions, Florianopolis, Brazil
Yingruo Fan The University of Hong Kong, SAR China
Maurizio Fiasché Polytechnic University of Milan, Italy
Lydia Fischer Honda Research Institute Europe, Germany
Andreas Fischer University of Fribourg, Germany
Qinbing Fu University of Lincoln, UK
Ninnart Fuengfusin Kyushu Institute of Technology, Japan
Madhukar Rao G. Indian Institute of Technology, Dhanbad, India
Mauro Gaggero National Research Council, Genoa, Italy
Claudio Gallicchio University of Pisa, Italy
Shuai Gao University of Science and Technology of China, China
Artur Garcez City University of London, UK
Michael Garcia Ortiz Aldebaran Robotics, France
Angelo Genovese University of Milan, Italy
Christos Georgiadis University of Macedonia, Thessaloniki, Greece
Alexander Gepperth HAW Fulda, Germany
Peter Gergeľ Comenius University in Bratislava, Slovakia
Daniel Gibert University of Lleida, Spain
Eleonora Giunchiglia University of Genoa, Italy
Jan Philip Goepfert Bielefeld University, Germany
George Gravanis Democritus University of Thrace, Greece
Ingrid Grenet University of Côte d’Azur, France
Jiri Grim Czech Academy of Sciences, Czech Republic
Xiaodong Gu Fudan University, China
Alberto Guillén University of Granada, Spain
Tatiana Valentine Guy Czech Academy of Sciences, Czech Republic
Myrianthi

Hadjicharalambous
KIOS Research and Innovation Centre of Excellence,

Cyprus
Petr Hajek University of Pardubice, Czech Republic
Xue Han China University of Geosciences, China
Liping Han Nanjing University of Information Science

and Technology, China
Wang Haotian National University of Defense Technology, China
Kazuyuki Hara Nihon University, Japan
Ioannis Hatzilygeroudis University of Patras, Greece

Organization XI

Stefan Heinrich University of Hamburg, Germany
Tim Heinz University of Siegen, Germany
Catalina Hernandez District University of Bogota, Colombia
Alex Hernández García University of Osnabrück, Germany
Adrian Horzyk AGH University of Science and Technology

in Krakow, Poland
Wenjun Hou China Agricultural University, China
Jian Hou Bohai University, China
Haigen Hu Zhejiang University of Technology, China
Amir Hussain University of Stirling, UK
Nantia Iakovidou King’s College London, UK
Yahaya Isah Shehu Coventry University, UK
Sylvain Jaume Saint Peter’s University, Jersey City, USA
Noman Javed Namal College Mianwali, Pakistan
Maciej Jedynak University of Grenoble Alpes, France
Qinglin Jia Peking University, China
Na Jiang Beihang University, China
Wenbin Jiang Huazhong University of Science and Technology,

China
Zongze Jin Chinese Academy of Sciences, China
Jacek Kabziński Lodz University of Technology, Poland
Antonios Kalampakas American University of the Middle East, Kuwait
Jan Kalina Czech Academy of Sciences, Czech Republic
Ryotaro Kamimura Tokai University, Japan
Andreas Kanavos University of Patras, Greece
Savvas Karatsiolis University of Cyprus, Cyprus
Kostas Karatzas Aristotle University of Thessaloniki, Greece
Ioannis Karydis Ionian University, Greece
Petros Kefalas University of Sheffield, International Faculty City

College, Thessaloniki, Greece
Nadia Masood Khan University of Engineering and Technology Peshawar,

Pakistan
Gul Muhammad Khan University of Engineering and Technology, Peshawar,

Pakistan
Sophie Klecker University of Luxembourg, Luxembourg
Taisuke Kobayashi Nara Institute of Science and Technology, Japan
Mario Koeppen Kyushu Institute of Technology, Japan
Mikko Kolehmainen University of Eastern Finland, Finland
Stefanos Kollias University of Lincoln, UK
Ekaterina Komendantskaya Heriot-Watt University, UK
Petia Koprinkova-Hristova Bulgarian Academy of Sciences, Bulgaria
Irena Koprinska University of Sydney, Australia
Dimitrios Kosmopoulos University of Patras, Greece
Costas Kotropoulos Aristotle University of Thessaloniki, Greece
Athanasios Koutras TEI of Western Greece, Greece
Konstantinos Koutroumbas National Observatory of Athens, Greece

XII Organization

Giancarlo La Camera Stony Brook University, USA
Jarkko Lagus University of Helsinki, Finland
Luis Lamb Federal University of Rio Grande, Brazil
Ángel Lareo Autonomous University of Madrid, Spain
René Larisch Chemnitz University of Technology, Germany
Nikos Laskaris Aristotle University of Thessaloniki, Greece
Ivano Lauriola University of Padua, Italy
David Lenz Justus Liebig University, Giessen, Germany
Florin Leon Technical University of Iasi, Romania
Guangli Li Chinese Academy of Sciences, China
Yang Li Peking University, China
Hongyu Li Zhongan Technology, Shanghai, China
Diego Ettore Liberati National Research Council, Rome, Italy
Aristidis Likas University of Ioannina, Greece
Annika Lindh Dublin Institute of Technology, Ireland
Junyu Liu Huiying Medical Technology, China
Ji Liu Beihang University, China
Doina Logofatu Frankfurt University of Applied Sciences, Germany
Vilson Luiz Dalle Mole Federal University of Technology – Paraná (UTFPR),

Campus Toledo, Spain
Sven Magg University of Hamburg, Germany
Ilias Maglogiannis University of Piraeus, Greece
George Magoulas Birkbeck College, London, UK
Christos Makris University of Patras, Greece
Kleanthis Malialis University of Cyprus, Cyprus
Kristína Malinovská Comenius University in Bratislava, Slovakia
Konstantinos Margaritis University of Macedonia, Thessaloniki, Greece
Thomas Martinetz University of Lübeck, Germany
Gonzalo Martínez-Muñoz Autonomous University of Madrid, Spain
Boudjelal Meftah University Mustapha Stambouli, Mascara, Algeria
Stefano Melacci University of Siena, Italy
Nikolaos Mitianoudis Democritus University of Thrace, Greece
Hebatallah Mohamed Roma Tre University, Italy
Francesco Carlo Morabito Mediterranean University of Reggio Calabria, Italy
Giorgio Morales National Telecommunications Research and Training

Institute (INICTEL), Peru
Antonio Moran University of Leon, Spain
Dimitrios Moschou Aristotle University of Thessaloniki, Greece
Cristhian Motoche National Polytechnic School, Ecuador
Phivos Mylonas Ionian University, Greece
Anton Nemchenko UCLA, USA
Roman Neruda Czech Academy of Sciences, Czech Republic
Amy Nesky University of Michigan, USA
Hoang Minh Nguyen Korea Advanced Institute of Science and Technology,

South Korea
Giannis Nikolentzos Ecole Polytechnique, Palaiseau, France

Organization XIII

Dimitri Nowicki National Academy of Sciences, Ukraine
Stavros Ntalampiras University of Milan, Italy
Luca Oneto University of Genoa, Italy
Mihaela Oprea University Petroleum-Gas of Ploiesti, Romania
Sebastian Otte University of Tubingen, Germany
Jun Ou Beijing University of Technology, China
Basil Papadopoulos Democritus University of Thrace, Greece
Harris Papadopoulos Frederick University, Cyprus
Antonios Papaleonidas Democritus University of Thrace, Greece
Krzysztof Patan University of Zielona Góra, Poland
Jaakko Peltonen University of Tampere, Finland
Isidoros Perikos University of Patras, Greece
Alfredo Petrosino University of Naples Parthenope, Italy
Duc-Hong Pham Vietnam National University, Vietnam
Elias Pimenidis University of the West of England, UK
Vincenzo Piuri University of Milan, Italy
Mirko Polato University of Padua, Italy
Yifat Prut The Hebrew University, Israel
Jielin Qiu Shanghai Jiao Tong University, China
Chhavi Rana Maharshi Dayanand University, India
Marina Resta University of Genoa, Italy
Bernardete Ribeiro University of Coimbra, Portugal
Riccardo Rizzo National Research Council, Rome, Italy
Manuel Roveri Polytechnic University of Milan, Italy
Stefano Rovetta University of Genoa, Italy
Araceli Sanchis de Miguel Charles III University of Madrid, Spain
Marcello Sanguineti University of Genoa, Italy
Kyrill Schmid University of Munich, Germany
Thomas Schmid University of Leipzig, Germany
Friedhelm Schwenker Ulm University, Germany
Neslihan Serap Sengor Istanbul Technical University, Turkey
Will Serrano Imperial College London, UK
Jivitesh Sharma University of Agder, Norway
Rafet Sifa Fraunhofer IAIS, Germany
Sotir Sotirov University Prof. Dr. Asen Zlatarov, Burgas, Bulgaria
Andreas Stafylopatis National Technical University of Athens, Greece
Antonino Staiano University of Naples Parthenope, Italy
Ioannis Stephanakis Hellenic Telecommunications Organisation, Greece
Michael Stiber University of Washington Bothell, USA
Catalin Stoean University of Craiova, Romania
Rudolf Szadkowski Czech Technical University, Czech Republic
Mandar Tabib SINTEF, Norway
Kazuhiko Takahashi Doshisha University, Japan
Igor Tetko Helmholtz Center Munich, Germany
Yancho Todorov Aalto University, Espoo, Finland

XIV Organization

César Torres-Huitzil National Polytechnic Institute, Victoria, Tamaulipas,
Mexico

Athanasios Tsadiras Aristotle University of Thessaloniki, Greece
Nicolas Tsapatsoulis Cyprus University of Technology, Cyprus
George Tsekouras University of the Aegean, Greece
Matus Tuna Comenius University in Bratislava, Slovakia
Theodoros Tzouramanis University of the Aegean, Greece
Juan Camilo Vasquez Tieck FZI, Karlsruhe, Germany
Nikolaos Vassilas ATEI of Athens, Greece
Petra Vidnerová Czech Academy of Sciences, Czech Republic
Alessandro Villa University of Lausanne, Switzerland
Panagiotis Vlamos Ionian University, Greece
Thanos Voulodimos National Technical University of Athens, Greece
Roseli Wedemann Rio de Janeiro State University, Brazil
Stefan Wermter University of Hamburg, Germany
Zhihao Ye Guangdong University of Technology, China
Hujun Yin University of Manchester, UK
Francisco Zamora-Martinez Veridas Digital Authentication Solutions, Spain
Yongxiang Zhang Sun Yat-Sen University, China
Liu Zhongji Chinese Academy of Sciences, China
Rabiaa Zitouni Tunis El Manar University, Tunisia
Sarah Zouinina Université Paris 13, France

Organization XV

Keynote Talks

Cognitive Phase Transitions in the Cerebral
Cortex – John Taylor Memorial Lecture

Robert Kozma

University of Massachusetts Amherst

Abstract. Everyday subjective experience of the stream of consciousness sug-
gests continuous cognitive processing in time and smooth underlying brain
dynamics. Brain monitoring techniques with markedly improved spatio-
temporal resolution, however, show that relatively smooth periods in brain
dynamics are frequently interrupted by sudden changes and intermittent dis-
continuities, evidencing singularities. There are frequent transitions between
periods of large-scale synchronization and intermittent desynchronization at
alpha-theta rates. These observations support the hypothesis about the cinematic
model of cognitive processing, according to which higher cognition can be
viewed as multiple movies superimposed in time and space. The metastable
spatial patterns of field potentials manifest the frames, and the rapid transitions
provide the shutter from each pattern to the next. Recent experimental evidence
indicates that the observed discontinuities are not merely important aspects of
cognition; they are key attributes of intelligent behavior representing the cog-
nitive “Aha” moment of sudden insight and deep understanding in humans and
animals. The discontinuities can be characterized as phase transitions in graphs
and networks. We introduce computational models to implement these insights
in a new generation of devices with robust artificial intelligence, including
oscillatory neuromorphic memories, and self-developing autonomous robots.

On the Deep Learning Revolution
in Computer Vision

Nathan Netanyahu

Bar-Ilan University, Israel

Abstract. Computer Vision (CV) is an interdisciplinary field of Artificial
Intelligence (AI), which is concerned with the embedding of human visual
capabilities in a computerized system. The main thrust, essentially, of CV is to
generate an “intelligent” high-level description of the world for a given scene,
such that when interfaced with other thought processes can elicit, ultimately,
appropriate action. In this talk we will review several central CV tasks and
traditional approaches taken for handling these tasks for over 50 years. Noting
the limited performance of standard methods applied, we briefly survey the
evolution of artificial neural networks (ANN) during this extended period, and
focus, specifically, on the ongoing revolutionary performance of deep learning
(DL) techniques for the above CV tasks during the past few years. In particular,
we provide also an overview of our DL activities, in the context of CV, at
Bar-Ilan University. Finally, we discuss future research and development
challenges in CV in light of further employment of prospective DL innovations.

From Machine Learning to Machine
Diagnostics

Marios Polycarpou

University of Cyprus

Abstract. During the last few years, there have has been remarkable progress in
utilizing machine learning methods in several applications that benefit from
deriving useful patterns among large volumes of data. These advances have
attracted significant attention from industry due to the prospective of reducing
the cost of predicting future events and making intelligent decisions based on
data from past experiences. In this context, a key area that can benefit greatly
from the use of machine learning is the task of detecting and diagnosing
abnormal behaviour in dynamical systems, especially in safety-critical,
large-scale applications. The goal of this presentation is to provide insight into
the problem of detecting, isolating and self-correcting abnormal or faulty
behaviour in large-scale dynamical systems, to present some design method-
ologies based on machine learning and to show some illustrative examples. The
ultimate goal is to develop the foundation of the concept of machine diagnostics,
which would empower smart software algorithms to continuously monitor the
health of dynamical systems during the lifetime of their operation.

Multimodal Deep Learning in Biomedical
Image Analysis

Sotirios Tsaftaris

University of Edinburgh, UK

Abstract. Nowadays images are typically accompanied by additional informa-
tion. At the same time, for example, magnetic resonance imaging exams typi-
cally contain more than one image modality: they show the same anatomy under
different acquisition strategies revealing various pathophysiological information.
The detection of disease, segmentation of anatomy and other classical analysis
tasks, can benefit from a multimodal view to analysis that leverages shared
information across the sources yet preserves unique information. It is without
surprise that radiologists analyze data in this fashion, reviewing the exam as a
whole. Yet, when aiming to automate analysis tasks, we still treat different
image modalities in isolation and tend to ignore additional information. In this
talk, I will present recent work in learning with deep neural networks, latent
embeddings suitable for multimodal processing, and highlight opportunities and
challenges in this area.

Contents – Part I

CNN/Natural Language

Fast CNN Pruning via Redundancy-Aware Training 3
Xiao Dong, Lei Liu, Guangli Li, Peng Zhao, and Xiaobing Feng

Two-Stream Convolutional Neural Network for Multimodal Matching 14
Youcai Zhang, Yiwei Gu, and Xiaodong Gu

Kernel Graph Convolutional Neural Networks . 22
Giannis Nikolentzos, Polykarpos Meladianos,
Antoine Jean-Pierre Tixier, Konstantinos Skianis,
and Michalis Vazirgiannis

A Histogram of Oriented Gradients for Broken Bars Diagnosis
in Squirrel Cage Induction Motors . 33

Luiz C. Silva, Cleber G. Dias, and Wonder A. L. Alves

Learning Game by Profit Sharing Using Convolutional Neural Network 43
Nobuaki Hasuike and Yuko Osana

Detection of Fingerprint Alterations Using Deep Convolutional
Neural Networks . 51

Yahaya Isah Shehu, Ariel Ruiz-Garcia, Vasile Palade, and Anne James

A Convolutional Neural Network Approach for Modeling Semantic
Trajectories and Predicting Future Locations. 61

Antonios Karatzoglou, Nikolai Schnell, and Michael Beigl

Neural Networks for Multi-lingual Multi-label Document Classification 73
Jiří Martínek, Ladislav Lenc, and Pavel Král

Multi-region Ensemble Convolutional Neural Network for Facial
Expression Recognition . 84

Yingruo Fan, Jacqueline C. K. Lam, and Victor O. K. Li

Further Advantages of Data Augmentation on Convolutional
Neural Networks . 95

Alex Hernández-García and Peter König

DTI-RCNN: New Efficient Hybrid Neural Network Model to Predict
Drug–Target Interactions . 104

Xiaoping Zheng, Song He, Xinyu Song, Zhongnan Zhang,
and Xiaochen Bo

Hierarchical Convolution Neural Network for Emotion Cause Detection
on Microblogs . 115

Ying Chen, Wenjun Hou, and Xiyao Cheng

Direct Training of Dynamic Observation Noise with UMarineNet 123
Stefan Oehmcke, Oliver Zielinski, and Oliver Kramer

Convolutional Soft Decision Trees . 134
Alper Ahmetoğlu, Ozan İrsoy, and Ethem Alpaydın

A Multi-level Attention Model for Text Matching . 142
Qiang Sun and Yue Wu

Attention Enhanced Chinese Word Embeddings . 154
Xingzhang Ren, Leilei Zhang, Wei Ye, Hang Hua, and Shikun Zhang

Balancing Convolutional Neural Networks Pipeline in FPGAs 166
Mark Cappello Ferreira de Sousa, Miguel Angelo de Abreu de Sousa,
and Emilio Del-Moral-Hernandez

Generating Diverse and Meaningful Captions: Unsupervised Specificity
Optimization for Image Captioning . 176

Annika Lindh, Robert J. Ross, Abhijit Mahalunkar, Giancarlo Salton,
and John D. Kelleher

Assessing Image Analysis Filters as Augmented Input to Convolutional
Neural Networks for Image Classification . 188

K. Delibasis, Ilias Maglogiannis, S. Georgakopoulos, K. Kottari,
and V. Plagianakos

Spiking

Balanced Cortical Microcircuitry-Based Network for Working Memory 199
Hui Wei, Zihao Su, and Dawei Dai

Learning Continuous Muscle Control for a Multi-joint Arm by Extending
Proximal Policy Optimization with a Liquid State Machine 211

Juan Camilo Vasquez Tieck, Marin Vlastelica Pogančić, Jacques Kaiser,
Arne Roennau, Marc-Oliver Gewaltig, and Rüdiger Dillmann

A Supervised Multi-spike Learning Algorithm for Recurrent Spiking
Neural Networks . 222

Xianghong Lin and Guoyong Shi

Artwork Retrieval Based on Similarity of Touch Using Convolutional
Neural Network . 235

Takayuki Fujita and Yuko Osana

XXIV Contents – Part I

Microsaccades for Neuromorphic Stereo Vision . 244
Jacques Kaiser, Jakob Weinland, Philip Keller, Lea Steffen,
J. Camilo Vasquez Tieck, Daniel Reichard, Arne Roennau,
Jörg Conradt, and Rüdiger Dillmann

A Neural Spiking Approach Compared to Deep Feedforward Networks
on Stepwise Pixel Erasement . 253

René Larisch, Michael Teichmann, and Fred H. Hamker

Sparsity Enables Data and Energy Efficient Spiking Convolutional
Neural Networks . 263

Varun Bhatt and Udayan Ganguly

Design of Spiking Rate Coded Logic Gates for C. elegans Inspired
Contour Tracking . 273

Shashwat Shukla, Sangya Dutta, and Udayan Ganguly

Gating Sensory Noise in a Spiking Subtractive LSTM 284
Isabella Pozzi, Roeland Nusselder, Davide Zambrano, and Sander Bohté

Spiking Signals in FOC Control Drive. 294
L. M. Grzesiak and V. Meganck

Spiking Neural Network Controllers Evolved for Animat Foraging Based
on Temporal Pattern Recognition in the Presence of Noise on Input 304

Chama Bensmail, Volker Steuber, Neil Davey, and Borys Wróbel

Spiking Neural Networks Evolved to Perform Multiplicative Operations 314
Muhammad Aamir Khan, Volker Steuber, Neil Davey, and Borys Wróbel

Very Small Spiking Neural Networks Evolved for Temporal Pattern
Recognition and Robust to Perturbed Neuronal Parameters 322

Muhammad Yaqoob and Borys Wróbel

Machine Learning/Autoencoders

Machine Learning to Predict Toxicity of Compounds 335
Ingrid Grenet, Yonghua Yin, Jean-Paul Comet, and Erol Gelenbe

Energy-Based Clustering for Pruning Heterogeneous Ensembles 346
Javier Cela and Alberto Suárez

Real-Time Hand Gesture Recognition Based on Electromyographic
Signals and Artificial Neural Networks . 352

Cristhian Motoche and Marco E. Benalcázar

Contents – Part I XXV

Fast Communication Structure for Asynchronous Distributed ADMM
Under Unbalance Process Arrival Pattern . 362

Shuqing Wang and Yongmei Lei

Improved Personalized Rankings Using Implicit Feedback 372
Josef Feigl and Martin Bogdan

Cosine Normalization: Using Cosine Similarity Instead of Dot Product
in Neural Networks . 382

Chunjie Luo, Jianfeng Zhan, Xiaohe Xue, Lei Wang, Rui Ren,
and Qiang Yang

Discovering Thermoelectric Materials Using Machine Learning:
Insights and Challenges . 392

Mandar V. Tabib, Ole Martin Løvvik, Kjetil Johannessen,
Adil Rasheed, Espen Sagvolden, and Anne Marthine Rustad

Auto-tuning Neural Network Quantization Framework for Collaborative
Inference Between the Cloud and Edge . 402

Guangli Li, Lei Liu, Xueying Wang, Xiao Dong, Peng Zhao,
and Xiaobing Feng

GraphVAE: Towards Generation of Small Graphs
Using Variational Autoencoders . 412

Martin Simonovsky and Nikos Komodakis

Generation of Reference Trajectories for Safe Trajectory Planning. 423
Amit Chaulwar, Michael Botsch, and Wolfgang Utschick

Joint Application of Group Determination of Parameters and of Training
with Noise Addition to Improve the Resilience of the Neural Network
Solution of the Inverse Problem in Spectroscopy to Noise in Data 435

Igor Isaev, Sergey Burikov, Tatiana Dolenko, Kirill Laptinskiy,
Alexey Vervald, and Sergey Dolenko

Learning

Generating Natural Answers on Knowledge Bases and Text
by Sequence-to-Sequence Learning . 447

Zhihao Ye, Ruichu Cai, Zhaohui Liao, Zhifeng Hao, and Jinfen Li

Mitigating Concept Drift via Rejection. 456
Jan Philip Göpfert, Barbara Hammer, and Heiko Wersing

Strategies to Enhance Pattern Recognition in Neural Networks Based
on the Insect Olfactory System . 468

Jessica Lopez-Hazas, Aaron Montero, and Francisco B. Rodriguez

XXVI Contents – Part I

HyperNets and Their Application to Learning Spatial Transformations. 476
Alexey Potapov, Oleg Shcherbakov, Innokentii Zhdanov,
Sergey Rodionov, and Nikolai Skorobogatko

Catastrophic Forgetting: Still a Problem for DNNs 487
B. Pfülb, A. Gepperth, S. Abdullah, and A. Kilian

Queue-Based Resampling for Online Class Imbalance Learning 498
Kleanthis Malialis, Christos Panayiotou, and Marios M. Polycarpou

Learning Simplified Decision Boundaries from Trapezoidal Data Streams . . . 508
Ege Beyazit, Matin Hosseini, Anthony Maida, and Xindong Wu

Improving Active Learning by Avoiding Ambiguous Samples 518
Christian Limberg, Heiko Wersing, and Helge Ritter

Solar Power Forecasting Using Dynamic Meta-Learning Ensemble
of Neural Networks . 528

Zheng Wang and Irena Koprinska

Using Bag-of-Little Bootstraps for Efficient Ensemble Learning 538
Pablo de Viña and Gonzalo Martínez-Muñoz

Learning Preferences for Large Scale Multi-label Problems 546
Ivano Lauriola, Mirko Polato, Alberto Lavelli, Fabio Rinaldi,
and Fabio Aiolli

Affinity Propagation Based Closed-Form Semi-supervised Metric
Learning Framework . 556

Ujjal Kr Dutta and C. Chandra Sekhar

Online Approximation of Prediction Intervals Using Artificial
Neural Networks . 566

Myrianthi Hadjicharalambous, Marios M. Polycarpou,
and Christos G. Panayiotou

Classification

Estimation of Microphysical Parameters of Atmospheric Pollution
Using Machine Learning . 579

C. Llerena, D. Müller, R. Adams, N. Davey, and Y. Sun

Communication Style - An Analysis from the Perspective
of Automated Learning . 589

Adriana Mihaela Coroiu, Alina Delia Călin, and Maria Nuțu

Directional Data Analysis for Shape Classification 598
Adrián Muñoz and Alberto Suárez

Contents – Part I XXVII

Semantic Space Transformations for Cross-Lingual
Document Classification. 608

Jiří Martínek, Ladislav Lenc, and Pavel Král

Automatic Treatment of Bird Audios by Means of String Compression
Applied to Sound Clustering in Xeno-Canto Database 617

Guillermo Sarasa, Ana Granados, and Francisco B. Rodriguez

FROD: Fast and Robust Distance-Based Outlier Detection
with Active-Inliers-Patterns in Data Streams . 626

Zongren Li, Yijie Wang, Guohong Zhao, Li Cheng, and Xingkong Ma

Unified Framework for Joint Attribute Classification
and Person Re-identification . 637

Chenxin Sun, Na Jiang, Lei Zhang, Yuehua Wang, Wei Wu,
and Zhong Zhou

Associative Graph Data Structures Used for Acceleration
of K Nearest Neighbor Classifiers . 648

Adrian Horzyk and Krzysztof Gołdon

A Game-Theoretic Framework for Interpretable Preference
and Feature Learning . 659

Mirko Polato and Fabio Aiolli

A Dynamic Ensemble Learning Framework for Data Stream Analysis
and Real-Time Threat Detection . 669

Konstantinos Demertzis, Lazaros Iliadis, and Vardis-Dimitris Anezakis

Fuzzy/Feature Selection

Gaussian Kernel-Based Fuzzy Clustering with Automatic
Bandwidth Computation. 685

Francisco de A. T. de Carvalho, Lucas V. C. Santana,
and Marcelo R. P. Ferreira

Fuzzy Clustering Algorithm Based on Adaptive Euclidean Distance
and Entropy Regularization for Interval-Valued Data 695

Sara Inés Rizo Rodríguez and Francisco de Assis Tenorio de Carvalho

Input-Dependably Feature-Map Pruning . 706
Atalya Waissman and Aharon Bar-Hillel

Thermal Comfort Index Estimation and Parameter Selection
Using Fuzzy Convolutional Neural Network. 714

Anirban Mitra, Arjun Sharma, Sumit Sharma, and Sudip Roy

XXVIII Contents – Part I

Soft Computing Modeling of the Illegal Immigration Density
in the Borders of Greece . 725

Serafeim Koutsomplias and Lazaros Iliadis

Fuzzy Implications Generating from Fuzzy Negations 736
Georgios Souliotis and Basil Papadopoulos

Facial/Emotion Recognition

Improving Ensemble Learning Performance with Complementary
Neural Networks for Facial Expression Recognition 747

Xinmin Zhang and Yingdong Ma

Automatic Beautification for Group-Photo Facial Expressions
Using Novel Bayesian GANs . 760

Ji Liu, Shuai Li, Wenfeng Song, Liang Liu, Hong Qin, and Aimin Hao

Fast and Accurate Affect Prediction Using a Hierarchy of Random Forests. . . . 771
Maxime Sazadaly, Pierre Pinchon, Arthur Fagot, Lionel Prevost,
and Myriam Maumy Bertrand

Gender-Aware CNN-BLSTM for Speech Emotion Recognition. 782
Linjuan Zhang, Longbiao Wang, Jianwu Dang, Lili Guo, and Qiang Yu

Semi-supervised Model for Emotion Recognition in Speech 791
Ingryd Pereira, Diego Santos, Alexandre Maciel, and Pablo Barros

Real-Time Embedded Intelligence System: Emotion Recognition
on Raspberry Pi with Intel NCS . 801

Y. Xing, P. Kirkland, G. Di Caterina, J. Soraghan, and G. Matich

Short Papers

Improving Neural Network Interpretability via Rule Extraction 811
Stéphane Gomez Schnyder, Jérémie Despraz,
and Carlos Andrés Peña-Reyes

Online Multi-object Tracking Exploiting Pose Estimation and Global-Local
Appearance Features . 814

Na Jiang, Sichen Bai, Yue Xu, Zhong Zhou, and Wei Wu

Author Index . 817

Contents – Part I XXIX

Contents – Part II

ELM/Echo State ANN

Rank-Revealing Orthogonal Decomposition in Extreme Learning
Machine Design . 3

Jacek Kabziński

An Improved CAD Framework for Digital Mammogram Classification
Using Compound Local Binary Pattern and Chaotic Whale
Optimization-Based Kernel Extreme Learning Machine 14

Figlu Mohanty, Suvendu Rup, and Bodhisattva Dash

A Novel Echo State Network Model Using Bayesian Ridge Regression
and Independent Component Analysis . 24

Hoang Minh Nguyen, Gaurav Kalra, Tae Joon Jun, and Daeyoung Kim

Image Processing

A Model for Detection of Angular Velocity of Image Motion Based
on the Temporal Tuning of the Drosophila . 37

Huatian Wang, Jigen Peng, Paul Baxter, Chun Zhang, Zhihua Wang,
and Shigang Yue

Local Decimal Pattern for Pollen Image Recognition 47
Liping Han and Yonghua Xie

New Architecture of Correlated Weights Neural Network for Global
Image Transformations . 56

Sławomir Golak, Anna Jama, Marcin Blachnik, and Tadeusz Wieczorek

Compression-Based Clustering of Video Human Activity Using
an ASCII Encoding . 66

Guillermo Sarasa, Aaron Montero, Ana Granados,
and Francisco B. Rodriguez

Medical/Bioinformatics

Deep Autoencoders for Additional Insight into Protein Dynamics 79
Mihai Teletin, Gabriela Czibula, Maria-Iuliana Bocicor, Silvana Albert,
and Alessandro Pandini

Pilot Design of a Rule-Based System and an Artificial Neural
Network to Risk Evaluation of Atherosclerotic Plaques
in Long-Range Clinical Research . 90

Jiri Blahuta, Tomas Soukup, and Jakub Skacel

A Multi-channel Multi-classifier Method for Classifying Pancreatic
Cystic Neoplasms Based on ResNet . 101

Haigen Hu, Kangjie Li, Qiu Guan, Feng Chen, Shengyong Chen,
and Yicheng Ni

Breast Cancer Histopathological Image Classification via Deep Active
Learning and Confidence Boosting . 109

Baolin Du, Qi Qi, Han Zheng, Yue Huang, and Xinghao Ding

Epileptic Seizure Prediction from EEG Signals Using Unsupervised
Learning and a Polling-Based Decision Process . 117

Lucas Aparecido Silva Kitano, Miguel Angelo Abreu Sousa,
Sara Dereste Santos, Ricardo Pires, Sigride Thome-Souza,
and Alexandre Brincalepe Campo

Classification of Bone Tumor on CT Images Using Deep Convolutional
Neural Network . 127

Yang Li, Wenyu Zhou, Guiwen Lv, Guibo Luo, Yuesheng Zhu, and Ji Liu

DSL: Automatic Liver Segmentation with Faster R-CNN and DeepLab 137
Wei Tang, Dongsheng Zou, Su Yang, and Jing Shi

Temporal Convolution Networks for Real-Time Abdominal Fetal Aorta
Analysis with Ultrasound . 148

Nicoló Savioli, Silvia Visentin, Erich Cosmi, Enrico Grisan,
Pablo Lamata, and Giovanni Montana

An Original Neural Network for Pulmonary Tuberculosis Diagnosis
in Radiographs . 158

Junyu Liu, Yang Liu, Cheng Wang, Anwei Li, Bowen Meng,
Xiangfei Chai, and Panli Zuo

Computerized Counting-Based System for Acute Lymphoblastic Leukemia
Detection in Microscopic Blood Images . 167

Karima Ben-Suliman and Adam Krzyżak

Right Ventricle Segmentation in Cardiac MR Images Using U-Net
with Partly Dilated Convolution . 179

Gregory Borodin and Olga Senyukova

XXXII Contents – Part II

Model Based on Support Vector Machine for the Estimation of the Heart
Rate Variability . 186

Catalina Maria Hernández-Ruiz, Sergio Andrés Villagrán Martínez,
Johan Enrique Ortiz Guzmán, and Paulo Alonso Gaona Garcia

High-Resolution Generative Adversarial Neural Networks Applied
to Histological Images Generation . 195

Antoni Mauricio, Jorge López, Roger Huauya, and Jose Diaz

Kernel

Tensor Learning in Multi-view Kernel PCA . 205
Lynn Houthuys and Johan A. K. Suykens

Reinforcement

ACM: Learning Dynamic Multi-agent Cooperation via Attentional
Communication Model. 219

Xue Han, Hongping Yan, Junge Zhang, and Lingfeng Wang

Improving Fuel Economy with LSTM Networks
and Reinforcement Learning . 230

Andreas Bougiouklis, Antonis Korkofigkas, and Giorgos Stamou

Action Markets in Deep Multi-Agent Reinforcement Learning 240
Kyrill Schmid, Lenz Belzner, Thomas Gabor, and Thomy Phan

Continuous-Time Spike-Based Reinforcement Learning for
Working Memory Tasks . 250

Marios Karamanis, Davide Zambrano, and Sander Bohté

Reinforcement Learning for Joint Extraction of Entities and Relations 263
Wenpeng Liu, Yanan Cao, Yanbing Liu, Yue Hu, and Jianlong Tan

Pattern Recognition/Text Mining/Clustering

TextNet for Text-Related Image Quality Assessment 275
Hongyu Li, Junhua Qiu, and Fan Zhu

A Target Dominant Sets Clustering Algorithm . 286
Jian Hou, Chengcong Lv, Aihua Zhang, and Xu E.

Input Pattern Complexity Determines Specialist and Generalist Populations
in Drosophila Neural Network . 296

Aaron Montero, Jessica Lopez-Hazas, and Francisco B. Rodriguez

Contents – Part II XXXIII

A Hybrid Planning Strategy Through Learning from Vision for
Target-Directed Navigation. 304

Xiaomao Zhou, Cornelius Weber, Chandrakant Bothe,
and Stefan Wermter

Optimization/Recommendation

Check Regularization: Combining Modularity and Elasticity
for Memory Consolidation . 315

Taisuke Kobayashi

Con-CNAME: A Contextual Multi-armed Bandit Algorithm for
Personalized Recommendations. 326

Xiaofang Zhang, Qian Zhou, Tieke He, and Bin Liang

Real-Time Session-Based Recommendations Using LSTM
with Neural Embeddings . 337

David Lenz, Christian Schulze, and Michael Guckert

Imbalanced Data Classification Based on MBCDK-means Undersampling
and GA-ANN . 349

Anping Song and Quanhua Xu

Evolutionary Tuning of a Pulse Mormyrid Electromotor Model to Generate
Stereotyped Sequences of Electrical Pulse Intervals 359

Angel Lareo, Pablo Varona, and F. B. Rodriguez

An Overview of Frank-Wolfe Optimization for Stochasticity Constrained
Interpretable Matrix and Tensor Factorization . 369

Rafet Sifa

Computational Neuroscience

A Bio-Feasible Computational Circuit for Neural Activities Persisting
and Decaying . 383

Dai Dawei, Weihui, and Su Zihao

Granger Causality to Reveal Functional Connectivity in the Mouse Basal
Ganglia-Thalamocortical Circuit . 393

Alessandra Lintas, Takeshi Abe, Alessandro E. P. Villa,
and Yoshiyuki Asai

A Temporal Estimate of Integrated Information for Intracranial
Functional Connectivity . 403

Xerxes D. Arsiwalla, Daniel Pacheco, Alessandro Principe,
Rodrigo Rocamora, and Paul Verschure

XXXIV Contents – Part II

SOM/SVM

Randomization vs Optimization in SVM Ensembles 415
Maryam Sabzevari, Gonzalo Martínez-Muñoz, and Alberto Suárez

An Energy-Based Convolutional SOM Model with
Self-adaptation Capabilities . 422

Alexander Gepperth, Ayanava Sarkar, and Thomas Kopinski

A Hierarchy Based Influence Maximization Algorithm in Social Networks. . . 434
Lingling Li, Kan Li, and Chao Xiang

Convolutional Neural Networks in Combination with Support Vector
Machines for Complex Sequential Data Classification 444

Antreas Dionysiou, Michalis Agathocleous, Chris Christodoulou,
and Vasilis Promponas

Classification of SIP Attack Variants with a Hybrid
Self-enforcing Network . 456

Waldemar Hartwig, Christina Klüver, Adnan Aziz,
and Dirk Hoffstadt

Anomaly Detection/Feature Selection/Autonomous Learning

Generalized Multi-view Unsupervised Feature Selection. 469
Yue Liu, Changqing Zhang, Pengfei Zhu, and Qinghua Hu

Performance Anomaly Detection Models of Virtual Machines for Network
Function Virtualization Infrastructure with Machine Learning 479

Juan Qiu, Qingfeng Du, Yu He, YiQun Lin, Jiaye Zhu, and Kanglin Yin

Emergence of Sensory Representations Using Prediction
in Partially Observable Environments . 489

Thibaut Kulak and Michael Garcia Ortiz

Signal Detection

Change Detection in Individual Users’ Behavior . 501
Parisa Rastin, Guénaël Cabanes, Basarab Matei, and Jean-Marc Marty

Extraction and Localization of Non-contaminated Alpha and Gamma
Oscillations from EEG Signal Using Finite Impulse Response, Stationary
Wavelet Transform, and Custom FIR. 511

Najmeddine Abdennour, Abir Hadriche, Tarek Frikha, and Nawel Jmail

Contents – Part II XXXV

Long-Short Term Memory/Chaotic Complex Models

Chaotic Complex-Valued Associative Memory with Adaptive
Scaling Factor. 523

Daisuke Karakama, Norihito Katamura, Chigusa Nakano,
and Yuko Osana

Computation of Air Traffic Flow Management Performance with Long
Short-Term Memories Considering Weather Impact 532

Stefan Reitmann and Michael Schultz

Wavelet/Reservoir Computing

A Study on the Influence of Wavelet Number Change in the Wavelet
Neural Network Architecture for 3D Mesh Deformation Using Trust
Region Spherical Parameterization. 545

Naziha Dhibi, Akram Elkefai, and Chokri Ben Amar

Combining Memory and Non-linearity in Echo State Networks. 556
Eleonora Di Gregorio, Claudio Gallicchio, and Alessio Micheli

A Neural Network of Multiresolution Wavelet Analysis 567
Alexander Efitorov, Vladimir Shiroky, and Sergey Dolenko

Similarity Measures/PSO - RBF

Fast Supervised Selection of Prototypes for Metric-Based Learning 577
Lluís A. Belanche

Modeling Data Center Temperature Profile in Terms of a First Order
Polynomial RBF Network Trained by Particle Swarm Optimization. 587

Ioannis A. Troumbis, George E. Tsekouras, Christos Kalloniatis,
Panagiotis Papachiou, and Dias Haralambopoulos

Incorporating Worker Similarity for Label Aggregation in Crowdsourcing . . . 596
Jiyi Li, Yukino Baba, and Hisashi Kashima

NoSync: Particle Swarm Inspired Distributed DNN Training 607
Mihailo Isakov and Michel A. Kinsy

Superkernels for RBF Networks Initialization (Short Paper) 621
David Coufal

Author Index . 625

XXXVI Contents – Part II

Contents – Part III

Recurrent ANN

Policy Learning Using SPSA . 3
R. Ramamurthy, C. Bauckhage, R. Sifa, and S. Wrobel

Simple Recurrent Neural Networks for Support Vector Machine Training . . . 13
Rafet Sifa, Daniel Paurat, Daniel Trabold, and Christian Bauckhage

RNN-SURV: A Deep Recurrent Model for Survival Analysis 23
Eleonora Giunchiglia, Anton Nemchenko, and Mihaela van der Schaar

Do Capsule Networks Solve the Problem of Rotation Invariance
for Traffic Sign Classification? . 33

Jan Kronenberger and Anselm Haselhoff

Balanced and Deterministic Weight-Sharing Helps Network Performance. . . . 41
Oscar Chang and Hod Lipson

Neural Networks with Block Diagonal Inner Product Layers 51
Amy Nesky and Quentin F. Stout

Training Neural Networks Using Predictor-Corrector Gradient Descent 62
Amy Nesky and Quentin F. Stout

Investigating the Role of Astrocyte Units in a Feedforward Neural Network . . . 73
Peter Gergel’ and Igor Farkaŝ

Interactive Area Topics Extraction with Policy Gradient. 84
Jingfei Han, Wenge Rong, Fang Zhang, Yutao Zhang, Jie Tang,
and Zhang Xiong

Implementing Neural Turing Machines . 94
Mark Collier and Joeran Beel

A RNN-Based Multi-factors Model for Repeat Consumption Prediction 105
Zengwei Zheng, Yanzhen Zhou, Lin Sun, and Jianping Cai

Practical Fractional-Order Neuron Dynamics for Reservoir Computing. 116
Taisuke Kobayashi

An Unsupervised Character-Aware Neural Approach to Word
and Context Representation Learning. 126

Giuseppe Marra, Andrea Zugarini, Stefano Melacci,
and Marco Maggini

Towards End-to-End Raw Audio Music Synthesis. 137
Manfred Eppe, Tayfun Alpay, and Stefan Wermter

Real-Time Hand Prosthesis Biomimetic Movement Based on
Electromyography Sensory Signals Treatment and Sensors Fusion. 147

João Olegário de Oliveira de Souza, José Vicente Canto dos Santos,
Rodrigo Marques de Figueiredo, and Gustavo Pessin

An Exploration of Dropout with RNNs for Natural Language Inference 157
Amit Gajbhiye, Sardar Jaf, Noura Al Moubayed, A. Stephen McGough,
and Steven Bradley

Neural Model for the Visual Recognition of Animacy
and Social Interaction . 168

Mohammad Hovaidi-Ardestani, Nitin Saini, Aleix M. Martinez,
and Martin A. Giese

Attention-Based RNN Model for Joint Extraction of Intent and Word
Slot Based on a Tagging Strategy . 178

Dongjie Zhang, Zheng Fang, Yanan Cao, Yanbing Liu, Xiaojun Chen,
and Jianlong Tan

Using Regular Languages to Explore the Representational Capacity
of Recurrent Neural Architectures . 189

Abhijit Mahalunkar and John D. Kelleher

Learning Trends on the Fly in Time Series Data Using Plastic CGP
Evolved Recurrent Neural Networks . 199

Gul Mummad Khan and Durr-e-Nayab

Noise Masking Recurrent Neural Network for Respiratory
Sound Classification . 208

Kirill Kochetov, Evgeny Putin, Maksim Balashov, Andrey Filchenkov,
and Anatoly Shalyto

Lightweight Neural Programming: The GRPU . 218
Felipe Carregosa, Aline Paes, and Gerson Zaverucha

Towards More Biologically Plausible Error-Driven Learning
for Artificial Neural Networks . 228

Kristína Malinovská, Ľudovít Malinovský, and Igor Farkaš

Online Carry Mode Detection for Mobile Devices with Compact RNNs 232
Philipp Kuhlmann, Paul Sanzenbacher, and Sebastian Otte

XXXVIII Contents – Part III

Deep Learning

Deep CNN-ELM Hybrid Models for Fire Detection in Images 245
Jivitesh Sharma, Ole-Christopher Granmo, and Morten Goodwin

Siamese Survival Analysis with Competing Risks . 260
Anton Nemchenko, Trent Kyono, and Mihaela Van Der Schaar

A Survey on Deep Transfer Learning . 270
Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang,
and Chunfang Liu

Cloud Detection in High-Resolution Multispectral Satellite Imagery
Using Deep Learning. 280

Giorgio Morales, Samuel G. Huamán, and Joel Telles

Metric Embedding Autoencoders for Unsupervised Cross-Dataset
Transfer Learning . 289

Alexey Potapov, Sergey Rodionov, Hugo Latapie, and Enzo Fenoglio

Classification of MRI Migraine Medical Data Using 3D Convolutional
Neural Network . 300

Hwei Geok Ng, Matthias Kerzel, Jan Mehnert, Arne May,
and Stefan Wermter

Deep 3D Pose Dictionary: 3D Human Pose Estimation from Single
RGB Image Using Deep Convolutional Neural Network 310

Reda Elbasiony, Walid Gomaa, and Tetsuya Ogata

FiLayer: A Novel Fine-Grained Layer-Wise Parallelism Strategy
for Deep Neural Networks . 321

Wenbin Jiang, Yangsong Zhang, Pai Liu, Geyan Ye, and Hai Jin

DeepVol: Deep Fruit Volume Estimation . 331
Hongyu Li and Tianqi Han

Graph Matching and Pseudo-Label Guided Deep Unsupervised
Domain Adaptation . 342

Debasmit Das and C. S. George Lee

fNIRS-Based Brain–Computer Interface Using Deep Neural Networks
for Classifying the Mental State of Drivers. 353

Gauvain Huve, Kazuhiko Takahashi, and Masafumi Hashimoto

Research on Fight the Landlords’ Single Card Guessing Based
on Deep Learning . 363

Saisai Li, Shuqin Li, Meng Ding, and Kun Meng

Contents – Part III XXXIX

Short-Term Precipitation Prediction with Skip-Connected PredNet. 373
Ryoma Sato, Hisashi Kashima, and Takehiro Yamamoto

An End-to-End Deep Learning Architecture for Classification of Malware’s
Binary Content . 383

Daniel Gibert, Carles Mateu, and Jordi Planes

Width of Minima Reached by Stochastic Gradient Descent is Influenced
by Learning Rate to Batch Size Ratio . 392

Stanislaw Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas,
Asja Fischer, Yoshua Bengio, and Amos Storkey

Data Correction by a Generative Model with an Encoder and its
Application to Structure Design . 403

Takaya Ueda, Masataka Seo, and Ikuko Nishikawa

PMGAN: Paralleled Mix-Generator Generative Adversarial Networks
with Balance Control . 414

Xia Xiao and Sanguthevar Rajasekaran

Modular Domain-to-Domain Translation Network . 425
Savvas Karatsiolis, Christos N. Schizas, and Nicolai Petkov

OrieNet: A Regression System for Latent Fingerprint Orientation
Field Extraction . 436

Zhenshen Qu, Junyu Liu, Yang Liu, Qiuyu Guan, Chunyu Yang,
and Yuxin Zhang

Avoiding Degradation in Deep Feed-Forward Networks by Phasing
Out Skip-Connections . 447

Ricardo Pio Monti, Sina Tootoonian, and Robin Cao

A Deep Predictive Coding Network for Inferring Hierarchical Causes
Underlying Sensory Inputs . 457

Shirin Dora, Cyriel Pennartz, and Sander Bohte

Type-2 Diabetes Mellitus Diagnosis from Time Series Clinical Data
Using Deep Learning Models . 468

Zakhriya Alhassan, A. Stephen McGough, Riyad Alshammari,
Tahani Daghstani, David Budgen, and Noura Al Moubayed

A Deep Learning Approach for Sentence Classification
of Scientific Abstracts . 479

Sérgio Gonçalves, Paulo Cortez, and Sérgio Moro

Weighted Multi-view Deep Neural Networks for Weather Forecasting 489
Zahra Karevan, Lynn Houthuys, and Johan A. K. Suykens

XL Contents – Part III

Combining Articulatory Features with End-to-End Learning
in Speech Recognition . 500

Leyuan Qu, Cornelius Weber, Egor Lakomkin, Johannes Twiefel,
and Stefan Wermter

Estimation of Air Quality Index from Seasonal Trends Using Deep
Neural Network . 511

Arjun Sharma, Anirban Mitra, Sumit Sharma, and Sudip Roy

A Deep Learning Approach to Bacterial Colony Segmentation 522
Paolo Andreini, Simone Bonechi, Monica Bianchini,
Alessandro Mecocci, and Franco Scarselli

Sparsity and Complexity of Networks Computing
Highly-Varying Functions . 534

Věra Kůrková

Deep Learning Based Vehicle Make-Model Classification 544
Burak Satar and Ahmet Emir Dirik

Detection and Recognition of Badgers Using Deep Learning 554
Emmanuel Okafor, Gerard Berendsen, Lambert Schomaker,
and Marco Wiering

SPSA for Layer-Wise Training of Deep Networks. 564
Benjamin Wulff, Jannis Schuecker, and Christian Bauckhage

Dipolar Data Aggregation in the Context of Deep Learning 574
Leon Bobrowski and Magdalena Topczewska

Video Surveillance of Highway Traffic Events by Deep
Learning Architectures . 584

Matteo Tiezzi, Stefano Melacci, Marco Maggini, and Angelo Frosini

Augmenting Image Classifiers Using Data Augmentation
Generative Adversarial Networks . 594

Antreas Antoniou, Amos Storkey, and Harrison Edwards

DeepEthnic: Multi-label Ethnic Classification from Face Images 604
Katia Huri, Eli (Omid) David, and Nathan S. Netanyahu

Handwriting-Based Gender Classification Using End-to-End Deep
Neural Networks . 613

Evyatar Illouz, Eli (Omid) David, and Nathan S. Netanyahu

A Deep Learning Approach for Sentiment Analysis in Spanish Tweets 622
Gerson Vizcarra, Antoni Mauricio, and Leonidas Mauricio

Contents – Part III XLI

Location Dependency in Video Prediction . 630
Niloofar Azizi, Hafez Farazi, and Sven Behnke

Brain Neurocomputing Modeling

State-Space Analysis of an Ising Model Reveals Contributions of Pairwise
Interactions to Sparseness, Fluctuation, and Stimulus Coding of Monkey
V1 Neurons . 641

Jimmy Gaudreault and Hideaki Shimazaki

Sparse Coding Predicts Optic Flow Specifities of Zebrafish
Pretectal Neurons . 652

Gerrit A. Ecke, Fabian A. Mikulasch, Sebastian A. Bruijns,
Thede Witschel, Aristides B. Arrenberg, and Hanspeter A. Mallot

Brain-Machine Interface for Mechanical Ventilation
Using Respiratory-Related Evoked Potential . 662

Sylvain Chevallier, Guillaume Bao, Mayssa Hammami,
Fabienne Marlats, Louis Mayaud, Djillali Annane, Frédéric Lofaso,
and Eric Azabou

Effectively Interpreting Electroencephalogram Classification Using
the Shapley Sampling Value to Prune a Feature Tree. 672

Kazuki Tachikawa, Yuji Kawai, Jihoon Park, and Minoru Asada

EEG-Based Person Identification Using Rhythmic Brain Activity
During Sleep . 682

Athanasios Koutras and George K. Kostopoulos

An STDP Rule for the Improvement and Stabilization of the Attractor
Dynamics of the Basal Ganglia-Thalamocortical Network 693

Jérémie Cabessa and Alessandro E. P. Villa

Neuronal Asymmetries and Fokker-Planck Dynamics 703
Vitor Tocci F. de Luca, Roseli S. Wedemann, and Angel R. Plastino

Robotics/Motion Detection

Learning-While Controlling RBF-NN for Robot Dynamics Approximation
in Neuro-Inspired Control of Switched Nonlinear Systems 717

Sophie Klecker, Bassem Hichri, and Peter Plapper

A Feedback Neural Network for Small Target Motion Detection
in Cluttered Backgrounds . 728

Hongxin Wang, Jigen Peng, and Shigang Yue

XLII Contents – Part III

De-noise-GAN: De-noising Images to Improve RoboCup Soccer
Ball Detection. 738

Daniel Speck, Pablo Barros, and Stefan Wermter

Integrative Collision Avoidance Within RNN-Driven Many-Joint
Robot Arms . 748

Sebastian Otte, Lea Hofmaier, and Martin V. Butz

An Improved Block-Matching Algorithm Based on Chaotic Sine-Cosine
Algorithm for Motion Estimation . 759

Bodhisattva Dash and Suvendu Rup

Terrain Classification with Crawling Robot Using Long Short-Term
Memory Network . 771

Rudolf J. Szadkowski, Jan Drchal, and Jan Faigl

Mass-Spring Damper Array as a Mechanical Medium for Computation 781
Yuki Yamanaka, Takaharu Yaguchi, Kohei Nakajima,
and Helmut Hauser

Kinematic Estimation with Neural Networks for Robotic Manipulators 795
Michail Theofanidis, Saif Iftekar Sayed, Joe Cloud, James Brady,
and Fillia Makedon

Social Media

Hierarchical Attention Networks for User Profile Inference in Social
Media Systems . 805

Zhezhou Kang, Xiaoxue Li, Yanan Cao, Yanmin Shang,
Yanbing Liu, and Li Guo

A Topological k-Anonymity Model Based on Collaborative
Multi-view Clustering . 817

Sarah Zouinina, Nistor Grozavu, Younès Bennani,
Abdelouahid Lyhyaoui, and Nicoleta Rogovschi

A Credibility-Based Analysis of Information Diffusion in Social Networks. . . . 828
Sabina-Adriana Floria, Florin Leon, and Doina Logofătu

Author Index . 839

Contents – Part III XLIII

CNN/Natural Language

Fast CNN Pruning via
Redundancy-Aware Training

Xiao Dong1,2, Lei Liu1(B), Guangli Li1,2, Peng Zhao1,2, and Xiaobing Feng1

1 State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences,

Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100049, China

{dongxiao,liulei,liguangli,zhaopeng,fxb}@ict.ac.cn

Abstract. The heavy storage and computational overheads have
become a hindrance to the deployment of modern Convolutional Neural
Networks (CNNs). To overcome this drawback, many works have been
proposed to exploit redundancy within CNNs. However, most of them
work as post-training processes. They start from pre-trained dense mod-
els and apply compression and extra fine-tuning. The overall process is
time-consuming. In this paper, we introduce redundancy-aware training,
an approach to learn sparse CNNs from scratch with no need for any
post-training compression procedure. In addition to minimizing training
loss, redundancy-aware training prunes unimportant weights for sparse
structures in the training phase. To ensure stability, a stage-wise prun-
ing procedure is adopted, which is based on carefully designed model
partition strategies. Experiment results show redundancy-aware train-
ing can compress LeNet-5, ResNet-56 and AlexNet by a factor of 43.8×,
7.9× and 6.4×, respectively. Compared to state-of-the-art approaches,
our method achieves similar or higher sparsity while consuming signifi-
cantly less time, e.g., 2.3×–18× more efficient in terms of time.

Keywords: In-training pruning · Model compression
Convolutional neural networks · Deep learning

1 Introduction

In recent years, convolutional neural networks (CNNs) have been playing an
important role in the remarkable improvements achieved in a wide range of
challenging computer vision tasks such as large-scale image classification [11],
object detection [3], and segmentation [6]. Deploying CNN models in real-world
applications has attracted increasing interests.

However, the state-of-the-art accuracy delivered by these CNNs comes at
the cost of significant storage and computational overheads. For instance,
AlexNet [11] has 61 million parameters, takes up more than 243 MB of storage
and requires 1.4 billion floating point operations to classify a 224× 224 image.

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 3–13, 2018.
https://doi.org/10.1007/978-3-030-01418-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_1&domain=pdf

4 X. Dong et al.

As a result, deploying CNNs on devices with limited resources, such as mobile
phones and wearable devices, could be infeasible.

Since large CNNs are highly over-parameterized [2], many methods have been
proposed to compress them. Pruning methods have attracted much attention
due to its simplicity and effectiveness. However, most of these methods work as
post-training processes. Based on dense pre-trained models, unimportant con-
nections and neurons are pruned to reduce the model size and the computational
complexity. The following fine-tuning step is responsible for compensating the
accuracy loss. The pruning and fine-tuning steps may be repeated several times
for a good balance between accuracy and sparsity (the ratio of pruned weights).
Some methods introduce sparsity-inducing regularizers to learn sparse structures
from a pre-trained dense model. The overall process consumes significant time
to get sparse models, resulting in poor time efficiency as summarized in Table 1.

In this paper, we propose redundancy-aware training, which can exploit
redundancy efficiently by learning both sparse neural network structures and
weight values from scratch. Besides minimizing training loss, it prunes unimpor-
tant connections for sparse structures. Varying structure may bring difficulty
in achieving good accuracy. Redundancy-aware training solves this problem by
adopting a stage-wise pruning procedure. It leverages novel partition strategies
to divide the network into layer classes. The pruning starts from one class in
the first stage and extends to the left classes in following stages. Our train-
ing method yields sparse and accurate models when it finishes. Evaluations
on several datasets, including MNIST, CIFAR10 and ImageNet, demonstrate
our redundancy-aware training can achieve state-of-the-art compression results.
Meanwhile, our method is much more efficient in terms of time as it requires
neither extending normal training iterations nor any post-training compression
procedure.

Table 1. Time breakdown of some pruning methods. For post-training methods, we
show epochs spent in the training phase (Training) and the post-training phase (Post-
Training). For in-training pruning methods (denoted by ∗), we report the epochs taken
by the method (Training) and the normal training epochs (Normal).

Method CNN Dataset Training Post-training Normal

DC [5] AlexNet ImageNet 90 >960

DNS [4] LeNet-5 MNIST 11 17

NISP [18] GoogLeNet ImageNet 60 60

LSN∗ [14] LeNet-5 MNIST 200 11

NSN∗ [10] ResNet-56 CIFAR10 205 164

Fast CNN Pruning via Redundancy-Aware Training 5

2 Related Work

According to whether pre-trained models are required, we divide existing pruning
methods into two categories: post-training methods and in-training methods.

Post-training Pruning. Deep compression [5] prunes trained CNNs through
a magnitude-based weight pruning method, showing a significant reduction
in model size. DNS [4] improves deep compression [5] by allowing the recov-
ery of pruned weights. NISP [18] prunes unimportant neurons based on its
neuron importance estimation. SSL [17] makes use of group lasso regulariza-
tion to remove groups of weights, e.g., channels, filters, and layers, in CNNs.
Compression-aware training [1] takes post-training compression into account in
the training phase. A regularizer is added to encourage the weights to have lower
rank. These methods often suffer from poor time efficiency. Table 1 lists time
taken by some pruning methods. We can see the post-training compression pro-
cedure takes considerable time. Redundancy-aware training adopts in-training
pruning, thus improving the time efficiency significantly.

In-training Pruning. AL [15] introduces binary parameters to prune neu-
rons and layers. A binarizing regularizer is used to attract them to 0 or 1.
Similar approach as [15] is adopted to prune weights in [16]. The above two
methods only evaluate the in-training compression ability on small datasets.
Method attempting to use L0 regularization to directly learn sparse structures is
proposed in [14]. To enable gradient-based optimizations, approximation of the
non-differentiable L0 norm is added to the loss. But more training iterations are
required (See Table 1). Redundancy-aware training adopts pruning approach to
remove redundant weights. By incorporating stage-wise pruning within training
process, our method outperforms other in-training pruning works in terms of
both compression results and time efficiency.

Fig. 1. Pruning (b) with u = 0.2 and l = 0.1. Weights marked red are pruned. The
pruning states of the last iteration and this iteration are shown in (a) and (c) respec-
tively. (Color figure online)

6 X. Dong et al.

Algorithm 1. Redundancy-Aware Training
Input: CNN to train network

the maximum number of training iterations max iterations
the interval of extending pruning to the next class extending interval

Output: network trained by redundancy-aware training
1: divide network into layer classes based on the partition strategies:

classes ← {c1, c2, ..., cm}
2: i ← 0
3: pruning classes ← {}
4: initialize network
5: while i < max iterations do
6: if mod(i, extending interval) = 0 then
7: c ← classes.pop()
8: append c to pruning classes
9: end if

10: forward and backward through network
11: update weights in network
12: for each class c in pruning classes do
13: for each layer l in c do
14: pruning layer l
15: end for
16: end for
17: i ← i + 1
18: end while

3 Redundancy-Aware Training

In this section, we introduce our redundancy-aware training method. The
overview of the proposed method is displayed in Algorithm1. For a given CNN,
redundancy-aware training first divides it into layer classes based on the partition
strategies. In each training iteration, it prunes layers in pruning classes after
the update of weights. More classes will be appended into the pruning classes as
training proceeds. We first introduce how to prune unimportant weights during
training. Then, we present the model partition strategies.

3.1 Pruning Weights During Training

As the pruning works on each layer independently, we take pruning one layer as
an example to illustrate the in-training pruning.

Let us denote the parameters of a layer by K. Redundancy-aware training
adopts a magnitude-based pruning approach. Specifically, two thresholds u and l
are introduced. In each iteration, weights with absolute value below l are pruned,
while others with magnitude above u are kept. Weights with absolute value in
the range of [l, u] are skipped in this iteration and their pruning states stay
unchanged. To reduce the risk of pruning important weights wrongly, we use
the update scheme in [4] where pruned weights can also be updated in the

Fast CNN Pruning via Redundancy-Aware Training 7

back-propagation. This scheme enables the recovery of wrongly pruned weights.
Figure 1 shows an example.

To avoid tuning u and l for each layer manually, we choose to compute them
based on K as shown in Eq. 1. μ and σ represent the mean and the standard
variation of K, respectively. Two hype-parameters range and ε are introduced to
provide more flexibility. Increasing range will make l larger, resulting in pruning
more weights from network. ε is a small positive value and controls the difference
between u and l. We analyze how μ and σ influence the compression results in
Sect. 4.2.

u = max(μ + σ(range + ε), 0)
l = max(μ + σ(range − ε), 0).

(1)

layer
0 10 20 30 40 50 60

sp
ar

si
ty

0.4

0.5

0.6

0.7

0.8

0.9

1

ite 1k
ite 6k
ite 10k
ite 64k

(a) layer sparsity
layer

0 10 20 30 40 50

se
ns

iti
vi

ty

0

2

sensitivity

(b) sensitivity

Fig. 2. Sparsity and sensitivity of layers in ResNet-56. The shapes of sparsity lines of
different training time are quite similar, indicating the difference of sparsity between
layers stays stable during training. Based on the sensitivity, ResNet-56 is divided into
three classes as shown by the black vertical lines in (b).

3.2 Model Partition

In-training pruning allows learning sparse structures during the training phase.
However, pruning all layers in network simultaneously causes instability and
slows down the learning process, resulting in difficulty in reaching as good accu-
racy as the normal training.

Redundancy-aware training adopts a stage-wise pruning procedure. The
pruning scope in each stage is orchestrated by our model partition strategies.
When layers within the pruning scope are being pruned, the left layers can adapt
to it and alleviate the impact through updating their weight values. Formally,
we call the unit of adjusting the pruning scope ‘class’. A class contains several
consecutive layers. Based on our model partition strategies, redundancy-aware
training divides the CNN into classes. Then, the in-training pruning starts from
the first class and extends to one more class at the beginning of each of the
following stages. Both layer by layer pruning and pruning all layers together are
special cases of our approach.

8 X. Dong et al.

Partition Strategy. We propose two heuristic strategies for two different types
of CNN. The first type is called simple CNN, which refers to networks composed
of stacked convolution layers and several fully-connected layers. LeNet-5 [12] and
AlexNet [11] fall into this category. For simple CNN, the partition strategy is:

Strategy1: Layers with the same type are divided into the same class.
Thus, simple CNNs will be divided into two classes. The first class contains

convolution layers and fully-connected layers belong to the second class. Strat-
egy1 is not applicable to recently designed CNNs, which tend to avoid using
fully-connected layers. For example, ResNet [7] has only one fully-connected
layer to produce the possibilities over given number of classes. Inspired by [13]
which prunes filters based on the analysis of layer sensitivity to pruning, we
propose the second strategy for these CNNs:

Algorithm 2. Partition Strategy2
Input: sensitivity difference threshold δ

layers’ sensitivity to pruning s[...]
layers in given network layers[...]

Output: the partition result of network
1: c ← {layers[1]}
2: s avg ← s[1]
3: for l ← 2 to layers.size do
4: diff ← abs(s[l] − s avg)
5: if diff > δ then
6: set c a new partition class
7: end if
8: add layers[l] to c
9: update s avg to the average sensitivity of layers in c

10: end for

Strategy2: Divide model at layers which are quite sensitive to pruning.
Algorithm 2 illustrates how this strategy works. The sensitivity to pruning is

determined through our proposed ‘probe’ phase which is described in the next
section. We also analyze the impact of δ in Sect. 4.2.

Determine Layer’s Sensitivity Efficiently. The in-training pruning zeros
out unimportant weights. Layers with relatively low sparsity should be impor-
tant and sensitive to pruning. Thus, we define layer’s sensitivity as the reciprocal
of its sparsity achieved by the in-training pruning. A naive but inefficient app-
roach to determine the sensitivity works as follows. We train the CNN with all
layers under in-training pruning and use the layer’s sparsity after training to
compute the sensitivity. Based on a key observation, we propose a more efficient
approach. Figure 2a shows the sparsity of ResNet-56 at different time of training.
The relative sparsity between layers is actually quite stable in training. As the
partition result only depends on the difference of sparsity between layers, we can
use the sparsity at early training time to obtain the partition result.

Fast CNN Pruning via Redundancy-Aware Training 9

More precisely, we introduce a probe phase where the CNN is trained with all
layers under the in-training pruning. When the probe phase finishes, we compute
layer’s sensitivity based on its sparsity, which is then used by the strategy2. In our
experiments, we find tenth of the training time is sufficient for the probe phase.
Figure 2b shows the sensitivity of layers in ResNet-56. It’s noticeable that layers
of residual blocks where the number of output channels changes are sensitive to
pruning. This discovery is consistent with the results reported in [13].

Table 2. Comparison to other compression works. Results of our method are denoted
by RA-range-ε. The result of DC for ResNet-56 is provided in [10]. The result of PF is
based on our implementation. The scratch-train models show notable accuracy drops,
demonstrating the difficulty of training a sparse network from scratch.

Network In-training

methods

Baseline

accuracy

Accuracy

change

Sparsity Post-training

methods

Baseline

accuracy

Accuracy

change

Sparsity

LeNet-5 LNA [15] 99.3% −0.23% 90.5% SSL [17] 99.1% −0.1% 75.1%

LSN [14] 99.1% 0 90.7% DC [5] 99.2% +0.03% 92%

TSNN [16] 99.2% −0.01% 95.8% DNS [4] 99.1% 0 99.91%

RA-2-0.1 99.1% 0 97.7% Scratch-train 99.1% −1.5% 97.7%

ResNet-56 NCP [10] 93.4% −0.5% 50% CP [8] 92.8% −1.0% 50%

NWP [10] 93.4% −0.6% 66.7% PF [13] 92.4% −1.04% 62%

RA-1.8-0.1 92.4% −0.1% 87.4% DC [5] 93.4% −0.8% 66.7%

RA-3.0-0.1 92.4% −1.0% 92.1% Scratch-train 92.4% −2.8% 87.4%

4 Evaluation

In this section, we evaluate redundancy-aware training on MNIST, CIFAR10,
and ImageNet with LeNet-5, ResNet-56, and AlexNet, respectively. First, we
compare the compression result and the time efficiency with state-of-the-art
compression methods. The compression result includes achieved sparsity and
accuracy loss. Sparsity is defined as the percentage of the zeroed out weights. We
compare the time efficiency based on the number of iterations or epochs required
to obtain sparse models. Then, we analyze the effectiveness of the model partition
and the effect of hyper-parameters in Sect. 4.2. We implement our method in
Caffe [9].

4.1 Compression Result and Time Efficiency

The comparison to other methods on LeNet-5 and ResNet-56 is summarized
in Table 2. We also train models with the same sparsity as the models trained
through redundancy-aware training from scratch (the scratch-train).

10 X. Dong et al.

LeNet-5. Redundancy-aware training reduces the model size of LeNet-5 by
43.8× without accuracy loss and outperforms all in-training methods by a
notable margin, validating its ability to reduce redundancy in the training phase.
Compared to post-training methods, redundancy-aware training achieves higher
or similar sparsity. Our method prunes more weights in every layer than [14]
and [5]. As for time efficiency, our method only takes 11 epochs which is equal
to the normal training time and is about 18× more efficient than the in-training
method in [14] and 2.5× more efficient than the method in [4].

ResNet-56. Based on the strategy2 in Sect. 3.2, ResNet-56 is divided into
three classes. We extend the in-training pruning at 10k and 20k iterations.
Redundancy-aware training achieves a 7.9× reduction with only 0.1% top-1
accuracy drop. Importantly, our method achieves this without any post-training
procedures. By using a larger range, we can achieve a 12.6× compression at the
cost of 1.13% accuracy loss, which can be reduced to 1% after a fine-tuning of 20k
iterations. As far as we know, our method achieves state-of-the-art compression
result for ResNet-56. In terms of time-efficiency, our method takes 70k iterations
(64k for training and 6k for the probe phase), which is about 2.3× more efficient
than NWP in [10] and PF in [13].

Table 3. Layer-by-layer comparison to deep compression on AlexNet.

Method/layer conv1 conv2 conv3 conv4 conv5 fc1 fc2 fc3 Total

DC 16% 62% 65% 63% 63% 91% 91% 75% 89%

Ours 31% 65% 69% 63% 61% 88% 81% 80% 84%

AlexNet. Finally, we experiment with AlexNet on ImageNet. We train the
bvlc alexnet in Caffe and get 78.65% top-5 accuracy on validation dataset with
single-view testing. Redundancy-aware training reduces the model size by 6.4×
with 0.36% accuracy loss. We further fine-tune it for 45k iterations and obtain a
model with 78.54% accuracy. We display sparsity achieved by our method and
DC [5] in Table 3. Our method takes 99 epochs in total, which is 9.69× more
efficient in terms of time.

4.2 Ablation Study

Hyper-parameter Sensitivity. We make use of ResNet-56 to measure the
impact of varying range and ε. The result is shown in Fig. 3.

Increasing range leads to larger l and more weights will be pruned in training.
Thus we can make trade-offs between the sparsity and the accuracy through
adjusting range. Note the accuracy does not drop dramatically (2.2% drop)
when range increases from 0 to 3.5. Since increasing ε makes l smaller, weights

Fast CNN Pruning via Redundancy-Aware Training 11

Fig. 3. Impact of hyper-parameters range and ε. The model is divided into three
partition classes.

are less likely to be pruned and the sparsity decreases. We can observe that the
accuracy does not change drastically for a wide range of ε.

Table 4. Accuracy with varying δ.

δ +∞ 0.5 * s avg 0.4 ∗ s avg 0.3 * s avg

partition classes 1 2 3 5

Accuracy 91.3% 91.7% 92.3% 90.2%

sparsity
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

ac
cu

ra
cy

0.986

0.987

0.988

0.989

0.99

0.991

0.992

w/o partition
with partition

(a) LeNet-5

sparsity
0.82 0.84 0.86 0.88 0.9 0.92 0.94

ac
cu

ra
cy

0.9

0.905

0.91

0.915

0.92

0.925

w/o partition
with partition

(b) ResNet-56

Fig. 4. Effect of partition with varying ranges.

Effectiveness of Partition Strategies. We first analyze the impact on accu-
racy with different number of partition classes. To this end, we fix range = 1.8
and ε = 0.1 and vary δ to change the partition result. Results are shown in
Table 4. When δ is set to +∞, all layers belong to the same class and the net-
work is pruned all through the training phase, which shows a 1.1% accuracy drop.
Dividing ResNet-56 into two or three classes improves accuracy. The model with
five classes has inferior accuracy, implicating too many classes result in insuffi-
cient training iterations in each stage.

We also verify the effectiveness of model partition with varying ranges.
Results are shown in Fig. 4. The model partition helps to improve accuracy over
a wide scope of ranges, confirming the benefit of our model partition approach
in stabilizing training and helping in good convergence.

12 X. Dong et al.

5 Conclusion

In this paper, we propose an in-training compression method, redundancy-aware
training. Our method can learn both sparse connections and weight values from
scratch. We highlight our redundancy-aware training achieves state-of-the-art
compression results without any post-training compression procedures and con-
sumes significantly less time when compared to other methods.

Acknowledgments. This work is supported by National Key R&D Program of China
under Grant No. 2017YFB0202002, Science Fund for Creative Research Groups of the
National Natural Science Foundation of China under Grant No. 61521092 and the Key
Program of National Natural Science Foundation of China under Grant Nos. 61432018,
61332009, U1736208.

References

1. Alvarez, J.M., Salzmann, M.: Compression-aware training of deep networks. In:
Advances in Neural Information Processing Systems, pp. 856–867 (2017)

2. Denil, M., Shakibi, B., Dinh, L., de Freitas, N., et al.: Predicting parameters in deep
learning. In: Advances in Neural Information Processing Systems, pp. 2148–2156
(2013)

3. Girshick, R.B.: Fast R-CNN. In: 2015 IEEE International Conference on Computer
Vision, ICCV 2015, Santiago, Chile, 7–13 December 2015, pp. 1440–1448 (2015)

4. Guo, Y., Yao, A., Chen, Y.: Dynamic network surgery for efficient DNNs. In:
Advances in Neural Information Processing Systems, pp. 1379–1387 (2016)

5. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
works with pruning, trained quantization and Huffman coding. In: Proceedings of
the International Conference on Learning Representations, ICLR (2016)

6. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. In: IEEE Interna-
tional Conference on Computer Vision, pp. 2980–2988 (2017)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

8. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1389–1397 (2017)

9. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:
Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–
678. ACM (2014)

10. Kim, E., Ahn, C., Oh, S.: Learning nested sparse structures in deep neural net-
works. arXiv preprint arXiv:1712.03781 (2017)

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

13. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient
ConvNets. In: Proceedings of the International Conference on Learning Represen-
tations, ICLR (2017)

http://arxiv.org/abs/1712.03781

Fast CNN Pruning via Redundancy-Aware Training 13

14. Louizos, C., Welling, M., Kingma, D.P.: Learning sparse neural networks through
l 0 regularization. In: Proceedings of the International Conference on Learning
Representations, ICLR (2018)

15. Srinivas, S., Babu, R.V.: Learning neural network architectures using backprop-
agation. In: Proceedings of the British Machine Vision Conference. BMVA Press
(2016)

16. Srinivas, S., Subramanya, A., Babu, R.V.: Training sparse neural networks. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops,
CVPR Workshops, pp. 455–462 (2017)

17. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in
deep neural networks. In: Advances in Neural Information Processing Systems, pp.
2074–2082 (2016)

18. Yu, R., et al.: NISP: pruning networks using neuron importance score propagation.
arXiv preprint arXiv:1711.05908 (2017)

http://arxiv.org/abs/1711.05908

Two-Stream Convolutional Neural
Network for Multimodal Matching

Youcai Zhang, Yiwei Gu, and Xiaodong Gu(B)

Department of Electronic Engineering, Fudan University, Shanghai 200433, China
xdgu@fudan.edu.cn

Abstract. Mulitimudal matching aims to establish relationship across
different modalities such as image and text. Existing works mainly focus
on maximizing the correlation between feature vectors extracted from
the off-the-shelf models. The feature extraction and the matching are
two-stage learning process. This paper presents a novel two-stream con-
volutional neural network that integrates the feature extraction and the
matching under an end-to-end manner. Visual and textual stream are
designed for feature extraction and then are concatenated with multiple
shared layers for multimodal matching. The network is trained using an
extreme multiclass classification loss by viewing each multimodal data
as a class. Then a finetuning step is performed by a ranking constraint.
Experimental results on Flickr30k datasets demonstrate the effectiveness
of the proposed network for multimodal matching.

Keywords: Multimodal matching · Two-stream network
Convolutional neural network

1 Introduction

Multimodal analysis has received ever-increasing research focus due to the explo-
sive growth of multimodal data such as image, text, video and audio. A core
problem for multimodal analysis is to mine the internal correlation across differ-
ent modalities. In this paper, we focus on the image-text matching. For example,
given a query image, our aim is to retrieve the relevant texts in the database
that best illustrate the image. There are two major challenges in multimodal
matching: (1) effectively extracting the feature from the multimodal data; (2)
inherently correlating the feature across different modalities.

Previous works for multimodal matching prefered to adopt off-the-shelf mod-
els to extract the features rather than learn modality-specific features. For the
image, some well-known hand-crafted feature extraction techniques such as SIFT
[1], GIST [2] were widely used. Inspired by recent breakthroughs of convolu-
tional neural network (CNN) in visual recognition, CNN visual features were
also introduced to multimodal matching [14]. For the text, latent Dirichlet allo-
cation (LDA) [3] and word2vec [18] models were two typical choices for vec-
torization. Despite their contributions to the multimodal matching, off-the-shelf
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 14–21, 2018.
https://doi.org/10.1007/978-3-030-01418-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_2&domain=pdf

Two-Stream Convolutional Neural Network for Multimodal Matching 15

models suffer from some weaknesses. They are not specific designed for the task
of multimodal matching. That is, these features are not discriminative enough,
which limits the final matching performance.

Fig. 1. Overview of the proposed two-stream convolutional neural network.

Another challenge is to correlate these multimodal features. Most deep learn-
ing based methods [4,5] are highly dependent on the categorical information for
network training. However, such high-level semantic information is absent in
most scenarios and requires much manual labels. Furthermore, the explosive
increase of data makes it unrealistic to label each data with a certain category.
Luckily, co-occurred data usually delivers correlated information (i.e. image-text
pair information). The pair information is relatively easy to be obtained via the
web crawler and should be fully explored for multimodal matching.

To address above issues, we propose a novel two-stream convolutional neural
network as shown in Fig. 1, which extracts visual and textual representations and
simultaneously performs the task of multimodal matching. Thus the similarity
between images and texts can be measured directly according to the learned
representations. More specifically, CNN is the backbone to extract the feature
from the raw images and texts respectively. The outputs of the two stream
are concatenated and followed by several shared fully connected layers. The
final output of the network is the class probabilities after a softmax regression.
To train the network, we adopt an extreme multiclass classification loss and a
ranking loss both based on the pair information.

The remainder of this paper is structured as follows. Section 2 reviews the
related work. Section 3 presents our two-stream network for multimodal match-
ing and its learning process, followed by experimental results in Sect. 4. Section 5
draws an overall conclusion.

2 Related Work

The core issue for multimodal matching is to learn discriminative and joint
image-text representations. Canonical correlation analysis (CCA) [7] and cross-

16 Y. Zhang et al.

modal factor analysis (CFA) [8] were two classic methods. They linearly pro-
jected vectors from the two views into a shared correlation maximum space.
Andrew et al. proposed deep CCA [12] to learn the nonlinear transformation
through two deep networks, whose outputs are maximally correlated. Yan et al.
[13] further introduced DCCA into image-text matching.

Inspired by recent breakthroughs in visual recognition, CNN was also widely
employed in multimodal matching. Wei et al. [14] provided a new baseline for
cross-modal retrieval with CNN visual features instead of traditional SIFT [1]
and GIST [2] features. CNN has also shown its powerful abilities in natural lan-
guage processing. Hu et al. [10] proposed a sentence matching model based on
CNN that represented the sentence and captured the matching relation simul-
taneously. In [9], convolutional architectures were first employed to learn the
correlation between image and sentence by encoding their separate representa-
tions into a joint one.

There are also some deep models related to our work. In [6], a three-stream
deep convolutional network was proposed to generate a shared representation
across image, text, and sound modality. Wang et al. [15] presented a two-branch
network to learn the image-text joint embedding. The network was trained by an
extended ranking constraint and only received the input of feature vectors. Mao
et al. [16] proposed a multimodal Recurrent Neural Network (m-RNN) model for
image captioning and cross-modal retrieval. [17] presented a selective multimodal
network that incorporated attention and recurrent selection mechanism based
on long short term memory.

3 Two-Stream CNN

3.1 Network Architecture

Overall Architecture. As exhibited in Fig. 1, the overall architecture of the
proposed network contains two parts. The color part with two streams focuses
on the feature extraction from the raw image and text. The gray one integrates
the feature vectors from different modalities with shared weights and fully con-
nected layers for further multimodal matching. In general, to generate a joint
representation, the color part is specific to modality but gray one is shared across
modalities.

Image Stream. We adopt a 50-layer ResNet model [11] pretrained on ImageNet
classification tasks as the visual CNN. We discard the top fully connected layer
designed for ImageNet. Thus, given a raw image resized to 224 × 224, a 2048-
dim vector considered as the image representation is produced by the model
after average pooling.

Text Stream. Since each image can be represented by a fixed-length vector
with CNN, we also design a textual CNN with three convolutional layers to
vectorize the text as shown in Fig. 2. Text is first encoded into a 1 × n × d

Two-Stream Convolutional Neural Network for Multimodal Matching 17

Fig. 2. Overview of the textual CNN stream.

numerical matrix T, where n is the length of the sentence and d is the size of
the vocabulary. The vocabulary contains all tokens appeared in the corpus. Let
wi be the i-th word in the vocabulary, thus wi can be converted into a one-hot
high-dimensional sparse vector vi where the i-th element is set to be 1 and rests
to be 0. Then the embedding layer turns each vi into a low-dimensional dense
word embedding ei with the length of k via a lookup table. Thus, each sentence
is encoded into a 1 × n × k matrix.

Though embedding layer encodes the semantic information of each word into
vectors, simply concatenating word vectors ignores many subtleties of a possible
good representation, e.g. consideration of word ordering. Therefore, following
convolutional layers are employed to extract the word sequence information of
the words. In each convolutional layer, the context in the sentence is modeled
using two convolution kernels of size 1 × 2 and 1 × 3, respectively. And the
outputs of two convolutional operations are concatenated directly, fed into fol-
lowing layers. At the end of network, a pooling layer with dropout is used to
produce final output, which matches the size of image features. Convolutional
layers combined with word embedding ensure that the output feature contains
most necessary information to effectively represent sentences for further multi-
modal matching.

3.2 Network Learning

Objective Function. Supervised semantic labels usually play an important
role in deep neural network learning. However, the lack of labels poses a unique
challenge to multimodal matching: how to effectively utilize the only image-text
pair information. In this paper, we transform the multimodal matching into an
extreme multiclass classification task where the matching becomes accurately
classifying a specific data among tens of thousands classes. Here, each mul-
timodal document including an image and corresponding text is viewed as a
pseudo class. Given an instance xi, we apply the softmax function to the output
of the network z ∈ �1×n (n is the number of multimodal document). Thus, we

18 Y. Zhang et al.

can obtain the posterior probability of the instance being classified into the right
category c. It can be formally written as Eq. (1).

P (c|xi) = softmax(z) =
ezc

∑n
j=1 ezj

. (1)

Then we minimize the negative log-likelihood P(c|xi), defined as Eq. (2).

Lcls = −log(P (c|xi)). (2)

To obtain more discriminative representations, we also performed a metric
learning based on a ranking constraint. Pair of distances in the feature space
between xp and xn against the anchor xa should be pulled apart up to a margin
α (α = 0.1 in our case) as d(xa, xp) + α < d(xa, xn). Instances sharing the
same pseudo class with xa are defined as xp, otherwise, xn. We compute the
cosine distance between the feature vectors (vi,vj) of two instances (xi, xj) as
d(xi, xj) = 1− vi·vj

‖vi‖2‖vj‖2
. We further define the bi-directional ranking constraint

with a hinge loss for the given image reference (xa
img, x

p
txt, x

n
txt) and the text

reference (xa
txt, x

p
img, x

n
img) respectively as Eq. (3).

Lrank = max{0, d(xa
img, x

p
txt) − d(xa

img, x
n
txt) + α}

+max{0, d(xa
txt, x

p
img) − d(xa

txt, x
n
img) + α}.

(3)

The final objective function is a weighted combination of the classification
loss and ranking loss as Eq. (4).

L = λ1Lcls + λ2Lrank. (4)

Training Scheme. Network training is done in three steps. Firstly, we fix the
image stream and train the remaining part using the classification loss (λ2 = 0,
only text data is used). The reason behind is that pre-trained weights on Ima-
genet can be used for image stream but weights of the remaining part have to
be learned from scratch. Secondly, we update the weights of the entire network
after step 1 converges (λ2 = 0, both text and image data are used). Considering
that ranking loss usually converges very slowly or even does not converge espe-
cially in two-stream network learning, we fine-tune the entire network using the
combination of the classification loss and ranking loss (λ1 = 1, λ2 = 1) only in
the last step.

4 Experiment

4.1 Datasets and Evaluation Metrics

We choose widely-used Flickr30k [19] for experiments. Flickr30k contains 31,783
images collected from website Flickr. Each image is described with five sen-
tences. We follow the partition scheme in [16,17], where 29,783, 1,000, and 1,000

Two-Stream Convolutional Neural Network for Multimodal Matching 19

images are used for training, validation, and test respectively. R@k and Med r
are adopted as evaluation metrics. R@k is the average recall rate over all queries
in the test set. Specifically, given a query, the recall rate will be 1 if at least one
ground truth occurs in the top-k returned results and 0 otherwise. Med r is the
median rank of the closest ground truth in the ranking list.

4.2 Implementation Details

For Flickr30k, the vocabulary size d is 20,074, and each word is encoded into a
300-dim dense vector. To ensure that each input sentence has the same length
of 32, we use 0 vectors as paddings for those short sentenses. And we use the
pre-trained vectors of the word2vec [18] model to initialize our embedding layer.
The network is optimized by backpropagation and mini-batch stochastic gradient
descent with the momentum fixed to 0.9. For the three training steps, learning
rate is set to 0.001. 0.0001 and 0.00005 respectively. The maximum epochs are
set to 180, 60 and 20 accordingly. In our experiments, we observe convergence
within 150, 30, 10 epochs.

4.3 Experimental Results

We consider two basic multimodal tasks: Img2Txt (an image query to retrieve
texts) and Txt2Img (a text query to retrieve images). Table 1 presents the exper-
imental results of different methods in terms of R@k and Med r. The proposed
network outperforms other methods in the Img2Txt task with the highest R@1
of 48.4%. In the Txt2Img task, R@1 obtained by our method is only 0.7% lower
than the best method RBF-Net [20]. The results indicate that the learned fea-
tures are effective for multimodal matching. The superiority of our network can
be explained by the following two aspects: (1) We simultaneously perform fea-
ture extraction and multimodal matching. Compared with off-the-Shelf models,
the learned features are more targeted for the matching task instead of previous
generic representations; (2) We fully explore the image-text pair information via
the classification and ranking loss to generate more discriminative representa-
tions.

We also conduct experiments to analyze the effect of the training scheme.
Step 1 only trains the text stream using the classification loss and directly
adopts the image features extracted from pre-trained ResNet-50. Step2 trains
the entire network using the classification loss, which encourages instance from
the same document to fall into one category. Thus, results obtained from step
2 gains a great increase of about 10%, 6% on R@1 in the bidirectional retrieval
respectively. Step 3 combines ranking constraints to further finetune the network,
which provides a higher performance for the final model.

Another issue to be noticed is that the improvement brought by step 2 is not
as impressive as that by step 3. On the one hand, that illustrates the effectiveness
of posing multimodal matching as a classification problem. On the other hand,
considering the effectiveness of ranking loss in previous works, there could be
space for improvement in our network especially the weakness of R@5 and R@10.

20 Y. Zhang et al.

Table 1. Bidirectional image and text retrieval results on Flickr30K.

Methods Img2Txt Txt2Img

R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

DCCA [13] 16.7 39.3 52.9 8 12.6 31.0 43.0 15

m-CNN [9] 33.6 64.1 74.9 3 26.2 56.3 69.6 4

m-RNN [16] 35.4 63.8 73.7 3 22.8 50.7 63.1 5

2-branch [15] 40.3 68.9 79.9 - 29.7 60.1 72.1 -

sm-LSTM [17] 42.5 71.9 81.5 2 30.2 60.4 72.3 3

RBF-Net [20] 47.6 77.4 87.1 - 35.4 68.3 79.9 -

Ours (step 1) 38.4 68.4 79.3 2 28.4 56.1 68.2 4

Ours (step 2) 46.8 75.7 85.6 2 33.5 63.0 74.9 3

Ours (step 3) 48.4 77.2 85.9 2 34.7 64.9 76.4 3

Ranking loss requires a careful triplet sampling strategy from the extremely
unbalanced positive and negative ones, which points out the direction of our
future work.

5 Conclusion

This paper mainly addresses the issue of multimodal matching via a novel two-
stream convolutional neural network. The proposed network can extract the
features from the raw image and text. To guarantee the features shared between
different modalities, a classifier and ranking constraint are adopted for network
learning by utilizing the pair information. Experimental results on Flickr30k
datasets demonstrate the effectiveness of viewing each multimodal document as
a discrete class. For further research, the ranking constraint will be polished to
perform a more effective metric learning. Also, more detailed experiments on the
Microsoft COCO datasets will be conducted to further validate the validity of
our network.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China under Grants No. 61771145 and No. 61371148.

References

1. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vis. 60(2), 91–110 (2004)

2. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation
of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

Two-Stream Convolutional Neural Network for Multimodal Matching 21

4. Wang, B., Yang, Y., Xu, X., Hanjalic, A., Shen, H. T.: Adversarial cross-modal
retrieval. In: ACM International Conference on Multimedia Conference, pp. 154–
162 (2017)

5. Huang, X., Peng, Y.: Cross-modal deep metric learning with multi-task regular-
ization. In: IEEE International Conference on Multimedia and Expo, pp. 943–948
(2017)

6. Aytar, Y., Vondrick, C., Torralba, A.: See, hear, and read: deep aligned represen-
tations. arXiv preprint arXiv:1706.00932 (2017)

7. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an
overview with application to learning methods. Neural Comput. 16(12), 2639–2664
(2004)

8. Li, D., Dimitrova, N., Li, M., Sethi, I.K.: Multimedia content processing through
cross-modal association. In: ACM International Conference on Multimedia, pp.
604–611 (2003)

9. Ma, L., Lu, Z., Shang, L., Li, H.: Multimodal convolutional neural networks for
matching image and sentence. In: IEEE International Conference on Computer
Vision, pp. 2623–2631 (2015)

10. Hu, B., Lu, Z., Li, H., Chen, Q.: Convolutional neural network architectures for
matching natural language sentences. In: Advances in Neural Information Process-
ing Systems, pp. 2042–2050 (2014)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

12. Andrew, G., Arora, R., Bilmes, J., Livescu, K.: Deep canonical correlation analysis.
In: International Conference on Machine Learning, pp. 1247–1255 (2013)

13. Yan, F., Mikolajczyk, K.: Deep correlation for matching images and text. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp. 3441–3450 (2015)

14. Wei, Y., et al.: Cross-modal retrieval with CNN visual features: a new baseline.
IEEE Trans. Cybern. 47(2), 449–460 (2017)

15. Wang, L., Li, Y., Lazebnik, S.: Learning deep structure-preserving image-text
embeddings. In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 5005–5013 (2016)

16. Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., Yuille, A.: Deep captioning with
multimodal recurrent neural networks (m-RNN). arXiv preprint arXiv:1412.6632
(2014)

17. Huang, Y., Wang, W., Wang, L.: Instance-aware image and sentence matching
with selective multimodal LSTM. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2310–2318 (2017)

18. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

19. Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazeb-
nik, S.: Flickr30k entities: collecting region-to-phrase correspondences for Richer
image-to-sentence models. In: IEEE International Conference on Computer Vision,
pp. 2641–2649 (2015)

20. Liu, Y., Guo, Y., Bakker, E.M., Lew, M.S.: Learning a recurrent residual fusion
network for multimodal matching. In: IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4107–4116 (2017)

http://arxiv.org/abs/1706.00932
http://arxiv.org/abs/1412.6632

Kernel Graph Convolutional Neural
Networks

Giannis Nikolentzos1(B), Polykarpos Meladianos2, Antoine Jean-Pierre Tixier1,
Konstantinos Skianis1, and Michalis Vazirgiannis1,2

1 École Polytechnique, Palaiseau, France
{nikolentzos,anti5662,kskianis,mvazirg}@lix.polytechnique.fr

2 Athens University of Economics and Business, Athens, Greece
pmeladianos@aueb.gr

Abstract. Graph kernels have been successfully applied to many graph
classification problems. Typically, a kernel is first designed, and then
an SVM classifier is trained based on the features defined implicitly by
this kernel. This two-stage approach decouples data representation from
learning, which is suboptimal. On the other hand, Convolutional Neu-
ral Networks (CNNs) have the capability to learn their own features
directly from the raw data during training. Unfortunately, they cannot
handle irregular data such as graphs. We address this challenge by using
graph kernels to embed meaningful local neighborhoods of the graphs in
a continuous vector space. A set of filters is then convolved with these
patches, pooled, and the output is then passed to a feedforward network.
With limited parameter tuning, our approach outperforms strong base-
lines on 7 out of 10 benchmark datasets. Code and data are publicly
available (https://github.com/giannisnik/cnn-graph-classification).

1 Introduction

Graphs are powerful structures that can be used to model almost any kind
of data. Social networks, textual documents, the World Wide Web, chemical
compounds, and protein-protein interaction networks, are all examples of data
that are commonly represented as graphs. As such, graph classification is a very
important task, with numerous significant real-world applications. However, due
to the absence of a unified, standard vector representation of graphs, graph
classification cannot be tackled with classical machine learning algorithms.

Kernel methods offer a solution to those cases where instances cannot be
readily vectorized. The trick is to define a suitable object-object similarity func-
tion (known as a kernel function). Then, the matrix of pairwise similarities can
be passed to a kernel-based supervised algorithm such as the Support Vector
Machine to perform classification. With properly crafted kernels, this two-step
approach was shown to give state-of-the-art results on many datasets [12], and
has become standard and widely used. One major limitation of the graph kernel
+ SVM approach, though, is that representation and learning are two indepen-
dent steps. In other words, the features are precomputed in separation from the
training phase, and are not optimized for the downstream task.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 22–32, 2018.
https://doi.org/10.1007/978-3-030-01418-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_3&domain=pdf
https://github.com/giannisnik/cnn-graph-classification

Kernel Graph Convolutional Neural Networks 23

Conversely, Convolutional Neural Networks (CNNs) learn their own features
from the raw data during training, to maximize performance on the task at
hand. CNNs thus provide a very attractive alternative to the aforementioned
two-step approach. However, CNNs are designed to work on regular grids, and
thus cannot process graphs.

We propose to address this challenge by extracting patches from each input
graph via community detection, and by embedding these patches with graph
kernels. The patch vectors are then convolved with the filters of a 1D CNN and
pooling is applied. Finally, to perform graph classification, a fully-connected layer
with a softmax completes the architecture. We compare our proposed method
with state-of-the-art graph kernels and a recently introduced neural architecture
on 10 bioinformatics and social network datasets. Results show that our Kernel
CNN model is very competitive, and offers in many cases significant accuracy
gains.

2 Related Work

Graph Kernels. A graph kernel is a kernel function defined on pairs of graphs.
Graph kernels can be viewed as graph similarity functions, and currently serve
as the dominant tool for graph classification. Most graph kernels compute the
similarity between two networks by comparing their substructures, which can
be specific subgraphs [13], random walks [16], cycles [6], or paths [2], among
others. The Weisfeiler-Lehman framework operates on top of existing kernels
and improves their performance by using a relabeling procedure based on the
Weisfeiler-Lehman test of isomorphism [12]. Recently, two other frameworks were
presented for deriving variants of popular graph kernels [18,19]. Inspired by
recent advances in NLP, they offer a way to take into account substructure sim-
ilarity. Some graph kernels not restricted to comparing substructures of graphs
but that also capture their global properties have also been proposed. Exam-
ples include graph kernels based on the Lovász number and the corresponding
orthonormal representation [7], the pyramid match graph kernel that embeds ver-
tices in a feature space and computes an approximate correspondence between
them [11], and the Multiscale Laplacian graph kernel, which captures similarity
at different granularity levels by considering a hierarchy of nested subgraphs [9].

Graph CNNs. Extending CNNs to graphs has experienced a surge of interest
in recent years. A first class of methods use spectral properties of graphs. An
early generalization of the convolution operator to graphs was based on the
eigenvectors of the Laplacian matrix [3]. A more efficient model using Chebyshev
polynomials approximation to represent the spectral filters was later presented
[4]. All of these methods, however, assume a fixed graph structure and are thus
not applicable to our setting. The model of [4] was then simplified by using a
first-order approximation of the spectral filters [8], but within the context of
a node classification problem (which again, differs from our graph classification
setting). Unlike spectral methods, spatial methods [10,15] operate directly on the

24 G. Nikolentzos et al.

Fig. 1. Overview of our Kernel Graph CNN approach.

topology of the graph. Finally, some other techniques rely on node embeddings
obtained as an unsupervised pre-processing step, like [14], in which graphs are
represented as stacks of bivariate histograms and passed to a classical 2D CNN
for images.

The work closest to ours is probably [10]. To extract a set of patches from the
input graph, the authors (1) construct an ordered sequence of vertices from the
graph, (2) create a neighborhood graph of constant size for each selected vertex,
and (3) generate a vector representation (patch) for each neighborhood using
graph labeling procedures such that nodes with similar structural roles in the
neighborhood graph are positioned similarly in the vector space. The extracted
patches are then fed to a 1D CNN. In contrast to the above work, we extract
neighborhoods of varying sizes from the graph in a more direct and natural way
(via community detection), and use graph kernels to normalize our patches. We
present our approach in more details in the next section.

3 Proposed Approach

In what follows, we present the main ideas and building blocks of our model.
The overarching process flow is illustrated in Fig. 1.

3.1 Patch Extraction and Normalization

Many types of real-world data are regular grids, and can thus be decomposed
into units that are inherently ordered along spatial dimensions. This makes the
task of patch extraction easy, and normalization unnecessary. For example, in
computer vision (2D), meaningful patches are given by instantiating a rectangle
window over the image. Furthermore, for all images, pixels are uniquely ordered
along width and height, so there is a correspondence between the pixels in each

Kernel Graph Convolutional Neural Networks 25

patch, given by the spatial coordinates of the pixels. This removes the need for
normalization. Likewise, in NLP, words in sentences are uniquely ordered from
left to right, and a 1D window applied over text provides again natural regions.
However, graphs do not exhibit such an underlying grid-like structure. They are
irregular objects for which there exist no canonical ordering of the elementary
units (nodes). Hence, generating patches from graphs, and normalizing them so
that they are comparable and combinable, is a very challenging problem. To
address these challenges, our approach leverages community detection and graph
kernels.

Patch Extraction with Community Detection. There is a large variety of
approaches for sampling from graphs. We can extract subgraphs for all vertices
(which may be computationally intractable for large graphs) or for only a subset
of them, such as the most central ones according to some metric. Furthermore,
subgraphs may contain only the hop-1 neighborhood of a root vertex, or vertices
that are further away from it. They may also be walks passing through the root
vertex. A more natural way is to capitalize on community detection algorithms
[5], as the clusters correspond to meaningful graph partitions. Indeed, a commu-
nity typically corresponds to a set of vertices that highly interact with each other,
as expressed by the number and weight of the edges between them, compared to
the other vertices in the graph. In this paper, we employ the Louvain clustering
algorithm, which extracts non-overlapping communities of various sizes from a
given graph [1]. This multilevel algorithm aggregates each node with one of its
neighbors such that the gain in modularity is maximized. Then, the groupings
obtained at the first step are turned into nodes, yielding a new graph. The pro-
cess iterates until a peak in modularity is attained and no more change occurs.
Note that since our goal here is only to sample relevant local neighborhoods from
the graph, we could have used any other state-of-the-art community detection
algorithm. We opted for Louvain as it is very fast and scalable.

Patch Normalization with Graph Kernels. After extracting the subgraphs
(communities) from a given input graph, standardization is necessary before
being able to pass them to a CNN. We can define this step as that of patch
normalization. To this purpose, we leverage graph kernels, as described next.
Note that since the steps below do not depend on the way the subgraphs were
obtained, we use the term subgraph (or patch) rather than community in what
follows, to highlight the generality of our approach.

Let G = {G1, G2, . . . , GN} be the collection of input graphs. Let
S1,S2, . . . ,SN be the sets of subgraphs extracted from graphs G1, G2, . . . , GN

respectively. Since the number of subgraphs extracted from each graph may
depend on the graph (like in our case with the Louvain community detection
algorithm), these sets vary in size.

Furthermore, let Sj
i be the jth element of Si (i.e., the jth subgraph extracted

from Gi), and Pi be the size of Si (i.e., the total number of subgraphs extracted
from Gi). Let then S = {Sj

i : i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , Pi}} be the set of
subgraphs extracted from all the graphs in the collection, and P its cardinality.
Let finally K ∈ R

P×P be the symmetric positive semidefinite kernel matrix

26 G. Nikolentzos et al.

constructed from S using a graph kernel k. Since the total number P of subgraphs
for all the graphs in the collection is very large, populating the full kernel matrix
K and factorizing it to obtain low-dimensional representations of the subgraphs
is O(P 3). Fortunately, the Nyström method [17] allows us to obtain Q ∈ R

P×p

(with p � P) such that K ≈ QQ� at the reduced cost of O(p2P), by using only
a small subset of p columns (or rows) of the kernel matrix. The rows of Q are
low-dimensional representations of the subgraphs and serve as our normalized
patches.

3.2 Graph Processing

1D Convolution. To process a given input graph, many filters are convolved
with the normalized representations of the patches contained in the graph. For
example, for a given filter w ∈ R

p, a feature ci is generated from the jth patch
of graph Gi zji as:

cj = σ(w�zji)

where σ is an activation function. In this study, we used the identity function
σ(c) = c, as we observed no difference in results compared to nonlinear activa-
tions. Therefore, when applied to a patch zji , the convolution operation corre-
sponds to the inner product 〈w, zji 〉. We will show next that any filter w with
||w|| < ∞ learned by our network belongs to the Reproducing Kernel Hilbert
Space (RKHS) H of the employed graph kernel k.

Theorem 1. The filters live in the RKHS of the kernel k that was used to
normalize the patches.

Proof. Given two subgraphs Sj
i and Sj′

i′ extracted from Gi and G′
i and their

associated normalized patches zji and zj
′

i′ , it holds that:

〈zji , zj
′

i′ 〉 = k(Sj
i , S

j′
i′) = 〈φ(Sj

i), φ(Sj′
i′)〉H

Let Z = {zji : i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , Pi}} be the set containing all
patches of the input graphs. Then, Span(Z) is either the space of all vectors in
R

P if the rank of the kernel matrix is P or the space of all vectors in R
P whose

last t components are zero if the rank of the kernel matrix is P − t where t > 0.
Then, given a patch zji , vector w is contained in Span(Z), hence:

σ(w�zji) = 〈w, zji 〉 = 〈
N∑

i′=1

Pi∑

j′=1

aj′
i′ z

j′
i′ , z

j
i 〉

=
N∑

i′=1

Pi∑

j′=1

aj′
i′ 〈zj

′
i′ , z

j
i 〉 =

N∑

i′=1

Pi∑

j′=1

aj′
i′ k(Sj′

i′ , Sj
i)

which shows that the filters live in the RKHS associated to graph kernel k. For
other smooth activation functions, one can also show that the filters will be
contained in the corresponding RKHS of the kernel function [20].

Kernel Graph Convolutional Neural Networks 27

Note that the proposed approach can be thought of as a CNN that works directly
on graphs. In computer vision, convolution corresponds to the element-wise mul-
tiplication between part of an image and a filter followed by summation. Con-
volution can thus be viewed as an inner-product where the output is a single
feature. In our setting, convolution corresponds to the inner-product between
part of a graph (i. e. a patch) and a filter (i. e. a graph). Such an inner-product is
implicitly computed using a graph kernel, and the output is also a single feature.

By convolving w with all the normalized patches of the graph, the following
feature map is produced:

c = [c1, c2, . . . , cPmax
]�

where Pmax = max(Pi : i ∈ {1, 2, . . . , N}) is the largest number of patches
extracted from any given graph in the collection. For graphs featuring less than
Pmax patches, zero-padding is employed.

Note that this approach is similar to concatenating all the vector represen-
tations of the patches contained in a given graph (padding if necessary), thus
obtaining a single vector representation of the graph, and sliding over it a unidi-
mensional filter of size the length of a single patch vector, without overspanning
patches (i.e., with stride equal to filter size).

Pooling. We then apply a max-pooling operation over the feature map, thus
retaining only the maximum value of c, max(c1, c2, . . . , cPmax

), as the signal
associated with w. The intuition is that some subgraphs of a graph are good
indicators of the class the graph belongs to, and that this information will be
picked up by the max-pooling operation.

3.3 Processing New Graphs

When provided with a never-seen graph (at test time), we first sample subgraphs
from it (here, via community detection), and then project them to the feature
space of the subgraphs in the training set. Given a new subgraph Sj , its pro-
jection can be computed as zj = Q†v where Q† ∈ R

p×P is the pseudoinverse of
Q ∈ R

P×p and v ∈ R
P is the vector containing the kernel value between Sj and

all P subgraphs in the training set (those contained in set S). The dimension-
ality p of the emerging vector is the same as that of the normalized patches in
the training set. Thus, this vector can be convolved with the filters of the CNN
as previously described.

3.4 Channels

Rather than selecting one graph kernel in particular to normalize the patches,
several kernels can be jointly used. The different representations provided by
each kernel can then be passed to the CNN through different channels, or depth
dimensions. Intuitively, this can be very beneficial, as each kernel might capture
different, complementary aspects of similarity between subgraphs. We experi-
mented with the following popular kernels:

28 G. Nikolentzos et al.

• Shortest path kernel (SP) [2]: to compute the similarity between two
graphs, this kernel counts how many pairs of shortest paths have the same
source and sink labels, and identical length, in the two graphs. The runtime
complexity for a pair of graphs featuring n1 and n2 nodes is O(n1

2n2
2).

• Weisfeiler-Lehman subtree kernel (WL) [12]: for a certain number h of
iterations, this kernel performs an exact matching between the compressed
multiset labels of the two graphs, while at each iteration it updates these
labels. It requires O(hm) time for a pair of graphs with m edges.

This gave us two single channel models (KCNN SP, KCNN WL), and one
model with two channels (KCNN SP + WL).

4 Experimental Setup

4.1 Synthetic Dataset

Dataset. As previously mentioned, the intuition is that our proposed KCNN
model is particularly well suited for settings where some regions in the graphs are
highly discriminative of the class the graph belongs to. To empirically verify this
claim, we created a dataset featuring 1000 synthetic graphs generated as follows.
First, we generate an Erdos-Rényi graph with number of vertices sampled from
Z ∩ [

100, 200
]

with uniform probability, and edge probability equal to 0.1. We
then add to the graph either a 10-clique or a 10-star graph by connecting the
vertices with probability 0.1. The first class of the dataset is made of the graphs
containing a 10-clique, while the second class features the graphs containing a
10-star subgraph. The two classes are of equal size (500 graphs each).

Baselines. We compared our model against the shortest-path kernel (SP)
[2], the Weisfeiler-Lehman subtree kernel (WL) [12], and the graphlet kernel
(GR) [13].

Configuration. We performed 10-fold cross-validation. The C parameter of
the SVM (for all graph kernels) and the number of iterations (for the WL kernel
baseline) were optimized on a 90/10 split of the training set of each fold. For the
graphlet kernel, we sampled 1000 graphlets of size up to 6 from each graph. For
our proposed KCNN, we used an architecture with one convolution-pooling block
followed by a fully connected layer with 128 units. The ReLU activation was used,
and regularization was ensured with dropout (0.5 rate). A final softmax layer
was added to complete the architecture. The dimensionality of the normalized
patches (number of columns of Q) was set to p = 100, and we used 256 filters (of
size p, as explained in Subsect. 3.2). Batch size was set to 64, and the number of
epochs and learning rate were optimized by performing 10-fold cross-validation
on the training set of each fold. All experiments were run on a single machine
consisting of a 3.4 GHz Intel Core i7 CPU with 16 GB of RAM and an NVidia
GeForce Titan Xp GPU.

Results. We report in Table 1 average prediction accuracies of our three mod-
els in comparison to the baselines. Results validated the hypothesis that our

Kernel Graph Convolutional Neural Networks 29

Table 1. Classification accuracy of state-of-the-art graph kernels: shortest path (SP),
graphlet (GR), and Weisfeiler-Lehman subtree (WL); and the single and multichannel
variants of our approach (KCNN), on the synthetic dataset.

SP GR WL KCNN SP KCNN WL KCNN SP + WL

75.47 69.34 65.88 98.20 97.25 98.40

proposed model (KCNN) can identify those areas in the graphs that are most
predictive of the class labels, as its three variants achieved accuracies greater
than 98%. Conversely, the baseline kernels failed to discriminate between the
two categories. Hence, it is clear that in such settings, our model is more effec-
tive than existing methods.

4.2 Real-World Datasets

Datasets. We also evaluated the performance of our approach on five bioinfor-
matics (ENZYMES, NCI1, PROTEINS, PTC-MR, D&D) and five social net-
work datasets (IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, REDDIT-
MULTI-5K, COLLAB)1. Notice that the bioinformatics datasets are labeled
(labels on vertices), while the social interaction datasets are not.

Baselines. We evaluated our model in comparison with the shortest-path kernel
(SP) [2], the random walk kernel (RW) [16], the graphlet kernel (GR) [13], the
Weisfeiler-Lehman subtree kernel (WL) [12], the best kernel from the deep graph
kernel framework (Deep Graph Kernels) [19], and a recently proposed graph
CNN (PSCN k = 10) [10]. Since the experimental setup is the same, we report
the results of [19] and [10].

Configuration. Same as Subsect. 4.1 above.

Results. The 10-fold cross-validation average test set accuracy of our approach
and the baselines is reported in Table 2. Our approach outperforms all base-
lines on 7 out of the 10 datasets. In some cases, the gains in accuracy over
the best performing competitors are considerable. For instance, on the IMDB-
MULTI, COLLAB, and D&D datasets, we offer respective absolute improve-
ments of 2.23%, 2.33%, and 2.56% in accuracy over the best competitor, the
state-of-the-art graph CNN (PSCN k = 10). Finally, it should be noted that
on the IMDB-MULTI dataset, every variant of our architecture outperforms all
baselines.
Interpretation. Overall, our Kernel CNN model reaches better performance
than the classical graph kernels (SP, GR, RW, and WL), showing that the ability
of CNNs to learn their own features during training is superior to disjoint feature
computation and learning. It is true that our approach also comprises two disjoint
steps. However, the first step is only a data preprocessing step, where we extract
1 The datasets, further references and statistics are available at https://ls11-www.cs.

tu-dortmund.de/staff/morris/graphkerneldatasets.

https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

30 G. Nikolentzos et al.

Table 2. 10-fold cross validation average classification accuracy (± standard deviation)
of the proposed models and the baselines on the bioinformatics (top) and social network
(bottom) datasets. Best performance per dataset in bold, among the variants of our
Kernel CNN model underlined.

Method Dataset

ENZYMES NCI1 PROTEINS PTC-MR D&D

SP 40.10 (± 1.50) 73.00 (± 0.51) 75.07 (± 0.54) 58.24 (± 2.44) >3 days

GR 26.61 (± 0.99) 62.28 (± 0.29) 71.67 (± 0.55) 57.26 (± 1.41) 78.45 (± 0.26)

RW 24.16 (± 1.64) >3 days 74.22 (± 0.42) 57.85 (± 1.30) >3 days

WL 53.15 (± 1.14) 80.13 (± 0.50) 72.92 (± 0.56) 56.97 (± 2.01) 77.95 (± 0.70)

Deep Kernels 53.43 (± 0.91) 80.31 (± 0.46) 75.68 (± 0.54) 60.08 (± 2.55) NA

PSCN k = 10 NA 76.34 (± 1.68) 75.00 (± 2.51) 62.29 (± 5.68) 76.27 (± 2.64)

KCNN SP 46.35 (± 0.39) 75.70 (± 0.31) 74.27 (± 0.22) 62.94 (± 1.69) 76.63 (± 0.09)

KCNN WL 43.08 (± 0.68) 75.83 (± 0.25) 75.76 (± 0.28) 61.52 (± 1.41) 75.80 (± 0.07)

KCNN SP + WL 48.12 (± 0.23) 77.21 (± 0.22) 73.79 (± 0.29) 62.05 (± 1.41) 78.83 (± 0.29)

IMDB BINARY IMDB MULTI REDDIT BINARYREDDIT MULTI-5KCOLLAB

GR 65.87 (± 0.98) 43.89 (± 0.38) 77.34 (± 0.18) 41.01 (± 0.17) 72.84 (± 0.28)

Deep GR 66.96 (± 0.56) 44.55 (± 0.52) 78.04 (± 0.39) 41.27 (± 0.18) 73.09 (± 0.25)

PSCN k = 10 71.00 (± 2.29) 45.23 (± 2.84) 86.30 (± 1.58) 49.10 (± 0.70) 72.60 (± 2.15)

KCNN SP 69.60 (± 0.44) 45.99 (± 0.23) 77.23 (± 0.15) 44.86 (± 0.24) 70.78 (± 0.12)

KCNN WL 70.46 (± 0.45) 46.44 (± 0.24) 81.85 (± 0.12) 50.04 (± 0.19) 74.93 (± 0.14)

KCNN SP + WL 71.45 (± 0.15) 47.46 (± 0.21) 78.35 (± 0.11) 44.63 (± 0.18) 74.12 (± 0.17)

neighborhoods from the graphs, and normalize them with graph kernels. The
features used for classification are then learned during training by our neural
architecture, unlike the GK + SVM approach, where the features, given by the
kernel matrix, are computed in advance, independently from the downstream
task.

Our two single-channel architectures perform comparably on the bioinfor-
matics datasets, while the KCNN WL variant was superior on the social net-
work datasets. On the REDDIT-BINARY, REDDIT-MULTI-5K and COLLAB
datasets, KCNN WL also outperforms the multichannel architecture, with quite
wide margins. The multi-channel architecture (KCNN SP + WL) leads to better
results on 5 out of the 10 datasets, showing that capturing subgraph similarity
from a variety of angles sometimes helps.

Table 3. 10-fold cross validation runtime of proposed models on the 10 real-world
graph classification datasets.

ENZYMESNCI1 PROTEINSPTC-MRD&D IMDB

BINARY

IMDB

MULTI

REDDIT

BINARY

REDDIT

MULTI-5K

COLLAB

KCNN SP 28” 4’ 26”42” 22” 54” 36” 1’ 41” 5’ 29” 15’ 2” 7’ 2”

KCNN WL53” 4’ 54”48” 22” 1’ 33”41” 58” 5’ 22” 14’ 23” 8’ 58”

KCNN SP

+ WL

1’ 13” 5’ 1” 53” 25” 1’ 46”45” 1’ 44” 9’ 57” 24’ 28” 10’ 24”

Kernel Graph Convolutional Neural Networks 31

Runtimes. We also report the time cost of our three models in Table 3. Runtime
includes all steps of the process: patch extraction, path normalization, and 10-
fold cross validation procedure. We can see that the computational complexity
of the proposed models is not high. Our most computationally intensive model
(KCNN SP + WL) takes less than 25 min to perform the full 10-fold cross
validation procedure on the largest dataset (REDDIT-MULTI-5K). Moreover,
in most cases, the running times are lower or comparable to the ones of the
state-of-the-art Graph CNN and Deep Graph Kernels models [10,19].

5 Conclusion

In this paper, we proposed a method that combines graph kernels with CNNs
to learn graph representations and to perform graph classification. Our Kernel
Graph CNN model (KCNN) outperforms 6 state-of-the-art graph kernels and
graph CNN baselines on 7 datasets out of 10.

References

1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. JSTAT 2008(10), 1–12 (2008)

2. Borgwardt, K.M., Kriegel, H.: Shortest-path kernels on graphs. In: ICDM, pp.
74–81 (2005)

3. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally
connected networks on graphs. In: ICLR (2014)

4. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: NIPS, pp. 3837–3845 (2016)

5. Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep.
659, 1–44 (2016)

6. Horváth, T., Gärtner, T., Wrobel, S.: Cyclic Pattern Kernels for Predictive Graph
Mining. In: KDD, pp. 158–167 (2004)

7. Johansson, F., Jethava, V., Dubhashi, D., Bhattacharyya, C.: Global graph kernels
using geometric embeddings. In: ICML, pp. 694–702 (2014)

8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2017)

9. Kondor, R., Pan, H.: The multiscale laplacian graph kernel. In: NIPS, pp. 2982–
2990 (2016)

10. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for
graphs. In: ICML (2016)

11. Nikolentzos, G., Meladianos, P., Vazirgiannis, M.: Matching node embeddings for
graph similarity. In: AAAI, pp. 2429–2435 (2017)

12. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt,
K.M.: Weisfeiler-Lehman graph kernels. JMLR 12, 2539–2561 (2011)

13. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.M.:
Efficient graphlet kernels for large graph comparison. In: AISTATS, pp. 488–495
(2009)

14. Tixier, A., Nikolentzos, G., Meladianos, P., Vazirgiannis, M.: Classifying graphs as
images with convolutional neural networks. arXiv:1708.02218 (2017)

http://arxiv.org/abs/1708.02218

32 G. Nikolentzos et al.

15. Vialatte, J.C., Gripon, V., Mercier, G.: Generalizing the convolution operator to
extend CNNs to irregular domains. arXiv preprint arXiv:1606.01166 (2016)

16. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph
kernels. JMLR 11, 1201–1242 (2010)

17. Williams, C.K., Seeger, M.: Using the Nyström method to speed up kernel
machines. In: NIPS, pp. 661–667 (2000)

18. Yanardag, P., Vishwanathan, S.: A structural smoothing framework for robust
graph comparison. In: NIPS, pp. 2125–2133 (2015)

19. Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: KDD, pp. 1365–1374
(2015)

20. Zhang, Y., Liang, P., Wainwright, M.J.: Convexified convolutional neural networks.
In: ICML, pp. 4044–4053 (2017)

http://arxiv.org/abs/1606.01166

A Histogram of Oriented Gradients for Broken
Bars Diagnosis in Squirrel Cage Induction

Motors

Luiz C. Silva(&) , Cleber G. Dias , and Wonder A. L. Alves

Informatics and Knowledge Management Graduate Program,
Universidade Nove de Julho, São Paulo, SP, Brazil

lumaleo2016@gmail.com

Abstract. The three-phase induction motors are widely used in a lot of
applications both industry and other environments. Although this electrical
machine is robust and reliable for industrial tasks, for example, conditioning
monitoring techniques have been investigated during the last years to identify
some electrical and mechanical faults in induction motors. In this sense, broken
rotor bars is a typical fault related to the induction machine damage and the
current technical solutions have shown some drawbacks for this kind of failure
diagnosis, particularly when motor is running at very low slip. Therefore, this
paper proposes a new use of Histogram of Oriented Gradients, usually applied in
computer vision and image processing, for broken bars detection, using data
from only one phase of the stator current of the machine. The intensity gradients
and edge directions of each time-window of the stator signal have been applied
as inputs for a neural network classifier. This method has been validated using
some experimental data from a 7.5 kW squirrel cage induction machine running
at distinct load levels (slip conditions).

Keywords: Induction motors � Broken rotor bars � Stator current
Neural network classifier

1 Introduction

During the past decades, conditioning monitoring techniques have been applied by
several researchers for failure detection in induction motors (IM), as well as in pre-
dictive maintenance programs at industry. Today, the induction motors are responsible
for many load drivers and also capable of applying its power in a variety of energy
conversion processes [1]. However, the IMs have some technical limitations, such as
mechanical stresses or electromagnetic strengths that are usually related to damages in
stator and rotor cage [2]. For larger machines, for example, longer downtime per failure
usually occurred with induction motors starting more than once per day, or in appli-
cations of pulsating load or direct on-line startups [3].

A noninvasive technique, called motor current signature analysis (MCSA), is
currently applied for broken bars detection and has been used over the last decades,
particularly due to its noninvasive characteristic and attractive applications in industrial
environment, but MCSA has some drawbacks related to rotor failures diagnosis, such

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 33–42, 2018.
https://doi.org/10.1007/978-3-030-01418-6_4

http://orcid.org/0000-0001-8423-731X
http://orcid.org/0000-0002-4232-2409
http://orcid.org/0000-0003-0430-950X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_4&domain=pdf

as detection at very low slip (low load or no load) and nonadjacent broken bars, as cited
by [4–6]. The sideband frequencies (features extracted from stator current) which are
related to MCSA are usually near the fundamental frequency for a motor running at
low load, thus it is quite difficult to distinguish between a healthy and failure rotor.
Therefore, in many cases MCSA is responsible for both false positive and negative
alarms in the rotor broken bars evaluation [4].

Other signal processing and feature extraction methods have been used for failure
diagnosis on induction motors using time and/or frequency domain data, such as
described by [7–11]. In general, such works have disclosed the use of Fast Fourier
Transform (FFT), Hilbert Transform (HT), Esprit and Empirical Mode Decomposition
(EMD) to extract some information from stator current and other signals from a IM
with broken bars. However, most of them require a long data acquisition time and a
high frequency resolution to ensure the failure detection efficiency.

In addition, other studies have demonstrated the use of some machine learning and
artificial intelligence approaches to detect no only broken rotor bars, but also other
types of failures in induction motors as cited by [12–15]. A recent work published by
[16], for example, has disclosed the current methods used for fault diagnosis on rotating
machinery, such as artificial neural networks, clustering algorithms, deep learning and
hybrid techniques.

Based on the aforementioned state of the art, the present work proposes a new
approach for broken rotor bars diagnosis, using histogram oriented gradients
(HOG) method [17], using only one single phase data of the stator current. The main
features of stator current data have been extracted from the intensity gradients and edge
directions for a multilayer perceptron classifier (MLP). In addition, this paper discusses
the present approach for broken bars detection when induction motors are operating at
reduced load or low slip.

2 Theoretical Background

An analog signal is a physical process that depends on time and can be modeled by a
real function on a variable real that representing time.

In this paper, this function models the stator current from an induction motor which
represents a sinusoidal and periodic signal of the electrical machine. The amplitude of
this signal depends on the load torque applied to the shaft of the motor. The stator
current signals can be digitized by a process called sampling which approximate the
stator current signals taken at regular time intervals.

Thus, the digital stator current signals is represented by a function u : D � Z ! R,
in which a sample x 2 D is an integer number representing a discrete instance in a
sampled time of TS seconds. In addition, this signal, which is periodic, can be divided
into cycles with duration of 1=f seconds, since f is the fundamental frequency set to
60 Hz. Thus, we consider W ¼ W1;W2; � � � ;WTWf g a partition on D such that for any
1� i� TW , follows that a time-window Wi contains the samples of some complete
cycles of signal u. Thus, the time-window Wi contains Wcycle complete cycles with
1
60 �Wcycle samples of a sample time TS ¼ Wcycle � 1

60 � TW seconds. Note that, W is a
set non-empty, its elements are disjoint and the union of its time-windows is W .

34 L. C. Silva et al.

2.1 The Histogram of Oriented Gradients as a Feature Descriptor

The HOG is a feature descriptor, introduced by Dalal and Triggs, for the detection of
pedestrians in photographs [17] and later used for other object detection problems, as
the solutions disclosed by [18] and [19]. The HOG is a technique for describing the
original signal u through a histogram of the gradient direction. The gradient rðuÞ can
be computed by a simple difference schema, as follows:

8x 2 D; rðuÞ½ �ðxÞ ¼ uðx� 1Þ � uðxþ 1Þ
2

ð1Þ

The gradient direction h r uð Þð Þ at point x 2 D is expressed as an angle in intervals
of 0; 2p½ � radians and can be computed, as follows:

8x 2 D; h r uð Þð Þ½ � xð Þ ¼ tan�1 r uð Þð Þ ð2Þ

Then, each sample x 2 D contributes to the histogram with a value proportional to
its gradient magnitude that can obtained by:

8x 2 D; q r uð Þð Þ½ � xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

r uð Þ2
q

ð3Þ

The histogram is constructed for a small number nbins of bins corresponding to
regular intervals of gradient direction. Besides that, a sample x localized in k-th bin can
contribute to two angle range in the histogram according to the distance ratio between
the bin angle center hk and the sample angle h r uð Þð Þ½ � xð Þ. This proportion is given as
follows:

xkðxÞ ¼ max 0; 1� h rðuÞð Þ½ �ðxÞ � hkj j
nbins

� �� �

ð4Þ

Therefore, we compute a histogram HOG for each time-window Wi 2 W as follows:

HOG u;Wið Þ½ �ðkÞ ¼
X

x2Wi

xkðxÞqðxÞ; for k ¼ 1; 2; � � � ; nbins ð5Þ

where xk xð Þ is defined in Eq. (4) and q xð Þ is defined in Eq. (3).

3 The HOG-MLP Method for Broken Bars Detection

The proposed method is based on divide-to-conquer approach. The idea is to divide the
problem into sub-problems and then the sub-problem solutions are combined to give a
solution to the original problem. In this sense, our original problem is to classify broken
rotor bars through the stator current signal. So, we divide the stator current signal into
time-windows given by the partition W . Then, each time-window Wi is classified
through a multilayer perceptron. Thus, we combine the results of the MLP into a single
classification through the bayesian classifier.

A Histogram of Oriented Gradients for Broken Bars Diagnosis 35

The proposed method for the diagnosis of broken rotor bars consists of six stages
(see Fig. 1) which comprise: (i) Acquisition of stator current signal; (ii) Signal sim-
plification; (iii) Signal segmentation in cycles; (iv) Feature extraction; (v) Classification
of time-window; and (vi) Fault detection.

Acquisition of Stator Current Signal: A table representing the function
u : D � Z ! R, is constructed from the stator current data. These data have been
collected from motor running at four distinct load torque conditions, i.e., the braking
system has been supplied with 40 V (slip = 0.66%), 50 V (slip = 0.077%), 60 V
(slip = 1%) and 70 V (slip = 1.16%), thus the motor was running at very low slip in all
cases (close to or lower than 1%). It is important to highlight that large motors usually
run at low slip even for rated load, and small motors often operate at below rated load
in many industrial applications. The slip s can be defined as the difference between the
flux speed Ns and the rotor speed Nr and is usually expressed as a percentage of
synchronous speed (Ns), i.e., s ¼ Ns�Nr

Ns � 100%. The stator current was sampled at a
time of 10 s (i.e., Ts = 10 s), thus, considering the fundamental frequency of 60 Hz and
a sample frequency of 10 kHz.

Signal Simplification: After collecting the data from motor, the stator current was
filtered to reduce the noise and to contribute for signal processing in the time domain.
A Butterworth sixth order low pass filter was used in a cutoff frequency of 200 Hz,
since this value was able to extract the waveform distortion according to the rotor
failure. It is important to highlight that the distortion of the sinusoidal wave (stator
current) is greater in the presence of broken bars, since this failure produces harmonic
components with higher amplitudes (rotor slots harmonics).

Signal Segmentation in Cycles: As the sample time is 10 s, the fundamental fre-
quency is 60 Hz and sampled frequency is 10 kHz. Then, each sample time has 600
cycles and each cycle contains 167 samples. In addition, the partition W is constructed
in the following ways: either 600 time-windows of a single cycle each (i.e., Wcycle ¼ 1)
or 20 time-windows with 30 cycles each (i.e., Wcycle ¼ 30).

Feature Extraction: The feature extraction was performed for each time-window of
partition W and thus it was constructed a set of feature vectors from a stator current
signals u, i.e., k uð Þ ¼ HOG u;Wið Þ : Wi 2 Wf g. From the descriptors extracted from
the stator current signals we constructed the training and validation datasets, in which
6400 labeled examples were used for the training dataset.

Fig. 1. Squematic view for broken bars detection using HOG and MLP.

36 L. C. Silva et al.

Moreover, the datasets were constructed using balanced samples, that is, both
classes contain the same amount of samples. It is worth remembering that we have
constructed a pair training/validation dataset for each of our approach parameters that is
discussed in Sect. 4.

Classification of Time-Window: A typical MLP classifier is built to using a training
set S ¼ pk; ckð Þ 2 R

nbins � 0; 1f g : k ¼ 1; 2; � � � ; 60� TWf g of labeled feature vectors.
The features vector is given by HOG u;Wið Þ 2 kðuÞ of a time-window Wi 2 W of a
stator current signal u into time-window of a healthy stator current signal (labeled “0”)
or time-window of an unhealthy stator current signal (labeled “1”), i.e.,
MLB : Rnbins ! 0; 1f g.

The ANN was trained with 37 input features extracted from HOG, using the
Levenberg-Marquardt algorithm and only one hidden layer was used in its topology.
The training error obtained for the MLP classifier is about 1.7 � 10−3 using the tra-
ditional k-fold-cross-validation (with k = 10) technique to evaluate the classifier
performance.

Fault Detection: The last stage comprises the combining each time-window classifi-
cation for the rotor fault detection. This procedure is performed using bayesian clas-
sifier. Thus, given a stator current signal u, we detected the rotor condition as follows:

BayesianClassifier ¼ failure; if P y ¼ 1jk uð Þð Þ[P y ¼ 0jk uð Þð Þ
non�failure; otherwise

�

Bayesian Classifier ¼ failure; if P y ¼ 1jk uð Þð Þ[P y ¼ 0jk uð Þð Þ
non�failure; otherwise

�

ð6Þ

where the posterior probabilities P y ¼ 1jk uð Þð Þ[Pðy ¼ 0jk uð ÞÞ are designed using
MLP classifier as follows:

Pðy ¼ 1jkðuÞÞ ¼
X

Xi2 kðuÞ

MLPðXiÞ
TW

� Pðy ¼ 1Þ
PðkðuÞÞ ð7Þ

and P y ¼ 0jk uð Þð Þ ¼ 1� Pðy ¼ 1jk uð ÞÞ. The priori probabilities Pðy ¼ 1Þ and
Pðy ¼ 0Þ are discussed in Sect. 4.

4 Experimental Results

As mentioned before, a current sensor (CT - current transform) was used to measure the
stator current from a 7.5 kW squirrel cage induction motor (rated speed = 1800 rpm).
This signal has been collected using a PC and an USB digital Oscilloscope Hantek,
model HT6022BE, with bandwidth in 20 MHz and maximum real-time sample rate of
48 MS/s. The data was collected from some tests performed at laboratory, considering
the motor running at rated frequency (60 Hz) and under distinct load levels. Figure 2
shows the experimental setup of the induction motor.

A Histogram of Oriented Gradients for Broken Bars Diagnosis 37

For experimental tests and rotor evaluation, the stator current data have been col-
lected from motor running at four distinct load torque conditions, i.e., the braking
system has been supplied with voltage equal to 40 V, 50 V, 60 V and 70 V. The stator
current was sampled at a sampled time of 10 s (i.e., TS = 10 s). Thus, considering the
fundamental frequency of 60 Hz and a sample frequency of 10 kHz, each sampled time
has 600 cycles. The classification error and the accuracy were obtained using a 10-fold-
cross-validation, by considering some stator signal parameters variation. The perfor-
mance of the MLP classifier is better described as follows.

4.1 Analysis of Parameters for the Proposed Method

In this subsection we show an analysis based on receiver operating characteristic
(ROC) to find of the best parameters for ours approach. The parameters studied were
(1) the angle range of HOG, i.e., the parameter nbins; (2) the time-window length, i.e.,
the parameter Wcycle; and (3) the threshold value for output classification.

We study the gradient directions used in the HOG and we realized that the angles
are in intervals of −90°, +90° giving a total of 37 angles. Thus, we analyzed the
parameter nbins varying of [1, 5] the quantity of angle by bin of HOG using a ROC
curve. Analogously, we analyzed the parameter Wcycle for some time-window lengths.
Figure 3 shows respectively the ROC curve results for a time-window of only one
cycle and also for 30 cycles, according to the HOG bin angle variation.

(a) Experimental setup (b) Healthy rotor and rotor with one broken bar

Fig. 2. (a) Experimental setup and (b) Two rotor conditions.

(a) ROC Curve using (b) ROC Curve using

Fig. 3. Analysis of ROC curves to determine the better Wcycle and nbins parameters.

38 L. C. Silva et al.

It is possible to note that the ROC curves generated from a stator signal processed
with 30 cycles has demonstrated a better performance than those obtained for only one
cycle, even for distinct HOG angles, thus, in this paper the time-window of 30 cycles
(i.e., 0.5 s) was chosen for broken rotor bar detection using MLP classifier. As men-
tioned by [20], the more the ROC curve is to the upper left corner the better the
classifier performance is. Using the parameters selected, a typical bin angle distribution
for a healthy motor and a damaged rotor is shows in Fig. 4. It is possible to note some
HOG bin angle amplitudes variation according to the two classes conditions (healthy
and faulted rotor).

4.2 Fault Detection Using HOG, MLP and Bayesian Approach

In this work, the HOG angle of 5° was chosen as the best value for histogram descriptor
distribution. It should be noted that, the MLP has been trained with 60 stator current
signals. In the previous section, the MLP topologies were trained to defined the best
parameters for rotor fault detection using HOG (threshold of sigmoid neuron is 0.7,
nbins ¼ 37 and Wcycle ¼ 30). The input layer is related to the number of nbins, thus the
input of each MLP topology was built with 37 bin angles. In this paper, a single hidden
layer with 50 neurons was used for rotor fault detection.

Table 1 shows the results obtained for four load conditions of the rotor evaluation,
after applying MLP classifier. These results are true positive values (TP), false negative
(FN), true negative values (TN), false positive values (FP), specificity (SP), sensitivity
(SN) and accuracy for both learning and validation datasets. In this case, the experi-
ments numbered between 41 and 70 have been used for validation purposes.In the last
stage, the rotor fault detection was performed using time-window classification and
Bayesian classifier, as mentioned in Sect. 3.

Fig. 4. Typical HOG for a healthy motor and a damaged rotor.

A Histogram of Oriented Gradients for Broken Bars Diagnosis 39

For find the priori probabilities Pðy ¼ 1Þ and Pðy ¼ 0Þ we performed a ROC
analysis and thus P(y = 1) = 0.5 was considered the best value for rotor condition
diagnosis. Table 2 show the classification (i.e., either faulted or a healthy condition for
rotor structure) of the experiments after applying the Bayesian classifier. For load
scenarios, i.e., by feeding the braking system of the induction motor between 40 V and
70 V, the MLP and Bayesian classifier were able to distinguish between a healthy rotor
and a damaged structure (one broken bar) in all cases (accuracy around 94%).

5 Conclusions

This paper proposes a new approach for broken rotor bars detection in squirrel cage
induction motors, by using a histogram of oriented gradients (HOG). A HOG bin angle
variation was evaluated for a healthy motor and a damaged rotor with one broken bar,
using only stator current as a measurement signal from electrical machine. The
amplitude of each bin angle, after applying HOG on each time-window, has been used
as inputs for a Multilayer Perceptron Neural Network to detect fully broken rotor bars.
For better failure classification, a bayesian classifier was applied to detect each
experiment after time-window subset MLP evaluation. The experimental results have
shown a good accuracy (around 94%) for failure diagnosis, even when IM was running
at low load condition, thus at very low slip (close to 1%). Therefore, this time-domain
approach, using HOG instead of other frequency domain techniques, could be very
interesting for a rotor failure detection in the future. Further researches are going on to
better detect the broken bars for other load conditions and also to evaluate the fault
severity (more broken bars).

Table 1. Results for time-window classification after applying MLP classifier.

Load condition TP FN TN FP SP SN Samples Experiments Acc (%)

All loads (training data) 3128 72 3137 63 0.98 0.97 6400 320 0.98
All loads (validation data) 2129 271 2100 300 0.87 0.88 4800 240 0.88
40 V (validation data) 513 87 528 72 0.88 0.85 1200 60 0.87
50 V (validation data) 537 63 529 71 0.88 0.90 1200 60 0.89
60 V (validation data) 556 44 505 95 0.84 0.93 1200 60 0.88
70 V (validation data) 591 9 561 39 0.93 0.98 1200 60 0.96

Table 2. Results for broken bars detection after MLP and Bayesian classification.

Load condition TP FN TN FP SP SN Samples Experiments Acc (%)

All loads (40 V to 70 V) 112 8 114 6 0.93 0.95 4800 240 0.94
40 V 27 3 29 1 0.96 0.90 1200 60 0.93
50 V 29 1 29 1 0.97 0.97 1200 60 0.97
60 V 28 2 27 3 0.93 0.93 1200 60 0.91
70 V 28 2 29 1 0.93 0.93 1200 60 0.95

40 L. C. Silva et al.

Acknowledgments. The authors would like to thank UNINOVE and FAPESP - São Paulo
Research Foundation (Process 2016/02547-5 and 2016/02525-1) by financial support.

References

1. Zhang, P., Du, Y., Habetler, T.G., Lu, B.: A survey of condition monitoring and protection
methods for medium-voltage induction motors. IEEE Trans. Ind. Appl. 47, 34–46 (2011)

2. Bonnett, A.H., Soukup, G.C.: Cause and analysis of stator and rotor failures in three-phase
squirrel-cage induction motors. IEEE Trans. Ind. Appl. 28, 921–937 (1992)

3. Thorsen, O.V., Dalva, M.: Failure identification and analysis for high-voltage induction
motors in the petrochemical industry. IEEE Trans. Ind. Appl. 35, 810–818 (1999)

4. Lee, S.B., et al.: Identification of false rotor fault indications produced by online MCSA for
medium-voltage induction machines. IEEE Trans. Ind. Appl. 52, 729–739 (2016)

5. Riera-Guasp, M., Cabanas, M.F., Antonino-Daviu, J.A., Pineda-Sánchez, M., García, C.H.
R.: Influence of nonconsecutive bar breakages in motor current signature analysis for the
diagnosis of rotor faults in induction motors. IEEE Trans. Energy Convers. 25, 80–89 (2010)

6. Sizov, G.Y., Sayed-Ahmed, A., Yeh, C.-C., Demerdash, N.A.O.: Analysis and diagnostics
of adjacent and nonadjacent broken-rotor-bar faults in squirrel-cage induction machines.
IEEE Trans. Ind. Electron. 56, 4627–4641 (2009)

7. Puche-Panadero, R., et al.: Improved resolution of the MCSA method via Hilbert transform,
enabling the diagnosis of rotor asymmetries at very low slip. IEEE Trans. Energy Convers.
24, 52–59 (2009)

8. Xu, B., Sun, L., Xu, L., Xu, G.: Improvement of the Hilbert method via ESPRIT for
detecting rotor fault in induction motors at low slip. IEEE Trans. Energy Convers. 28, 225–
233 (2013)

9. Sapena-Bano, A., Pineda-Sanchez, M., Puche-Panadero, R., Martinez-Roman, J., Kanović,
Ž.: Low-cost diagnosis of rotor asymmetries in induction machines working at a very low
slip using the reduced envelope of the stator current. IEEE Trans. Energy Convers. 30,
1409–1419 (2015)

10. Valles-Novo, R., de Jesus Rangel-Magdaleno, J., Ramirez-Cortes, J.M., Peregrina-Barreto,
H., Morales-Caporal, R.: Empirical mode decomposition analysis for broken-bar detection
on squirrel cage induction motors. IEEE Trans. Instrum. Meas. 64, 1118–1128 (2015)

11. Dias, C.G., Chabu, I.E.: Spectral analysis using a Hall effect sensor for diagnosing broken
bars in large induction motors. IEEE Trans. Instrum. Meas. 63, 2890–2902 (2014)

12. Sadeghian, A., Ye, Z., Wu, B.: Online detection of broken rotor bars in induction motors by
wavelet packet decomposition and artificial neural networks. IEEE Trans. Instrum. Meas. 58,
2253–2263 (2009)

13. Singh, H., Seera, M., Abdullah, M.Z.: Detection and diagnosis of broken rotor bars and
eccentricity faults in induction motors using the Fuzzy Min-Max neural network. In: The
2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–5 (2013)

14. Carbajal-Hernández, J.J., Sánchez-Fernández, L.P., Landassuri-Moreno, V.M., de Jesús
Medel-Juárez, J.: Misalignment identification in induction motors using orbital pattern
analysis. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013. LNCS, vol. 8259,
pp. 50–58. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41827-3_7

15. Chandralekha, R., Jayanthi, D.: Diagnosis of Faults in Three Phase Induction Motor using
Neuro Fuzzy Logic. Int. J. Appl. Eng. Res. 11, 5735–5740 (2016)

16. Lei, Y.: Intelligent Fault Diagnosis and Remaining Useful Life Prediction of Rotating
Machinery. Butterworth-Heinemann (2016)

A Histogram of Oriented Gradients for Broken Bars Diagnosis 41

http://dx.doi.org/10.1007/978-3-642-41827-3_7

17. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005,
vol. 1, pp. 886–893 (2005)

18. Yu, Y., Cao, H., Liu, S., Yang, S., Bai, R.: Image-based damage recognition of wind turbine
blades. In: 2017 2nd International Conference on Advanced Robotics and Mechatronics
(ICARM), pp. 161–166 (2017)

19. Meng, L., Wang, Z., Fujikawa, Y., Oyanagi, S.: Detecting cracks on a concrete surface using
histogram of oriented gradients. In: 2015 International Conference on Advanced Mecha-
tronic Systems (ICAMechS), pp. 103–107 (2015)

20. Martin-Diaz, I., et al.: An experimental comparative evaluation of machine learning
techniques for motor fault diagnosis under various operating conditions. IEEE Trans. Ind.
Appl. 54(3), 2215–2224 (2018)

42 L. C. Silva et al.

Learning Game by Profit Sharing Using
Convolutional Neural Network

Nobuaki Hasuike and Yuko Osana(B)

Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo 192-0982, Japan
osana@stf.teu.ac.jp

Abstract. In this paper, Profit Sharing using convolutional neural net-
work is realized. In the proposed method, action value in Profit Sharing
is learned by convolutional neural network. This is a method that learns
the value function of Profit Sharing instead of the value function of Q
Learning used in the Deep Q-Network. By changing to an error func-
tion based on the value function of Profit Sharing which can acquire
probabilistic policy in a shorter time, the proposed method is able to
learn in a shorter time than the conventional Deep Q-Network. Com-
puter experiments were carried out on Asterix of Atari 2600, and the
proposed method was compared with the conventional Deep Q-Network.
As a result, we confirmed that the proposed method can learn from the
earlier stage than Deep Q-Network and can obtain higher score finally.

Keywords: Profit Sharing · Convolutional neural network

1 Introduction

In recent years, as a method which shows better performance than the conven-
tional method in the field of image recognition and speech recognition, the deep
learning has been drawing attention. Deep learning is a hierarchical neural net-
work with many layers, and the Convolutional Neural Network (CNN) [1] is one
of the representative models.

On the other hand, various studies on reinforcement learning are being con-
ducted as learning methods to acquire appropriate policies through interaction
with the environment [2]. In reinforcement learning, learning can proceed by
repeating trial and error even in an unknown environment by appropriately set-
ting rewards.

The Deep Q-Network [5] is based on the convolutional neural network which
is a representative method of deep learning and the Q Learning [4] which is a
representative method of reinforcement learning. In the Deep Q-Network, when
the game screen (observation) is given as an input to the convolutional neural
network, the action value in Q Learning for each action is output. This method
can realize learning that acquires a score equal to or higher than that of a human
in plural games. The combination of deep learning and reinforcement learning
is called Deep Reinforcement Learning, most of which is based on Q Learning.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 43–50, 2018.
https://doi.org/10.1007/978-3-030-01418-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_5&domain=pdf

44 N. Hasuike and Y. Osana

As a deep reinforcement learning using a method other than Q Learning, we
have proposed a Deep Q-Network using reward distribution [6]. This method
learns to not take wrong actions, by distributing negative rewards in the same
way as Profit Sharing [3]. Although this method can perform learning with the
same degree of precision and speed as Deep Q-Network, it shows that the score
that can be finally obtained is same level as Deep Q-Network.

In this paper, we propose a Profit Sharing using convolutional neural network.
In the proposed method, action value in Profit Sharing is learned by convolu-
tional neural network. This is a method that learns the value function of Profit
Sharing instead of the value function of Q Learning used in the Deep Q-Network.
By changing to an error function based on the value function of Profit Sharing
which can acquire probabilistic policy in a shorter time, the proposed method
is able to learn in a shorter time than the conventional Deep Q-Network. Com-
puter experiments were carried out on Asterix of Atari 2600, and the proposed
method was compared with the conventional Deep Q-Network. As a result, we
confirmed that the proposed method can learn from the earlier stage than Deep
Q-Network and can obtain higher score finally.

2 Deep Q-Network

Here, we explain the Deep Q-Network [5] that is the basis of the proposed
method. The Deep Q-Network is based on the convolutional neural network [1]
and the Q Learning [4]. In the Deep Q-Network, when the game screen (observa-
tion) is given as an input to the convolutional neural network, the action value
in Q Learning for each action is output. This method can realize learning that
acquires a score equal to or higher than that of a human in plural games.

2.1 Structure

The structure of Deep Q-Network is shown in Fig. 1. As seen in Fig. 1, the Deep
Q-Network is a model based on the convolutional neural network, consisting
of three convolution layers and two fully connected layers. The play screen of
the game (observation) is input to the convolutional neural network, and the
action value for each action corresponding to the observation is outputted. For
the first to fourth layers, rectified linear function is used as an output function.
The number of neurons in the last finally connected layer which is the output
layer is the same as the number of actions that can be taken in the problem to
be handled. Since the problem learned by Deep Q-Network can be regarded as
a regression problem to learn the relationship between each observation and the
action value of each action in the observation, the output function of the output
layer is an identity mapping function.

Learning Game by Profit Sharing Using Convolutional Neural Network 45

2.2 Learning

Since the action value in Q Learning is used as the output, the following error
function used in learning is given by

E =
1
2

(
rτ + γ max

a′∈CA(oτ+1)
q(oτ+1, a

′) − q(oτ , aτ)
)2

(1)

where rτ is the reward at the time τ , CA(oτ+1) is the set of actions that an
agent can take at the observation oτ+1, γ is the discount factor, q(oτ , aτ) is the
value of taking action aτ at observation oτ .

When the game screen oτ is given to the Deep Q-Network, the value of
all actions in observation oτ is output in the output layer. Based on the out-
put action value, action is determined by the ε-greedy method. In the ε-greedy
method, one action is selected randomly with the probability ε (0 ≤ ε ≤ 1), the
action whose value is highest with the probability of 1 − ε.

The probability to select the action a in observation oτ , P (oτ , a) is given by

P (oτ , a) =

⎧⎪⎨
⎪⎩

(1 − ε) +
ε

|CA|
(

if a = argmax
a′∈CA

q(oτ , a′)
)

ε

|CA| (otherwise)

(2)

where, |CA| is the number of action types that the agent can take, which is the
same as the number of neurons in the output layer of the Deep Q-Network.

The selected action aτ is executed, and the state transits to the next state
o tau+1. Also, by taking the action aτ , the reward rτ is given based on the score,
game state and so on.

Learning is unstable merely by approximating the action value of Q Learning
using the convolutional neural network, so in the learning of the Deep Q-Network,
some ideas called Experience Replay, Fixed Target Q-Network, Reward Clipping
are introduced.

Fig. 1. Structure of Deep Q-Network.

46 N. Hasuike and Y. Osana

3 Profit Sharing Using Convolutional Neural Network

Here, the proposed Profit Sharing using Convolutional Neural Network is
explained.

3.1 Outline

In the proposed method, action value in Profit Sharing is learned by convolu-
tional neural network. This is a method that learns the value function of Profit
Sharing instead of the value function of Q Learning used in the Deep Q-Network.
By changing to an error function based on the value function of Profit Sharing
which can acquire probabilistic policy in a shorter time, the proposed method
is able to learn in a shorter time than the conventional Deep Q-Network. How-
ever, in the Profit Sharing, since temporally continuous data is meaningful in
episodes, experience replay used in the Deep Q-Network is not used in the pro-
posed method. The Q Learning uses fixed target Q-Network because the value
of other rules is also used when updating the value of the rule. In contrast, the
Profit Sharing uses the value of the rule included in the episode in updating the
connection weights. Therefore, the proposed method does not use fixed target
Q-Network.

3.2 Structure

The structure of the convolutional neural network used in the proposed method
is shown in Fig. 2. As similar as the conventional Deep Q-Network, the convolu-
tional neural network used in the proposed method consists of three convolution
layers and two full-connected layers. The input to the convolutional neural net-
work is the play screen of the game. The output of the convolutional neural
network is value of each action for that state.

Fig. 2. Structure of convolutional neural network used in proposed method.

Learning Game by Profit Sharing Using Convolutional Neural Network 47

3.3 Learning

In the proposed method, the convolutional neural network learns to output the
value of each action corresponding to the play screen of the game (observation)
which is given as input. Here, the action value is updated based on the Profit
Sharing. So, the error function E is given by

E =
1
2

(rτF (τ) − q(oτ , aτ))2 (3)

where r is reward, q(oτ , aτ) is the value of taking action aτ at observation oτ .
F (τ) is the reinforcement function at the time τ and is given by

F (τ) =
1

(|CA| + 1)W−τ
(4)

where CA is the set of actions that an agent can take at the observation, |CA|
is the number of actions that an agent can take, W is the length of an episode.

The action is selected based using the ε-greedy as similar as the conventional
Deep Q-Network.

4 Computer Experiment Results

To demonstrate the effectiveness of the proposed method, computer experiments
were conducted on a game of Atari 2600 (Asterix). The results are shown below.

4.1 Task

Asterix is an action game shown in Fig. 3. A player can operate own machine up
and down, left and right. From the left and right of the screen, jars and harps
fly. You can score 50 points by taking a jar. Taking the harp will reduce the
remaining machines. At the start of the game, there are three machines. When
the remaining machine runs out, the game ends. The score of the game is the
sum of the scores acquired by the end of the game.

The actions of the agent are five kinds of movement; moving to up, down, left
and right, and not moving. The agent gets a positive reward (1) when it gains
score. In addition, the agent acquires a negative reward (−1) when a remaining
machine decreases.

4.2 Experimental Conditions

Table 1 shows the conditions for the convolutional neural network used in the
proposed method and the conventional Deep Q-Network. The game screen used
in this research is an RGB image of 400×500. In the experiment, the RGB image
is grayscaled, reduced to 84 × 84 pixels, and an image grouped for 4 frames is
used as input.

48 N. Hasuike and Y. Osana

Fig. 3. Asterix.

Table 2 shows other conditions related to learning. An action is selected by
ε-greedy. At the start of learning, ε is set to 1 so that actions are randomly
selected. After that, ε is decreased until it becomes 1/106 every action (one
step). The agent gradually emphasizes the action value and selects an action.

In the proposed method, since Profit Sharing is used, as the length of the
episode becomes longer, the value of the denominator on the right side of Eq. (4)
becomes too large and the reward can not be distributed sufficiently. Therefore,
only five steps before acquisition of the score are regarded as episodes.

4.3 Transition of Obtained Scores

Here, a game of atari 2600 (Asterix) are learned by the proposed Profit Sharing
using convolutional neural network, and we compared the transition of the score
with the conventional Deep Q-Network.

Figure 4 shows the transition of obtained scores in each method. This figure
is the average of scores every 50 thousand times.

Table 1. Experimental conditions (1).

Filter size Stride Output size Output function

Input – – 84 × 84 × 4 –

Convolution layer 1 8 × 8 4 20 × 20 × 32 ReLU

Convolution layer 2 4 × 4 2 9 × 9 × 64 ReLU

Convolution layer 3 3 × 3 1 7 × 7 × 64 ReLU

Full-connected layer 1 – – 512 ReLU

Full-connected layer 2 – – 5 (the number of actions) Identity function

Learning Game by Profit Sharing Using Convolutional Neural Network 49

Table 2. Experimental conditions (2)

The number of learning steps 1.0 × 107

Initial value of ε εini 1

Decrease amount of ε εr 1/106

Minimum of ε εmin 0.1

ε in evaluation episodes ε′ 0.05

Size of replay memory Dmax 106

Size of mini batch M 32

Discount Rate γ 0.99

Update interval of target network Tupdate 104

Fig. 4. Transition of obtained scores.

Asterix is a problem which is considered to be difficult to learn on the con-
ventional Deep Q-Network, and the acquired score is not stable up to 5 million
steps. However, after that, the acquired score rises, and the average score of
acquisition at 10 million steps is about 90 points. In the proposed method, the
score increases up to the first 5 million steps, and after that, it is able to obtain
a high score stably. ε in the ε-greedy method is set to be the minimum value
(0.1) at the time of 5 million steps. Considering that the score is stable in both
methods after 5 million steps, we think that it may be possible that the progress
of learning may change by changing the way of decreasing ε. According to the
result of Fig. 4, we confirmed that learning can be done from the earlier stage
than the conventional Deep Q-Network in the proposed method and the score
obtained finally becomes high.

5 Conclusions

In this paper, we have proposed the Profit Sharing using convolutional neural
network. In the proposed method, action value in Profit Sharing is learned by

50 N. Hasuike and Y. Osana

convolutional neural network. This is a method that learns the value function of
Profit Sharing instead of the value function of Q Learning used in the Deep Q-
Network. By changing to an error function based on the value function of Profit
Sharing which can acquire probabilistic policy in a shorter time, the proposed
method is able to learn in a shorter time than the conventional Deep Q-Network.

Computer experiments were carried out on Asterix of Atari 2600, and the
proposed method was compared with the conventional Deep Q-Network. As a
result, we confirmed that the proposed method can learn from the earlier stage
than Deep Q-Network and can obtain higher score finally.

References

1. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

2. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT
Press, Cambridge (1998)

3. Grefenstette, J.J.: Credit assignment in rule discovery systems based on genetic
algorithms. Mach. Learn. 3, 225–245 (1988)

4. Watkins, C.J.C.H., Dayan, P.: Technical note: Q-learning. Mach. Learn. 8, 55–68
(1992)

5. Mnih, V.: Human-level control through deep reinforcement learning. Nature 518,
529–533 (2015)

6. Nakaya, Y., Osana, Y.: Deep Q-network using reward distribution. In: Rutkowski,
L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M.
(eds.) ICAISC 2018. LNCS (LNAI), vol. 10841, pp. 160–169. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-91253-0 16

https://doi.org/10.1007/978-3-319-91253-0_16

Detection of Fingerprint Alterations Using
Deep Convolutional Neural Networks

Yahaya Isah Shehu1(&), Ariel Ruiz-Garcia1, Vasile Palade1,
and Anne James2

1 Faculty of Engineering, Environment and Computing, Coventry University,
Priory Street, Coventry CV1 5FB, UK
{shehuy2,ariel.ruiz-garcia,

vasile.palade}@coventry.ac.uk
2 Faculty of Science and Technology, Nottingham Trent University,

Clifton Campus, Nottingham NG11 8NS, UK
anne.james@ntu.ac.uk

Abstract. Fingerprint alteration is a challenge that poses enormous security
risks. As a result, many research efforts in the scientific community have
attempted to address this issue. However, non-existence of publicly available
datasets that contain obfuscation and distortion of fingerprints makes it difficult
to identify the type of alteration. In this work we present the publicly available
Sokoto-Coventry Fingerprints Dataset (SOCOFing), which provides ten fin-
gerprints for 600 different subjects, as well as gender, hand and finger name for
each image, among other unique characteristics. We also provide a total of
55,249 images with three levels of alteration for Z-cut, obliteration and central
rotation synthetic alterations, which are the most common types of obfuscation
and distortion. In addition, this paper proposes a Convolutional Neural Network
(CNN) to identify these alterations. The proposed CNN model achieves a
classification accuracy rate of 98.55%. Results are also compared with a residual
CNN model pre-trained on ImageNet, which produces an accuracy of 99.88%.

Keywords: Central rotation � Convolutional neural networks � Distortion
Fingerprint alteration � Obfuscation � Obliteration � Z-cut

1 Introduction

The field of forensic science is the use of applied science and technical approaches to
provide answers to issues in criminal, civil and administrative law. Fingerprints can be
altered through abrading [1], cutting [2], burning [3] and distortions, such as skin
grafting [4], where an unusual and unnatural change in the patterns of the friction ridge
occurs. The most common alteration types are in the form of Z-cut, central rotation and
obliteration. In this paper, we present a novel fingerprint dataset with unique attributes,
such as gender, finger type (like index finger, thumb, ring finger, middle finger and
little finger) for both left and right hand of the subject, respectively. Furthermore, we
present preliminary experimental results on the detection of the alteration type using a
deep CNN and a residual CNN model. The two presented models classify the

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 51–60, 2018.
https://doi.org/10.1007/978-3-030-01418-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_6&domain=pdf

fingerprint images into Z-cut, central rotation, obliteration and real, i.e. non-altered
fingerprint. The real fingerprints from our SOCOFing dataset [5], with a total number
of 6000 fingerprints from 600 subjects, were synthetically altered to central rotation, Z-
cut and obliteration, which are the common types of alteration, resulting in a total of
55249 altered fingerprints. The SOCOFing dataset is publically available for replication
and further experimental research work with the sole aim of improving upon the
security of biometric fingerprints, such that criminals in the watch list could be iden-
tified and apprehended even if their fingerprints have been altered.

2 Related Works

Boarder Control is one of the major beneficiaries of biometrics, where fingerprints are
used to detect and recognise individuals. Those that are having past criminal records
and those that have committed high profile crimes used to undergo certain alterations of
their fingerprints to avoid detection, especially in refugee and asylum seeker camps [6].
Such mutilations come in either burning the fingers or using surgery to cut some part of
the fingers or body and place them onto another finger (‘grafting), some come in a Z-
shape, rotated centrally or obliterated, just to evade detection or linking the individual
with their past [6]. Fingerprints of a little proportion of visitors visiting foreign
countries are matched against a database of well-known criminals or terrorists. Bio-
metrics has helped in identifying and apprehending over 1600 wanted individuals for
felony crimes [7]. This is a sign that those wanting to hide their identity in pursuit of
their criminal motives may alter their fingerprints in order to break border and enter into
any country without their true identity being detected. However, it is essential to detect
such alteration types and link the altered fingerprint images to their original ones.
Furthermore, determining the alteration type is an essential first step to reveal a sub-
jects’ identity.

Fingerprints can be obliterated or mutilated to systematically evade identification
by the biometric system [2]. Fingerprint can as well be altered or grafted to various
patterns, shapes, sizes, via surgical operation which comes in either a Z-cut or central
rotation. Other types of alteration can be achieved by burning the fingerprints ‘oblit-
eration’, which in turn changes the fingerprint patterns that the biometric system uses to
match and identify individuals based on what was previously stored as the original
fingerprint [8]. Various software application and hardware solutions are proposed [9,
10] to tackle this situation. However, the authors focus on spoofing and distortion by
rotating fingers on the scanner. Obfuscation is the purposeful exertion of an individual
of concealing their identity by altering ridge patterns of their fingerprint [3]. Generally
the alterations are categorised into three fundamental classes in view of the changes
made to the ridge patterns of the fingerprint (i) obliteration or decimation (ii) distortion
or bending and (iii) imitation or impersonation of fingerprint [3]. The most common
alteration types based on the examination of ridge patterns presented by [3] are
obliteration and distortion, which make up 89% and 10% of such alterations, respec-
tively, whereas only 1% is reported as imitation. This shows that most of the alterations
are either obliteration or distortion, which we seek to address in this paper. In [3], the
proposed algorithm and reported technique identify and detect such fingerprint

52 Y. I. Shehu et al.

alterations with an accuracy of 66.4%. They also emphasize on the lack of public
available databases that comprise obliterated and distorted fingerprints, to be used for
experimentation purposes to improve upon the detection alteration algorithms. The
datasets used by the authors in [3] is not publically available as it is highly secured due
to the sensitivity of the data and is mostly owned by law enforcement agency. This
makes it difficult for the research community to proffer better solutions and robust
detection or matching algorithms that can detect with high accuracy.

The authors in [11], proposed various methods to generate synthetically altered
fingerprint images, which also include a variety of noise such as scar or blurring in
order to create a more realistic fingerprints. The authors utilised these dataset to
develop a framework for detection or matching of altered fingerprints, where the
alterations are obliteration, central rotation and Z-cut. The authors of [2] focused on the
position of the alteration which is often chosen at random, since the main objective is to
avoid being identified [2]. This alteration can be achieved by a publically available tool
proposed by [12]; SynThetic fingeRprint AlteratioNs GEnerator (STRANGE).

Based on previous studies in the area of fingerprints alteration, analysis and
detection, significant gap in knowledge was identified. In Yoon et al. (2012), a case
study compilation with automatic detection, classification and evaluation of altered
fingerprints is done with the view of reducing the number of individual wanting to
evade identification. This study extends [3] in determining alteration types automati-
cally as well as introducing a new fingerprint dataset comprising real fingerprints and
altered fingerprints for experimental purposes and replication of other academic
researches on fingerprint alteration detection algorithms. The dataset also has some
attributes that can open more research avenues due to its uniqueness in identifying
gender, fingers name and either a left hand or a right hand, which has received little or
no attention in the past. These form the current research contribution to addressing
alterations of fingerprints, using the specific sets of fingerprints dataset in addition to
determining the alteration type.

3 Dataset

SOCOFing dataset comprises a total of 6,000 real fingerprints collected from 600
subjects, are provided for experimental and other academic research purposes. We used
the STRANGE tool to alter fingerprints by applying Easy, Medium, and Hard settings
according to a quality threshold during fingerprint comparison [11]. The quality
threshold is determined by the image resolution which by default is set to 500 dbi.
These categories are parameters that are tuned according to the performance drop
during fingerprint comparison. Furthermore, each category mentioned above is divided
into three types of synthetic alteration, i.e. obliteration, central rotation and Z-cut. Each
image will have three types of alteration in the three categories; hence each image was
presented with nine altered images.

The dataset is divided into altered and real fingerprints. A total of 5977 real fin-
gerprints are altered using easy parameter setting while 5689 real fingerprints are
altered as medium and finally a total of 4758 fingerprints real images are altered with
hard parameter settings. Each of the three real fingerprint parameter settings produced

Detection of Fingerprint Alterations Using Deep CNN 53

three types of alteration: obliteration, central rotation and Z-cut. For instance 5977 real
images produced 5977 obliterated fingerprints, 5977 central rotation and 5977 Z-cut
alteration. This means that for 5977 real fingerprints there is going to be 17931 altered
fingerprints presented as fake in easy category. Likewise in medium category a total
number of 17067 are presented as altered and, finally, 14274 fingerprints are altered in
the hard category. However, for the purpose of training and testing of the convolutional
model, the alteration types of the fingerprint images are combined together irrespective
of the settings. A total of 55249 fingerprint images were randomly divided into 50%
training set and 50% testing set. Note that the STRANGE tool did not find some
fingerprint images fit for alterations with specific parameters; hence the altered images
for each category are less than the total number of real images. Figure 1 below shows a
sample of real fingerprint from a left hand of one subject.

After applying the STRANGE tool for the three types of alterations, Fig. 2 below
displays the altered fingerprint of the left hand of the same subject in Fig. 1.

4 Methodology and Experimental Setup

In this paper, we propose a deep CNN for feature extraction and classification. Deep
CNNs have proven to be efficient in image processing related tasks and, therefore, are
suitable for detecting fingerprints alteration types. We train and evaluate this model on
the real and synthetically altered images of the SOCOFing dataset described above.

Fig. 1. Sample of real left hand of one subject.

Fig. 2. Sample of altered left hand fingerprint into Z-cut, obliteration and central rotation,
respectively, of the same subject.

54 Y. I. Shehu et al.

Each class, including real images, is randomly split into 50% training and 50% testing
subsets. The images are also resized to 200 � 200 using bipolar interpolation.

4.1 Convolutional Neural Network Model

Convolutional neural networks retain spatial information through filter kernels. In this
work, we exploit this unique ability of CNNs to train a model to classify images from
the SOCOFing into four categories: central rotation, obliteration, Z-cut and real, where
real images are those without any alteration.

The deep CNN model has five convolutional layers with 20 3 � 3, 40 3 � 3, 60
3 � 3, 80 3 � 3 filter kernels. All convolutional layers use a stride of one and zero
padding of size two. Moreover, the output of every convolutional layer is shaped by a
rectifier linear unit (ReLU) function. Max pooling is applied to the first three convo-
lutional layers for dimensionality reduction. The convolutional layers are followed by
two fully connected layers with 1000 and 100 hidden units, respectively. Furthermore,
we employ batch normalization to standardize the distribution of each input feature
across all the layers and thus speed up training and avoid exploding gradients [13].

The deep CNN is trained using stochastic gradient decent (SGD) and with Nesterov
momentum of 0.5. We trained on min-batches of size 70 and set the learning rate, LR,
to 0.01. LR was decayed with a factor of 0.01 according to:

LR ¼ k
1þ x� hð Þ ð1Þ

where k denotes the initial LR, x the decay factor and h the current epoch. The loss is
defined by a SoftMax operator and the cross-entropy y is determined according to:

y ¼ �xc þ log
X

j
expðxjÞ

� �
ð2Þ

where c is the class ground-truth. Training was done for 100 epochs as further training
led to overfitting.

4.2 Residual Convolutional Neural Network Model

Residual Neural Networks (ResNets) have demonstrated to be exceptionally effective
models on image classification [14]. ResNets have an identity shortcut connection that
allows for very deep architectures to be trained and, therefore, more complex features
to be learned, leading to improved classification performance. For this reason we
decided to compare our model with a ResNet18, that is, with 18 parametrized con-
volutional layers, provided by [15, 16].

This network was originally trained and evaluated on ImageNet [17]. The authors
also provide deeper architectures, of up to 200 layers, pre-trained on the same dataset.
However, because fingerprint images have a relatively smaller number of features and
the nature of the problem being addressed here is not as complex as classifying Ima-
geNet which has 1000 classes, we did not consider deeper architectures.

Detection of Fingerprint Alterations Using Deep CNN 55

The ResNet18 model is fine-tuned on the training subset of the SOCOFing pre-
sented in this paper for only 5 epochs. No modifications were done to the network other
than the replacement of the output layer to only predict four classes. Training was also
done using SGD, a Nesterov momentum of 0.75 and a learning rate of 0.001. This
ResNet model is then evaluated on the test subset.

5 Results and Discussion

The confusion matrices below show the total number of each alteration types detected
and also the number of fingerprint images misclassified. The results are presented in
Tables 1 and 2 with the three types of alteration, the real fingerprint images and the
percentage accuracy of the detection of the alteration types.

As indicated in Table 1, 2988 cases of real fingerprint images are correctly clas-
sified as real fingerprints. The proposed model was able to detect and classify 100% of
the entire real fingerprints correctly. However, 98.55% of the overall predictions across
all four classes are correct. In addition, 183 altered fingerprint images in central rotation
are mixed up with Z-cut alteration and 116 Z-cut altered fingerprint images are mixed
up as central rotation. This can be explained because some of the angles in the
parameter setting of the tool used rotate the altered part of the images in a similar
pattern coupled with the ridges pattern, radial and ulnar loop. Radial loop is a loop that
comes from the side of the thumb and looped out to the pinky side of the hand, while
ulnar is the opposite, i.e., from the pinky side of the hand towards the thumb of the
fingerprint images [18]. These angle rotation contributed to the misclassification of the
alteration between the central rotation and Z-cut, which results in getting a high number

Table 1. Confusion matrix of our CNN.

Central rotation Obliteration Real Z-cut Accuracy (%)

7995 33 0 183 97.37
19 8148 0 44 99.23
0 0 2988 0 100
116 6 0 8089 98.51
98.34% 99.52% 100% 97.27% 98.55

Table 2. Confusion Matrix of the pre-trained and fine-tuned ResNet18.

Central rotation Obliteration Real Z-cut Accuracy (%)

8206 1 1 3 99.94
0 8195 15 1 99.81
0 0 2986 2 99.93
4 0 11 8196 99.82
99.95% 99.98% 99.10% 99.93% 99.86

56 Y. I. Shehu et al.

of up to 183 and 116 altered fingerprint images presented as Z-cut and central rotation,
respectively.

Table 2 shows the pre-trained confusion matrix for the ResNet-18 model that
achieves a global accuracy of 99.86%. It misclassifies two real fingerprint images as Z-
cut, while the proposed CNN model classifies all the real fingerprint images correctly.
Furthermore, 15 of the obliterated fingerprint images are misclassifies as real, while 11
Z-cut altered fingerprint are also misclassifies as real. This may be because some of the
real images are not of good quality and appear as obliteration. However, some loop
ridges in the fingerprint when rotated to some certain degrees might result into some
pattern changes that might look like Z-cut shape, hence classify them as Z-cut. In
addition, there exist some natural cut in some of the fingerprints, which the models
equally detect as a Z-cut shown in Fig. 3 central rotation classified as Z-cut. Some
fingerprints also appeared to look blurring and haze, which the model classified as
obliteration, indicated in Fig. 4 where central rotation are misclassified as obliteration.
Figure 5 shows altered Z-cut fingerprint classified as obliteration because of the
blurring defect of the real fingerprint at the top most of the images. As some of the
images are from female fingers, we cannot also ruled out the possibility of them
wearing henna as shown in the last image of Fig. 5.

Evaluating the confusion matrixes above, we found that the accuracy rate of central
rotation is 97.37% and 99.94% of the pre-trained model. This shows that the pre-
trained model performs better in terms of detecting altered images with central rotation
alteration type. Likewise, it also does better in the recall, with 99.95% against 98.34%.
The pre-trained ResNet-18 model performs better in almost all the categories. How-
ever, even though the detection accuracy is high on real images, with a precision of
99.93% and recall of 99.10%, the CNN model we proposed does better with 100%
detection for both precision and recall scores.

The two CNN models achieved a high accuracy in the classification of altered
fingerprint. Nevertheless, some images are still misclassified, particularly the altered
fingerprint images.

Fig. 3. Central rotation misclassified as Z-cut.

Fig. 4. Central rotation misclassified as obliteration.

Detection of Fingerprint Alterations Using Deep CNN 57

From the misclassified fingerprints illustrated in Figs. 3 and 4, we can see that the
easy alteration category fingerprints are misclassified more by the CNN model because
they physically appeared with little proportion of the fingerprints altered, then followed
by the medium category. The hard category fingerprints are less misclassified unless in
the case of patterns rotational degrees that mixed central rotation with Z-cut.

Selvarani et al. [19] use singular points to distinguish between real fingerprints and
altered ones, by extracting sets of features from the ridge orientation field of an input
fingerprint and then apply a fuzzy classifier to classify it into real or altered ‘Z-cut’.
Similarly, [20, 21] introduced a classifier that detects altered fingerprint images with Z-
cut and central rotation only using extracted features and a support vector classifier.
This was tested using synthetic fingerprints and achieved 92% accuracy above the well-
known fingerprint quality software, NFIQ, as it only recognised 20% of the altered
fingerprints. We cannot therefore provide a comparison on other alterations, since, to
the best of our knowledge, no prior work has been done on detecting these three types
of alterations together.

One of the main advantages of the deep CNN proposed in this work is that the
ResNet18 was pre-trained on the ImageNet dataset, which has over one million images
spanning over 100 classes, compared to our model, which was only trained on our
dataset and for only 100 epochs. Our model also has a significantly smaller number of
convolutional layers, and thus an exponentially smaller number of hyperparameters.
Moreover, because the CNN proposed here has a precision and recall rate of 100% on
real images, it can be more suitable for use in applications where detecting whether a
fingerprint has been altered or not is most important. Furthermore, the performance of
the ResNet models provided by [15] heavily relies on the image pre-processing steps,
such as aspect ratio resizing and luminance adjustments.

6 Conclusion

Fingerprint alteration detection is still an issue that requires more attention in detecting
and identifying altered fingerprints. In this paper, we have introduced a novel finger-
prints dataset, SOCOFing, for wider research accessibility. We highlighted the
importance of fingerprint alteration research and the need for digital automatic detec-
tion of altered fingerprints. We also discussed the most common types of obfuscation
and distortion: central rotation, obliteration and Z-cut. The presented dataset includes
three different levels of alterations for each one of these types. Furthermore, the novel
dataset presented in this paper has a number of unique attributes, such as the name of
the fingers, which hand does the fingers belong to as well as the gender of the

Fig. 5. Z-cut misclassified as obliteration.

58 Y. I. Shehu et al.

fingerprint owner. We have also proposed a CNN model that is not only able to detect
whether a fingerprint has been altered or not but also detect the type of alteration. The
proposed CNN achieved an accuracy rate of 98.55% on the testing subset of the
SOCOFing dataset. This was compared against a ResNet18 model pre-trained on
ImageNet and fine-tuned and tested on our dataset, achieving a state-of-the-art accuracy
rate of 99.86%. One of the main differences in performance for our model and the
ResNet18 model was that even though the ResNet18 slightly outperformed our model,
our model achieved a precision and recall rate of 100% on real images, thus it can be
more suitable for real-time applications.

To the best of the authors’ knowledge, no prior work has addressed these three
types of alterations. However, one of the limitations of this work is that the proposed
CNN was evaluated on synthetically altered images due to the lack of publicly
available datasets containing actual altered images. Nonetheless, we hope that the
results presented in this work can serve as a benchmark in identifying fingerprint
alterations and that the novel presented dataset can assist the research community in
developing more robust biometric fingerprint technology for the automatic detection of
altered fingerprints.

Future work will also investigate the reasons why the ResNet18 model confuses
non-altered fingerprints with altered ones. Moreover, we will also test our model on
different datasets, with different alteration types, to see if it retains 100% precision and
recall rates on real images.

References

1. Burks Jr., J.W.: The effect of dermabrasion on fingerprints. AMA Arch. Dermatol. 77, 8–11
(1958)

2. Cummins, H.: Attempts to alter and obliterate finger-prints. Am. Inst. Crim. L. & Criminol.
25, 982 (1934)

3. Yoon, S., Feng, J., Jain, A.K.: Altered fingerprints: analysis and detection. IEEE Trans.
Pattern Anal. Mach. Intell. 34(3), 451–464 (2012)

4. Wertheim, K.: An extreme case of fingerprint mutilation. J. Forensic Identif. 48(4), 466
(1998)

5. Shehu, Y.I., Ruiz-Garcia, A., Palade, V., James, A.: Sokoto coventry fingerprint dataset.
arXiv preprint arXiv:1807.10609 (2018)

6. Petrovici, A.: Simulating alteration on fingerprint images. In: IEEE Workshop on Biometric
Measurements and Systems for Security and Medical Applications, BIOMS, pp. 1–5. IEEE,
September 2012

7. Salter, M.B.: Passports, mobility, and security: how smart can the border be? Int. Stud.
Perspect. 5(1), 71–91 (2004)

8. Feng, J., Jain, A.K., Ross, A.: Detecting altered fingerprints. In: 20th International
Conference on Pattern Recognition, ICPR, pp. 1622–1625. IEEE, August 2010

9. Antonelli, A., Cappelli, R., Maio, D., Maltoni, D.: Fake finger detection by skin distortion
analysis. IEEE Trans. Inf. Forensics Secur. 1(3), 360–373 (2006)

10. Nixon, K.A., Rowe, R.K.: Multispectral fingerprint imaging for spoof detection. In:
Biometric Technology for Human Identification II, vol. 5779, pp. 214–226. International
Society for Optics and Photonics, March 2005

Detection of Fingerprint Alterations Using Deep CNN 59

http://arxiv.org/abs/1807.10609

11. Papi, S., Ferrara, M., Maltoni, D., Anthonioz, A.: On the generation of synthetic fingerprint
alterations. In: International Conference of the Biometrics Special Interest Group, BIOSIG,
pp. 1–6. IEEE, September 2016

12. Biolab.csr.unibo.it: Biometric System Laboratory (2018). http://biolab.csr.unibo.it/research.
asp?organize=Activities&select=&selObj=211&pathSubj=111%7C%7C21%7C%7C211&
R eq=&. Accessed 3 Apr 2018

13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

14. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the
impact of residual connections on learning. In: AAAI, vol. 4, p. 12, February 2017

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–
778 (2016)

16. Facebook: facebook/fb.resnet.torch (2018). https://github.com/facebook/fb.resnet.torch.
Accessed 29 Apr 2018

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

18. Maio, D., Maltoni, D.: A structural approach to fingerprint classification. In: Proceedings of
the 13th International Conference on Pattern Recognition, vol. 3, pp. 578–585. IEEE,
August 1996

19. Selvarani, S.M.C.A., Jebapriya, S., Mary, R.S.: Automatic identification and detection of
altered fingerprints. In: 2014 International Conference on Intelligent Computing Applica-
tions, ICICA, pp. 239–243. IEEE, March 2014

20. Feng, J., Jain, A.K., Ross, A.: Detecting altered fingerprints. In: 2010 20th International
Conference on Pattern Recognition, ICPR, pp. 1622–1625. IEEE, August 2010

21. Yoon, S., Zhao, Q., Jain, A.K.: On matching altered fingerprints. In: 2012 5th IAPR
International Conference on Biometrics, ICB, pp. 222–229. IEEE, March 2012

60 Y. I. Shehu et al.

http://biolab.csr.unibo.it/research.asp%3forganize%3dActivities%26select%3d%26selObj%3d211%26pathSubj%3d111%257C%257C21%257C%257C211%26Req%3d%26
http://biolab.csr.unibo.it/research.asp%3forganize%3dActivities%26select%3d%26selObj%3d211%26pathSubj%3d111%257C%257C21%257C%257C211%26Req%3d%26
http://biolab.csr.unibo.it/research.asp%3forganize%3dActivities%26select%3d%26selObj%3d211%26pathSubj%3d111%257C%257C21%257C%257C211%26Req%3d%26
http://arxiv.org/abs/1502.03167
https://github.com/facebook/fb.resnet.torch

A Convolutional Neural Network
Approach for Modeling Semantic
Trajectories and Predicting Future

Locations

Antonios Karatzoglou1,2(B), Nikolai Schnell1, and Michael Beigl1

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
{antonios.karatzoglou,michael.beigl}@kit.edu,

nikolai.schnell@student.kit.edu
2 Robert Bosch, Corporate Sector Research and Advance Engineering,

Stuttgart, Germany
antonios.karatzoglou@de.bosch.com

Abstract. In recent years, Location Based Service (LBS) providers rely
increasingly on predictive models in order to offer their users timely
and tailored solutions. Current location prediction algorithms go beyond
using plain location data and show that additional context information
can lead to a higher performance. Moreover, it has been shown that using
semantics and projecting GPS trajectories on so called semantic trajec-
tories can further improve the model. At the same time, Artificial Neural
Networks (ANNs) have been proven to be very reliable when it comes
to modeling and predicting time series. Recurrent network architectures
show a particularly good performance. However, very little research has
been done on the use of Convolutional Neural Networks (CNNs) in
connection with modeling human movement patterns. In this work, we
introduce a CNN-based approach for representing semantic trajectories
and predicting future locations. Furthermore, we included an additional
embedding layer to raise the efficiency. In order to evaluate our app-
roach, we use the MIT Reality Mining dataset and use a Feed-Forward
(FFNN) -, a Recurrent (RNN) - and a LSTM network to compare it
with on two different semantic trajectory levels. We show that CNNs
are more than capable of handling semantic trajectories, while providing
high prediction accuracies at the same time.

Keywords: Convolutional Neural Networks · Semantic trajectories
Location prediction · Embedding layer

1 Introduction

With the rise in the use of smartphones, wearables and other IoT devices over
the past decade, applications that use location data have become increasingly
popular. In addition, in recent years, providers attempt progressively to predict
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 61–72, 2018.
https://doi.org/10.1007/978-3-030-01418-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_7&domain=pdf

62 A. Karatzoglou et al.

the locations to be visited next by the users, in order to be able to offer them
timely and personalised services. This makes the location prediction research
particularly important. Patterns mined from location data can provide a deep
insight into the behaviour of mobile users. The usage of semantic knowledge
helps diving even deeper into their behaviour. So called semantic trajectories
encapsulate additional knowledge that can be crucial for the predictive model.

The purpose of our paper is to present and evaluate a Convolutional Neural
Network (CNN) architecture in a semantic location prediction scenario. First, we
describe some related work that has been done in the realms of semantic location
prediction, semantic location mining and CNNs. Next, we elaborate on the way
CNNs work, by providing some relevant term definitions at the same time. In
Sect. 4 we outline our own architecture together with some basic implementation
details. Finally, in Sects. 5 and 6, we discuss our evaluation outcome and draw
our final conclusions with regard to our findings.

2 Related Work

Spaccapietra et al. depict as one of the first in their work [12] the importance of
viewing trajectories of moving objects in a conceptual manner. They show that,
by defining and adding semantic information, such as the notion of application-
specific stops and moves, to the raw trajectories, they can significantly enhance
the analysis of movement patterns, and provide further insights into object
behaviour. Elragal et al. depict in [5] the benefits of integrating semantics into
trajectories as well. It is shown that semantic trajectories help improve both pat-
tern extraction and decision-making processes in contrast to raw trajectories. For
this reason, several papers have emerged in recent years presenting approaches
to transforming raw location data into so called semantic locations (Sect. 3.1).
Alvares et al. for instance introduce a semantic enrichment model aiming at sim-
plifying the query and analysis of moving objects [1]. Bogorny et al. [2] extend
the previous approach by introducing a more general and sophisticated model,
capable of handling more complex queries, while providing different semantic
granularities at the same time.

The notion of semantic trajectories has also grown in importance in the field
of location prediction during the last years. Ying et al. [13] for example present a
location prediction framework based on previously mined semantic trajectories
from the users’ raw geo-tracking data. Their prefix tree decision based algorithm
shows good performance, especially in terms of recall, f-score and efficiency.

In their recent work, Karatzoglou et al. [7], explore the modeling and pre-
diction performance of various artificial neural network (ANN) architectures,
e.g., Feed-Forward (FFNN), Recurrent (RNN) and Long-Short-Term-Memory
(LSTM) network on semantic trajectories. Similar to Ying et al. they evaluate
their models using the MIT Reality Mining dataset [4], with the LSTM achieving
the best results with up to 76% in terms of accuracy and outscoring the other
methods on f-score and recall as well. In addition, they investigate the role of
the semantic granularity of the considered trajectories in the overall performance

Convolutional Neural Networks for Modeling Semantic Trajectories 63

of the networks. They show that the higher the semantic level, the better the
modeling quality of the networks.

Lv et al. explore in [10] the possibility of using Convolutional Neural Net-
works (CNNs) (Sect. 3.2) to predict taxi trajectories. Their approach projects
past trajectories upon a map and models them in turn as 2D images, on which
the CNN is finally applied to estimate about future trajectories. By modeling
trajectories as 2D images, they are able to make use of the inherent advantage of
CNNs, namely their good performance in image analysis. This is also confirmed
by their results. However, their approach is applied on raw, non-semantic GPS
trajectories.

To our knowledge, there is no work exploring the performance of CNNs on
semantic trajectories. Moreover, it seems that there is no work using trajecto-
ries (semantic or non-semantic ones) in combination with CNNs directly, e.g.,
without transforming them in an intermediate step into 2D images, but handling
them in their raw form instead, as 1D vectors. In the presented work, we exam-
ine exactly these two points in terms of prediction performance in a semantic
location prediction scenario. For this purpose, we focused on the Natural Lan-
guage Processing (NLP) use case where, similar to our case, the data are also 1D
and some work has already been done in combination with CNNs. Particularly
interesting is the work of Collobert et al. [3], who propose a CNN architecture for
solving several NLP problems including named entity recognition and semantic
role labelling. Their framework features an unsupervised training algorithm for
learning internal representations, e.g., by using an embedding layer and learn-
ing low-dimensional feature vectors of given words through backpropagation,
yielding a good performance both in terms of accuracy and speed. The benefit
of using embeddings has been recently shown also in connection with modeling
human trajectories by Gao et al. in [6].

3 Theoretical Background

In this section, we give a brief insight into the fundamental components of our
work.

3.1 Semantic Trajectories

Movement patterns, so called trajectories, describe sequences of consecutive loca-
tion points visited by some object or person. In ubiquitous and mobile com-
puting, trajectories refer usually to GPS sequences like the one displayed in
Eq. 1, whereby longi, lati and tI refers to longitude, latitude and point of time
respectively.

(long1, lat1, t1), (long2, lat2, t2), . . . , (longi, lati, ti) (1)

In the attempt to add more meaning when modeling movement, researchers
like Spaccapietra et al. [12] and Alvares et al. [1] went beyond such numeri-
cal sequences and lay focus on conceptual, semantically enriched trajectories,

64 A. Karatzoglou et al.

so called semantic trajectories. A semantic trajectory is defined as a sequence
of semantically significant locations (semantic locations, e.g., “home”, “burger
joint”, etc.) as follows:

(SemLoc1, t1), (SemLoc2, t2), . . . , (SemLoci, ti) (2)

A significant location usually refers to a location at which a user stays more
than a certain amount of time, e.g. 20 min. Some researchers add further thresh-
olds, like popularity, in order to extract the most significant common or public
locations (see [13]). Locations can be described hierarchically over a number of
various semantic levels, e.g., “restaurant” → “fast food restaurant” → “burger
joint”. In this work, we evaluate the modeling performance of CNNs on two
different semantic levels.

3.2 Convolutional Neural Networks (CNNs)

The most popular application area of Convolutional Neural Networks (CNNs)
is the image classification and recognition [9]. However, CNNs can be applied
to other areas as well, such as speech recognition and time series [8]. A CNN
example architecture concerning the image classification use case can be seen in
Fig. 1.

Fig. 1. Typical CNN architecture for Image Classification (source: [11]).

Here, the CNN first receives an image, which is supposed to classify, as its
input. Next, a set of convolution operations takes place in order to for the fea-
tures to be extracted. These operations are realised by filter kernels of fixed size,
containing learnable weights, which are sled over the input image to “search”
for certain features. Each convolution filter output results in a new layer that
contains the findings of that filter in the input image. These layers are then fur-
ther processed by a pooling operation set. Pooling operations combine multiple
outputs from filter kernels in a feature layer into a single value (e.g. by taking
the average or maximum value of the outputs in question). The resulting pooled

Convolutional Neural Networks for Modeling Semantic Trajectories 65

layers can then be further processed, as shown here, by more Convolution +
Pooling operations and as such features of a higher level can be extracted. The
last pooled layer is flattened i.e. transformed into a single long vector containing
all of its weights. These are then connected to a fully connected layer, which is
further connected to the output of the network, which in this case is a Softmax
layer, containing a field for every classifiable object, and as such representing
the classification estimation of the network for the given input.

4 CNNs for Semantic Trajectories - Our Approach

As already mentioned, our network (CNN) takes semantic trajectories as input,
like the ones defined in Sect. 3.1. For this purpose, each semantic location is
given a unique index. After being fed into the CNN, each index value in the tra-
jectory gets passed to a hash table (embedding layer) which assigns each index,
and as such each semantic location, a k-dimensional feature vector (embedding),
whereby k represents a hyperparameter set by us (Sect. 5). At the very beginning,
our feature vectors in the lookup table are randomly initialized. These vectors
are then trained on the available training data via backpropagation in order to
become optimal task-specific representations. In tangible terms, for our case, this
means that we give our model the freedom to find the optimal semantic location
representation by itself. The resulting representations will be used as input for
our core model. A similar idea was proposed by Collobert et al. in [3] to learn
feature vectors that represent words in a text corpus for solving NLP problems.
After the hash table operation, our semantic location set, initially represented
by a n × 1 vector, becomes n × k matrix. This can be seen on the left in Fig. 2
and as self.embedded locs expanded in Listing 1.1.

Fig. 2. An abstracted view on the core layers of our CNN.

In the next step, a set of convolutional filters is applied on the resulting
matrix. These filters span along the entire feature vector dimension and across
multiple locations of the trajectory as can be seen in Fig. 2. The number of

66 A. Karatzoglou et al.

filters is a hyperparameter that can be also set by the user. Like the size k of
the embeddings dimension described above, it can affect the performance of the
prediction.

The outputs of the filters are then concatenated and flattened (self.h pool flat
in Listing 1.1) to make up a fully connected layer, linked to a Softmax output
layer, which provides the final prediction about the next semantic location to be
visited by a user. We decided against using pooling layers on the filter ouputs,
since this led to the loss of significant feature information (e.g., locations in the
latter part of the trajectory being more important to location prediction as the
older ones).

In order to train our model, we used backpropagation with the Adam opti-
mizer. The Adam optimizer maintains an individual learning rate for each net-
work weight and adapts them separately. This is especially effective since our
data is quite sparse compared to other more typical problems addressed by CNNs
such as image recognition. We used Python and the Tensorflow1 library to imple-
ment our model. To prevent overfitting, dropout is used on this flattened vector
as shown in Listing 1.1 in line 14.

Listing 1.1. Convolution output and flattened layer.

Convolut ion Layer
s e l f . conv1 = t f . l a y e r s . conv2d (

inputs=s e l f . embedded locs expanded ,
f i l t e r s=num f i l t e r s ,
k e r n e l s i z e =[f i l t e r s i z e , embedding s ize] ,
padding=”VALID” ,
name=”conv1”)

Combine a l l t he f e a t u r e s
f i l t e r o u t p u t s t o t a l = num f i l t e r s ∗ ((s equence l ength −

f i l t e r s i z e) + 1)
s e l f . h p o o l f l a t = t f . reshape (s e l f . conv1 , [−1 ,

f i l t e r o u t p u t s t o t a l])

Add dropout
s e l f . h drop = t f . nn . dropout (s e l f . h p o o l f l a t , s e l f .

dropout keep prob)

Listing 1.2 illustrates the implementation of the fully connected layer. W
and b represent the weights and the offset respectively. Furthermore we used
Tensorflow’s nn.softmax cross entropy with logits and reduce mean functions to
calculate the loss. The calculated loss is used by the Adam optimizer to adjust
the weights of the Tensorflow graph, and as such to complete a single training
step.

1 https://www.tensorflow.org.

https://www.tensorflow.org

Convolutional Neural Networks for Modeling Semantic Trajectories 67

Listing 1.2. Fully connected layer and loss calculation.

Fina l (unnormalized) s core s and p r e d i c t i o n s
W = t f . g e t v a r i a b l e (

”W” ,
shape=[f i l t e r o u t p u t s t o t a l , num classes] ,
i n i t i a l i z e r=t f . c on t r ib . l a y e r s . x a v i e r i n i t i a l i z e r ())

b = t f . Var iab le (t f . constant (0 . 1 , shape=[num classes]) , name=”b
”)

s e l f . s c o r e s = t f . nn . xw plus b (s e l f . h drop , W, b , name=” s c o r e s ”
)

s e l f . p r e d i c t i o n s = t f . argmax (s e l f . s co re s , 1 , name=” p r ed i c t i o n s
”)

Ca l cu l a t e mean cross−entropy l o s s
l o s s e s = t f . nn . s o f tmax c r o s s e n t r opy w i t h l o g i t s (l o g i t s=s e l f .

s co re s , l a b e l s=s e l f . input y)
s e l f . l o s s = t f . reduce mean (l o s s e s)

5 Evaluation

In order to evaluate our approach, we used the MIT Reality Mining dataset [4],
which contains the semantically enriched tracking data of approximately 100
users over a period of 9 months. Filtering the inconsistencies out and keeping
the most consistent annotators left us with the two-semantic-level evaluation
dataset of 26 users of [7]. Figure 3 illustrates the overall location distribution.
We then extracted trajectories of a fixed length and considered the subsequent
location to be the ground truth prediction label (see Fig. 4). We shuffled the
resulting (trajectories, label) pairs and took 90% of them for training and 10%
for testing. We trained and evaluated both the separated single-user models, as
well as a multi-user model that contained the trajectories of all users. In the

Fig. 3. Distribution of high-level semantic locations.

68 A. Karatzoglou et al.

Fig. 4. Data Extraction exemplified with a trajectory length of 3.

case of the multi-user model, a single trajectory composed of all the available
single-user trajectories was fed into the model as if it came from a single user.
We further used the FFNN, the RNN and the LSTM from [7] as our baseline. In
addition, since there is a timestamp present for every location visit in the Reality
Mining data, we also tested the performance of our model when we include time
as an extra feature. For this purpose we aggregated the available timestamps into
hourly time slots. Finally, we evaluate a version of our model with the embedding
layer missing. All models were evaluated in terms of Accuracy, Accuracy@k,
Precision, Recall, and F-Score.

We tested several trajectory lengths (2, 5, 10 and 20) on different configura-
tions of the following hyperparameters:

Filter Size: Width of the filter kernel, i.e. how many trajectories it encompasses.
Number of Filters: The number of different filters the CNN learns.
Embedding Dimension: The dimension of the learned location features.
Dropout Probability: The percentage of neurons in the fully connected layer
that are dropped (used to minimize overfitting).

At the same time, we did a grid search to find the following optimal parameters
as well: Learning Rate, Number of training Epochs and Batch Size. Both
the results and the corresponding optimal parameter set can be found in Fig. 5.

In general, it seems that the longer the trajectory the better our model
performs with regard to almost all of our metrics, e.g., accuracy, precision, recall
and F-Score. However, if they get too long, e.g., >10, the performance drops.
Especially in terms of recall and F-Score. This could be attributed to the fact
that human movement is characterized, up to a certain length, by a long-term
behaviour and thus raising the considered trajectory length in the model leads
to an improved predictive performance.

In Fig. 6 we can see the results of our model, with and without an embedding
layer. Both CNNs, with and without embedding layer, outperform the FFNN
of [7] (used here as reference) with regard to all of our metrics. Additionally,
the Embedding Layer seems to be giving a slight performance boost. Figure 7
contains the average outcome (over all users) of our model in the single-user
model case in contrast to the FFNN, RNN and LSTM architecture. Our CNN
outperforms the other ANNs in terms of accuracy by 7–8%, but falls a bit short in
terms of precision, recall and F-Score. This could be interpreted as an indication
that the CNN is worse at predicting location transitions that show up sparsely

Convolutional Neural Networks for Modeling Semantic Trajectories 69

Trajectory Length Accuracy Accuracy@4 Accuracy@10 Precision Recall F-Score
2 0.783 0.976 0.994 0.455 0.433 0.443
5 0.790 0.973 0.995 0.466 0.439 0.451

10 0.792 0.971 0.994 0.467 0.435 0.45
20 0.788 0.968 0.993 0.454 0.425 0.438

Fig. 5. Impact of trajectory length. Filter Size: 2, Embedding Dimension: 100, Num-
ber of Filters: 50, Dropout Probability: 0.4, Batch Size: 100, Learning Rate: 0.001,
Number of Epochs: 10.

Fig. 6. Comparison of evaluation results of our architecture with and without embed-
ding layer vs. FFNN.

in a dataset (in our case the respective single-user datasets) compared to the
other ANNs. On the higher semantic level the accuracy discrepancy between
the various models is similar to the low semantic version. However, in terms of
precision, recall and F-Score the CNN seems to perform much worse than on
the lower semantic version. It seems to disregard locations that occur relatively
seldom in the dataset almost completely, which leads us to this result. In both

Fig. 7. Comparison of evaluation results of our architecture (CNN) vs. Karatzoglou et
al. [7] (*) on the low semantic level (single user).

70 A. Karatzoglou et al.

versions of the dataset (low- and high semantic level) the embedding layer seemed
to make a small, but still significant difference.

Figure 9 contains the comparison results between the single-user and the
multi-user modeling method. While the multi-user evaluation achieves much
lower accuracies (as expected), it outperforms by far the single-user dataset in
terms of precision, recall and F-Score. This can be attributed to the fact that
the additional user information in the multi-user model fills the gap of missing
locations and trajectories that can be often found in the single-user models
(Fig. 8).

Fig. 8. Comparison of evaluation results of our Architecture (CNN) vs. Karatzoglou
et al. [7] (*) on the high semantic level (single user).

Dataset 2 type Accuracy Accuracy@2 Accuracy@5 Precision Recall F-Score
Multi User 0.688 0.885 0.969 0.53 0.428 0.474

Single User 0.78 0.919 0.993 0.149 0.151 0.149

Fig. 9. Comparison of our multi- and single-user CNN models.

Fig. 10. Impact of time in the case of the low-level semantic representation.

Convolutional Neural Networks for Modeling Semantic Trajectories 71

Finally, in Fig. 10 it can be seen how adding time as an additional training
feature affects the behaviour of our models. Similar to the results of [7], time
seems to be having a negative influence on the prediction performance of our
CNN model, both in terms of accuracy and F-Score.

6 Conclusion

In this paper, we investigate the performance of CNNs and embeddings in terms
of modeling semantic trajectories and predicting future locations in a location
prediction scenario. We evaluate our approach on a real-world dataset, using a
FFNN, a RNN and a LSTM network as a baseline. We show that our CNN-based
model outperforms all the above reference systems in terms of accuracy and is
thus capable of modeling semantic trajectories and predicting future human
movement patterns. However, our approach seems to be sensitive to sparse data.
In addition, we show that, similar to the outcomes of [7], both the semantic
representation level and the overall number of users considered for training the
model can have a significant impact on the performance, especially with regard
to precision and recall. In our future work, we plan to explore further the use of
CNNs in the location prediction scenario by feeding additional semantic infor-
mation into the model such as the users’ activity and their current companion.

References

1. Alvares, L.O., Bogorny, V., Kuijpers, B., de Macedo, J.A.F., Moelans, B., Vaisman,
A.: A model for enriching trajectories with semantic geographical information. In:
Proceedings of the 15th Annual ACM International Symposium on Advances in
Geographic Information Systems, p. 22. ACM (2007)

2. Bogorny, V., Renso, C., Aquino, A.R., Lucca Siqueira, F., Alvares, L.O.: Constant-
a conceptual data model for semantic trajectories of moving objects. Trans. GIS
18(1), 66–88 (2014)

3. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(Aug),
2493–2537 (2011)

4. Eagle, N., Pentland, A.S.: Reality mining: sensing complex social systems. Pers.
Ubiquit. Comput. 10(4), 255–268 (2006)

5. Elragal, A., El-Gendy, N.: Trajectory data mining: integrating semantics. J. Enterp.
Inf. Manag. 26(5), 516–535 (2013). https://doi.org/10.1108/JEIM-07-2013-0038

6. Gao, Q., Zhou, F., Zhang, K., Trajcevski, G., Luo, X., Zhang, F.: Identifying human
mobility via trajectory embeddings. In: Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pp. 1689–1695. AAAI Press (2017)

7. Karatzoglou, A., Sentürk, H., Jablonski, A., Beigl, M.: Applying artificial neural
networks on two-layer semantic trajectories for predicting the next semantic loca-
tion. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN
2017. LNCS, vol. 10614, pp. 233–241. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-68612-7 27

8. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time
series. In: The Handbook of Brain Theory and Neural Networks, vol. 3361, no. 10
(1995)

https://doi.org/10.1108/JEIM-07-2013-0038
https://doi.org/10.1007/978-3-319-68612-7_27
https://doi.org/10.1007/978-3-319-68612-7_27

72 A. Karatzoglou et al.

9. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications
in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 253–256. IEEE (2010)

10. Lv, J., Li, Q., Wang, X.: T-CONV: a convolutional neural network for multi-scale
taxi trajectory prediction. arXiv preprint arXiv:1611.07635 (2016)

11. Mathworks: Convolutional neural network (2018). https://www.mathworks.com/
discovery/convolutional-neural-network.html. Accessed 19 Feb 2018

12. Spaccapietra, S., Parent, C., Damiani, M.L., de Macêdo, J.A.F., Porto, F.,
Vangenot, C.: A conceptual view on trajectories. Data Knowl. Eng. 65(1), 126–146
(2008). https://doi.org/10.1016/j.datak.2007.10.008

13. Ying, J.J.C., Lee, W.C., Weng, T.C., Tseng, V.S.: Semantic trajectory mining for
location prediction. In: Proceedings of the 19th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pp. 34–43. ACM
(2011)

http://arxiv.org/abs/1611.07635
https://www.mathworks.com/discovery/convolutional-neural-network.html
https://www.mathworks.com/discovery/convolutional-neural-network.html
https://doi.org/10.1016/j.datak.2007.10.008

Neural Networks for Multi-lingual
Multi-label Document Classification

Jǐŕı Mart́ınek1,2, Ladislav Lenc1,2, and Pavel Král1,2(B)

1 Department of Computer Science and Engineering, Faculty of Applied Sciences,
University of West Bohemia, Plzeň, Czech Republic

{jimar,llenc,pkral}@kiv.zcu.cz
2 NTIS - New Technologies for the Information Society, Faculty of Applied Sciences,

University of West Bohemia, Plzeň, Czech Republic

Abstract. This paper proposes a novel approach for multi-lingual multi-
label document classification based on neural networks. We use popular
convolutional neural networks for this task with three different config-
urations. The first one uses static word2vec embeddings that are let as
is, while the second one initializes it with word2vec and fine-tunes the
embeddings while learning on the available data. The last method initial-
izes embeddings randomly and then they are optimized to the classifica-
tion task. The proposed method is evaluated on four languages, namely
English, German, Spanish and Italian from the Reuters corpus. Experi-
mental results show that the proposed approach is efficient and the best
obtained F-measure reaches 84%.

Keywords: Convolutional neural network · CNN
Document classification · Multi-label · Multi-lingual

1 Introduction

Nowadays the importance of multi-lingual text processing increases significantly
due to the extremely rapid growth of data available in several languages particu-
larly on the Internet. Without multi-lingual systems it is not possible to acquire
information across languages. Multi-label classification is also often beneficial
because, in the case of real data, one sample usually belongs to more than one
class.

This paper focuses on the multi-lingual multi-label document classification in
a frame of a real application designed for handling texts from different sources in
various languages. There are several possibilities how to perform a classification
in multiple languages. Most of them learn one model in a mono-lingual space
and then use some transformation method to pass across the languages. The
usual document representation are word embeddings created for instance by the
word2vec approach [8]. Contrary to this idea, we suggest one general model
trained on all available languages. Therefore, this model is able to classify more
languages without any transformation.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 73–83, 2018.
https://doi.org/10.1007/978-3-030-01418-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_8&domain=pdf

74 J. Mart́ınek et al.

We use popular convolutional networks for this task with three different
settings. The first one uses static word2vec embeddings that are not trained.
The second one initializes the embeddings with word2vec and fine-tunes it on
the available data. The last method initializes embeddings randomly and then
they are, as in the previous case, optimized to the given task using available
data. All these methods use the same vocabulary.

To the best of our knowledge, there is no previous study, which uses one clas-
sifier on multi-lingual multi-label data as proposed in this paper. The proposed
approach is evaluated on four languages (English, German, Spanish and Italian)
from the standard Reuters corpus.

2 Related Work

This section first presents the usage of neural networks for document classifica-
tion and then focuses on multi-linguality.

Feed-forward neural networks were used for multi-label document classifica-
tion in [16]. The authors have modified the standard backpropagation algorithm
for multi-label learning which employs a novel error function. This approach is
evaluated on functional genomics and text categorization.

Le and Mikolov propose [8] so called Paragraph Vector, an unsupervised
algorithm that addresses the issue of necessity of a fixed-legth document repre-
sentation. This algorithm represents each document using a dense vector. This
vector is trained to predict words in the document. The authors obtain new state
of the art results on several text classification and sentiment analysis tasks.

A recent study on the multi-label text classification was presented by Nam
et al. [12]. The authors use the cross-entropy algorithm instead of ranking loss
for training and they also further employ recent advances in deep learning field,
e.g. the rectified linear units activation and AdaGrad learning with dropout
[11,14]. Tf-idf representation of documents is used as a network input. The multi-
label classification is done by thresholding of the output layer. The approach
is evaluated on several multi-label datasets and reaches results comparable or
better than the state of the art.

Another method [7] based on neural networks leverages the co-occurrence of
labels in the multi-label classification. Some neurons in the output layer cap-
ture the patterns of label co-occurrences, which improves the classification accu-
racy. The architecture is basically a convolutional network and utilizes word
embeddings as inputs. The method is evaluated on the natural language query
classification in a document retrieval system.

An alternative multi-label classification approach is proposed by Yang and
Gopal [15]. The conventional representations of texts and categories are trans-
formed into meta-level features. These features are then utilized in a learning-
to-rank algorithm. Experiments on six benchmark datasets show the abilities of
this approach in comparison with other methods.

Recent work in the multi-lingual text representations field is usually based on
word-level alignments. Klementiev et al. [5] train simultaneously two language

Neural Networks for Multi-lingual Multi-label Document Classification 75

models based on neural networks. The proposed method uses a regularization
which ensures that pairs of frequently aligned words have similar word embed-
dings. Therefore, this approach needs parallel corpora to obtain the word-level
alignment. Zou et al. [17] propose an alternative approach based on neural net-
work language models using different regularization.

Kovčisky et al. [6] propose a bilingual word representations approach based
on a probabilistic model. This method simultaneously learns alignments and dis-
tributed representations from bilingual data. This method marginalizes out the
alignments, thus captures a larger bilingual semantic context. Sarath Chandar
et al. [1] investigate an efficient approach based on autoencoders that uses word
representations coherent between two languages. This method is able to obtain
high-quality text representations by learning to reconstruct the bag-of-words of
aligned sentences without any word alignments.

Coulmance et al. [2] introduce an efficient method for bilingual word repre-
sentations called Trans-gram. This approach extends popular skip-gram model
to multi-lingual scenario. This model jointly learns and aligns word embeddings
for several languages, using only monolingual data and a small set of sentence-
aligned documents.

3 Multi-lingual Document Classification

3.1 Multi-lingual Document Representation

The documents are represented as sequences of word indexes in a shared vocab-
ulary V which is constructed in a following way. Let N be a number of the
available languages. Vn represents the vocabulary of most frequent words in the
given language. The shared vocabulary V is then constructed by the following
equation

V =
N⋃

n=1

Vn (1)

The convolutional network we use for classification requires that the inputs
have the same dimensions. Therefore, the documents with fewer words than
a specified limit are padded, while the longer ones must be shortened. This is
different from Kim’s approach [3] where documents are padded to the length
of the longest document in the training set. We are working with much longer
documents where the lengths vary significantly. Therefore, the shortening of some
documents and thus losing some information is inevitable in our case. However,
based on our preliminary experiments, the influence of document shortening is
insignificant to document classification score.

3.2 Neural Network Architecture

Neural network learns a function f : d → Cd which maps document d ∈ D to
a set of categories Cd ⊂ C. D is the set of classified documents and C is the
set of all possible categories.

76 J. Mart́ınek et al.

We use a CNN architecture that was proposed in [9]. This architecture uti-
lizes one-dimensional convolutional kernels which is the main difference from the
network proposed by Kim in [3] where 2D kernels over the entire width of the
word embeddings are used. The input of our network is a vector of word indexes
of the length M where M is the number of words used for document represen-
tation. The second layer is an embedding layer which represents a look-up table
for the word vectors. It translates the word indexes into word vectors of length
E. The document is then represented as a matrix with M rows and E columns.
The next layer is the convolutional one. We use NC convolution kernels of the
size K × 1 which means we do 1D convolution over one position in the embed-
ding vector over K input words. The following layer performs a max-pooling
over the length M − K + 1 resulting in NC 1 × E vectors. The output of this
layer is then flattened and connected to a fully-connected layer with E nodes.
The output layer contains |C| nodes where |C| is the cardinality of the set of
classified categories.

The output of the network is then thresholded to get the final results. The
values greater than a given threshold indicate the labels that are assigned to the
classified document. The architecture of the network is depicted in Fig. 1. This
figure shows the processing of two documents in different languages (English and
German) by our network. Each document is handled in one training step. The
key concept is the shared vocabulary and the corresponding shared embedding
layer.

4 Experiments

4.1 Reuters RCV1/RCV2 Dataset

The Reuters RCV1 dataset [10] contains a large number of English documents.
The RCV2 is a multi-lingual corpus that contains news stories in 13 languages.
The distribution of the document lengths is shown in Fig. 2. We use four lan-
guages, namely English, German, Spanish and Italian. We prepare two settings:
single- and multi-label ones.

Single-Label Configuration. The single-label setting was prepared so that we
can compare the proposed approach with the state of the art. Similarly as the
other studies, we follow the set-up proposed by Klementiev et al. [5]. Four main
categories are used in this setting: Corporate/industrial – CCAT, Economics –
ECAT, Government/social – GCAT and Markets – MCAT.

Documents containing more than one or zero main categories are filtered
out. In total we randomly sample 15,000 documents for each language. 10,000
documents are used for training while the remaining 5,000 is reserved for testing.

Multi-label Configuration. In this setting we use all 103 topic codes available
in the English documents. The number of documents for each language corre-
sponds to the minimal number across the utilized languages which is Spanish

Neural Networks for Multi-lingual Multi-label Document Classification 77

Fig. 1. The architecture of the CNN network used for multi-lingual classification. Two
example documents are used as network input. Each document is handled in one train-
ing step.

200 400 600 800 1000

0

5,000

10,000

15,000

Documentlength(words)

N
um

be
r
of

do
cu

m
en

ts

Fig. 2. Distribution of the document lengths in word tokens.

78 J. Mart́ınek et al.

in our case. Therefore we have 18,655 documents for each language where three
fifths are used for training and the remaining two fifths for development and test
set respectively.

4.2 Neural Network Set-Up

In all experiments with multi-label classification we use the same configuration
of the CNN. We use 20,000 most frequent words from each language to create
the vocabulary. The document length is adjusted to M = 100 words with regard
to the distribution of the document lengths according to Fig. 2. The embedding
length E is set to 300 which allows a direct usage of pre-trained word2vec vectors.
The number of convolutional kernels NC is 40 and its shape is set to 16 × 1. We
use a valid mode for the convolutions. The number of neurons in the fully-
connected layer is 256. Before the output layer and before the fully-connected
one we add dropout layers with the probabilities set to 0.2 in both cases. Relu
activation function is used in all layers except the output one. The output layer
employs sigmoid function in the multi-label classification scenario. The model is
optimized using Adaptive moment estimation (Adam) [4] algorithm and cross-
entropy loss function. The data is shuffled in all experiments. We set the number
of epochs to 10 in all experiments.

The single-label model is nearly the same as the multi-label one. The only
difference is that softmax activation function is used in the output layer.

4.3 Single-Label Results

Table 1 summarizes the results of the single-label classification experiments. We
use the standard Precision (Prec), Recall (Rec), F-measure (F1) and Accuracy
(ACC) metrics [13] and the confidence interval is ±0.3% at the confidence level
of 0.95.

We present all three possible settings of the embedding layer. The first
one uses static word2vec embeddings (Word emb notrain), the second one uses
word2vec embeddings which are fine-tuned during the network training (Word
emb train) and the last one uses randomly initialized vectors that are trained
(Random init).

The results show that the training of the embeddings is beneficial and allows
achieving significantly higher recognition scores. However, the usage of static pre-
trained embeddings also reaches reasonable accuracy while dramatically lowering
the time needed for the network training.

Table 2 compares the accuracies of the proposed methods with the state-
of-the-art. As the other studies we use the standard accuracy metric in this
experiment.

This table clearly shows that our methods outperform significantly all the
other approaches. This is particularly evident in the case of English language
where the increase of accuracy is almost by 20%. We must note that the set-up
of the other approaches slightly differ. However, the reported methods are the

Neural Networks for Multi-lingual Multi-label Document Classification 79

Table 1. Results of the single-label classification experiments [in %].

Word emb notrain Word emb train Random init

Prec Rec F1 ACC Prec Rec F1 ACC Prec Rec F1 ACC

en 93.0 89.7 91.3 90.2 96.1 93.9 95.0 94.4 96.6 96.3 96.4 96.3

de 95.3 94.8 95.1 95.0 97.0 96.9 96.9 96.8 96.6 96.3 96.4 96.3

es 98.7 98.1 98.4 98.3 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

it 88.8 86.7 87.8 86.9 91.9 91.6 91.7 90.7 91.5 91.2 91.3 90.6

avg 94.0 92.3 93.2 92.6 96.2 95.6 95.9 95.5 96.2 95.9 96.0 95.8

most similar set-ups we found. Moreover, to the best of our knowledge, there are
no studies with exactly the same configuration as we use.

Table 2. Comparison with the state of the art [accuracy in %].

Method [ACC in %] de en

Klementiev et al. [5] 77.6 71.1

Kovčisky et al. [6] 83.1 76.0

Sarath Chandar et al. [1] 91.8 74.2

Coulmance et al. [2] 91.1 78.7

Word emb notrain 95.0 90.2

Word emb train 96.8 94.4

Random init 96.3 96.3

4.4 Multi-label Results

Table 3 shows the results of our network in the multi-label scenario. We use
the standard Precision (Prec), Recall (Rec), F-measure (F1) metrics in this
experiment. The confidence interval is ±0.35% at the confidence level of 0.95.

We can summarize the results in this table in a similar way as the previous
one for the single-label classification. The training of the embeddings improves
the obtained classification results. However, the training of randomly initial-
ized vectors has worse results than the fine-tuned word2vec vectors. The best
obtained F-measure 86.8% is, as in the previous case, for Spanish using word2vec
initialized embeddings with a further training.

4.5 Word Similarity Experiment

The last experiment analyzes the quality of the resulting embeddings obtained
by the three neural network settings.

80 J. Mart́ınek et al.

Table 3. Precision (Prec), Recall (Rec), F-measure (F1) of the multi-label classifica-
tion [in %].

Word emb notrain Word emb train Random init

Prec Rec F1 Prec Rec F1 Prec Rec F1

en 84.3 62.7 71.9 85.4 89.2 82.2 83.6 75.1 79.2

de 84.2 69.8 76.3 87.5 81.2 84.2 86.5 77.3 81.6

es 90.4 77.1 83.2 89.4 84.3 86.8 89.4 81.5 85.3

it 84.9 68.4 75.8 86.5 81.2 83.8 85.2 77.8 81.3

avg 86.0 69.5 76.8 87.2 81.5 84.3 86.2 77.9 81.9

Table 4. Ten closest words to the English word “accident” based on the cosine simi-
larity; English translation in brackets including the language of the given word.

Word emb notrain Word emb train Random init

Word Cos sim Word Cos sim Word Cos sim

accidents 0.860 accidente 0.685 ruehe 0.248

incident 0.740 unglück (de,
misfortune)

0.632 bloccando (es,
blocking)

0.239

accidente (es,
accident)

0.600 estrelló (es,
crashed)

0.609 compelled 0.236

incidents 0.574 accidents 0.599 numerick 0.219

accidentes (es,
accidents)

0.546 geborgen (de,
secure)

0.585 fiduciary 0.217

disaster 0.471 absturz 0.584 barriles (es,
barrels)

0.216

explosions 0.461 unglücks (de,
misfortunes)

0.576 andhra 0.214

incidence 0.452 abgestürzt (de,
crashed)

0.567 touring 0.212

personnel 0.452 trümmern (de,
rubble)

0.560 versicherers
(de, insurers)

0.209

unfall (de,
accident)

0.450 unglücksursache
(de, ill cause)

0.551 oppositioneller
(de,
oppositional)

0.203

Table 4 shows 10 most similar words to the English word “accident” across
all languages based on the cosine similarity. These words are mainly in English
when word2vec initialization without any training is used (the first column). Fur-
ther training of the embeddings (middle column) causes that also German and
Spanish words with a similar meaning are shifted closer to the word “accident”
in the embedding space. On the other hand, when training from randomly ini-
tialized vectors, the ten most similar words have often quite a different meaning.
However, as shown in the classification results, this fact has nearly no impact
on the resulting F-measure. We can conclude that word2vec initialization is not

Neural Networks for Multi-lingual Multi-label Document Classification 81

necessary for the classification task. This table further shows that the similarity
between Germanic (English and German) languages is clearly visible.

Table 5 shows 10 most similar words to the English word “czech” using the
cosine similarity. The table is very similar to the previous one. For instance,
if we take a look at the Word emb train column, we observe that there is (as
in the previous case) a significant decrease of the cosine similarity. However on
the other hand, some new words, which are more related to the word “czech”,
are included. The inapplicability to find similar words of randomly initialized
embeddings has been confirmed. It is worth noting that although the Czech
language is not a part of our corpus, some Czech words (praha, dnes, fronta)
are also included due to the Czech citations available.

Table 5. Ten closest words to the word “czech” based on the cosine similarity; English
translation in brackets including the language of the given word.

Word emb notrain Word emb train Random init

Word Cos sim Word Cos sim Word Cos sim

czechoslovakia 0.757 czechoslovakia 0.399 festakt (de,
ceremony)

0.273

slovakia 0.634 praga (es, prague) 0.335 val 0.250

polish 0.569 republic 0.329 provence 0.235

hungary 0.539 brno (cz, brno -
czech city)

0.315 sostiene (es, hold) 0.222

hungarian 0.537 slovak 0.314 larry 0.216

prague 0.533 praha (cz, prague) 0.313 köpfigen (de,
headed)

0.212

slovak 0.509 dnes (cz, today) 0.307 überschreiten (de,
exceed)

0.206

praha (cz, praha) 0.509 checa (es, czech) 0.307 aktienindex (de,
share index)

0.205

austrian 0.506 fronta (cz, queue) 0.304 councils 0.205

lithuanian 0.496 tschechoslowakei (de,
czechoslovakia)

0.297 bancario (it,
banking)

0.205

5 Conclusions

In this paper we presented a novel approach for the multi-label document clas-
sification in multiple languages. The proposed method builds on the popular
convolutional networks. We added a simple yet efficient extension that allows
using one network for classifying text documents in more languages.

We evaluated our method on four languages from the Reuters corpus in both
multi- and single-label classification scenarios. We showed that the proposed
approach is efficient and the best obtained F-measure in multi-label scenario
reaches 84%. We also showed that our methods outperform significantly in the

82 J. Mart́ınek et al.

single-label settings all the other approaches. Another added value of this app-
roach is also that no language identification is needed as in the case of the use
of the single networks.

Acknowledgements. This work has been partly supported from ERDF “Research
and Development of Intelligent Components of Advanced Technologies for the Pilsen
Metropolitan Area (InteCom)” (no.: CZ.02.1.01/0.0/0.0/17 048/0007267), by Cross-
border Cooperation Program Czech Republic - Free State of Bavaria ETS Objective
2014–2020 (project no. 211) and by Grant No. SGS-2016-018 Data and Software Engi-
neering for Advanced Applications.

References

1. Sarath Chandar, A.P., et al.: An autoencoder approach to learning bilingual word
representations. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D.,
Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27,
pp. 1853–1861. Curran Associates, Inc. (2014)

2. Coulmance, J., Marty, J.M., Wenzek, G., Benhalloum, A.: Trans-gram, fast cross-
lingual word-embeddings. arXiv preprint arXiv:1601.02502 (2016)

3. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

4. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

5. Klementiev, A., Titov, I., Bhattarai, B.: Inducing crosslingual distributed repre-
sentations of words. In: Proceedings of COLING 2012, pp. 1459–1474 (2012)

6. Kočiský, T., Hermann, K.M., Blunsom, P.: Learning bilingual word representations
by marginalizing alignments. In: Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), vol. 2, pp.
224–229 (2014)

7. Kurata, G., Xiang, B., Zhou, B.: Improved neural network-based multi-label clas-
sification with better initialization leveraging label co-occurrence. In: Proceedings
of NAACL-HLT, pp. 521–526 (2016)

8. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In:
ICML 2014, pp. 1188–1196 (2014)

9. Lenc, L., Král, P.: Deep neural networks for Czech multi-label document classifica-
tion. In: Gelbukh, A. (ed.) CICLing 2016. LNCS, vol. 9624, pp. 460–471. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-75487-1 36

10. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: a new benchmark collection for
text categorization research. J. Mach. Learn. Res. 5(Apr), 361–397 (2004)

11. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann
machines. In: Proceedings of the 27th International Conference on Machine Learn-
ing (ICML 2010), pp. 807–814 (2010)

12. Nam, J., Kim, J., Loza Menćıa, E., Gurevych, I., Fürnkranz, J.: Large-scale multi-
label text classification - revisiting neural networks. In: Calders, T., Esposito, F.,
Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8725, pp.
437–452. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44851-
9 28

13. Powers, D.: Evaluation: from precision, recall and f-measure to ROC, informedness,
markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

http://arxiv.org/abs/1601.02502
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-75487-1_36
https://doi.org/10.1007/978-3-662-44851-9_28
https://doi.org/10.1007/978-3-662-44851-9_28

Neural Networks for Multi-lingual Multi-label Document Classification 83

14. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

15. Yang, Y., Gopal, S.: Multilabel classification with meta-level features in a learning-
to-rank framework. Mach. Learn. 88(1–2), 47–68 (2012)

16. Zhang, M.L., Zhou, Z.H.: Multilabel neural networks with applications to func-
tional genomics and text categorization. IEEE Trans. Knowl. Data Eng. 18(10),
1338–1351 (2006)

17. Zou, W.Y., Socher, R., Cer, D., Manning, C.D.: Bilingual word embeddings for
phrase-based machine translation. In: Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, pp. 1393–1398 (2013)

Multi-region Ensemble Convolutional
Neural Network for Facial Expression

Recognition

Yingruo Fan(B), Jacqueline C. K. Lam, and Victor O. K. Li

Department of Electrical and Electronic Engineering,
The University of Hong Kong, Pokfulam, Hong Kong

yrfan@hku.hk, {jcklam,vli}@eee.hku.hk

Abstract. Facial expressions play an important role in conveying the
emotional states of human beings. Recently, deep learning approaches
have been applied to image recognition field due to the discriminative
power of Convolutional Neural Network (CNN). In this paper, we first
propose a novel Multi-Region Ensemble CNN (MRE-CNN) framework
for facial expression recognition, which aims to enhance the learning
power of CNN models by capturing both the global and the local fea-
tures from multiple human face sub-regions. Second, the weighted pre-
diction scores from each sub-network are aggregated to produce the final
prediction of high accuracy. Third, we investigate the effects of differ-
ent sub-regions of the whole face on facial expression recognition. Our
proposed method is evaluated based on two well-known publicly avail-
able facial expression databases: AFEW 7.0 and RAF-DB, and has been
shown to achieve the state-of-the-art recognition accuracy.

Keywords: Expression recognition · Deep learning
Convolutional Neural Network · Multi-region ensemble

1 Introduction

Facial expression recognition (FER) has many practical applications such as
treatment of depression, customer satisfaction measurement, fatigue surveillance
and Human Robot Interaction (HRI) systems. Ekman et al. [2] defined a set of
prototypical facial expressions (e.g. anger, disgust, fear, happiness, sadness, and
surprise). Since Convolutional Neural Network (CNN) has already proved its
excellence in many image recognition tasks, we expect that it can show bet-
ter results than already existing machine learning methods in facial expression
prediction problems. A well-designed CNN trained on millions of images can
parameterize a hierarchy of filters, which capture both low-level generic features
and high-level semantic features. Moreover, current Graphics Processing Units
(GPUs) expedite the training process of deep neural networks to tackle big-data
problems. However, unlike large scale visual object recognition databases such

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 84–94, 2018.
https://doi.org/10.1007/978-3-030-01418-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_9&domain=pdf

Multi-region Ensemble CNN for Facial Expression Recognition 85

Fig. 1. An overview of our approach: Multi-Region Ensemble CNN (MRE-CNN) frame-
work.

as ImageNet [10], existing facial expression recognition databases do not have
sufficient training data, resulting in overfitting problems.

CNN approaches topped the three slots in the 2014 ImageNet challenge [10]
for object recognition task, with the VGGNet [11] architecture achieving a
remarkably low error rate. With a review of previous CNNs, AlexNet [5] demon-
strated the effectiveness of CNN by introducing convolutional layers followed by
Max-pooling layers and Rectified Linear Units (ReLUs). AlexNet significantly
outperformed the runner-up with a top-5 error rate of 15.3% in the 2012 Ima-
geNet challenge [10]. In our proposed framework, one of the network structures
is based on AlexNet and the other one VGG-16 is a deeper network based on
VGGNet [11].

The goal of automatic FER is to classify faces in static images or dynamic
image sequences as one of the six basic emotions. However, it is still a challeng-
ing problem due to head pose, image resolution, deformations, and illumination
variations. This paper is the first attempt to exploit the local characteristics
of different parts of the face by constructing different sub-networks. Our main
contributions are three-fold and can be summarized as follows:

– A novel Multi-Region Ensemble CNN framework is proposed for facial expres-
sion recognition, which takes full advantage of both global information and
local characteristics of the whole face.

– Based on the weighted sum operation of the prediction scores from each sub-
network, the final recognition rate can be improved compared to the original
single network.

86 Y. Fan et al.

– Our MRE-CNN framework achieves a very appealing performance and out-
performs some state-of-the-art facial expression methods on AFEW 7.0
Database [1] and RAF-DB [6].

2 Related Work

Several studies have proposed different architectures of CNN in terms of FER
problems. Hu et al. [4] integrated a new learning block named Supervised Scoring
Ensemble (SSE) into their CNN model to improve the prediction accuracy. This
has inspired us to incorporate other well-designed learning strategies to existing
mainstream networks bring about accuracy gains. [8] followed a transfer learning
approach for deep CNNs by utilizing a two-stage supervised fine-tuning on the
pre-trained network based on the generic ImageNet [10] datasets. This implies
that we can narrow down the overfitting problems due to limited expressions
data via transfer learning. In [7], inception layers and the network-in-network
theory were applied to solve the FER problem, which focuses on the network
architecture. However, most of the previous methods have processed the entire
facial region as the input of their CNN models, paying less attention to the
sub-regions of human faces. To our knowledge, few works have been done by
directly cropping the sub-regions of facial images as the input of CNN in FER.
In this paper, each sub-network in our MRE-CNN framework will process a pair
of facial regions, including a whole-region image and a sub-region image.

3 The Proposed Method

The overview of our proposed MRE-CNN framework is shown in Fig. 1. We will
start with the data preparation, and then describe the detailed construction for
our MRE-CNN framework.

3.1 Data Pre-processing

Datasets. Recently, Real-world Affective Faces Database1 (RAF-DB)[6], which
contains about 30000 real-world facial images from thousands of individuals,
is released to encourage more research on real-world expressions. The images
(12271 training samples and 3068 testing samples) in RAF-DB were downloaded
from Flickr, after which humans were asked to pick out images related with the
six basic emotions, plus the neutral emotion. The other database, Acted Facial
Expressions in the Wild (AFEW 7.0)[1], was established for the 2017 Emotion
Recognition in the Wild Challenge2 (EmotiW). AFEW 7.0 consists of training
(773), validation (383) and test (653) video clips, where samples are labeled with
seven expressions: angry, disgust, fear, happy, sad, surprise and neutral (Fig. 2).

1 http://www.whdeng.cn/RAF/model1.html.
2 https://sites.google.com/site/emotiwchallenge/.

http://www.whdeng.cn/RAF/model1.html
https://sites.google.com/site/emotiwchallenge/

Multi-region Ensemble CNN for Facial Expression Recognition 87

Fig. 2. The first row displays cropped faces extracted from images in RAF-DB, and
the second row represents faces sampled across video clips in AFEW 7.0.

Face Detection and Alignment. For each video clip in AFEW 7.0, after
using a face tracker [3], we sample at 3–10 frames that have clear faces with an
adaptive frame interval. To extract and align faces both from original images
in RAF-DB and frames of videos in AFEW 7.0, we use a C++ library, Dlib3

face detector to locate the 68 facial landmarks. As shown in Fig. 3, based on
the coordinates of localized landmarks, aligned and cropped whole-region and
sub-regions of the face image can be generated in a uniform template with a
affine transformation. In this stage, we align and crop regions of the left eye,
regions of the nose, regions of the mouth, as well as the whole face. Then three
pairs of images are all resized into 224 × 224 pixels.

Fig. 3. The processing of the cropped whole-region and sub-regions of the facial image.

3.2 Multi-Region Ensemble Convolutional Neural Network

Our framework is illustrated in Fig. 1. We take three significant sub-regions of the
human face into account: the lefteye, the nose and the mouth. Each particular
sub-region will be accompanied by its corresponding whole facial image, forming

3 dlib.net.

88 Y. Fan et al.

a double input subnetwork in Multi-Region Ensemble CNN (MRE-CNN) frame-
work. Afterwards, based on the weighted sum operation of three prediction scores
from each sub-network, we get a final accurate prediction.

Particularly, to encourage intra-class compactness and inter-class separabil-
ity, each subnet adopts the softmax loss function which is given by

Loss(θ) = − 1
m

⎡
⎣

m∑
i=1

k∑
j=1

l{y(i) = j}
⎤
⎦ log

eθT
j x(i)

∑k
l=1 eθT

l x(i)
, (1)

where x(i) denotes the features of the i-th sample, taken from the final hidden
layer before the softmax layer, m is the number of training data, and k is the
number of classes. We define the i-th input feature x(i) ∈ Rd with the predicted
label yi. θ is the parameter matrix of the softmax function Loss(θ). Here l{·}
means l{a true statement} = 1 or l{a false statement} = 0.

Data Augmentation. Despite the training size of RAF-DB, it is still insuf-
ficient for training a designed deep network. Therefore we utilize both offline
data augmentation and on-the-fly data augmentation techniques. The number
of training samples increases fifteen-fold after introducing methods including
image rotation, image flips and Gaussian distribution random perturbations.
Besides, on-the-fly data augmentation is embedded in the deep learning frame-
work, Caffe, by randomly cropping the input images and then flipping them
horizontally.

3.3 The Sub-networks in MRE-CNN Framework

As Fig. 4 shows, we adopt 13 convolutional layers and 5 max pooling layers and
concatenate the outputs from two pool5 layers before going through the first
fully connected layer. The final softmax layer gives the prediction scores. When
employing VGG-16 [11], we finetune the pre-trained model with the training set
of AFEW 7.0 and RAF-DB, respectively, in the following experiments.

Fig. 4. The VGG-16 sub-network architecture in MRE-CNN framework.

Multi-region Ensemble CNN for Facial Expression Recognition 89

To validate the proposed MRE-CNN framework, our modified AlexNet archi-
tecture do not use any pre-trained models during its training process. For
AlexNet sub-network, we use 5 convolutional layers and 3 max pooling lay-
ers, the same as in the traditional CNN architecture. Different from the original
AlexNet, the last two fully connected layers have 64 outputs and 7 outputs,
respectively, making it possible to retrain a deep network with limited data. The
following experiment results indicate its effectiveness in the MRE-CNN frame-
work structure, despite its simplified network architecture.

Finally, we combine the three predictions from three sub-networks by con-
ducting the weighted sum operation. The predicted emotion PMRE−CNN is
defined as

PMRE−CNN =
z∑

n=1

αn

m∑
i=1

1∑k
l=1 eθT

l x(i)

⎡
⎢⎢⎢⎣

eθT
1 x(i)

eθT
2 x(i)

. . .

eθT
k x(i)

⎤
⎥⎥⎥⎦ , (2)

where αn denotes the weight for a single sub-network and z is equal to 3 as we
utilize three sub-networks. Other parameters are the same as those in Eq. 1.

4 Experiments

4.1 Experimental Setup

All training and testing processes were performed on NVIDIA GeForce GTX
1080Ti 11G GPUs. We developed our models in the deep learning framework
Caffe. On the Ubuntu linux system equipped with NVIDIA GPUs, training a
single model in MRE-CNN took 4–6 hours depending on the architecture of the
sub-network.

4.2 Implementation Details

In data augmentation stage, we augment the set of training images in RAF-DB
and frames in AFEW 7.0 by flipping, rotating each with ±4◦ and ±6◦, and
adding Gaussian white noises with variances of 0.001, 0.01 and 0.015. We then
train our VGG-16 sub-networks for 20k iterations with the following parameters:
learning rate 0.0001–0.0005, weight decay 0.0001, momentum 0.9, batch size 16
and linear learning rate decay in stochastic gradient descent (SGD) optimizer.
For AlexNet sub-networks, we train them for 30k iterations with the batch size of
64 and the learning rate begins from 0.001. In the ensemble prediction stage, the
specific weights of MRE-CNN (VGG-16 Sub-network) are 4/7 (lefteye weight),
2/7 (mouth weight) and 1/7 (nose weight) and those of MRE-CNN (AlexNet
Sub-network) are 2/5 (lefteye weight), 2/5 (mouth weight) and 1/5 (nose weight),
respectively.

90 Y. Fan et al.

4.3 Results on RAF-DB

RAF-DB is split into a training set and a test set with the idea of five-fold cross-
validation and we performed the 7-class basic expression classification bench-
mark experiment. In the RAF-DB test protocol, the ultimate metric is the mean
diagonal value of the confusion matrix rather than the accuracy due to imbal-
anced distribution in expressions. In this experiment, we directly train our deep
learning models with our processed training samples from RAF-DB, without
using other databases. In details, after filtering the non-detected face images
and applying data augmentation techniques, 95465 cropped face images are gen-
erated, accompanied by lefteye images, mouth images and nose images.

Table 1. Confusion matrix for RAF-DB based on MRE-CNN (VGG-16 sub-network).
The term Real represents the true labels (0 = Angry, 1 = Disgust, 2 = Fear, 3 =
Happy, 4 = Sad, 5 = Surprise, 6 = Neutral) and Pred represents the predicted value.

Real Pred

0 1 2 3 4 5 6

0 0.0088 0.0632 0.0000 0.0221 0.0706 0.0338 0.8015

1 0.0213 0.0182 0.0334 0.0030 0.0122 0.8602 0.0517

2 0.0209 0.0565 0.0084 0.0167 0.7992 0.0105 0.0879

3 0.0110 0.0211 0.0051 0.8878 0.0127 0.0110 0.0515

4 0.0811 0.0000 0.6081 0.0270 0.0676 0.1757 0.0405

5 0.1125 0.5750 0.0063 0.0813 0.0750 0.0187 0.1313

6 0.8395 0.0802 0.0185 0.0185 0.0123 0.0062 0.0247

Analyzing the confusion matrix based on MRE-CNN (VGG-16 Sub-network)
in Table 1, our proposed model performs well when classifying happy, surprise
and angry emotions, with accuracy of 88.78%, 86.02%, 83.95%, respectively.
For comparison, in Table 2 we show the results of the trained DCNN models fol-
lowed by different classifiers which are proposed in [6]. We find that our proposed
MRE-CNN (VGG-16) framework outperforms all of the existing state-of-the-art
methods evaluated on RAF-DB. In addition, the MRE-CNN (AlexNet) frame-
work also achieves a very appealing performance although we retrain the AlexNet
sub-networks with limited data.

Furthermore, we separated the sub-network modules from MRE-CNN frame-
work and demonstrated their individual results on the test set of RAF-DB.
Results can be viewed in Table 3. The result of the first row shows the average
accuracy of Face+LeftEye while applying VGG-16 sub-network in MRE-CNN
framework, and they are higher than that of Face+Mouth. Thus we assign higher
weights to Face+LeftEye subnet when combining the three predictions with an
appropriate ensemble method. Face+Nose subnet is slightly less effective, prob-
ably due to less information related to emotions; Nevertheless, it is still superior
to the VGG-FACE model given in Table 2 with only the whole face region as
input.

Multi-region Ensemble CNN for Facial Expression Recognition 91

Table 2. Performance of different methods on RAF-DB (The metric is the mean
diagonal value of the confusion matrix).

Angry Disgust Fear Happy Sad Surprise Neutral Average

DLP-CNN+mSVM [6] 71.60 52.15 62.16 92.83 80.13 81.16 80.29 74.20

DLP-CNN+LDA [6] 77.51 55.41 52.50 90.21 73.64 74.07 73.53 70.98

AlexNet+mSVM [6] 58.64 21.87 39.19 86.16 60.88 62.31 60.15 55.60

AlexNet+LDA [6] 43.83 27.50 37.84 75.78 39.33 61.70 48.53 47.79

VGG+mSVM [6] 68.52 27.50 35.13 85.32 64.85 66.32 59.88 58.22

VGG+LDA [6] 66.05 25.00 37.84 73.08 51.46 53.49 47.21 50.59

Singe VGG-FACE 82.19 56.62 55.41 86.38 79.52 83.93 71.18 73.60

Our MRE-CNN (AlexNet) 77.78 65.62 58.11 87.75 75.73 81.16 77.21 74.78

Our MRE-CNN (VGG-16) 83.95 57.50 60.81 88.78 79.92 86.02 80.15 76.73

Table 3. Sub-region comparison (the metric is the mean diagonal value of the confusion
matrix).

Architecture Average

Face+LeftEye (Single VGG-16 sub-network) 76.52

Face+Nose (Single VGG-16 sub-network) 75.64

Face+Mouth (Single VGG-16 sub-network) 76.13

Our MRE-CNN (VGG-16) 76.73

Table 4. Comparisons with the state-of-the-art methods on AFEW 7.0 (the metric is
the average accuracy of all validation videos).

Network architecture Training data Validation (%)

C3D [9] 16 frames for each video 35.20

Resnet-LSTM [9] 16 frames for each video 46.70

VGG-LSTM [9] 16 frames for each video 47.40

Trajectory+ SVM [13] 30 frames for each video 37.37

VGG-BRNN [13] 40 frames for each video 44.46

C3D-LSTM [12] Detected face frames 43.20

Our MRE-CNN (AlexNet) Detected face frames 40.11

Our MRE-CNN (VGG-16) Detected face frames 47.43

4.4 Results on AFEW 7.0

To validate the performance of our models, we also conduct experiments on the
validation set of AFEW 7.0. The task is to assign a single expression label from
seven candidate categories to each video clip from the validation set (383 video
clips). Note that all our CNN models in MRE-CNN framework are trained on
the given training data (773 video clips) only without applying any outside data.
Considering the temporally disappearance or occlusion in some videos, we only
use detected face frames for training and prediction. In our experiments, the

92 Y. Fan et al.

predicted emotion scores of each video are calculated by averaging the scores of
all its detected face frames. We can see from Table 4, for the validation set of
AFEW 7.0, our MRE-CNN (VGG-16) framework gets great results which are
superior to some state-of-the-art methods.

4.5 Discussions

A series of feature maps are shown in Fig. 5 for VGG-16 sub-network in our
MRE-CNN framework, which can reflect the differences in the filters of the
first three convolutional layers. It can be observed that shallower layer outputs
capture more profile information while deeper layer outputs encode the seman-
tic information. Shallower layers can learn rich low-level features that can help
refine the irregular features from deeper layers. Furthermore, by combining fea-
tures from the whole region and sub-regions of the human face, the resulting
architecture provides more rich feature maps, which raises the recognition rate
for FER problems.

Fig. 5. Visualization of the feature maps of the first three convolutional layers for the
input image on the left of each row.

Generally, our method explicitly inherits the advantage of information gath-
ered from multiple local regions from face images, acting as a deep feature
ensemble with two single CNN architectures, and hence it naturally improves
the final predication accuracy. The disadvantage of our approach is that we use
grid searching to determine the contribution portions of individual sub-networks,
which is relatively computationally expensive. We shall utilize ensemble meth-
ods like Adaboost to determine the best weights for different subnets. Although
facial expression recognition based on face images can achieve promising results,
facial expression is only one modality in realistic human behaviors. Combining
facial expressions with other modalities, such as audio information, physiologi-
cal data and thermal infrared images can provide complementary information,
further enhancing the robustness of our models. Therefore, it is a promising
research direction to incorporate facial expression models with other dimension
models into a high-level framework.

Multi-region Ensemble CNN for Facial Expression Recognition 93

5 Conclusion

We have proposed a novel Multi-Region Ensemble CNN framework in this study,
which takes full advantage of different regions of the whole human face. By
assigning different weights to three sub-networks in MRE-CNN, we have com-
bined the predictions of three separate networks. Besides, we have investigated
the effects of three different facial regions, each providing different local infor-
mation. As a result, our MRE-CNN framework has achieved a very appealing
performance on RAF-DB and AFEW 7.0, as compared to other state-of-the-art
methods.

Acknowledgements. This research is supported in part by the Theme-based
Research Scheme of the Research Grants Council of Hong Kong, under Grant No.
T41-709/17-N.

References

1. Dhall, A., Goecke, R., Lucey, S., Gedeon, T., et al.: Collecting large, richly
annotated facial-expression databases from movies. IEEE Multimed. 19(3), 34–
41 (2012)

2. Ekman, P., Friesen, W.V.: Constants across cultures in the face and emotion. J.
Person. Soc. Psychol. 17(2), 124 (1971)

3. He, Z., Fan, Y., Zhuang, J., Dong, Y., Bai, H.: Correlation filters with weighted
convolution responses. In: 2017 IEEE International Conference on Computer Vision
Workshop (ICCVW), pp. 1992–2000. IEEE (2017)

4. Hu, P., Cai, D., Wang, S., Yao, A., Chen, Y.: Learning supervised scoring ensemble
for emotion recognition in the wild. In: Proceedings of the 19th ACM International
Conference on Multimodal Interaction, pp. 553–560. ACM (2017)

5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

6. Li, S., Deng, W., Du, J.: Reliable crowdsourcing and deep locality-preserving learn-
ing for expression recognition in the wild. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2584–2593. IEEE (2017)

7. Mollahosseini, A., Chan, D., Mahoor, M.H.: Going deeper in facial expression
recognition using deep neural networks. In: 2016 IEEE Winter Conference on Appli-
cations of Computer Vision (WACV), pp. 1–10. IEEE (2016)

8. Ng, H.W., Nguyen, V.D., Vonikakis, V., Winkler, S.: Deep learning for emotion
recognition on small datasets using transfer learning. In: Proceedings of the 2015
ACM on International Conference on Multimodal Interaction, pp. 443–449. ACM
(2015)

9. Ouyang, X., et al.: Audio-visual emotion recognition using deep transfer learning
and multiple temporal models. In: Proceedings of the 19th ACM International
Conference on Multimodal Interaction, pp. 577–582. ACM (2017)

10. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J.
Comput. Vis. 115(3), 211–252 (2015)

11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

http://arxiv.org/abs/1409.1556

94 Y. Fan et al.

12. Vielzeuf, V., Pateux, S., Jurie, F.: Temporal multimodal fusion for video emotion
classification in the wild. In: Proceedings of the 19th ACM International Conference
on Multimodal Interaction, pp. 569–576. ACM (2017)

13. Yan, J., Zheng, W., Cui, Z., Tang, C., Zhang, T., Zong, Y.: Multi-cue fusion for
emotion recognition in the wild. In: Proceedings of the 18th ACM International
Conference on Multimodal Interaction, pp. 458–463. ACM (2016)

Further Advantages of Data
Augmentation on Convolutional Neural

Networks

Alex Hernández-Garćıa(B) and Peter König

Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
{ahernandez,pkoenig}@uos.de

Abstract. Data augmentation is a popular technique largely used to
enhance the training of convolutional neural networks. Although many of
its benefits are well known by deep learning researchers and practitioners,
its implicit regularization effects, as compared to popular explicit regu-
larization techniques, such as weight decay and dropout, remain largely
unstudied. As a matter of fact, convolutional neural networks for image
object classification are typically trained with both data augmentation
and explicit regularization, assuming the benefits of all techniques are
complementary. In this paper, we systematically analyze these techniques
through ablation studies of different network architectures trained with
different amounts of training data. Our results unveil a largely ignored
advantage of data augmentation: networks trained with just data aug-
mentation more easily adapt to different architectures and amount of
training data, as opposed to weight decay and dropout, which require
specific fine-tuning of their hyperparameters.

Keywords: Data augmentation · Regularization · CNNs

1 Introduction

Data augmentation in machine learning refers to the techniques that synthet-
ically expand a data set by applying transformations on the existing exam-
ples, thus augmenting the amount of available training data. Although the new
data points are not independent and identically distributed, data augmentation
implicitly regularizes the models and improves generalization, as established by
statistical learning theory [31].

Data augmentation has been long used in machine learning [27] and it has
been identified as a critical component of many models [6,21,22]. Nonetheless,
the literature lacks, to our knowledge, a systematic analysis of the implicit regu-
larization effect of data augmentation on deep neural networks compared to the
most popular regularization techniques, such as weight decay [12] and dropout
[29], which are typically used all together.

In a thought-provoking paper [34], Zhang et al. concluded that explicit regu-
larization may improve generalization performance, but is neither necessary nor
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 95–103, 2018.
https://doi.org/10.1007/978-3-030-01418-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_10&domain=pdf

96 A. Hernández-Garćıa and P. König

by itself sufficient for controlling generalization error. They observed that remov-
ing weight decay and dropout does not prevent the models from generalizing.
Although they performed some ablation studies with data augmentation, they
considered it just another explicit regularization technique. In a follow up study
[16], it is argued that data augmentation should not be considered an explicit
regularizer and it is shown that explicit regularization may not only be unneces-
sary, but data augmentation alone can achieve the same level of generalization.

Here, we build upon the ideas from [16] and, using the same methodology,
we extend the analysis of data augmentation in contrast to weight decay and
dropout. In particular, we focus here on the capability of data augmentation
to adapt to deeper and shallower architectures as well as to successfully learn
from fewer examples. We find that networks trained with data augmentation,
but no explicit regularizers, outperform the networks trained with all techniques,
as is common practice in the literature. We hypothesize that weight decay and
dropout require fine-tuning of their hyperparameters in order to adapt to new
architectures and amount of training data, whereas the new samples generated by
data augmentation schemes are useful regardless of the new training conditions.

1.1 Related Work

Data augmentation was already used in the late 80’s and early 90’s for handwrit-
ten digit recognition [27] and it has been identified as a very important element
of many modern successful models, like AlexNet [21], All-CNN [28] or ResNet
[15], for instance. In some cases, heavy data augmentation has been applied with
successful results [32]. In domains other than computer vision, data augmenta-
tion has also been proven effective, for example in speech recognition [19], music
source separation [30] or text categorization [24].

Bengio et al. [3] focused on the importance of data augmentation for recog-
nizing handwritten digits through greedy layer-wise unsupervised pre-training
[4]. Their main conclusion was that deeper architectures benefit more from data
augmentation than shallow networks. Zhang et al. [34] included data augmenta-
tion in their analysis of the role of regularization in the generalization of deep
networks, although it was considered an explicit regularizer similar to weight
decay and dropout. The observation that data augmentation alone outperforms
explicitly regularized models for few-shot learning was also made by Hilliard
et al. in [18]. Only few works reported the performance of their models when
trained with different types of data augmentation levels, as is the case of [11].

Recently, the deep learning community seems to have become more aware of
the importance of data augmentation. New techniques have been proposed [7,8]
and, very interestingly, models that automatically learn useful data transforma-
tions have also been published lately [2,13,23,26]. Another study [25] analyzed
the performance of different data augmentation techniques for object recognition
and concluded that one of the most successful techniques so far is the traditional
transformations carried out in most studies. Finally, a preliminary analysis of
the implicit regularization effect of data augmentation was presented in [16],
showing that data augmentation alone provides at least the same generalization

Further Advantages of Data Augmentation on CNNs 97

performance as weight decay and dropout. The present work follows up on those
results and extends the analysis.

2 Experimental Setup

This section describes the procedures we follow to explore the potential advan-
tages of data augmentation to adapt to changes in the amount of training
data and the network architecture, compared to the popular explicit regular-
izers weight decay and dropout. We build upon the methodology already used
in [16].

2.1 Network Architectures

We test our hypotheses with two well-known network architectures that achieve
successful results in image object recognition: the all convolutional network, All-
CNN [28]; and the wide residual network, WRN [33].

All Convolutional Net. The original architecture of All-CNN consists of 12
convolutional layers and has about 1.3 M parameters. In our experiments to
compare data augmentation and explicit regularization in terms of adaptability
to changes in the architecture, we also test a shallower version, with 9 layers and
374 K parameters, and a deeper version, with 15 layers and 2.4 M parameters.
The three architectures can be described as follows:

Original
2×96C3(1)–96C3(2)–2×192C3(1)–192C3(2)–192C3(1)–192C1(1)

–N.Cl.C1(1)–Gl.Avg.–Softmax

Shallower 2×96C3(1)–96C3(2)–192C3(1)–192C1(1)
–N.Cl.C1(1)–Gl.Avg.–Softmax

Deeper 2×96C3(1)–96C3(2)–2×192C3(1)–192C3(2)–2×192C3(1)
–192C3(2)–192C3(1)–192C1(1)–N.Cl.C1(1)–Gl.Avg.–Softmax

where KCD(S) is a D × D convolutional layer with K channels and stride S,
followed by batch normalization and a ReLU non-linearity. N.Cl. is the number
of classes and Gl.Avg. refers to global average pooling. The network is identical
to the All-CNN-C architecture in the original paper, except for the introduction
of batch normalization. We set the same training parameters as in the original
paper in the cases they are reported. Specifically, in all experiments the All-
CNN networks are trained using stochastic gradient descent (SGD) with batch
size of 128, during 350 epochs, with fixed momentum 0.9 and learning rate of
0.01 multiplied by 0.1 at epochs 200, 250 and 300. The kernel parameters are
initialized according to the Xavier uniform initialization [9].

98 A. Hernández-Garćıa and P. König

Wide Residual Network. WRN is a residual network [15] with more units per
layer than the original ResNet, that achieves better performance with a smaller
number of layers. In our experiments we use the WRN-28-10 version, with 28
layers and about 36.5 M parameters. The details of the architecture are the
following:

16C3(1)–4×160R–4×320R–4×640R–BN–ReLU–Avg.(8)–FC–Softmax

where KR is a residual block with residual function BN–ReLU–KC3(1)–BN–
ReLU–KC3(1). BN is batch normalization, Avg.(8) is spatial average pooling
of size 8 and FC is a fully connected layer. The stride of the first convolution
within the residual blocks is 1 except in the first block of the series of 4, where
it is 2 to subsample the feature maps. As before, we try to replicate the training
parameters of the original paper: we use SGD with batch size of 128, during 200
epochs, with fixed Nesterov momentum 0.9 and learning rate of 0.1 multiplied
by 0.2 at epochs 60, 120 and 160. The kernel parameters are initialized according
to the He normal initialization [14].

2.2 Data

We train the above described networks on both CIFAR-10 and CIFAR-100 [20].
CIFAR-10 contains images of 10 different classes and CIFAR-100 of 100 classes.
Both data sets consist of 60,000 32× 32 color images split into 50,000 for train-
ing and 10,000 for testing. In all our experiments, the input images are fed into
the network with pixel values in the range [0, 1] and floating precision of 32 bits.
Every network architecture is trained with three data augmentation schemes: no
augmentation, light and heavier augmentation. The light scheme only performs
horizontal flips and horizontal and vertical translations of 10% of the image size,
while the heavier scheme performs a larger range of affine transformations, as
well as contrast and brightness adjustment. We use identical schemes as in [16],
where more details are given in an appendix. It is important to note though, that
the light scheme is adopted from previous works such as [10,28], while the heav-
ier scheme was first defined in [16], without aiming at designing a particularly
successful scheme, but rather a scheme with a large range of transformations.

2.3 Training and Testing

We train every model with the original explicit regularization, that is weight
decay and dropout, as well as with no explicit regularization. Besides, we test
both models with the three data augmentation schemes: light, heavier and no
augmentation. The test accuracy we report results from averaging the softmax
posteriors over 10 random light augmentations.

All the experiments are performed on the neural networks API Keras [5] on
top of TensorFlow [1] and on a single GPU NVIDIA GeForce GTX 1080 Ti.

Further Advantages of Data Augmentation on CNNs 99

3 Results

In this section we present and analyze the performance of the networks trained
with different data augmentation schemes and with the regularizers on and off.
We are interested in comparing data augmentation and explicit regularization
regarding two different aspects: the performance when the training data set is
reduced to 50% and 10% of the available examples and the performance when
the architecture is shallower and deeper than the original. The presentation
of the results in Figs. 1 and 2 aims at enabling an easy comparison between
the performance of a given network on a particular data set, when it has been
trained with weight decay and dropout and when it has no explicit regularization
(red and purple bars, respectively). The figures also allow a comparison of the
performance between the different levels of regularization (color saturation).

3.1 Reduced Training Sets

The performance of All-CNN and WRN trained with only 50 and 10% of the
available data is presented in Fig. 1. From a quick look at the accuracy bars it

CIFAR-10

CIFAR-100

Fig. 1. Test performance of the models trained with weight decay and dropout (red)
and the models trained without explicit regularization (purple) when the amount of
available training data is reduced. In general, the latter outperform the regularized
counterparts and the differences become larger as the amount of training data decreases.
(Color figure online)

100 A. Hernández-Garćıa and P. König

already becomes clear that the models trained without any explicit regularization
(purple bars) outperform the models trained with weight decay and dropout
(red bars). This is true for almost all the models trained with heavier data
augmentation (darkest bars). Only in the case of WRN trained with 50% of
CIFAR-10, the accuracy of the regularized model is marginally better (<0.001).
Otherwise, it seems that turning off the explicit regularizers not only does not
degrade the performance, but it helps achieve even better generalization.

The differences become even greater as the amount of training examples
gets smaller, in view of the results of training with only 10% of the data. In
these cases, the non-regularized models clearly outperform their counterparts.
We hypothesize that this may occur because the value of the hyperparameters of
weight decay and dropout, which were tuned to achieve state-of-the-art results
with 100% of the data in the original publications, are not suitable anymore
when the training data changes. It may be possible to improve the performance
of the regularized models by adapting the value of the hyperparameters, but
that would require a considerable amount of time and effort. On the contrary, it
seems that the same data augmentation scheme helps generalize even when the
training data set gets smaller.

The great implicit regularization effect of data augmentation becomes evident
by looking at the large performance gap between the light scheme and no data
augmentation. It seems that just a small set of simple transformations help

CIFAR-10

CIFAR-100

Fig. 2. Test performance of the models trained with weight decay and dropout (red)
and the models trained without explicit regularization (purple) on shallower and larger
versions of All-CNN. In all the models trained with weight decay and dropout, the
change of architecture results in a dramatic drop in the performance, compared to the
models with no explicit regularization. (Color figure online)

Further Advantages of Data Augmentation on CNNs 101

the networks reduce the generalization gap by a large margin. In all cases the
regularization effect is much larger than the one of weight decay and dropout.

3.2 Shallower and Deeper Architectures

Figure 2 shows the accuracy of All-CNN when we increase or reduce the depth
of the architecture. If no explicit regularization is included (purple bars), we
observe that the deeper architecture improves the results of the original network
on both data sets, while the shallower architecture suffers a slight drop in the
performance. In the case of the models with weight decay and dropout (red bars),
not only is the performance much worse than their non-regularized counterparts,
but even the deeper architectures suffer a dramatic performance drop. This seems
to be another sign that the value of hyperparameters of weight decay and dropout
largely depend on the architecture and any modification requires the fine-tuning
of the regularization parameters. That is not the case of data augmentation,
which again seems to easily adapt to the new architectures because its potential
depends mostly on the type of training data.

4 Discussion and Conclusion

This work has extended the insights from [16] about the futility of using weight
decay and dropout for training convolutional neural networks for image object
recognition, provided enough data augmentation is applied. In particular, we
have focused on further exploring the advantages of data augmentation over
explicit regularization, in terms of its adaptability to changes in the network
architecture and the size of the training set.

Our results show that explicit regularizers, such as weight decay and dropout,
cause significant drops in performance when the size of the training set or the
architecture changes. We believe that this is due to the fact that their hyper-
parameters are highly fine-tuned to some particular settings and are extremely
sensitive to variations of the initial conditions. On the contrary, data augmenta-
tion adapts more naturally to the new conditions because its hyperparameters,
that is the type of transformations, depend on the type of training data and
not on the architecture or the amount of available data. For example, a model
without neither weight nor dropout slightly improves its performance when more
layers are added and therefore the capacity is increased. However, with explicit
regularization, the performance even decreases.

These findings contrast with the standard practice in the convolutional net-
works literature, where the use of weight decay and dropout is almost ubiquitous
and believed to be necessary for enabling generalization. Furthermore, data aug-
mentation is sometimes regarded as a hack that should be avoided in order to
test the potential of a newly proposed architecture. We believe instead that these
roles should be switched, because in addition to the results presented here, data
augmentation has a number of other advantages: it increases the robustness of
the models against input variability without reducing the effective capacity and

102 A. Hernández-Garćıa and P. König

may also enable learning more biologically plausible features [17]. We encour-
age future work to shed more light on the benefits of data augmentation and
the handicaps of ubiquitously using explicit regularization, specially on research
projects, by testing new architectures and data sets.

Acknowledgments. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie
grant agreement No. 641805.

References

1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). http://tensorflow.org/

2. Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial
networks. arXiv preprint arXiv:1711.04340 (2017)

3. Bengio, Y., et al.: Deep learners benefit more from out-of-distribution examples.
In: International Conference on Artificial Intelligence and Statistics, pp. 164–172
(2011)

4. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training
of deep networks. In: Advances in Neural Information Processing Systems, pp.
153–160 (2007)

5. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras
6. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep big simple

neural nets excel on handwritten digit recognition. Neural Comput. 22(12), 3207–
3220 (2010)

7. DeVries, T., Taylor, G.W.: Dataset augmentation in feature space. In: International
Conference on Learning Representations (2017)

8. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural net-
works with cutout. arXiv preprint arXiv:1708.04552 (2017)

9. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: International Conference on Artificial Intelligence and Statis-
tics, vol. 9, pp. 249–256, May 2010

10. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A.C., Bengio, Y.: Maxout
networks. In: International Conference on Machine Learning, pp. 1319–1327 (2013)

11. Graham, B.: Fractional max-pooling. arXiv preprint arXiv:1412.6071 (2014)
12. Hanson, S.J., Pratt, L.Y.: Comparing biases for minimal network construction

with back-propagation. In: Advances in Neural Information Processing Systems,
pp. 177–185 (1989)

13. Hauberg, S., Freifeld, O., Larsen, A.B.L., Fisher, J., Hansen, L.: Dreaming more
data: class-dependent distributions over diffeomorphisms for learned data augmen-
tation. In: Artificial Intelligence and Statistics, pp. 342–350 (2016)

14. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on ImageNet classification. In: IEEE International Conference
on Computer Vision, pp. 1026–1034 (2015)

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778
(2016)

16. Hernández-Garćıa, A., König, P.: Do deep nets really need weight decay and
dropout? arXiv preprint arXiv:1802.07042 (2018)

http://tensorflow.org/
http://arxiv.org/abs/1711.04340
https://github.com/fchollet/keras
http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1412.6071
http://arxiv.org/abs/1802.07042

Further Advantages of Data Augmentation on CNNs 103

17. Hernández-Garćıa, A., Mehrer, J., Kriegeskorte, N., König, P., Kietzmann, T.C.:
Deep neural networks trained with heavier data augmentation learn features closer
to representations in hIT. In: Conference on Cognitive Computational Neuroscience
(2018)

18. Hilliard, N., Phillips, L., Howland, S., Yankov, A., Corley, C.D., Hodas, N.O.:
Few-shot learning with metric-agnostic conditional embeddings. arXiv preprint
arXiv:1802.04376 (2018)

19. Jaitly, N., Hinton, G.E.: Vocal tract length perturbation (VTLP) improves speech
recognition. In: ICML Workshop on Deep Learning for Audio, Speech and Lan-
guage, pp. 625–660 (2013)

20. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images.
Technical report, University of Toronto (2009)

21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

22. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

23. Lemley, J., Bazrafkan, S., Corcoran, P.: Smart augmentation-learning an optimal
data augmentation strategy. IEEE Access 5, 5858–5869 (2017)

24. Lu, X., Zheng, B., Velivelli, A., Zhai, C.: Enhancing text categorization with
semantic-enriched representation and training data augmentation. J. Am. Med.
Inf. Assoc. 13(5), 526–535 (2006)

25. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification
using deep learning. arXiv preprint arXiv:1712.04621 (2017)

26. Ratner, A.J., Ehrenberg, H.R., Hussain, Z., Dunnmon, J., Ré, C.: Learning to
compose domain-specific transformations for data augmentation. In: Advances in
Neural Information Processing Systems, pp. 3239–3249 (2017)

27. Simard, P., Victorri, B., LeCun, Y., Denker, J.: Tangent prop-a formalism for
specifying selected invariances in an adaptive network. In: Advances in Neural
Information Processing Systems, pp. 895–903 (1992)

28. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplic-
ity: the all convolutional net. In: International Conference on Learning Represen-
tations (2014)

29. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

30. Uhlich, S., et al.: Improving music source separation based on deep neural net-
works through data augmentation and network blending. In: IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 261–265 (2017)

31. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequen-
cies of events to their probabilities. Theory Probab. Appl. 16(2), 264–280 (1971)

32. Wu, R., Yan, S., Shan, Y., Dang, Q., Sun, G.: Deep image: scaling up image
recognition. arXiv preprint arXiv:1501.02876 (2015)

33. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: Proceedings of the
British Machine Vision Conference, BMVC, pp. 87.1–87.12 (2016)

34. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep
learning requires rethinking generalization. In: International Conference on Learn-
ing Representations, ICLR, arXiv:1611.03530 (2017)

http://arxiv.org/abs/1802.04376
http://arxiv.org/abs/1712.04621
http://arxiv.org/abs/1501.02876
http://arxiv.org/abs/1611.03530

DTI-RCNN: New Efficient Hybrid Neural
Network Model to Predict Drug–Target

Interactions

Xiaoping Zheng1, Song He2, Xinyu Song2, Zhongnan Zhang1(&),
and Xiaochen Bo2(&)

1 Software School, Xiamen University, Xiamen 361005, China
zhongnan_zhang@xmu.edu.cn

2 Beijing Institute of Radiation Medicine, Beijing 100850, China
boxiaoc@163.com

Abstract. Drug-target interactions (DTIs) are a critical step in the technology
of new drugs discovery and drug repositioning. Various computational algo-
rithms have been developed to discover new DTIs, whereas the prediction
accuracy is not very satisfactory. Most existing computational methods are
based on homogeneous networks or on integrating multiple data sources,
without considering the feature associations between gene and drug data. In this
paper, we proposed a deep-learning-based hybrid model, DTI-RCNN, which
integrates long short term memory (LSTM) networks with convolutional neural
network (CNN) to further improve DTIs prediction accuracy using the drug data
and gene data. First, we extracted potential semantic information between gene
data and drug data via a LSTM network. We then constructed a CNN to extract
the loci knowledge in the LSTM outputs. Finally, a fully connected network was
used for prediction. The results comparison shows that the proposed model
exhibits better performance. More importantly, DTI-RCNN is stable and effi-
cient in predicting novel DTIs. Therefore, it should help select candidate DTIs,
and further promote the development of drug repositioning.

Keywords: DTIs � Hybrid model � LSTM � CNN � Drug repositioning

1 Introduction

In the technology of new drugs discovery and drug repositioning, a critical step is the
prediction of drug-target interactions (DTIs). Although the technology of biological
experiments has made great progress, the discovery of new DTIs is still a challenging
work [1]. The currently known DTIs account for a very small proportion of the total
DTI data [2], so finding an efficient method of screening effective new DTIs from a
large number of drug-target data is a very meaningful task.

The first two authors should be regarded as Joint First Authors.

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 104–114, 2018.
https://doi.org/10.1007/978-3-030-01418-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_11&domain=pdf
https://doi.org/10.1007/978-3-030-01418-6_11

In the past decade, machine learning methods have been adopted to the discovery
of DTIs. The importance of structured knowledge and collective classification for drug-
target prediction was discussed by Fakhraei et al. [3]. Bleakley and Yamanishi used a
support vector machine framework to predict DTIs based on a bipartite local model
(BLM) [4]. Mei et al. further improved this framework by introducing a neighbor-based
interaction-profile inferring (NII) procedure into BLM (called BLMNII), which can
extract DTI features from neighbors and predict interactions for new drug or target
candidates [5]. Laarhoven et al. proposed a Gaussian interaction profile (GIP) kernel to
represent the interactions between drugs and targets, and they combined RLS with the
GIP kernel for DTI prediction problems [6, 7]. Wang and Zeng proposed a method
based on the RBM model that could be used to predict multi-type associations and has
shown its powerful performance in multi-type DTI prediction [8]. These prediction
methods mainly focus on exploiting information from homogeneous networks and
have performed well in some datasets. Recently, a number of computational strategies
based on deep learning have also been introduced to address the problem. For example,
Wen et al. extended the RBM to deep learning by creating a DBN called DeepDTIs,
that can predict interactions from different data sources including chemical structures
and protein sequence features [8, 9]. Unterthiner et al. combined multi-task learning
with deep networks, which was applied to good effect on the ChEMBL database [10,
11]. These methods use a variety of data sources, but the associations between drug and
gene data were less considered. Xie et al. developed a deep neural network to predict
new DTIs based on the L1000 database [12] and obtained good performance [13].
However, Xie’s model only combined drug with gene data simply, and did not consider
the connection between these two features.

In this study, we proposed a deep-learning-based hybrid model, named DTI-
RCNN, that integrates a long short term memory (LSTM) networks with a convolu-
tional neural network (CNN) to further improve DTIs prediction accuracy using drug
and gene data. The main novelty lies in that we introduce the LSTM network to obtain
the relationship between the drug and gene data. Then, the features of the LSTM
network output are input into the CNN to extract the knowledge between different loci.
With this hybrid architecture, DTI-RCNN has excellent prediction performance. Fur-
thermore, it can provide a practical tool for predicting unknown DTIs from the L1000
database, providing new insights for drug discovery or repositioning and understanding
of drug action mechanisms.

2 Methods

2.1 Data Source

The Library of Integrated Network-based Cellular Signatures (LINCS) project is a
Common Fund program administrated by the U.S. National Institutes of Health (NIH).
The funds for this project enabled the generation of approximately one million gene
expression profiles using the L1000 technology [14]. It reduces the number of gene
expressions that need to be measured from more than 20,000 to 978. We can obtain a
unified and extensive source of transcriptome data from this database. For the work

DTI-RCNN: New Efficient Hybrid Neural Network Model 105

described in this paper, we collected drug perturbation and gene knockout perturbation
data from the following seven cell lines: A375, A549, HA1E, HCC515, HEPG2, PC3,
VCAP.

The DrugBank database is a comprehensive drug data source, that records chem-
ical, pharmacological, and pharmaceutical feature [15]. In order to obtain the complete
DTI data, the PubChem ID was used as a drug identifier.

2.2 Construction of Positive and Negative Samples

In this study, we modeled the DTI prediction problem as a binary classification task and
applied DTI-RCNN to it. From the L1000 and DrugBank databases we were able to
obtain drug perturbation, gene knockout trails, and DTI pairs for the above listed seven
cell lines. Some of gene knockout trails are target proteins while others are not. We
treat each drug target reaction pair as a positive sample while considering the com-
bination of drug data and non-target protein gene data as a negative sample. In order to
avoid the fact that too many negative samples lead the final training model to be more
inclined to predict the sample as negative, we extracted negative samples uniformly to
keep the ratio of the positive to the negative samples as 1:2.

As mentioned above, the dimension of the gene expression profile obtained by the
L1000 biotechnology is 978, and a sample includes both drug perturbation and gene
knockout trail. However, unlike other methods, we do not directly concatenate drug
data with gene knockout trail into one vector. Instead, we place gene disturbance data
and drug data in order to form a 2 � 978 matrix, so that the LSTM network can fully
learn the semantic correlation information between the gene knockout trail and drug
data. The feature matrix for each input sample is denoted as follows:

xi ¼ g1i ; g
2
i ; . . .; g

j
i ; . . .; g

n
i

d1i ; d
2
i ; . . .; d

j
i ; . . .; d

n
i

� �
ð1Þ

where xi denotes the i
th sample, g j

i and d j
i represent the j

th drug feature and the jth gene
feature of the ith sample respectively, and n is the dimension of the drug and gene
features.

2.3 Hybrid Model Construction

In this paper, we developed a hybrid model DTI-RCNN, integrating a LSTM network
and a CNN to solve the DTIs prediction problem. Figure 1 shows the architecture of
our DTI-RCNN, which is a two-part network structure. The first part is a simplified
version of the LSTM network, and the second part is a CNN.

When the positive and negative samples were generated, the input feature of each
sample collected was a gene-drug pair, which is a 2 � 978 matrix. To deal with the
semantic relationship between genes and drug characteristics, the recurrent units in the
recurrent neural network (RNN) were replaced by the LSTM network, allowing the
gene and drug information to fully fuse. In the LSTM network, the hidden layer
contains multiple memory cells. Since the units of hidden layer also play a role in
encoding features, the number of units (N) is generally smaller than the dimensions of

106 X. Zheng et al.

the input features. A gene-drug pair is input into the LSTM network as a short sequence
of two, so gene feature is processed first, followed by drug feature. It should be noted
that when gene and drug features enter the LSTM network, they will be multiplied by
the same set of parameter matrices, that is, their parameters are shared. The output of
the gene feature after the LSTM process will be input into the network together with the
drug feature. It is because of this operation that we can analyze the semantic infor-
mation between gene and drug features. Finally, each of the gene and the drug features
will output one vector after the LSTM process. We then combine the two vectors
together to form a 2 � N matrix and use it as input to the CNN.

2.4 Learning Semantic Information via a LSTM Network

Recurrent neural networks (RNNs) are a variant of neural networks in which units are
connected along a sequence [16]. RNNs were proposed to process sequence infor-
mation. The specific manifestation is that the network will memorize the previous
information and apply it to the calculation of the current output, that is, the units
between the hidden layers are connected, and the input of the hidden layer includes
both the output of the input layer and the output of hidden layers at the last moment.
Considering the characteristics of RNNs, we used a RNN to learn the relationship
between drug and gene data.

In standard RNNs, the recurrent hidden module has only a very simple structure
that is a non-linear activation function. Given a sequential sample xi ¼ gi; dið Þ, RNNs
will update its hidden state st by

s1 ¼ f Ugið Þ
s2 ¼ f Udi þWs1ð Þ

�
ð2Þ

Fig. 1. DTI-RCNN architecture.

DTI-RCNN: New Efficient Hybrid Neural Network Model 107

where U is the hidden layer parameter matrix of the current input feature, and W is the
parameter matrix of the hidden-layer output s1 in the last time step, and f �ð Þ is generally
a non-linear activation function, such as tanh or a ReLU function.

However, from the Eq. (2) we can see that the fusion of gene and drug data is only
achieved through simple dot multiplication and addition operation that are similar to
the calculation after a simple splicing operation, and cannot learn the correlation
between the drug and the data thoroughly. A LSTM network, first proposed in Ref.
[17], can fully integrate the prior information and the current input data in the hidden-
layer module because of its special hidden-layer structure. Unlike a single neural
network layer, a LSTM network’s hidden-layer has four network layers that interact in
a very special way. Simultaneously, it introduces a new hidden layer state named cell
state ct. The LSTM network updates information to the cell state to realize the fusion of
information at different times. The operations are summarized in [17], and are

f2 ¼ r Wf : s1; di½ � þ bf
� � ð3Þ

i2 ¼ r Wi : s1; di½ � þ bið Þ
~c2 ¼ tanh Wc : s1; di½ � þ bcð Þ

�
ð4Þ

c2 ¼ f2 � c1 þ i2 � ~c2 ð5Þ

p2 ¼ r Wp : s1; di½ � þ bp
� �

s2 ¼ p2 � tanh c2ð Þ
�

ð6Þ

where r �ð Þ denotes a sigmoid function with an output between 0 and 1, b is a bias term,
di is the drug feature of the ith sample, s1 is the state of the hidden layer at the last
moment whose only input is only gene feature gi, and W is the parameter matrix of s1
and di.

In the LSTM network calculation process, all parameter matrices are shared
regardless of whether the input are gene features or drug features.

2.5 Extracting Loci Information Through a CNN

A CNN is a deep network structure that has been widely used in the fields of computer
vision, speech recognition, text processing and other artificial intelligence processes. In
recent years, it has also been used in drug-drug interactions prediction tasks [18]. The
purpose of using a CNN is to fuse the same locus features.

For the context feature generated by a LSTM network, we designed a convolutional
layer and a pooling layer according to the dimension of the matrix. In the convolutional
layer, we designed multiple convolution kernels as encoders to fully extract the infor-
mation of the features in multiple perspectives. The convolution process plays a role in
re-encoding that can reduce the error caused by the redundant information and can
enhance the effect of effective information. As mentioned above, the context feature
output after passing through the LSTM network is a 2 � N matrix. Based on this, we
design the convolution kernel of size 2 � L as the encoders, with a value of L greater

108 X. Zheng et al.

than 2 and less than N. In the end, each convolution kernel is assigned a set of
N � Lþ 1ð Þ � 1 vectors. The value of each cell yk in the vector is calculated as follows:

yk ¼
XL

i¼1

X2

j¼1
Li;jSkþ i�1;j ð7Þ

where 1� k�N � Lþ 1. In this paper, we set up M different convolution kernels, and
then the result of the convolution is a matrix of N � Lþ 1ð Þ � M.

The convolutional layer generally is followed by the pooling operation. CNNs in
computer vision generally use a max-pooling layer to guarantee the translation
invariance of the image. Instead, we use mean-pooling operation to fuse features
extracted from the convolutional layer in the pooling layer.

2.6 Assessment of the Model Performance

For binary classification tasks, the indicators used to evaluate the performance of the
model mainly include AUC and Precision, which are also adopted in this paper.

AUC is the area under the receiver operating characteristic (ROC) curve. It can well
measure the overall performance of the model. The higher the AUC value, the better
the classification performance of the model.

Unlike AUC, Precision focuses on valuation of the accuracy of prediction models
for positive samples.

3 Results

We sampled the positive and negative samples from the seven cell lines uniformly at a
ratio of 1:2, and placed them in the model for training and testing. The performance of
the model under different parameters was mainly discussed, and the best model
parameters were obtained in each experiment according to the tenfold cross-validation
method. Finally, the model with the best performance after training was used for DTIs
prediction.

3.1 The Impact of Hyper Parameters on Model Performance

Here, we discuss the effects of several hyper-parameters on the performance of the
model. In order to find high-performance model parameters, we designed multiple sets
of different experiments for each parameter to verify the prediction results. For all
experimental results reported in Figs. 2 and 3 we used the same network structure
summarized in Table 1 except for the number of neurons in the LSTM hidden layer and
the size of the convolution kernel.

The LSTM hidden layer can extract association information associated between
gene and drug data. In addition, it can encode gene and drug features. Considering that
the features of the gene and drug put into the model are represented as a vector of
length 978, and the number of units in the hidden layer is generally smaller than the
number of input features, we designed seven different numbers of LSTM hidden-layer
units, fully considering the effect of the LSTM hidden-layer units in different quantities

DTI-RCNN: New Efficient Hybrid Neural Network Model 109

on model performance. In this group of experiments, we set the size of the convolution
kernel to 30. The experimental results are shown in Fig. 2.

As show in Fig. 2, when the number of LSTM hidden-layer units is equal to 400,
DTI-RCNN can achieve the best classification performance in most cell lines. For most
cell lines, the model’s classification performance was enhanced with increasing number
of neurons, but when the number exceeds a certain threshold, the classification per-
formance gradually degrades. We speculate this is because when the number of neu-
rons increases, the model can better learn the correlation information between gene and
drug features. However, when the number of neurons is too large, the LSTM model
cannot extract the high dimensional features of gene and drug data, and too much
redundant information blurs the association between them. When the number of neu-
rons is equal to 100, DTI-RCNN in some cell lines can also learn higher dimensional
correlation information and feature representations.

Since different sizes of convolution kernels can learn different feature representa-
tions, we tested the model performance of multiple 2 � k convolution kernels. Con-
sidering that the feature dimension of the LSTM network output is above 100, we set
the initial value of k to be relatively large, i.e., equal to 5. Meanwhile, in order to obtain

Table 1. Parameter settings for hybrid model

Parameters Range

LSTM neurons [100, 200, 300, 400, 500, 600, 700]
Number of LSTM layers 2
Convolution kernel size [5, 10, 15, 20, 25, 30, 35]
Number of convolution kernel 300
Fully connected neurons 10
Epoch 80
Batch size 64
Optimizer Adam
Learning rate 0.001

AUC Precision

Fig. 2. Impact of the number of LSTM hidden-layer units. The abscissa is the number of LSTM
hidden-layer units. The number of LSTM hidden-layer units is set in the range [100, 200, 300,
400, 500, 600, 700].

110 X. Zheng et al.

more suitable parameters, we gradually increase the size of the convolution kernel, and
carried out experiments for k in the range [5, 35]. The number of LSTM hidden-layer
units is 400 in these experiments. The effect of different k values on model performance
is shown in Fig. 3. We can see that different convolution kernels influence the model
performance. When the k value is equal to 30, DTI-RCNN achieves the best classifi-
cation results in the four cell lines (A375, A549, HEPG2, and PC3).

For cell lines HA1E and VCAP, the model achieved the maximum AUC and
Precision when k is equal to 25, and the best classification is obtained when k is equal
to 20 for cell line HCC515.

It can be seen that the hybrid model classification ability is enhanced with
increasing k value, but after k exceeds a certain threshold, the performance of the model
starts to degrade. In general, when the k value is between 20 and 30, the convolutional
network can well learn both the global and the local features of the LSTM output
features. When the k value is less than this range, the amount of feature information
extracted by the convolutional network is insufficient; when it is larger than this range,
the convolutional network will focus on learning the high-dimensional global infor-
mation; while ignoring the information of the same locus between the gene and the
drug data. This leads to a decrease in the classification performance of the model.

3.2 Comparison with Other Models

Based on the above experimental results, we have found a set of parameters that exhibit
relatively good classification performance. These parameters are listed in Table 1. And
according to Figs. 2 and 3, we set the number of LSTM hidden layer units of the hybrid
model to 400 and the convolution kernel size to 30.

In addition, we compared DTI-RCNN with other deep learning methods, including
DNN and RNN. The prediction results of the three methods are shown in Table 2.

From Table 2, the AUC and Precision indicators of the simple RNN model for the
seven cell lines are better than those of the DNN, indicating that the RNN can well
learn the potential relationship between gene and drug data. The classification per-
formance of DTI-RCNN is better than that of RNN, indicating that the CNN can indeed

AUC Precision

Fig. 3. Impact of the convolution kernel size. The abscissa is the size of the convolution kernel,
which is set in the range [5, 10, 15, 20, 25, 30, 35].

DTI-RCNN: New Efficient Hybrid Neural Network Model 111

learn the locus information between gene and drug features. The results show that the
proposed DTI-RCNN is superior to other deep learning models.

3.3 Prediction of Novel DTIs

We used DTI-RCNN to predict novel DTIs. Using the predicted DTIs in the PC3 cell
lines as example, we examined the novel DTIs using the CTD database, which is a
comprehensive database including chemical-gene interactions [19]. We ranked all
novel DTIs by predicted score and computed overlapping pairs between the novel DTI

Table 2. Comparison of prediction results of three deep learning algorithms (the results of the
algorithm proposed in this paper are rendered in bold type).

Cell lines DNN RNN DTI-RCNN

A375 AUC 0.8892 ± 0.015 0.9329 ± 0.0165 0.9429 – 0.0076
Precision 0.8036 ± 0.0164 0.8775 ± 0.0066 0.9377 – 0.0145

A549 AUC 0.891 ± 0.01 0.9202 ± 0.0134 0.9371 – 0.0176
Precision 0.8339 ± 0.0166 0.9168 ± 0.0068 0.9261 – 0.0098

HA1E AUC 0.8817 ± 0.0203 0.9116 ± 0.0181 0.9358 – 0.0149
Precision 0.8714 ± 0.0105 0.9042 ± 0.007 0.936 – 0.0095

HCC515 AUC 0.8812 ± 0.0101 0.9433 ± 0.0138 0.9613 – 0.0163
Precision 0.8093 ± 0.0179 0.9325 ± 0.0192 0.9515 – 0.0128

HEPG2 AUC 0.8699 ± 0.0185 0.9091 ± 0.0185 0.9249 – 0.0198
Precision 0.8405 ± 0.0106 0.9065 ± 0.0026 0.9118 – 0.0076

PC3 AUC 0.9097 ± 0.0112 0.9326 ± 0.0175 0.968 – 0.0117
Precision 0.846 ± 0.0127 0.9248 ± 0.0135 0.9522 – 0.017

VCAP AUC 0.9061 ± 0.0061 0.9328 ± 0.0138 0.9537 – 0.0047
Precision 0.8977 ± 0.0119 0.9055 ± 0.0184 0.9163 – 0.0078

Fig. 4. Overlap between DTIs predicted by hybrid model and DTIs recorded by CTD database.

112 X. Zheng et al.

predicted by DTI-RCNN and the interactions from the CTD database. Next, we
counted the number of overlapping pairs in the sliding bins of 1,000 consecutive
interactions (Fig. 4). In addition, we used the hypergeometric test to investigate the
statistical significance of the overlap between predicted DTIs and those (P Value =
1.75 � 10−10). The result indicates that DTI-RCNN could indeed discover a certain
part of novel DTIs validated by known experiments.

4 Conclusions

In this work, we proposed a DTIs prediction framework, designated DTI-RCNN, which
is based on the RNN-CNN hybrid model, and used the drug perturbation transcriptome
data and gene knockout trails in the L1000 database to train the model. DTI-RCNN can
learn the associated semantic information between gene and drug data effectively, and
can make full use of its locus feature to predict the data. The results show that the
proposed model’s classification performance is superior to that of other deep learning
methods and has the ability to discovery more reliable DTIs. The data from multiple
cell lines demonstrate the superiority and robustness of DTI-RCNN. This also suggests
that our hybrid model can effectively integrate gene and drug transcriptome data and
effectively shorten the DTIs prediction process within the drug discovery process.

Acknowledgements. This work was supported by the Science and Technology Guiding Project
of Fujian Province, China (2016H0035).

References

1. Whitebread, S., Hamon, J., Bojanic, D., et al.: Keynote review: in vitro safety pharmacology
profiling: an essential tool for successful drug development. Drug Discov. Today 10(21),
1421–1433 (2005)

2. Dobson, C.M.: Chemical space and biology. Nature 432(7019), 824–828 (2005)
3. Fakhraei, S., Huang, B., Raschid, L., et al.: Network-based drug-target interaction prediction

with probabilistic soft logic. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(5), 775–787
(2014)

4. Bleakley, K., Yamanishi, Y.: Supervised prediction of drug-target interactions using bipartite
local models. Bioinformatics 25(18), 2397–2403 (2009)

5. Mei, J.P., Kwoh, C.K., Yang, P., et al.: Drug-target interaction prediction by learning from
local information and neighbors. Bioinformatics 29(2), 238–245 (2013)

6. Van Laarhoven, T., Nabuurs, S.B., Marchiori, E.: Gaussian Interaction Profile Kernels for
Predicting Drug-Target Interaction. Oxford University Press, Oxford (2011)

7. Laarhoven, T.V., Marchiori, E.: Predicting drug-target interactions for new drug compounds
using a weighted nearest neighbor profile. PLoS ONE 8(6), e66952 (2013)

8. Wang, Y., Zeng, J.: Predicting drug-target interactions using restricted Boltzmann machines.
Bioinformatics 29(13), 126–134 (2013)

9. Wen, M., Zhang, Z., Niu, S., et al.: Deep-learning-based drug-target interaction prediction.
J. Proteome Res. 16(4), 1401 (2017)

DTI-RCNN: New Efficient Hybrid Neural Network Model 113

10. Unterthiner, T., Mayr, A., Klambauer, G., et al.: Deep learning for drug target prediction. In:
Conference Neural Information Processing Systems Foundation, NIPS 2014, Workshop on
Representation and Learning Methods for Complex Outputs (2014)

11. Gaulton, A., Bellis, L.J., Bento, A.P., et al.: ChEMBL: a large-scale bioactivity database for
drug discovery. Nucleic Acids Res. 40(Database issue), 1100–1107 (2012)

12. Duan, Q., Flynn, C., Niepel, M., et al.: LINCS Canvas Browser: interactive web app to
query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Res.
42(Web Server issue), W449 (2014)

13. Xie, L., Zhang, Z., He, S., et al.: Drug—Target interaction prediction with a deep-learning-
based model. In: IEEE International Conference on Bioinformatics and Biomedicine,
pp. 469–476. IEEE Computer Society (2017)

14. Peck, D., Crawford, E.D., Ross, K.N., et al.: A method for high-throughput gene expression
signature analysis. Genome Biol. 7(7), R61 (2006)

15. Law, V., Knox, C., Djoumbou, Y., et al.: DrugBank 4.0: shedding new light on drug
metabolism. Nucleic Acids Res. 42(Database issue), 1091–1097 (2014)

16. Medsker, L.R., Jain, L.C.: Recurrent Neural Networks. Design and Applications, vol. 5.
CRC Press, Boca Raton (2001)

17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

18. Liu, S., Tang, B., Chen, Q., et al.: Drug-drug interaction extraction via convolutional neural
networks. Comput. Math. Methods Med. 2016, Article no. 6918381 (2016)

19. Davis, A.P., King, B.L., Mockus, S., et al.: the comparative toxicogenomics database: update
2011. Nucleic Acids Res. 41(Database issue), D1104–D1114 (2011)

114 X. Zheng et al.

Hierarchical Convolution Neural Network
for Emotion Cause Detection on Microblogs

Ying Chen(&), Wenjun Hou, and Xiyao Cheng

College of Information and Electrical Engineering,
China Agricultural University, Beijing 100083, China

{chenying,houwenjun,chengxiyao}@cau.edu.cn

Abstract. Emotion cause detection which recognizes the cause of an emotion
in microblogs is a challenging research issue in Natural Language Processing
field. In this paper, we propose a hierarchical Convolution Neural Network
(Hier-CNN) for emotion cause detection. Our Hier-CNN model deals with the
feature sparse problem through a clause-level encoder, and handles the less
event-based information problem by a subtweet-level encoder. In the clause-
level encoder, the representation of a word is augmented with its context. In the
subtweet-level encoder, the event-based features are extracted in term of
microblogs. Experimental results show that our model outperforms several
strong baselines and achieves the state-of-the-art performance.

Keywords: Hierarchical model � Convolution Neural Network
Emotion cause detection

1 Introduction

Emotions are one of the most fundamental feelings of human experiences, thus emotion
analysis has great value in a wide range of real-life applications. In the research
community of Natural Language Processing (NLP), there are mainly two kinds of
emotion analyses: emotion classification and emotion cause detection. The former
focuses on the category of an emotion and the latter works on the cause of an emotion.
In this paper, we work on the emotion cause detection task of Cheng et al. (2017).

A microblog focuses on an event, and a clause in a microblog often contains only
some information about the event, so the extraction of event-based features for a clause
needs to access the focused event in the microblog. In this paper, we propose a
hierarchical approach which contains two steps (clause-level and subtweet-level) to
extract event-based features. Given a Chinese microblog, a clause-level encoder
combines several neural networks to extract local features in each clause. Then, a
subtweet-level encoder treats those local features as a sequence and then extracts
sequence features for each clause through Convolution Neural Networks (CNNs; Kim
2014). Moreover, because of the feature sparse problem in our small-scaled experi-
mental data, our clause-level encoder extracts two kinds of local features to comple-
ment each other: salient features from CNN and weighted features from attention
network.

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 115–122, 2018.
https://doi.org/10.1007/978-3-030-01418-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-01418-6_12

The contributions of this paper are summarized as follows:

• We propose a hierarchical model to extract event-based features, which uses a
clause-level encoder to extract rich local features in a clause and then use a
subtweet-level encoder to extract sequence features of the whole microblog.

• We propose a context-aware attention encoder to address the feature sparse prob-
lem, which uses context-based representations of words to learn word weights.

2 Related Work

Due to the increasing attention to emotion cause detection recently, there are a few
emotion cause corpora available. Most of them are manually annotated, either for
formal texts (Lee et al. 2010; Gui et al. 2016; Xu et al. 2017) or for informal texts (Gui
et al. 2014; Gao et al. 2015; Cheng et al. 2017). Based on these emotion cause corpora,
intensive studies have explored the extraction of effective features for two kinds of
emotion causes: explicit causes which are expressed with explicit connectives (e.g. “to
cause”, “for”), and implicit causes which are inferred from the given texts. In the
former case, different linguistic rules are proposed to extract linguistic expression
patterns using the context of the current clause (Chen et al. 2010; Xu et al. 2017; Ghazi
et al. 2015). In the latter case, different event-based features which reflect the causal
relation are examined, such as the convolutional deep memory network (ConvMS-
Memnet; Gui et al. 2017), Long Short-Term Memory Network (LSTM; Cheng et al.
2017) and so on. Because implicit emotion causes play a dominant role in Chinese
microblogs (Cheng et al. 2017), we focus on event-based feature extraction for implicit
emotion cause detection in this paper.

3 Our Approach

3.1 Task Definition

In this paper, we use the emotion cause corpus provided by Cheng et al. (2017) as our
experimental data, in which emotion causes in Chinese microblogs are manually
labeled (namely Cheng emotion cause corpus). Moreover, to better explain our work,
we adopt twitter’s terminology used in Cheng et al. (2017).

In Cheng emotion cause corpus, a tweet can be considered as a sequence of
subtweets ordered by their published time. E.g. in Fig. 1, there are five subtweets
sequentially published by five users (I’m Jay, Desdis Yun, I’m eggette, Little Koala,
and the owner of the tweet) in the example. Furthermore, given an emotion keyword in
a subtweet, Cheng et al. (2017) found that the corresponding emotion causes usually
locate either in the current subtweet or in the original subtweet. Therefore, there are two
emotion cause detection tasks: current-subtweet-based emotion cause detection and
original-subtweet-based emotion cause detection. The experimental result of Cheng
et al. (2017) showed that the current-subtweet-based emotion cause detection task is
more challenging, and thus we focus on this emotion cause detection task in this paper.

116 Y. Chen et al.

In order to extract features from the perspective of the whole subtweet, an instance
is a pair of (X, Y), where the input X consists of an emotion keyword (EmoKW) and a
sequence of clauses in a subtweet, and the output Y is a sequence of binary labels which
indicates the causal relation between a clause and the emotion keyword. E.g. in Fig. 1,
there are two clauses in the current subtweet for “awkward” (the emotion keyword): “It
is”, and “for me who was resigned just now”. The corresponding labels for the two
clauses are ‘0’ and ‘1’. Furthermore, in order to provide complemental information to a
clause, each clause in the input X is attached with a context (i.e. the text between
EmoKW and the current clause). Finally, the input text of an instance includes an
EmoKW, a sequence of clauses (ClauseSeq) and a sequence of contexts (ContextSeq).

3.2 Overview

Our emotion cause detection approach is based on a neural network which mainly
includes two components: an encoder which extracts a feature representation and a
decoder which assigns a label to each clause according to the representation. As shown
in Fig. 2, a hierarchical CNN encoder is applied to each input sequence (ClauseSeq or
ContextSeq) and generates a sequence of hierarchical features (hhier Clause or
hhier Context). Then, the final representation of each clause is the concatenation of the
feature of EmoKW (hEmoKW) and the two hierarchical features separately from
hhier Clause and hhier Context. In the classification decoder, a linear layer takes the final
representation as the input, and generates a label with softmax function.

To better explain the hierarchical CNN encoder in the following section, we assume
the input sequence is the sequence of clauses ClauseSeq = (C1,…, CT), where Ci is the
i-th clause. As shown in Fig. 2, there are two-level sub-encoders in the hierarchical
CNN: a clause-level encoder which extracts local features (hlocal Context or hlocal Clause)
for Ci based on the words in the clause, and a subtweet-level encoder which extracts the
hierarchical feature (hhier Context or hhier Clause) for Ci based on all local features in the
subtweet. Each sub-encoder is a combination of several encoder layers. Given an input
sequence X, an encoder layer yields a middle representation h through Eq. 1.

h ¼ encoder Xð Þ ð1Þ

Fig. 1. An example of a tweet.

Hier-CNN for Emotion Cause Detection on Microblogs 117

3.3 The Clause-Level Encoder

As shown in Fig. 3, the clause-level encoder sequentially uses different kinds of
encoder layers to extract two local features for Ci (i = 1……T). In order to alleviate the
feature sparse problem, CNN is used to extract abstractive features over the focused
clause. In the clause-level CNN, convolutional filters are used to extract high-level
features from the sequence of words in Ci, and then in order to further handle the
feature sparse problem, two ways are used to extract the two local features for Ci: a
max-pooling layer with rectifier linear unit activation function (ReLU; Glorot et al.
2011) to obtain a local salient feature, and a context-aware attention network which
learns the weights of words to obtain a local weighted feature.

In the context-aware attention network, Gated Linear Unit (Dauphin et al. 2017) is
used to generate a representation of the context of each word and produce a context-
based representation for the word, and then an attention layer (Ma et al. 2017) is
applied to obtain a weighted feature for Ci. In this attention layer, the weight of the j-th
word wj (j = 1……N) in Ci is obtained through Eq. 2, where hwj is the representation of

Fig. 2. Overview of our hierarchical emotion cause detection model.

Fig. 3. Illustration of our hierarchical CNN encoder with the clause-level encoder and subtweet-
level encoder. G is the Gated Linear Unit.

118 Y. Chen et al.

word wj, hEmoKW is the representation of EmoKW, [;] is the concatenation between
matrices, Wa and ta are the weight matrices. Secondly, the weights are normalized to
construct a probability distribution over the words (see Eq. 3). Lastly, the local
weighted feature of Ci (i.e. hatt) is a weighted summation over the representations of all
words in Ci (see Eq. 4).

ej ¼ tTa tanh Wa hEmoKW ; hwj

� �� � ð2Þ

aj ¼
exp ej

� �

PN
k¼1 exp ekð Þ ð3Þ

hatt ¼
XN

j¼1
ajhwj ð4Þ

3.4 The Subtweet-Level Encoder

Based on all local features in a subtweet, which are either local salient features or local
weighted features, the subtweet-level encoder uses two CNNs to extract a hierarchical
feature. Firstly, the local salient features (or the local weighted features) are ordered
into a sequence according to their corresponding clauses, and then subtweet-level
CNN1 with ReLU is used to extract hierarchical salient features (or hierarchical
weighted features) over the sequence of local features. Secondly, a clause is represented
by a set of features: a local salient feature, a local weighted feature, a hierarchical
salient feature, and a hierarchical weighted feature. The sets of features are ordered into
a sequence according to their corresponding clauses, and then subtweet-level CNN2

with ReLU and max-pooling layer are used to extract the final features (hhier C in
Fig. 3).

4 Experiments

4.1 Experimental Setup

Datasets and Metrics. As mentioned in Sect. 3.1, Cheng emotion cause corpus is
used in our experiments, which contains *4,300 instances and *12,600 clauses. We
use 5-fold cross-validation to evaluate all the methods. Because a subtweet often
contains several emotion keywords, the instances containing one of the emotion key-
words have overlaps in their input texts. Therefore, when creating the folds, we ensure
instances from the same subtweet are not shared between the folds. This is important as
repeating subtweets in both the train and the test sets could potentially make a model
performs better than it actually does. Similar to previous work (Cheng et al. 2017; Gui
et al. 2017), only the precision, recall and F1-score of label ‘1’ are reported as eval-
uation metrics.

Hier-CNN for Emotion Cause Detection on Microblogs 119

Model Settings and Training Details. The dimension of word vector in our model is
20; the kernel widths of the clause-level CNN and subtweet-level CNN1 are 3, and the
kernel numbers are 128. The kernel widths of subtweet-level CNN2 are 1 and 4, and the
kernel numbers are both 64. Dropout is set to 0.5 and is only applied to the final
representation. Adam optimizer (Kingma and Ba 2015) is used to optimize the
parameters, the learning rate is 0.001, the weight decay is 0.0001, and the batch size is
20. All the parameters are initialized with Xavier Initialization (Glorot and Bengio
2010).

Baselines. We compare our hierarchical CNN approach (Hier-CNN) with the fol-
lowing baselines which use different approaches to encode an instance, where CNN
and ConvMS-Memnet use the emotion keyword and the current clause as input, and
LSTM uses the same input as Cheng et al. (2017) (i.e. local text defined in Sect. 2).

• CNN: the CNN-based encoder is applied to obtain the representation of local text.
• LSTM: it is the emotion cause detection approach proposed by Cheng et al. (2017).
• ConvMS-Memnet: it is the state-of-the-art emotion cause detection approach pro-

posed by Gui et al. (2017).

4.2 Method Comparison

Table 1 shows the performances of different emotion cause detection approaches. From
Table 1, we observe that our hierarchical CNN approach (Hier-CNN) significantly
outperforms the three baselines and yields the highest performance. Compared with the
two state-of-the-art emotion cause detection approaches (LSTM and ConvMS-
Memnet), our hierarchical CNN encoder chooses a multi-channel structure to sepa-
rately use three sequences of input words in local text (the emotion keyword, the
current clause and the context), and uses a hierarchical CNN encoder to effectively
extract event-based features for the emotion cause detection on Chinese microblogs.

Table 1. The performances of different methods for the emotion cause detection.

Encoder Precision Recall F1

CNN 48.2 57.2 52.3
LSTM 51.5 63.4 56.7
Convs-Memnet 41.4 61.0 49.2
MChanCNN 54.0 62.8 58.0
MChanLSTM 52.9 64.7 58.1
MChanLSTM-ATT 53.1 61.9 57.1
MChan Convs-Memnet 54.7 47.1 50.5
Hier-CNN 52.9 68.8 59.7

120 Y. Chen et al.

4.3 Model Analysis

In this section, we make an in-depth analysis of our hierarchical CNN encoder in terms
of two lines: the multi-channel structure and the components of our hierarchical CNN
encoder.

Multi-channel. We integrate the multi-channel structure with one of the three baseline
encoder (CNN, LSTM and ConvMS-Memnet), and list their performances in Table 1
(MChanCNN, MChanLSTM, and MChan ConvMS-Memnet). When the multi-channel
structure is applied to each baseline encoder, the performance is improved. E.g. the F1-
score is increased by 5.7% for CNN, 1.4% for LSTM, and 1.3% for ConvMS-Memnet.
This indicates that the multi-channel structure can effectively detect the causal relation
between an emotion and an event through separately using the information in the
current clause and the complemental information in the context. Moreover, the slight
improvement for LSTM and ConvMS-Memnet shows that these encoders suffer the
feature sparse problem in Chinese microblogs.

Components. In Table 1, although LSTM significantly outperforms CNN (56.7% vs.
52.3% in F1-score), the performance difference between MChanCNN and
MChanLSTM is rather small (58.0% vs. 58.1% in F1-score). CNN and LSTM have
different advantages in terms of feature extractions: CNN outperforms in capturing high-
level features and LSTM is advantageous for capturing sequence features. Moreover, we
observe that applying attention mechanism to MChanLSTM (MChanLSTM-ATT) does
not improve the performance (58.1% vs. 57.1% in F1-score).

Compared with MChanCNN and MChanLSTM, Hier-CNN achieves the best
performance (59.7% in F1-score). This indicates that the hierarchical CNN encoder can
effectively integrate the clause-level information and subtweet-level information.
Moreover, in terms of attention mechanism, Hier-CNN significantly outperforms the
MChanLSTM-ATT (59.7% vs. 57.1 in F1-score). This indicates that Hier-CNN can
better capture the key information of a clause.

In order to investigate the effect of local salient features (SF), local weighted
features (WF) and hierarchical features (HF), we build another three classifiers listed in
Table 2, where R-HF, R-FL and R-WF are the Hier-CNN whose HF, LF and WF are
removed respectively. As shown in Table 2, if LF is removed, the recall drops sig-
nificantly, which directly pulls down the overall performance. Moreover, if WF is
removed, the recall drops slightly. This indicates that combining LF and WF, the
feature sparse problem can be effectively alleviated. Furthermore, it can be observed

Table 2. The detailed performances of our hierarchical model.

Encoder Precision Recall F1

Hier-CNN 52.9 68.8 59.7
R-HF 51.7 65.9 57.3
R-LF 52.8 61.3 56.5
R-WF 52.9 67.6 59.1

Hier-CNN for Emotion Cause Detection on Microblogs 121

that, after removing the HF, the overall performance degrades. This indicates that the
subtweet-level information of a clause can effectively augment event-based features
from local clauses, and thus improve the performances.

5 Conclusion

In this paper, in order to extract more event-based features for emotion cause detection
on Chinese microblogs, we propose a hierarchical CNN approach, which extract the
rich local features using the clause-level encoder and more event-based features using
the subtweet-level encoder. We show that our hierarchical CNN approach can effec-
tively utilize information in a subtweet for emotion cause detection.

References

Chen, Y., Lee, S., Li, S., Huang, C.: Emotion cause detection with linguistic constructions. In:
Proceedings of COLING (2010)

Cheng, X., Chen, Y., Cheng, B., Li, S., Zhou, G.: An emotion cause corpus for Chinese
microblogs with multiple-user structures. ACM Trans. Asian Low-Resour. Lang. Inf. Process.
TALLIP 17(1), 6 (2017)

Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated convolutional
networks. In: Proceedings of ICML (2017)

Gao, K., Xu, H., Wang, J.: A rule-based approach to emotion cause detection for Chinese micro-
blogs. Expert Syst. Appl. 42(2015), 4517–4528 (2015)

Ghazi, D., Inkpen, D., Szpakowicz, S.: Detecting emotion stimuli in emotion-bearing sentences.
In: Gelbukh, A. (ed.) CICLing 2015. LNCS, vol. 9042, pp. 152–165. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-18117-2_12

Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural
networks. In: Proceedings of AISTATS (2010)

Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of
AISTATS (2011)

Gui, L., Yuan, L., Xu, R., Liu, B., Lu, Q., Zhou, Y.: Emotion cause detection with linguistic
construction in Chinese weibo text. In: Zong, C., Nie, J.Y., Zhao, D., Feng, Y. (eds.) Natural
Language Processing and Chinese Computing. CCIS, vol. 496, pp. 457–464. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45924-9_42

Gui, L., Wu, D., Xu, R., Lu, Q., Zhou, Y.: Event-driven emotion cause extraction with corpus
construction. In: Proceedings of EMNLP (2016)

Gui, L., Hu, J., He, Y., Xu, R., Lu, Q., Du, J.: A question answering approach to emotion cause
extraction. In: Proceedings of EMNLP (2017)

Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of EMNLP
(2014)

Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of ICLR (2015)
Lee, S.Y.M., Chen, Y., Huang, C.-R.: A text-driven rule-based system for emotion cause

detection. In: Proceedings of NAACL (2010)
Ma, F., ChittŠa, R., Zhou, J.: Dipole: diagnosis prediction in healthcare via attention-based

bidirectional recurrent neural networks. In: Proceedings of KDD (2017)
Xu, R., Hu, J., Lu, Q., Wu, D., Gui, L.: An ensemble approach for emotion cause detection with

event extraction and multi-kernel SVMs. Tsinghua Sci. Technol. 22(6), 646–659 (2017)

122 Y. Chen et al.

http://dx.doi.org/10.1007/978-3-319-18117-2_12
http://dx.doi.org/10.1007/978-3-662-45924-9_42

Direct Training of Dynamic Observation
Noise with UMarineNet

Stefan Oehmcke1(B), Oliver Zielinski2, and Oliver Kramer1

1 Computational Intelligence Group, Department of Computing Science,
University of Oldenburg, Oldenburg, Germany

2 Institute for Chemistry and Biology of the Marine Environment,
University of Oldenburg, Oldenburg, Germany

{stefan.oehmcke,oliver.zielinski,oliver.kramer}@uni-oldenburg.de

Abstract. Accurate uncertainty predictions are crucial to assess the
reliability of a model, especially for neural networks. Part of this uncer-
tainty is the observation noise, which is dynamic in our marine virtual
sensor task. Typically, dynamic noise is not trained directly, but approx-
imated through terms in the loss function. Unfortunately, this noise loss
function needs to be scaled by a trade-off-parameter to achieve accurate
uncertainties. In this paper we propose an upgrade to the existing archi-
tecture, which increases interpretability and introduces a novel direct
training procedure for dynamic noise modelling. To that end, we train
the point prediction model and the noise model separately. We present a
new loss function that requires Monte Carlo runs of the model to directly
train for the uncertainty prediction accuracy. In an experimental eval-
uation, we show that in most tested cases the uncertainty prediction
is more accurate than the manually tuned trade-off-parameter. Because
of the architectural changes we are able to analyze the importance of
individual parts of the time series of our prediction.

Keywords: CNN · LSTM · Predictive uncertainty · Time series

1 Introduction

Recent research proposed the combination of dropout and Monte Carlo (MC)
runs to approximate the predictive uncertainty for regression and classifica-
tion tasks [3,4]. Instead of predicting a single point, the model expresses its
uncertainty through intervals. This is particularly useful for tasks that want to
evaluate the prediction in terms of reliability and robustness, e.g. mixing the
measured and predicted uncertainty state to control a robot [13]. We apply
this predictive uncertainty method to the marine virtual sensor task based on
the combined Biodiversity-Ecosystem Functioning across marine and terrestrial
ecosystems (BEFmate) [2] and the Time Series Station Spiekeroog (TSS) [1]
real-world dataset [14]. The goal is to replace a real sensor that failed due to the
harsh environmental conditions in the Wadden sea, such as the daily tidal forces,

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 123–133, 2018.
https://doi.org/10.1007/978-3-030-01418-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_13&domain=pdf

124 S. Oehmcke et al.

salt water exposure, and occasional storms. This replacement sensor is virtual
and represents a nowcasting task in which current values of different origin are
used as input to predict the current target value. In our case, surrounding sen-
sors are used to model a missing sensor at the same time step. For comparison,
forecasting tasks predicts future target values based on current values, e.g. room
temperature forecasts [16].

Previous work introduces the MarineNet architecture [14], which combines
convolutional as well as recurrent layers, incorporates input quality information,
and employs the above mentioned uncertainty prediction method. It assumes
heteroscedastic, or dynamic uncertainty in the observations, which is reflected by
varying noise in the data. The original method [3,14] trains this observation noise
through approximation by tuning a hyper-parameter that cannot be learned
directly. Moreover, MarineNet applies a unique time dimensionality reduction
approach, exPAA, which splits a time series into parts that aggregate different
amounts of time steps. An importance analysis of these exPAA parts for the
final prediction is difficult, but could be useful for the prediction.

In this work, we propose to address the shortcomings of MarineNet with:

1. an architectural upgrade, allowing to analyze exPAA parts and
2. a novel training procedure to directly learn the dynamic observation noise.

The first contribution is achieved by replacing the last fully connected (dense)
layer with a convolutional layer followed by averaging over the time series and
more residual connections. We also adjusted the number of neurons of individual
layers and finally require less weights to achieve similar performance. The second
contribution is attained by separating prediction and observation noise training.
We introduce a new loss function for the noise training that directly compares the
predicted and the actual uncertainty of the model. In an experimental evaluation,
we achieve equal or better performance with the proposed changes and are able
to analyze the exPAA parts.

The paper is structured as follows. Section 2 introduces the MarineNet archi-
tecture with the most relevant mythological concepts. In Sect. 3 we describe our
upgrade to the architecture as well as the new direct training of the observation
noise. These upgrades are evaluated in Sect. 4. Finally, we draw conclusions in
Sect. 5.

2 Original MarineNet

The MarineNet is a neural network architecture utilizing multiple concepts [14].
A macroarchitectural overview is presented in the upper part of Fig. 1. Con-
volutional layers filter the time series to create useful temporal features with
kernel sizes of one and three (conv1 and conv3). These are grouped into four
fire modules from SqueezeNet [10]. Then, the exPAA layer [15] follows, which
creates δ′ parts from δ time steps, whereby the number of time steps per part is
decreasing over time, depending on a hyper-parameter exponent e. Consequently,
earlier parts aggregate more time steps, while more information are retained in

Direct Training of Dynamic Observation Noise with UMarineNet 125

later steps. Next, the biLSTM layer [6,8] is fed the aggregated time series, which
is then processed by a dense layer. Finally, the sensor output and the dynamic
noise is predicted in final linear regression layers.

The dropout mechanism [5,17], where multiple neurons are deactivated for
one iteration, is employed before each trainable layer. It acts as a regularizer and
helps to avoid overfitting. Batch normalization [11] is applied after the activation
function and if applicable after dropout to further reduce overfitting and to speed
up convergence.

Another important part is the implementation of predictive uncertainty via
MC dropout inspired by Gal [3,4]. Predictive uncertainty is the confidence of
our model about its current prediction and consists of two parts. First, the data
uncertainty, which is reflected in the training distribution, e.g. predictions are
unreliable if an unseen sample is on the far end of the training distribution
or the available data is noisy. Second, the model uncertainty that affects the
internal structure and expression of weights. For example, if a model weight is
greater for one or another input and thus give it more importance. The predictive
uncertainty can be expressed as an interval around the point prediction. To
create this interval, multiple forward passes of MarineNet are calculated with
different dropout realizations. These MC dropouts are conducted at test time
and give two outputs, a predictive mean E[y] with variance ˜Var[yt] of m MC
model runs fi ∈ F :

E[yt] ≈ 1
m

m
∑

i=1

fi(xt)

˜Var[yt] ≈ 1
m

m
∑

i=1

gi(xt) + fi(xt)2 − E[yt]2. (1)

With a higher number m of MC runs, the approximation is stabilizing. The
standard uncertainty interval is represented by squaring the predictive variance
(e.g. ˜Var[yt]2 is the 68.27% uncertainty interval).

The observation noise g is modeled dynamically, because in the employed
marine application varying noise is introduced, inter alia, by tides and seasons.
This noise is equal to the inversion of the models’ precision and represents a
function g(xt), which is part of the loss function during training:

L := α · (yt − f(xt))
2 · (g(xt) + 1) − (1 − α) · log(g(xt)), (2)

with the trade-off variable α ∈ [0, 1] to calibrate the uncertainty scale. Since
the noise is not allowed to be smaller than or equal to zero, softplus is used as
activation function.

Lastly, the qDrop layer [14] adapts the dropout chance per input dimension
after the input layer depending on the current time step and sensor quality. The
sensor quality results from the number of consecutively imputed values, since the
imputation quality decreases with the length of the data gap. This has direct
impact on the uncertainty predictions at test time. For example, when we drop
some of the inputs due to low quality, we increase the uncertainty if the dropped

126 S. Oehmcke et al.

Fig. 1. The macroarchitectural view of MarineNet (top) and UMarineNet (down).

features are important for the prediction. During the training phase, less reliable
features are automatically dropped more often based on their quality and thus
the network learns to favor trustworthy features to a greater extent.

3 MarineNet Upgrade

We found two shortcomings of MarineNet. First, there is no easy way to analyze
the importance of individual exPAA parts. If these information were available,
the time series aggregation could be adapted to focus on the more crucial time
steps. Second, the scaling of the observation noise greatly depends on the hand-
tuned parameter α in Eq. 2. To address these shortcomings, we updated the
architecture to return explainable time step impact. Further, we change the
training process of MarineNet to acquire accurate uncertainty predictions with-
out calibration of α.

3.1 Changes to the Architecture

The architectural changes to MarineNet are shown on the lower part of Fig. 1.
As a first change, we substitute the only dense layer by a convolutional layer
with kernel size of one (conv1 layer), followed by an averaging of the outputs
over the steps, but not the neurons. We drew inspiration for this change from
multiple publications [7,10,12], who apply this technique to images instead of
time series data. Instead of returning only the last time step output, the bLSTM
layer now passes on its complete output over all time steps. This was avoided
in MarineNet, because the dense layer would have needed significantly more
weights (number of neurons times exPAA parts). Since the conv1 kernel is not
tied to the length of the input series, the computational cost did not increase
substantially with the complete bLSTM output. Further, the output from this
conv1 layer offers insight into which parts are most important, as only averaging
and linear combinations are employed afterwards.

Because of the change to the bLSTM output, it is now possible to add more
residual connections [7]. We create compatibility between the outputs by apply-
ing exPAA to acquire the same time resolution and a conv1 layer to adjust
for differences in neuron count. More residual connections are added inside the
fire-modules, after the single conv1 layers. Another change is that each residual

Direct Training of Dynamic Observation Noise with UMarineNet 127

connection also uses all compatible residual connections before them. ThTese
kind of dense residuals are introduced by Zhang et al. [18] and Huang et al. [9].

Through changes to the number of neurons and layer compositions, our
UMarineNet requires 3.04 times less weights, which amounts to 376188 com-
pared to previously 1145072 weights. We increased the number of neurons for
the first conv1 layer in fire modules from 48 to 64. In the bLSTM layer, now
192 instead of 512 neurons are employed. The conv1 layer that replaces the
dense layer keeps its 512 neurons, but the weight matrix shrinks because of the
smaller input from the bLSTM layer. All normal dropout layers utilize a 50%
keep chance.

3.2 Automatic Training of Accurate Uncertainty Predictions

The loss function in Eq. 2 employs two counteracting mechanisms to learn the
model noise: scaling the original error, which minimizes for small values and the
negative logarithm of this noise that minimizes for large values. Depending on
the scaling of the target variable and underlying processes, the negative loga-
rithm can be a poor choice to train the noise. The trade-off parameter α partly
mitigates this effect, but needs to be tuned separately. We are not optimizing
directly for the uncertainty, since it would require the MC prediction during
training, which is computationally costly at training time with the complete
network.

We propose to completely remove this hyper-parameter α by altering the
training process to directly learn the accurate noise function. In the beginning,
we ignore the dynamic noise function g and train UMarineNet to create accurate
point predictions f by minimizing MSE loss. Thereafter, the optimizer is not
allowed to change the weights of the network anymore, it is frozen. Only the
linear layer of the noise function is not frozen. This layer is then minimizing the
following loss function:

Lunc := 2 · max
(

Λ(51
100) · (

51
100 − acc(51

100)
)2

, 0
)

+
∑98

i=52

∣

∣

∣

∣

Λ(i
100) · (

i
100 − acc(i

100)
)2

∣

∣

∣

∣

,

+ 2 · max
(

− Λ(99
100) · (

99
100 − acc(99

100)
)2

, 0
)

(3)

with actual accuracy acc(j) and Λ(j) being the difference between the absolute
prediction error and the uncertainty interval at percent accuracy j:

Λ(j) :=
1
n̂

n̂
∑

t=1

(

|E[yt] − yt| −
√

˜Var[yt] ·
√

2 · erf−1 (j)
)

, (4)

with predictive mean E[y], predictive variance ˜Var[y], batch size n̂, and inverse
Gauss error function erf−1. This actual accuracy at the desired accuracy j ∈
(0, 1) over n̂ samples is calculated by:

128 S. Oehmcke et al.

acc(j) =
1
n̂

n̂
∑

t=1

(

|yt − E[yt]| ≤
√

˜Var[yt] ·
√

2 · erf−1(j)
)

, (5)

with the logical operator ≤ returning 0 for false and 1 for true. This loss function
requires multiple MC forward passes through the network during one iteration
to acquire the predictive mean E[y] and variance ˜Var[y], but due to the frozen
layers, only the gradient for the noise layer has to be computed. We only update
the weights to optimize for the noise g in only one of the MC runs. This avoids too
much change to the weights in one iteration and saves on computing resources
by calculating the gradient only once.

By utilizing multiple Λ-function calls, we train the noise function g to con-
verge between these desired accuracy levels between 51% and 99%. The scaling
of these Λ calls by the difference between the desired and the actual accuracy,
helps the convergence of the noise model. Ideally, one would only optimize for
this difference, but because the logical operator ≤ is not differentiable. Conse-
quently, this term only acts as a fixed value.

We define the first and third row of Eq. 3 as outer bounds. They only increase
their loss value if they fall below or exceed their desired accuracy of either 51%
or 99%. Since these bounds are critical for our uncertainty prediction, they are
doubled. Further, the second row of Eq. 3 can be seen as support points for the
actual accuracy to reach the desired accuracy.

The separation of learning prediction and noise can also be seen as a network
for noise on top of a prediction network, enabling already trained networks to
acquire reliable noise observations afterwards. Also, more complex layer struc-
tures could be employed if the noise seems to be a non-linear process.

4 Experimental Evaluation

The following experiments verify that the changes to the architecture can give
insight to the importance of individual parts of the input and that the direct
learning of the noise function is at least as good as tuning the trade-off param-
eter α beforehand. We compare the results of the original MarineNet and the
UMarineNet with and without direct training of the observation noise.

4.1 Combined TSS and BEFmate Dataset

The training set cover the time from 2014-09-18 15:00 to 2015-03-31 22:40:00
in a 10-minute resolution, which amounts to 49867 time steps of 57 different
sensors by the TSS and BEFmate project [14,15]. Since the target sensor mostly
measured at high tide, when the sensor is in the water, only 11633 target sensor
time steps are available for the same time frame. We employ a 60–40% train-
ing/testing split. For training, 6979 steps of the target sensors and 24922 steps
of the surrounding sensors are available. To utilize the surplus time steps from
the surrounding sensor, we append up to 24 h (144 steps) of data to each target
input step. We optimize the hyper-parameters by dividing the training set into

Direct Training of Dynamic Observation Noise with UMarineNet 129

a 70/30%-split for training/validation. The complete training set is used after
the hyper-parameter optimization. Table 1 shows the hyper-parameter settings
for exPAA’s original steps δ, reduced parts δ′, and exponent e as well as qDrop’s
exponent ε value of UMarineNet. The remaining 40%, 4654 target sensor steps
and 19946 surrounding sensor steps of the dataset represent the test set. Just
as the original MarineNet, we create a model for each of the five target sensors,
which are: Speed, Temp, Conductivity, Pressure, and Direction.

Table 1. Choice of optimized hyper-parameter settings for the UMarineNet.

sensor #steps δ #parts δ′ exponent e quality exp.ε

Speed 72 4 2.0 0.25000

Temp 36 4 2.0 0.06250

Conductivity 18 8 2.0 0.03125

Pressure 36 8 1.5 0.25000

Direction 72 8 1.5 0.25000

4.2 Methodology

We measure the performance with three metrics. First, we employ the root mean
squared error (RMSE) for the point prediction performance:

RMSE :=

√

√

√

√

1
n

n
∑

t=1

(yt − E[yt]))2, (6)

with predictive mean E[yt], true target value yt, and number of samples n.
Second, we calculate the mean standard uncertainty interval (SUI):

SUI :=
1
n

n
∑

t=1

√

˜Var[yt], (7)

with the predictive variance ˜Var[yt] from Eq. 1. Since the SUI has no meaning
w.r.t. the actual achieved accuracy of the uncertainty prediction, we use the
Brier score:

Brier score :=
1
|i|

∑

i∈i

(acc(i) − i)2 , (8)

with the actual mean accuracy acc(j) from Eq. 5, which defines the percent-
age of values that should fall within the Gauss distribution of errors (actual
against desired accuracy). The examined desired accuracy percentages are:
i = (.55, .6, .65, .7, .75, .8, .85, .9, .95, .999). Only accuracies over 50% are rele-
vant to us. A 100% accuracy of predictive uncertainty would be meaningless

130 S. Oehmcke et al.

since a large or infinite interval always includes the true target. All metrics indi-
cate a better performance when they are lower, although a smaller SUI but
greater Brier score would indicate a too small SUI that does not fit the desired
uncertainty accuracy.

We employ the one-sided Mann–Whitney U statistical test. If it returns a
p-value below 0.05 and the U value is below or equal the critical value, we call
the difference significant. The critical U value is 800 for 40 runs of MarineNet
and UMarineNet.

Fig. 2. Comparing performance of MarineNet and UMarineNet without (w/o) and
with direct observation noise training through box plots. The columns show the target
sensors and the rows different quality measurements. A red box stands for a significantly
lower value in comparison to the MarineNet. (Color figure online)

4.3 Results

Figure 2 shows box plots that compare the best runs of MarineNet to
UMarineNet with and without direct observation noise training. Rows depict
the performance metrics and columns the target sensors. The RMSE improves
for all target sensors, except Speed for UMarineNet with direct noise training.
The architecture change alone only improved results for Conductivity, Pressure,
and Direction. UMarineNet with direct noise training performs significantly bet-
ter regarding the Brier score for Speed, Temp, Conductivity, and Pressure, but
there is no distinctable difference for Direction. Without direct noise training,
UMarineNet improves the Brier score for Conductivity, Pressure, and Direction,
but is worse for Speed and Temp. A notable SUI change is seen for Pressure,
where the interval is smaller, although the uncertainty accuracy is better. In
summary, the performance of the target sensor models improved in most cases
with UMarineNet, especially when direct noise training is applied.

Artwork Retrieval Based on Similarity of Touch Using CNN 241

the proposed system than in the conventional system. Moreover, it can be seen
that the proposed system has higher accuracy than the system using the general
convolutional neural network.

Table 2. Search accuracy (for evaluation data)

Recall Precision F -value MAP

Proposed system 0.585222 0.545125 0.564462 0.657010

CNN 0.551333 0.329679 0.412623 —

(a) Proposed System (b) CNN

Fig. 7. Transition of classification accuracy

(a) Proposed System (b) CNN

Fig. 8. Transition of error function

3.3 Transition of Classification Accuracy and Error Function

Here, we examined how the classification accuracy and error function for learning
data and evaluation data changes in the learning process of the proposed system
and the system using a general convolutional neural network.

242 T. Fujita and Y. Osana

The transition of classification accuracy for learning data and evaluation data
in each system is shown in Fig. 7. In Fig. 7, it can be seen that in the proposed
system, the classification accuracy for the evaluation data varies almost in same
way as the classification accuracy for the learning data. On the other hand, in the
system using the general convolutional neural network, the classification accu-
racy for the learning data increases as learning progresses, but the classification
accuracy for the evaluation data becomes almost flat after 28 epochs. From this
result, it can be see that there is no generalization ability in the network after
learning in the system using the general convolutional neural network.

The transition of error function for learning data and evaluation data in each
system is shown in Fig. 8. In Fig. 8, it can be seen that in the proposed system,
the error function for the evaluation data varies almost in same way as the
error function for the learning data. On the other hand, in the system using the
general convolutional neural network, the error for the learning data decreases
as learning progresses but the error for the evaluation data increases gradually
after 29.

From these results, it can be seen that in a system using a general convolu-
tional neural network, learning is performed so that it can classify the learning
data correctly. However, in this system, it is considered that features common
to images to be classified in the same group can not be extracted. In the con-
volutional neural network, learning is performed paying attention to the shape
information included in the image. However, in classification considering touch
similarity, images with similar shape information are not necessarily treated as
the same group. Therefore, it can be considered that it could not be classified cor-
rectly for unlearned data. On the other hand, the proposed system uses not only
saturation and value but also histogram of saturation and value as input. In the
conventional convolutional neural networks, it is rare to use features extracted
in advance as inputs. However, the features common to the group are learned
by using the histogram of saturation and value, as a result, the proposed system
can realize search with high accuracy.

4 Conclusions

In this paper, we have proposed the artwork retrieval based on similarity of touch
using convolutional neural network. In the proposed system, a convolutional
neural network is learned so that images can be classified into a group based on
a touch, with saturation and value and the histogram of saturation and value as
input data, and the trained network is used to realize the retrieval. We carried
out a series of computer experiments and confirmed that the proposed system
can realize artwork retrieval based on similarity of touch with higher accuracy
than the conventional system.

Artwork Retrieval Based on Similarity of Touch Using CNN 243

References

1. Mogami, H., Otake, M., Kouno, N., Osana, Y.: Self-organizing map with refrac-
toriness and its application to image retrieval. In: Proceedings of IEEE and INNS
International Joint Conference on Neural Networks, Vancouver (2006)

2. Kawai, H., Osana, Y.: Search accuracy improvement in artwork retrieval based on
similarity of touch. In: Proceedings of International Conference, Como (2015)

3. Ojala, T., Pietiäinen, M., Harwood, D.: A comparative study of texture measures
with classification based on distributions. Pattern Recogn. 29(1), 51–59 (1996)

4. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in NIPS, pp. 1097–1105 (2012)

6. Buckley, C., Voorhees, E.M.: Evaluating evaluation measure stability. In: Proceed-
ings of the 23rd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 33–40 (2000)

Microsaccades for Neuromorphic Stereo
Vision

Jacques Kaiser, Jakob Weinland, Philip Keller, Lea Steffen,
J. Camilo Vasquez Tieck(B), Daniel Reichard, Arne Roennau, Jörg Conradt,

and Rüdiger Dillmann

FZI Research Center for Information Technology, 76131 Karlsruhe, Germany
{jkaiser,weinland,keller,steffen,tieck,daniel.reichard,roennau,

dillmann}@fzi.de, conradt@tum.de

https://www.fzi.de

Abstract. Depth perception through stereo vision is an important fea-
ture of biological and artificial vision systems. While biological systems
can compute disparities effortlessly, it requires intensive processing for
artificial vision systems. The computing complexity resides in solving
the correspondence problem – finding matching pairs of points in the
two eyes. Inspired by the retina, event-based vision sensors allow a new
constraint to solve the correspondence problem: time. Relying on pre-
cise spike-time, spiking neural networks can take advantage of this con-
straint. However, disparities can only be computed from dynamic envi-
ronments since event-based vision sensors only report local changes in
light intensity. In this paper, we show how microsaccadic eye movements
can be used to compute disparities from static environments. To this
end, we built a robotic head supporting two Dynamic Vision Sensors
(DVS) capable of independent panning and simultaneous tilting. We eval-
uate the method on both static and dynamic scenes perceived through
microsaccades. This paper demonstrates the complementarity of event-
based vision sensors and active perception leading to more biologically
inspired robots.

Keywords: Spiking neural networks · Event-based stereo vision
Eye movements

1 Introduction

Depth perception is an essential feature of biological and artificial vision systems.
Stereopsis (or stereo vision) refers to the process of extracting depth information
from both eyes. The human eyes are shifted laterally, that is why each eye forms
a slightly different image from the world. The brain is capable of matching a
point in one image with its corresponding point in the other image, measuring
its relative distance on the retina and using this value to estimate the distance
of the object to the viewer. The relative difference of the projections of the same
object on the two retinas is called disparity.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 244–252, 2018.
https://doi.org/10.1007/978-3-030-01418-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_24&domain=pdf

Microsaccades for Neuromorphic Stereo Vision 245

While stereo vision is realised unconsciously and effortlessly in biology, it
requires intensive processing for artificial vision systems. The core problem of
stereo vision systems is the well-known correspondence problem: finding matches
between visual information perceived by the two sensors. A matched pair of pixels
enables the precise calculation of the depth using the geometry of the camera
setup and the disparity of the pixels on the epipolar line [1]. As the complexity
of the scenery increases and noise is added to the images, the computational
expense of common machine vision system increases significantly, affecting the
speed, size, and efficiency of the used hardware [19].

Advances in neuromorphic engineering enable new approaches for stereo
vision systems. The use of a Dynamic Vision Sensor (DVS, or silicon retina) [11]
adds another constraint to the already existing spatial constraints for match-
ing: time. Unlike conventional cameras which operate with frame-based images,
a DVS emits independent pixel events at precise time on local light intensity
changes. This leads to a continuous stream of events, well suited for processing
with spiking neural networks. Spiking neural networks are referred to as the
third generation of artificial networks [12]. Unlike their non-spiking counterpart,
neurons are defined with dynamical systems in continuous time and not on a
discrete time basis. Communication in spiking neural networks is asynchronous
and is based on instantaneous spikes. While the form of the spike does not hold
any specific information, it is the number and timing of spikes that matter [7].
Even though it is possible to simulate spiking networks on conventional com-
puters, their real potential with respect to speed and efficiency is unveiled when
processed on neuromorphic hardware [5,19].

Recently, approaches have been proposed for disparity computation on event
streams with spiking neural networks [3,19], both based on groundwork in [13].
These approaches are discussed in Sect. 2. They consist of a three-dimensional
spiking network where output neurons describe one unique point in the observed
3D-space (see Fig. 1). In other words, an output neuron emits a spike when
location in 3D-space becomes occupied or unoccupied. In this paper, we show
how the method can be used to perceive depth from motionless static scenes
through microsaccadic eye movements. To this end, we built a robotic head for
the humanoid robot HoLLiE [9] supporting two DVS capable of independent pan-
ning and simultaneous tilting, see Fig. 1a. Our results suggest that synchronous
microsaccadic eye movements in both eyes could be used in biology for stere-
opsis. While the role of fixational eye movements is not fully understood, their
importance in perception was already suggested in [10,16,21]. Additionally, our
network is implemented in PyNN [2] and can run both on SpiNNaker [6] or
classical CPU with the NEST simulator [8].

2 Related Work

In this Section, we present Poggio and Marr’s cooperative algorithm for stereo
matching, which was published in 1982 [13] and forms the foundation for fur-
ther work in the field. The method has recently been improved in [3] with the
introduction of small computational units, so-called micro-ensembles.

246 J. Kaiser et al.

According to [14], three steps are involved in measuring stereo disparity. In
the first step (S1) a point of interest is selected from a surface in one image. In
step two (S2) the same point has to be identified in the other image. Step three
(S3) measures the disparity between the two corresponding image points, which
can be used to calculate the distance of the object to the viewer. However, false
targets make it difficult to find a matching pair of points. Physical properties
of rigid bodies are used to minimize the number of false matches. One of these
properties is that a point on the surface of an object has a unique position at
a given point in time (P1). The second physical restraint that can be used is
the fact that surfaces of objects are perceived as smooth from the perspective of
the observer. Small changes in topology such as roughness or protrusions are of
minor importance for the estimation of distance (P2) [13]. To minimize the pos-
sibility of a mismatch, the physical constraints P1 and P2 can be rewritten into
matching constraints (C). These matching constraints implement rules of com-
munication between disparity-sensitive neurons (see Fig. 1b). Derived from P1,
the uniqueness constraint (C1) states, that for every given point seen by one area
of one eye, at a specific time, there can be at most one corresponding match in
the other. Therefore C1 inhibits communication in horizontal and vertical direc-
tions between the disparity-sensitive neurons. The physical restraint P2 results
in the continuity constraint (C2), which is based on the assumption that physical
matter is cohesive and generally has a smooth surface. It encourages communica-
tions along the diagonal lines of constant disparity. The compatibility constraint
(C3) states that “black dots can only match black dots” [14]. Recently, this
method was improved in [3] with the addition of micro-ensembles. The structure
of a micro-ensemble consists of two blocker neurons and one collector neuron
(see Fig. 1c). Micro-ensembles prevent a high frequency stimulation of a single
DVS pixel to trigger false matches by exceeding the collector’s threshold value,
if a corresponding pixel in the other DVS is not active. The micro-ensemble,
therefore, emulates an AND-Gate behavior to ensure that only signals received
by both sensors can trigger a match [3].

The structure of our spiking network computing disparity from stereo event-
based vision sensors is based on [3,19]. The network consists of a three dimen-
sional grid of disparity-sensitive neurons (see Fig. 1a). Each of these disparity-
sensitive neurons describe one unique point in the observed 3D-space, relative
to the common fixation point of the cameras [20]. For each disparity neuron,
a micro-ensemble ensures hetero-lateral matching. If the timing of the events
projected by the retinal pixels into the neural ensemble is temporally congruent,
the signal reaches the disparity-sensitive neuron. However, if the temporal offset
of the incoming signals between the left and right pixels is too large, the blockers
prevent the activation of the disparity-sensitive neuron. The C3 constraint (com-
patibility constraint) could be implemented by separating ON and OFF events
in two separate pathways. As this would double the number of neurons, the C3
contraint is often ignored so that ON and OFF events can match each other.

Microsaccades for Neuromorphic Stereo Vision 247

(a) (b) (c)

Fig. 1. Structure of the stereo network for detecting all possible positive disparities
(schemas inspired from [3]). Triangular red edges denote excitatory synapses, rounded
green edges denote inhibitory synapses. (a): Three-dimensional structure of the stereo
network. Address events from the two DVS belonging to the same epipolar plane are
fed to the corresponding epipolar layer in the network. (b): Organization of micro-
ensembles within an epipolar layer. Each pixel connects to micro-ensembles defining
a line of sight. The micro-ensembles are connected to each other with respect to the
constraints mentioned in Sect. 2. For clarity, only the outgoing connections of a single
micro-ensemble are drawn. The number of micro-ensembles can be reduced by bound-
ing the minimum and maximum detectable disparities. (c): Schematic representation
of a neural micro-ensemble. The two blue neurons on the left and bottom of the micro-
ensemble are the blockers, while the red neuron in the middle is the disparity-sensitive
collector neuron. Micro-ensembles are connected to each other by their collector
neurons. (Color figure online)

3 Evaluation

In this paper, we rely on the spiking network structure presented in [3], see
Sect. 2. The contribution of this paper is to enable the method to extract dis-
parities from static scenes through microsaccadic eye movements by mounting
the sensors on a robotic head. In this Section, we evaluate our approach on
real world scenes with the built robotic head. Experiments are realized both on
static scenes perceived with microsaccadic eye movements and dynamic scenes.
The scenes are recorded with the two DVS with ROS using the driver from [17].

3.1 Micro-saccades on the Robotics Head

Pan-tilt units have already been used to convert image datasets to event-based
datasets through microsaccadic eye movements [18]. In this paper, we present our
robotic head platform for the humanoid robot HoLLiE [9], reproducing stereo
eye movements. The head consists of three degrees of freedom: tilting both eyes
simultaneously with a Dynamixel MX-64 servo, and panning the two eyes inde-
pendently with two Dynamixel MX-28. The rotations are centered around the
focal point the of the two DVS. The robotic head has a total width of 253 mm

248 J. Kaiser et al.

(a) (b) (c)

Fig. 2. Experiment setup for disparity computation on a static scene perceived with
microsaccades. (a): Overview of the setup. The DVS head is laid on a table outdoors
with two objects (a ball and a thermos flask) and both DVS look parallel towards them.
(b): Accumulated events in the right DVS after an horizontal microsaccade (panning).
Vertical edges have a high response. (c): Accumulated events in the right DVS after a
vertical microsaccade (tilting). Horizontal edges have a high response.

(a) (b)

(c) (d)

Fig. 3. Output of the stereo network for the static scene experiment perceived through
microsaccades. (a): Rendering of the computed disparities during panning. (b): His-
togram of the computed disparities during panning. Note the peaks around disparity 7
corresponding to the vertical garage door, around 20 for the thermos flask and around
29 for the ball (see Fig. 2a). (c): Rendering of the computed disparities during tilting.
(d): Histogram of the computed disparities during tilting. Less events have been gen-
erated compared to horizontal microsaccades because of the verticality of the scene,
leading to fewer disparity detections (see Fig. 2c).

Microsaccades for Neuromorphic Stereo Vision 249

(a) (b)

Fig. 4. Experiment data for disparity computation on a dynamic scene perceived with
microsaccades. The same scene as in the first experiment (Fig. 2a) is used, with the
addition of a person walking in the back. (a): Accumulated events in the right DVS
for the whole duration of the experiment (1.4 s). Only a horizontal microsaccade is
performed, while a person walks in the back. (b): Corresponding event histograms
for the left and right DVS. The two peaks denote the positive and negative panning
(go and return to position). The constant activity reflects the person walking in the
back.

and an interpupillary distance of 188 mm (IPD). The average IPD of a human
is around 63 mm [4]. Microsaccades are effectuated by slight panning or tilt-
ing motion with both DVS at very high speed. The robotic head is depicted in
Fig. 1a.

3.2 Static Scenes Perceived Through Microsaccades

In this experiment, the robotic head is laid on a table outdoors and observes
two objects (a ball and a thermos flask) at different depths, see Fig. 2a. The
head performs an horizontal microsaccade followed by a vertical microsaccade
of around 2.8◦.

The network manages to compute the disparity of the different objects in the
scene with an horizontal microsaccade (Fig. 3b), including the garage door in
the background. Because most contrast lines in the scene are vertical, the tilting
microsaccade does not trigger many events, leading to few disparity detections
(Fig. 3d). Additionally, extracting disparity of horizontal edges is harder for the
network, because many events will share the same epipolar layer (see Fig. 1b).

3.3 Dynamic Scenes Perceived Through Microsaccades

In this experiment, we evaluate whether the method can extract disparities of
dynamic objects and static objects simultaneously with microsaccades. We rely
on the same setup as for the previous experiment (Fig. 2a), with an additional
person walking in the back of the scene. The generated address events are visu-
alized in Fig. 4.

250 J. Kaiser et al.

(a) (b)

(c) (d)

Fig. 5. Output of the stereo network for the dynamic scene experiment perceived
through microsaccades. (a): Rendering of the computed disparities at t = 0.1 s dur-
ing panning while a person walks in the back. (b): Histogram showing the number of
detected disparities with respect to time. As expected, the number of detections corre-
lates with the number of address events – see Fig. 4b. (c): Rendering of the computed
disparities at t = 0.3 s when no microsaccades are performed. (d): Histogram of the
computed disparities for the whole sequence. The events corresponding to the walking
person have a disparity around 10, between the garage door and the thermos flask.
Compared to the purely static scene, less events were generated for the garage door as
it is occluded by the human, see Fig. 3b.

As can be seen in Fig. 5, the network manages to compute the disparity of
the different objects in the scene as well as of the walking person.

4 Conclusion

Depth perception through stereo vision is an important feature for many bio-
logical and artificial systems. While biological systems can compute disparities
effortlessly, it requires intensive processing for artificial vision systems. Recently,
spiking network models were introduced in [3,19], both based on groundwork
in [13]. Relying on event-based vision sensors, these models take advantage of a
new constraint to solve the correspondence problem: time.

Since event-based vision sensors such as the DVS only report changes in light
intensity, these methods could only extract disparities from dynamic scenes. In
this paper, we show how synchronous microsaccadic eye movements enable such

Microsaccades for Neuromorphic Stereo Vision 251

network to extract disparities out of static scenes. To this end, a robotic head
platform for the humanoid robot HoLLiE [9] capable of simultaneous tilting
and independent panning was built. As the retina also adapts rapidly to non-
changing stimulus [15,21], it is likely that biology also relies on fixational eye
movements to perceive depth in static scenes.

For future work, the robotic head could implement other types of eye move-
ments such as saccades and smooth pursuit. Additionally, one could reduce
greatly the number of required neurons with hard bounds on minimum and
maximum detectable disparities. In this setup, active vision could be used to
squint the eyes to the relevant baseline depth.

Acknowledgments. This research has received funding from the European Union’s
Horizon 2020 Framework Programme for Research and Innovation under the Specific
Grant Agreement No. 720270 (Human Brain Project SGA1) and No. 785907 (Human
Brain Project SGA2).

References

1. Davies, E.R.: Computer and Machine Vision: Theory, Algorithms, Practicalities.
Academic Press, Cambridge (2012)

2. Davison, A.P.: PyNN: a common interface for neuronal network simulators. Front.
Neuroinform. 2, 11 (2008)

3. Dikov, G., Mohsen, F., Röhrbein, F., Conradt, J., Richter, C.: Spiking cooperative
stereo-matching at 2 ms latency with neuromorphic hardware. Front. Neurosci.
(2017)

4. Dodgson, N.A.: Variation and extrema of human interpupillary distance. Proc.
Soc. Photo-Opt. Instrum. Eng. 12(8), 36–46 (2004)

5. Furber, S., Temple, S., Brown, A.: On-chip and inter-chip networks for modelling
large-scare neural systems, pp. 6–9 (2006)

6. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The spinnaker project. Proc.
IEEE 102(5), 652–665 (2014)

7. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations.
Plasticity. Cambridge University Press, Cambridge (2002)

8. Gewaltig, M.O., Diesmann, M.: Nest (neural simulation tool). Scholarpedia 2(4),
1430 (2007)

9. Hermann, A., et al.: Hardware and software architecture of the bimanual mobile
manipulation robot HoLLiE and its actuated upper body. In: 2013 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics: Mechatronics for
Human Wellbeing, AIM 2013, pp. 286–292, July 2013

10. Kaiser, J., et al.: Benchmarking microsaccades for feature extraction with spik-
ing neural networks on continuous event streams. In: International Conference on
Development and Learning and Epigenetic Robotics (ICDL-EpiRob) (2018, sub-
mitted)

11. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128 × 128 120 db 15 µs latency asyn-
chronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 43(2), 566–
576 (2008)

12. Maass, W.: Networks of spiking neurons: the third generation of neural network
models. Neural Netw. 10(9), 1659–1671 (1997)

252 J. Kaiser et al.

13. Marr, D.: Vision: a computational investigation into the human representation
and processing of visual information. W.H. Freeman and Company, San Francisco
(1982)

14. Marr, D., Poggio, T.: A theory of human stereo vision. Proc. Roy. Soc. Lond. B
Biol. Sci. 204, 301–328 (1977)

15. Martinez-Conde, S., Macknik, S.L., Hubel, D.H.: The role of fixational eye move-
ments in visual perception. Nat. Rev. Neurosci. 5(3), 229–240 (2004)

16. Masquelier, T., Portelli, G., Kornprobst, P.: Microsaccades enable efficient
synchrony-based coding in the retina: a simulation study. Sci. Rep. 6, 24086 (2016)

17. Mueggler, E., Huber, B., Scaramuzza, D.: Event-based, 6-DOF pose tracking for
high-speed maneuvers. In: International Conference on Intelligent Robots and Sys-
tems. IEEE (2014)

18. Orchard, G., Jayawant, A., Cohen, G., Thakor, N.: Converting static image
datasets to spiking neuromorphic datasets using saccades. arXiv preprint
arXiv:1507.07629 (2015)

19. Osswald, M., Ieng, S.H., Benosman, R., Indiveri, G.: A Spiking Neural Network
Model of 3D Perception For Event-Based Neuromorphic Stereo Vision Systems,
pp. 1–11. Nature Publishing Group, London (2017)

20. Osswald, M., Ieng, S.H., Benosman, R., Indiveri, G.: Supplementary Material: A
Spiking Neural Network Model of 3D Perception for Event-Based Neuromorphic
Stereo Vision Systems, pp. 1–14 (2017)

21. Rucci, M., Victor, J.D.: The unsteady eye: an information-processing stage, not a
bug. Trends Neurosci. 38(4), 195–206 (2015)

http://arxiv.org/abs/1507.07629

A Neural Spiking Approach Compared
to Deep Feedforward Networks
on Stepwise Pixel Erasement

René Larisch(B), Michael Teichmann, and Fred H. Hamker

Department of Computer Science, Chemnitz University of Technology,
Str. der Nationen 62, 09111 Chemnitz, Germany

{rene.larisch,michael.teichmann,fred.hamker}@informatik.tu-chemnitz.de

Abstract. In real world scenarios, objects are often partially occluded.
This requires a robustness for object recognition against these perturba-
tions. Convolutional networks have shown good performances in classifi-
cation tasks. The learned convolutional filters seem similar to receptive
fields of simple cells found in the primary visual cortex. Alternatively,
spiking neural networks are more biological plausible. We developed a
two layer spiking network, trained on natural scenes with a biologically
plausible learning rule. It is compared to two deep convolutional neu-
ral networks using a classification task of stepwise pixel erasement on
MNIST. In comparison to these networks the spiking approach achieves
good accuracy and robustness.

Keywords: STDP · Unsupervised learning
Deep convolutional networks

1 Introduction

Deep convolutional neural networks (DCNN) have shown outstanding perfor-
mances on different object recognition tasks [10,11,19], like handwritten digits
(MNIST [5]) or the ImageNet challenge [18]. Previous studies show that fil-
ters of a DCNN, trained on images, are similar to receptive fields of simple
cells in the primary visual cortex of primates [21,24] and thus have been sug-
gested, to a certain degree, as a model of human vision, despite the fact that
back-propagation algorithm, does not seem to be biological plausible [14,16].
Alternatively, many models have been published in the field of computational
neuroscience, whose unsupervised learning is based on occurrence of pre- and
postsynaptic spikes. A previous work [16] presented a model using spike-timing-
dependent plasticity (STDP) rule to recognize digits of the MNIST dataset. We
propose a STDP network with biologically motivated STDP learning rules for
excitatory and inhibitory synapses to better mirror the structure in the visual
cortex. We use a voltage based learning rule from Clopath et al. [7] for exci-
tatory synapses and a symmetric inhibitory learning rule from Vogels et al. [9]
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 253–262, 2018.
https://doi.org/10.1007/978-3-030-01418-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_25&domain=pdf

254 R. Larisch et al.

for inhibitory synapses. During learning, we present natural scenes to our net-
work [4]. The thereby emerging receptive fields [7] are similar to those of simple
cells in the primary visual cortex [1,2]. After learning, we present digits of the
MNIST data set to the network and measure the activity of the excitatory popu-
lation. The activity vectors on the training set are used to train a support vector
machine (SVM) with a linear kernel to be used on the test set to estimate the
accuracy of our neural network.

We previously evaluated robustness of classification by a gradual erasement
of pixels in the MNIST data set. Our evaluation showed, that inhibition can
improve robustness by reducing redundant activities in the network [17]. To
evaluate our spiking network, we apply this task by placing white pixels in 5%
steps in all images of the MNIST test set and by measuring accuracy on these
degraded digits. We compare our spiking network with two DCNNs. The first
DCNN is the well known LeNet 5 network from LeCun et al. [5]. The second one
is based on the VGG16 network from Simonyan and Zisserman [19]. Both deep
networks are trained on the MNIST data set and accuracy is measured on the
test set with different levels of pixel erasement.

We here follow the idea, that a biologically motivated model trained by Heb-
bian Learning on natural scene should discover a codebook of features that can
be used for a large set of classification tasks. Thus, we train our spiking model
on small segments of natural scenes. As these image patches contain different
spatial orientations and frequencies, we obtain receptive fields which are selective
for simple features. With this generalized coding, we archived a recognition accu-
racy of 98.08%. Further, our spiking network shows a good robustness against
pixel erasement, even with only one layer of excitatory and inhibitory neurons.

2 Methods

Both deep convolutional networks are implemented in Keras v.2.0.6 [15] with ten-
sorflow v.1.2.1 and Python 3.6. Our spiking network is implemented in Python
2.7 with the neuronal simulator ANNarchy (v.4.6) [20]. To classify activity vec-
tors of our network, we used a support vector machine with a linear kernel, using
the LinearSVC package from the sklearn library v.0.19.1.

2.1 Spiking Model

Populations. The architecture of our spiking network (Fig. 1A) is inspired by
the primary visual cortex and consists of spiking neurons in two layers. The input
size is 18× 18 pixels. We used randomly chosen patches out of a set of whitened
natural scenes [4] to train our network. To avoid negative firing rates, positive
values of a patch are separated in an On-part and negative values in an Off-part.
Therefore, the first layer consists of 648 neurons in a 18 × 18 × 2 grid. Every
pixel corresponds to one neuron in the layer. The neurons fire according to a
Poisson distribution, whose firing rate is determined by the corresponding pixel
values. The presented pixels are normalized with the absolute maximum value

Robustness of Spiking and Deep Neural Networks 255

Fig. 1. A: Schematic diagram of our spiking network. The input layer consists of 648
neurons. The second layer consists of 324 excitatory and 81 inhibitory neurons. B:
Example for the image distortion from the original digit to 90% pixel erasement.

of the original image and multiplied with a maximum firing rate of 125 Hz. Each
patch was presented for 125 ms. Learning was stopped after 400.000 patches. The
presented patch was flipped around vertical or horizontal axis with a probability
of 50% to avoid an orientation bias [7].

The neurons in the first layer are all-to-all connected to the neurons in the
second layer. The second layer consists of a population of 324 excitatory and 81
inhibitory neurons to achieve the 4:1 ratio between number of excitatory and
inhibitory neurons as found in the visual cortex [3,13]. All neurons gather infor-
mation from the whole presented input. Both populations consist of adaptive
exponential integrate-and-fire neurons (AdEx) [7]. The description of the mem-
brane potential u is presented in Eq. 1. The slope factor is δT , C is the mem-
brane capacitance, EL is the resting potential and gL is the leaking conductance.
The depolarizing after potential is described by z and wad is the hyperpolariz-
ing adaption current. The input is denoted by Iexc for excitatory and Iinh for
inhibitory current. Input currents are incremented by sum of the presynaptic
spikes of the previous time step, multiplied with the synaptic weight.

C
du

dt
= −gL(u − EL) + gLΔT e

u−VT
ΔT − wad + z + Iexc − Iinh (1)

A spike is emitted, when the membrane potential exceeds the adaptive spiking
threshold VT . After a spike, the membrane potential is set to 29 mV for 2 ms,
and then it is set back to EL.

Excitatory Plasticity. The plasticity of excitatory connections from the first
to the second layer, as well as connections from the excitatory to the inhibitory
population within the second layer, follows the voltage-based STDP rule [7]. The
development of the weight between a presynaptic neuron i and a postsynaptic
neuron depends on the presynaptic spike event Xi and the presynaptic spike
trace xi as well as on the postsynaptic membrane potential u and two averages
of the membrane potential ū+ and ū−. The parameters ALTP and ALTD are
the learning rates for long-term potentiation (LTP) and long-term depression
(LTD). Both parameters θ+ and θ− are thresholds, which must be exceeded by
the membrane potential or its long time averages.

256 R. Larisch et al.

dwi

dt
= ALTP xi(u − θ+)+(u+ − θ−)+ − ALTD

¯̄u
uref

Xi(u− − θ−)+ (2)

The homoeostatic mechanism of the learning rule is implemented by the ratio
between ¯̄u and a reference value uref . It adjusts the amount of emergent LTD to
control the postsynaptic firing rate. Therefore, ¯̄u implements a sliding threshold
to develop selectivity of neurons. Clopath et al. [7] propose to equalize the norm
of the OFF weights to the norm of the ON weights every 20 s. We did this
for the excitatory weights from the input layer to excitatory and the inhibitory
population, per neuron. The weights are limited by an upper and lower bound.

Inhibitory Plasticity. The connections from the inhibitory to the excitatory
population and the lateral connections between the inhibitory neurons develop
with the inhibitory learning rule from Vogels et al. [9] (see Eq. 3).

Δwij = η(x̄j − ρ) , for pre-synaptic spike (3)
Δwij = η(x̄i) , for post-synaptic spike

The pre-synaptic spike trace is x̄i and the spike trace for the post-synaptic
neuron is x̄j . When the particular neuron spikes, the spike trace increases with
one, otherwise it decays with τi or τj to zero. The inhibitory weight changes on
a pre- or postsynaptic spike with the learning rate η.

The constant value ρ specifies the strength of inhibition to suppress the
postsynaptic activity until LTD can occur. The inhibitory weights are limited
by a lower and upper bound.

2.2 Deep Convolutional Networks

To assess the performance of our network approach on MNIST recognition, we
compared it to two deep convolutional neural networks (DCNN). The first net-
work is the well known LeNet 5, introduced from LeCun et al. [5]. It is hierar-
chically structured with two pairs of 2D-convolutional and max-pooling layers,
followed by two fully connected one-dimensional layers. The last layer is the
classification layer with a “softmax” classifier. The first convolutional layer has
a kernel size of 3 × 3 pixels and 32 feature maps. The kernel size of the second
convolutional layer is 3 × 3 too, but consists of 64 feature maps. For the second
max-pooling layer, a dropout regularisation with a dropout ratio of 0.5 is used.
Both max-pooling layers have a 2×2 pooling size. The architecture of the second
model is based on the VGG16 network proposed by Simonyan and Zisserman
[19]. As a consequence of the small input size, we have to remove the last three
2D convolutional and the 2D max-pooling layer. Further, no dropout regulari-
sation was done. This shortened model is further called V GG13. Both networks
are learned for 50 epochs on the MNIST training set [5]. The validation accuracy
is measured on 10% of the training set. The remaining 90% are used for learning.
The adadelta optimizer [12] with ρ = 0.95 is used for both networks.

Robustness of Spiking and Deep Neural Networks 257

2.3 Measurement of Accuracy

The MNIST images have a resolution of 28×28 pixels. Because of the input size
of the spiking network with 18× 18 pixels, we divided each image of the MNIST
set into four patches with each 18 × 18 pixel size. The first patch was cut out
at the upper left corner and a horizontal and vertical pixel shift of 10 pixels was
done to cut out the other three patches. We presented every patch for 125 ms,
without learning, and measured the number of spikes per neuron. We repeated
every patch presentation ten times to calculate a mean activity per neuron on
every patch. For every digit, a final activity vector consists of 324 × 4 = 1296
values. We fitted a support vector machine (SVM) with the merged activity
vectors of the training set. Before the fitting, we normed the activity vectors
between zero and one. The SVM had a linear kernel, the squared hinge loss and
the L2 penalty with a C-parameter of one. To measure accuracy, we used the
merged activity vectors of the test set as input to fitted SVM and compared the
known labels with the predictions of the SVM. Finally, we measured the accuracy
of five separately learned networks and will present the average accuracy here.

We measured the accuracy of both DCNNs by presenting the MNIST test set
and comparing their prediction with the known labels. As for the spiking net-
work, we measured the accuracy of five separately learned networks and present
the average accuracy here.

We calculated the f-score for all models and levels of pixel erasements as well.
Because there is no difference to the accuracy noticeable, it is not shown here.

2.4 Robustness Against Pixel Erasement

In a previous study Kermani et al. demonstrated, that networks with biologi-
cally motivated learning rules in combination with inhibitory synapses are more
robust against a loss of information in the input. They measured the classifi-
cation accuracy of their network for different levels of pixel erasement in the
MNIST dataset [17]. Following this approach, we erased pixels of all digits in
the MNIST test sets in 5% steps, erasing only pixels with a value above zero (see
Fig. 1B). We created one data set per erasement level and showed each model
the same dataset. For each level of pixel erasement we measured the number of
correct classifications as mentioned above. Independently from number of erased
pixels, the SVM has always been fitted with the activity vectors measured on
the original training set.

3 Results

Our network achieved on the original MNIST test data set an average accuracy
of 98.08% over five runs. If inhibition is removed, 96.81% accuracy is archived.
The LeNet 5 implementation achieved 99.24% and the VGG13 network 99.41%,
averaged over five runs (Table 1). Our results show, that at 25% erased pixels
the spiking network achieves higher accuracy values than the LeNet 5 network,

258 R. Larisch et al.

Fig. 2. Classification accuracy as a function of level of pixel erasement. A, Robustness
of our spiking network (blue line) is between LeNet 5 (green line) and VGG13 (red
line) network. Deactivation of inhibition leads to a less robust spiking network (dashed
blue line). B, First layer of LeNet 5 (dashed green line) is more robust than complete
LeNet 5. Whereas the first layer of the VGG13 is less robust (dashed red line). (Color
figure online)

but lower values than the VGG13 network. We deactivated inhibition and mea-
sured again accuracy on the different levels of pixel erasement. As mentioned by
Kermani et al., the accuracy decreases without inhibition stronger than with it
(see Fig. 2A) [17].

Our spiking network only consists of one layer of excitatory neurons. Because
of that, we measured accuracy of the LeNet 5 and VGG13 only with the activ-
ity of the first convolutional layer. Therefore, the output of the first layer was
connected to a classification layer with 10 units and a softmax activation func-
tion. Only the weights from convolutional to classification layer were trained on
the MNIST training set. The classification on the pixel erased dataset was done
as for the other deep networks. With an accuracy of 98.1% from the first layer
of LeNet 5 and 97.29% of the first layer of the VGG13, the first convolutional
layer alone achieved a lower accuracy on the original MNIST test set than the
complete network (Table 1). By stepwise pixel erasement, the first layer of the
LeNet 5 is slightly robuster than the complete network. In contrast the first layer
of the VGG13 model is less robust than the complete model. The course of the
curve is similar to our spiking network (Fig. 2B). The size of the receptive fields
in our spiking model does not correspond to the size of the convolutional kernel
in the DCNNs. Further, every feature map in the convolutional layer shares the
same convolutional kernel. Our spiking network learns 324 different receptive
fields. That would be equivalent to 324 different feature maps in a DCNN. To
accommodate these differences between the spiking approach and the DCNNs,
we changed the number of feature maps in the first convolutional layer and the
kernel size in the LeNet 5 and the VGG13 network to 9×9 and 18×18. To avoid
unnecessary computational load and possibility of over fitting we increased the
number of feature maps only to 64 and 96. The increased kernel size in the LeNet
5 implementation leads to a significant improvement (see Fig. 3A). However, for

Robustness of Spiking and Deep Neural Networks 259

the VGG13 model, it does not lead to a significant change (see Fig. 3B). An
increased number of feature maps in both DCNNs seems to have no effect on
robustness.

Fig. 3. Classification accuracy for different configurations of the DCNNs. A LeNet 5
with different numbers of feature maps (brighter lines) and larger kernel sizes (darker
lines). B VGG13 with different numbers of feature maps (brighter lines) and larger ker-
nel sizes (darker lines). More feature maps shows no change or slightly less robustness
against pixel erasement. Larger kernel sizes lead to an improvement in LeNet5.

Table 1. Accuracy values on deep convolutional networks LeNet 5 and VGG13, with
different number of features and sizes for the kernel filter. Measured on original MNIST
test set. Averaged over five runs per model.

Architecture Normal First layer only 64 features 96 features 9× 9 kernel 18× 18 kernel

LeNet 5 99.24% 98.10% 99.38% 99.42% 99.03% 98.77%

VGG13 99.41% 97.29% 99.44% 99.43% 99.41% 99.32%

4 Discussion

Our proposed two layer spiking neural network (SNN) archived an accuracy of
98.08% on the original MNIST data set. Previous unsupervised learned SNN
have shown slightly weaker results on the MNIST data set [16,22]. Diehl and
Cook [16] presented a two layer SNN with a similar architecture to the here
proposed one. They achieved an accuracy of 95.0% with 6400 excitatory neurons
and an accuracy of 87.0% with 400 excitatory neurons. In contrast to our spiking
network, the excitatory population in their network is one-to-one connected to
the inhibitory one to implement a lateral inhibitory effect between the excitatory
neurons. Second, each neuron was connected to the full input of the MNIST
data set and thus learned complete digits as receptive fields. After learning, they
assigned every neuron a class, referred to the class with the highest activity on
the training set [16]. The class of the most active neuron defined the prediction

260 R. Larisch et al.

of the network on the test set. Our network is learned on natural scene input [4]
instead of images of the MNIST data set. Because presenting each neuron a small
segment of different spatial orientations and spatial frequencies, our network
learns Gabor-like receptive fields [7]. These feature detectors are selective for only
a part of the presented input instead of a complete digit. Further on, classification
for our approach is done by training a simple linear SVM with activity vectors
of the excitatory population. Instead of only considering the activity of the
most active neuron, here the classification includes the activity of all excitatory
neurons. Therefore, different digits are decoded by the combination of different
neuronal activities. This leads to a better classification accuracy with a smaller
number of neurons. Another unsupervised spiking network was presented by
Tavanaei and Maida [23], consisting of four layers. Their input consists of 5 ×
5 pixels sized overlapping patches, cut out of the MNIST training set. Every
pixel value determines the rate of the input spike train for the neurons in the
second layer. In the second layer exists lateral inhibitory connections between
the neurons. This lead to Gabor-like receptive fields in the second layer. The next
layer was a max-pooling layer, followed by a so called ’feature discovery’ layer.
After learning in the second layer was finished, they learned the fourth layer. The
output of the fourth layer was used to train a SVM for the classification. They
used four SVMs with different kernels and averaged them. With 32 neurons in
the second and 128 neurons in the last layer they archived an accuracy of 98.36%
on the MNIST test.

A deeper unsupervised spiking approach was presented by Kheradpisheh et
al. [22]. They presented a deep spiking network to mimic convolutional and max-
pooling layers by using a temporal coding STDP learning algorithm. This means,
that the first firing neuron learned most, while later firing neurons learned less
or nothing. Their network consists of three pairs of a convolutional and a max-
pooling layer. For classification, they used a linear SVM on the output of the last
pooling layer. On the MNIST data set, they achieved an accuracy of 98.4% [22].
Their temporal coding implements a “winner takes it all” mechanism, what is less
biologically plausible than the used learning rules in our approach. Nonetheless,
the complex structure of the network from Tavanaei and Maida [23] and of the
Kheradpisheh et al. [22] network is an evidence for possibility of unsupervised
STDP learning rules in a multi-layer network.

A comparison with two deep convolutional networks on stepwise pixel erase-
ment showed, that our LeNet 5 implementation is less robust and the VGG13
model is more robust than the here proposed spiking network (Fig. 2A). In case
of accuracy is only been measured on the activity of the first layer, the LeNet 5
first layer is more robust than the complete model. For VGG13, the first layer is
less robust. The first convolutional layer of both models has a same kernel size
(3 × 3) and number of features (32), but the robustness of both layers is differ-
ent (Fig. 2B). Both deep convolutional neural networks (DCNNs) have different
numbers of layers and a different order of convolutional and max-pooling layers.
This suggests, that the structure of the network influences learning result in
the first convolutional layer, especially how the error between output and input

Robustness of Spiking and Deep Neural Networks 261

is back propagated. In contrast to an increase of the number of features, an
increase of the convolutional kernel size leads to an improvement of robustness
(Fig. 3), but to a decrease in the accuracy on the original data set by the LeNet
5 model (Table 1). An increase of the number of features or the convolutional
kernel size does not lead to a significant change for the VGG13 model. With a
larger filter kernel, the erasement of a fixed number of pixels in the input has
a lower influence on activity of the neurons. With a 3 × 3 kernel three erased
pixels in the input cause a loss of 33.33% of the incoming activity and with a
9 × 9 kernel is the loss only 3.7%.

As mentioned in previous works [17], our results show that learned lateral
inhibition leads to an improvement of classification robustness against pixel
erasement in unsupervised neural networks. On one side, neurons loose sharpen-
ing of their selectivity without inhibition [6,8]. On the other side, the correlation
between the neuron activities increases. This leads to less distinct input encod-
ing, that in turn decreases the robustness against pixel erasement [17]. The
robustness in DCNNs is influenced by the learned feature maps as a result of
the back propagation mechanism and the network architecture. Further, a larger
size of the kernel filter improves the robustness. Whereas the number of feature
maps are not that relevant. The absence of inhibition in DCNNs suggest, that
not only the influence of inhibition on the neuronal activity improves robustness.
Rather, filter size and structure of the learned filters are important for a robust
behaviour.

Acknowledgement. This work was supported by the European Social Fund (ESF)
and the Freistaat Sachsen.

References

1. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)

2. Jones, J.P., Palmer, L.A.: The two-dimensional spatial structure of simple receptive
fields in cat striate cortex. J. Neurophysiol. 85, 187–211 (1987)

3. Beaulieu, C., Kisvarday, Z., Somogyi, P., Cynaer, M., Cowey, A.: Quantitative dis-
tribution of GABA-immunopositive and - immunonegative neurons and synapses
in the monkey striate cortex (Area 17). Cereb. Cortex 2, 295–309 (1992)

4. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature 381, 607–609 (1996)

5. LeCun, Y., Bottou, L., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

6. Priebe, N.J., Ferster, D.: Inhibition, Spike Threshold, and Stimulus Selectivity in
Primary Visual Cortex. Neuron 4, 482–497 (2008)

7. Clopath, C., Büsing, L., Vasilaki, E., Gerstner, W.: Connectivity reflects coding: a
model of voltage-based STDP with homeostasis. Nat. Neurosci. 13, 344–352 (2010)

8. Katzner, S., Busse, L., Carandini, M.: GABAA inhibition controls response gain
in visual cortex. J. Neurosci. 31, 5931–5941 (2011)

9. Vogels, T.P., Sprekeler, H., Zenke, F., Clopath, C., Gerstner, W.: Inhibitory plastic-
ity balances excitation and inhibition in sensory pathways and memory networks.
Science 334, 1569–1573 (2011)

262 R. Larisch et al.

10. Cireşan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. arXiv:1202.2745 (2012)

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

12. Zeiler, M.D.: ADADELTA: an adaptive learning rate method arXiv:1212.5701v1
(2012)

13. Potjans, T.C., Diesmann, M.: The cell-type specific cortical microcircuit: relating
structure and activity in a full-scale spiking network model. Cereb. Cortex 24,
785–806 (2014)

14. Bengio, Y., Lee, D.H., Bornschein, J., Lin, Z.: Towards biologically plausible deep
learning. arXiv:1703.08245 (2015)

15. Chollet, F., et al.: Keras (2015). https://keras.io. Accessed 23 Apr 2018
16. Diehl, P.U., Cook, M.: Unsupervised learning of digit recognition using spike-

timing-dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015)
17. Kermani Kolankeh, A., Teichmann, M., Hamker, F.H.: Competition improves

robustness against loss of information. Front. Comput. Neurosci. 9, 35 (2015)
18. Russakovsky, O., Denk, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,

Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large
scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)

19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2015)

20. Vitay, J., Dinkelbach, H.Ü., Hamker, F.H.: ANNarchy: a code generation approach
to neural simulations on parallel hardware. Front. Neuroinformatics 9, 19 (2015).
https://doi.org/10.3389/fninf.2015.00019

21. Cichy, R.M., Khosla, A., Pantazis, D., Torralba, A., Oliva, A.: Comparison of
deep neural networks to spatio-temporal cortical dynamics of human visual object
recognition reveals hierarchical correspondence. Sci. Rep. 6, 27755 (2016)

22. Kheradpisheh, S.R., Ganjtabesh, M., Thorpe, S.J., Masquelier, T.: STDP-
based spiking deep convolutional neural networks for object recognition.
arXiv:1611.01421 (2017)

23. Tavanaei, A., Maida, A.S.: Multi-layer unsupervised learning in a spiking convolu-
tional neural network. In: 2017 International Joint Conference on Neural Networks
(IJCNN), pp. 2023–2030 (2017)

24. Wen, H., Shi, J., Zhang, Y., Lu, K., Cao, J., Liu, Z.: Neural encoding and decoding
with deep learning for dynamic natural vision. Cereb. Cortex, 1–25 (2017)

http://arxiv.org/abs/1202.2745
http://arxiv.org/abs/1212.5701v1
http://arxiv.org/abs/1703.08245
https://keras.io
https://doi.org/10.3389/fninf.2015.00019
http://arxiv.org/abs/1611.01421

Sparsity Enables Data and Energy
Efficient Spiking Convolutional Neural

Networks

Varun Bhatt(B) and Udayan Ganguly

Department of Electrical Engineering, Indian Institute of Technology Bombay,
Mumbai, India

varun.bhatt@iitb.ac.in, udayan@ee.iitb.ac.in

Abstract. In recent days, deep learning has surpassed human perfor-
mance in image recognition tasks. A major issue with deep learning
systems is their reliance on large datasets for optimal performance.
When presented with a new task, generalizing from low amounts of data
becomes highly attractive. Research has shown that human visual cor-
tex might employ sparse coding to extract features from the images that
we see, leading to efficient usage of available data. To ensure good gen-
eralization and energy efficiency, we create a multi-layer spiking con-
volutional neural network which performs layer-wise sparse coding for
unsupervised feature extraction. It is applied on MNIST dataset where
it achieves 92.3% accuracy with just 500 data samples, which is 4× less
than what vanilla CNNs need for similar values, while reaching 98.1%
accuracy with full dataset. Only around 7000 spikes are used per image
(6× reduction in transferred bits per forward pass compared to CNNs)
implying high sparsity. Thus, we show that our algorithm ensures bet-
ter sparsity, leading to improved data and energy efficiency in learning,
which is essential for some real-world applications.

Keywords: Sparse coding · Unsupervised learning
Feature extraction · Spiking neural networks · Training data efficiency

1 Introduction

Deep learning [1] has been successfully used in recent times for computer vision,
speech recognition, natural language processing, and other similar tasks. Avail-
ability of large amounts of data and the processing power of GPUs are vital in
training a deep neural network (DNN). The need for high processing power to
enable performance has led to research on specialized hardware for deep learn-
ing and algorithms that can make use of those hardware. Spiking neural net-
works (SNNs) [2] are brain inspired networks which promise energy efficiency
and higher computational power compared to artificial neural networks. Infor-
mation is communicated using spikes and learning is done using local learning
rules.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 263–272, 2018.
https://doi.org/10.1007/978-3-030-01418-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_26&domain=pdf

264 V. Bhatt and U. Ganguly

In some real world applications like recognizing a new language, exploring
new environment, etc., large datasets are initially unavailable. Extracting useful
information with the little available data becomes a major metric when compar-
ing algorithms for these tasks. Without enough data, DNNs fail to generalize,
and hence, their performance on unseen data is bad. Gathering large amounts of
data is a difficult task and training using it puts a high penalty on energy con-
sumption. Attempts towards human-like learning, which is mostly unsupervised
and can generalize with a few examples are being made [3] to solve the data
availability issue. On the other hand, when large amount of data is available as
part of a standard dataset, performance of SNNs are not on par with state of
the art DNNs. Thus, a critical goal is to learn in an energy efficient manner with
small data while getting comparable results with larger datasets.

To achieve this goal, we use an improved sparse coding algorithm to train
a multi-layer SNN layer-wise, in an unsupervised manner. Motivated by visual
cortex of animals, sparse coding [4] can lead to efficient feature extraction as
shown in Fig. 1. When patches of input image is given as input, basis vectors are
learnt which can reconstruct the input. The learnt features are then passed to a
layer trained in a supervised fashion for classification, which allows quantification
of the quality of features extracted in terms of the accuracy obtained.

Fig. 1. Overview of sparse coding. A basis was learnt to efficiently reconstruct all
patches of the input image. An example of how a patch is sparsely reconstructed using
basis filters is shown.

In this paper, learning rules used to train the network are inspired by SAILnet
[5], which is shown to perform sparse coding in SNNs. We modify the SAILnet
learning rules to improve the quality of features extracted and promote higher
sparsity which, in turn, is seen to improve the prediction accuracy. We then
show that our network learns better than a vanilla CNN when small amount of
data is given, while using local learning rules and being more efficient in terms
of energy required for a forward pass. Such a performance is extremely relevant

Sparsity Enables Data and Energy Efficient SCNN 265

in applications like Internet of Things (IoT) or autonomous and mobile systems
where large, labeled datasets are unavailable and energy is limited.

2 Background and Related Work

Spiking neural networks are becoming popular due to their energy efficiency,
but they have not reached the accuracy levels given by DNNs. A possible reason
for this is the lack of a general learning rule similar to backpropagation. Spike-
timing-dependent plasticity (STDP) [6], training a DNN using backpropagation
and transferring the weights to a SNN, sparse coding [4] are a few methods that
have been tried to train SNNs.

Olshausen and Field [4] showed that sparse coding with an overcomplete
basis leads to learning of filters which are similar to those found in the visual
cortex of animals. Given a basis (dictionary), a class of algorithms called locally
competitive algorithms (LCA) can be used to find the optimal sparse coeffi-
cients [7]. Further, it was proved in [8] that a SNN with lateral inhibition solves
constrained LASSO problem and learns the optimal sparse coefficients. An algo-
rithm to learn the dictionary in SNNs, called Sparse And Independent Local
network (SAILnet) was proposed in [5]. Filters learnt using this algorithm were
similar in shape to those found in biology. SAILnet is used to train one layer of
convolutional filters in [9], which is extended to multiple layers in our work.

In comparison to our approach which involves rate coding, i.e., information
is coded as rate of spiking, there exists various other examples of sparse coding
using STDP - which is essentially temporal coding, i.e., information is coded in
the exact time of spiking. STDP with hard lateral inhibition is used in [10] for
unsupervised layer-wise training of a spiking CNN, followed by a SVM for classi-
fication. A similar architecture, with simplified STDP rule and a winner-takes-all
(WTA) mechanism, is used in [11] to train the CNN. A multi-layer perceptron
is used for classification. A fully unsupervised learning approach using SNNs is
given in [12] where training is done using STDP and accuracy is calculated based
on response of neurons. A non-local, gradient descent type learning rule is used
in [13] to train individual layers of a multi-layer SNN similar to auto-encoders.

All the above examples use temporal coding, while our approach has been
to use rate based learning rules to enable rate coding. Rate coding is easier to
implement in hardware and robust to noise since the exact temporal structure
of spiking is not relevant and only the rate of spiking matters. Certain sensory
and motor neurons are found to use rate coding, giving it a biological validation.

3 Network Architecture and Learning Rules

Our network architecture consists of multiple convolutional layers, each followed
by a max pooling layer. The last max pooling layer is followed by a fully con-
nected layer for classification. Each convolutional layer consists of spiking neu-
rons performing sparse coding as explained in Sect. 3.1. Figure 2 shows the archi-
tecture of our network for MNIST dataset which is chosen based on best accuracy

266 V. Bhatt and U. Ganguly

obtained during experiments. We use two convolutional layers, one with 12 filters
of size 5 × 5 and other with 64 filters of size 5× 5, both with stride of 1. Max
pooling filters following both the layers are of size 2× 2. Fully connected layer
is a single layer artificial neural network.

Fig. 2. Network architecture.

3.1 Spiking Neural Network

Our network uses spiking neurons in each convolutional layer. Since in a CNN,
weights are shared between receptive fields, consider a single patch of image as
the input and the SNN to be fully connected with number of outputs equal to
the number of convolutional filters for the purpose of this discussion. For the first
layer, current proportional to the intensity of input image is multiplied by the
forward weights (Q(1)) and passed as input to the neurons. For subsequent layers,
current proportional to the firing rate of neurons of previous layer is multiplied
by the corresponding forward weights (Q(l)) and passed as input to next layer.
The neurons integrate the current and fire a spike on reaching a threshold (θ).
When a neuron spikes, other output neurons are inhibited through a negative
current proportional to the inhibitory weights (W(l)).

Mathematically, each neuron is leaky integrate and fire, maintaining an inter-
nal variable V

(l)
i , which is updated as

V
(l)
i (t + 1) ← (1 − η)V (l)

i (t) + η(
∑

k

x
(l)
k Q

(l)
ki −

∑

j

a
(l)
j W

(l)
ij), (1)

where X(l) is the input to lth layer, a
(l)
j indicates whether neuron j spiked in

the previous time step, and η (set to 0.1 in our experiments) is a parameter
controlling the rate of decay of the internal variable. For each presentation of
the input, SNN is simulated for 50 time steps and the rate of spiking (n(l)

i) is
given by number of spikes divided by 50.

3.2 Convolution and Max Pooling

To perform the convolution operation, we divide the input into patches which
are to be passed through convolutional filters. Each patch is then passed as input

Sparsity Enables Data and Energy Efficient SCNN 267

to the SNN. Simulation of SNN is done and the firing rates are obtained which
are used as inputs to the next layer. SNN simulation corresponding to individual
patches can be performed in parallel since they are independent of each other.

Max pooling layer simply picks the neuron with highest firing rate in its
receptive field.

3.3 Training

Training is done layer-wise, i.e., a layer is fully trained and its weights are frozen
before training the next layer. While our algorithm allows training all layers
together, we found that the quality of features extracted was worse compared to
layer-wise training.

For training a layer, a SNN corresponding to that layer is first initialized
and convolution operation is performed. Based on the firing rates of the output
neurons, weights in SNN are updated according to the rules given in the next
subsection. The new weights are used while simulating SNN for future inputs.
This cycle of simulating SNN and updating weights is repeated for given number
of input presentations. Once enough images are presented, SNN weights are
frozen and firing rates corresponding to each patch of images are used as input
to the next layer.

When all convolutional layers are trained, the output of final max pooling
layer is used as input to a fully connected artificial neural network which is
trained to classify the dataset.

3.4 Learning Rules

The learning rules used to update weights of SNN are inspired by SAILnet [5]
and LCA [8] and lead to solving the sparse coding problem.

Sparse coding tries to represent given input using a set of overcomplete basis
vectors such that the components of the input in this new basis are sparse
(as close to zero as possible). Mathematically, it involves solving the following
optimization problem:

min
n
(j)
i ,Qi

m∑

j=1

[
||x(j) −

∑

i

n
(j)
i Qi||2 + λ

∑

i

S(n(j)
i)

]
, (2)

where x(j) represents the jth input sample, Qi are the basis vectors and n
(j)
i

are the coefficients corresponding to jth input sample which can be used to
reconstruct the input as x(j) =

∑
i n

(j)
i Qi. In our work, we have taken the

sparsity penalty S(.) to be the L1 norm.
Original SAILnet implementation updates the weights (Q, W) as well as

the firing threshold of neurons (θ) to solve the sparse coding problem. It uses
a hyperparameter p, which is kept equal to a low value, to represent the target
firing rate. We modify the SAILnet learning rules in our implementation as given
in Table 1.

268 V. Bhatt and U. Ganguly

We keep θ constant similar to LCA as opposed to updating it as given in
SAILnet. This allows simpler neurons without varying thresholds to be used in
the network. With θ constant, −p2 term in update for W does not make sense
and empirically, we found that our modified rules gave an improvement in final
accuracy given by the network.

Table 1. Comparison of SAILnet learning rules and our modification.

Original SAILnet Our modification

ΔQki = βni(xk − niQki) No modification

ΔWij = α(ninj − p2) ΔWij = αninj

Δθi = γ(ni − p) θ is constant

Updating Q ensures correct reconstruction of input while updating W
ensures that firing rates of neurons are independent. Due to lateral inhibition in
the architecture, W also leads to sparsity.

Gradient of the cost function with respect to Qki is ni(xk − ∑
j njQkj) but

it is shown in [5] that this gradient can be approximated as above to make the
learning rule local, without much loss in reconstruction error.

4 Experiments

This section describes the experimental setup, training method and the results
obtained. We use MNIST dataset to evaluate our network. MNIST dataset con-
sists of 60,000 training images and 10,000 test images of handwritten digits from
0 to 9. All images are grayscale and 28× 28 in size.

4.1 Comparison of Learning Rules Using Fully Connected SNN

First, we check if the modifications done to the SAILnet learning rule lead to
better performance of the network. To compare the quality of features extracted
with our learning rule and the SAILnet baseline, we created a SNN which took
whole MNIST images as the input and performed sparse coding using 25 output
neurons. A fully-connected SNN is used since the difference between convolu-
tional filters is hard to see visually.

Figures 3a and b show the filters learnt. Ideally, the filters should look like
different digits since they are used to reconstruct MNIST images. But in the
SAILnet case, there are many filters which are a mixture of digits and all digits
are not represented. With our modified learning rule, such mixed digits are
significantly reduced and the diversity of shapes in the filters is increased. We
believe it is because SAILnet updates θ such that the firing rates are equal to
a low value p, instead of ideally being close to zero, which drove some filters to
learn redundant features for simple datasets like MNIST. Sparsity also improved
with our modification, with an average of 65 spikes needed per image compared
to 85 spikes when trained with original SAILnet rules.

Sparsity Enables Data and Energy Efficient SCNN 269

(a) (b)

Fig. 3. Filters learnt by using (a) SAILnet rules and (b) our modification (Sect. 4.1).
All 10 digits are represented when using our modification as compared to 8 digits with
SAILnet. The marked filters are redundant since they are a mixture of multiple digits.

4.2 Comparing Learning with Varying Data Size

A random subset of data of size varying from 500 to 50000 is taken for training
and validation. 75% of it is used for training and the rest is kept for validation.
Both training and validation data are used to learn SNN weights in unsupervised
manner. Training data is further used to train the supervised layer while the
validation data is used to adjust the hyperparameters of the network. Accuracy
is reported on an unseen subset of size 10000 and compared against two baselines.
First baseline is randomly initializing the SNN, freezing the weights and training
only the supervised layer (MLP baseline). This baseline shows the usefulness of
features extracted by the convolutional layers. Second baseline is a vanilla CNN
with same architecture but trained using backpropagation (CNN baseline). In
all cases, no pre-processing or data augmentation is done.

For training data of size 500, α = 10, β = 0.1 are used for SNN weight updates
and θ = 0.005 is taken as the firing threshold of neurons. Batch size of 100 is
used and training is done for 1000 epochs. Number of epochs is scaled to keep the
effective amount of updates same as the data size increases. Supervised layer and
CNN baseline use Adam optimizer with learning rate 0.001 for backpropagation
with same batch size and epochs.

Accuracy. Figure 4 shows classification error as a function of training data size.
Our method reaches 92.3% accuracy with 500 samples, increasing to 95.6% with
3000 and 97.7% with 30000 samples respectively. With full dataset, the obtained
accuracy is 98.1%. It can be seen from the figure that our method performs
significantly better than baselines with small data while only becoming slightly
worse than CNN baseline as the data size increases.

Regenerative learning [13] outperforms CNN baseline but is worse compared
to our method below 10000 data samples. It also has an additional disadvantage
of needing a non-local learning rule and requiring the internal variable of the

270 V. Bhatt and U. Ganguly

neuron in weight updates. [9–11] report an accuracy of 98.36%, 98.4%, 98.49%
respectively. Our method reaches close to those values.

Fig. 4. Classification error vs data size for MNIST data set. SNN is not trained for
MLP baseline. Backpropagation is used to train CNN in CNN baseline.

Sparsity. The learnt SNN weights promote sparsity and independence in the
firing rate of neurons. Neurons in all layers combined, spike only 7000 number of
times per image on an average. Lower number of spikes denotes efficient infor-
mation transfer and also low energy usage if this is implemented in hardware.
Figure 5a shows the distribution of firing rates of neurons. It can be observed
that most neurons fire less than twice during a SNN simulation. Figures 5b and
c show the average correlation between firing rates of neurons for first and sec-
ond layer respectively. Near zero values of off-diagonal elements show that firing
rates are almost independent. The mean reconstruction error in the first layer is
2.5 compared to 75.6 before training SNN weights.

We hypothesize that sparsity plays a major role in being able to generalize
with little data. Since inhibitory weights are indirectly controlling the amount of
sparsity and α controls the amount of increase in inhibitory weights, reducing α
reduces sparsity. With 500 data samples, the network is trained with various val-
ues of α, keeping everything else constant. Figure 6 shows accuracy and average
spikes per image as a function of α and it can be observed that lower sparsity
indeed reduces the accuracy of the network.

To perform a rough estimate of the advantage of spiking architecture and
sparsity for energy efficiency, we consider the number of bits that are needed to
during forward pass of an image. Since a spike can be represented using 1 bit, our
network uses an average of 7000 bits per image. Vanilla CNN baseline that we
use needs to transmit around 1300 non-zero floating point numbers per image,

Sparsity Enables Data and Energy Efficient SCNN 271

Fig. 5. (a) Distribution of firing rates corresponding to all images. Most of the neurons
spike at most once per image presentation. (b), (c) Average correlation between firing
rates of neurons for first and second layer respectively. Off-diagonal elements are close
to zero showing independence in firing rates.

Fig. 6. Classification error and average spikes per image vs α. Lower α implies lower
inhibition and hence, lower sparsity which is leading to more errors in classification.

translating to nearly 42000 bits which is 6 times worse than the performance of
our network.

5 Discussions

Data and spike efficiency of our algorithm directly translates to energy efficiency
when implemented in hardware. Examples of custom hardware for training SNNs
are available in literature. Implementation of energy efficient algorithms in such
custom SNN hardware is a promising approach to mobile, autonomous systems
and IoT applications. Training and inference in such systems can be further
optimized if the classification layer is also spiking based and implemented in
similar hardware.

272 V. Bhatt and U. Ganguly

6 Conclusions

In this paper, we present a method to train multi-layer spiking convolutional
neural networks in a layer-wise fashion using sparse coding. We modify the
learning rules given by SAILnet to improve the quality of features extracted.
These learning rules, combined with the training method, are observed to give
better accuracy than vanilla CNN architecture when using small data. 92.3%
accuracy is achieved with just 500 MNIST data samples, which is 4x less than
what vanilla CNNs need for similar values. The network also efficiently trans-
fers information between layers, using only 7000 spikes on average to represent
a MNIST image, a 6x reduction in number of bits compared to CNN baseline.
Such data and spike efficient algorithm will enable energy efficiency for mobile,
autonomous systems and IoT applications.

References

1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436 (2015)
2. Maass, W.: Networks of spiking neurons: the third generation of neural network

models. Neural Netw. 10(9), 1659–1671 (1997)
3. Tenenbaum, J.B., Kemp, C., Griffiths, T.L., Goodman, N.D.: How to grow a mind:

statistics, structure, and abstraction. Science 331(6022), 1279–1285 (2011)
4. Olshausen, B.A., Field, D.J.: Sparse coding with an overcomplete basis set: a strat-

egy employed by V1? Vis. Res. 37(23), 3311–3325 (1997)
5. Zylberberg, J., Murphy, J.T., DeWeese, M.R.: A sparse coding model with synap-

tically local plasticity and spiking neurons can account for the diverse shapes of
V1 simple cell receptive fields. PLoS Comput. Biol. 7(10), 1–12 (2011)

6. Bi, G.Q., Poo, M.M.: Synaptic modifications in cultured hippocampal neurons:
dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neu-
rosci. 18(24), 10464–10472 (1998)

7. Rozell, C., Johnson, D., Baraniuk, R., Olshausen, B.: Locally competitive algo-
rithms for sparse approximation. In: 2007 IEEE International Conference on Image
Processing, vol. 4, pp. IV-169–IV-172 (2007)

8. Tang, P.T.P., Lin, T., Davies, M.: Sparse coding by spiking neural networks: con-
vergence theory and computational results. CoRR abs/1705.05475 (2017)

9. Tavanaei, A., Maida, A.S.: Multi-layer unsupervised learning in a spiking convolu-
tional neural network. In: 2017 International Joint Conference on Neural Networks
(IJCNN), pp. 2023–2030 (2017)

10. Kheradpisheh, S.R., Ganjtabesh, M., Thorpe, S.J., Masquelier, T.: STDP-based
spiking deep neural networks for object recognition. CoRR abs/1611.01421 (2016)

11. Ferré, P., Mamalet, F., Thorpe, S.J.: Unsupervised feature learning with winner-
takes-all based STDP. Front. Comput. Neurosci. 12, 24 (2018)

12. Diehl, P., Cook, M.: Unsupervised learning of digit recognition using spike-timing-
dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015)

13. Panda, P., Roy, K.: Unsupervised regenerative learning of hierarchical features in
spiking deep networks for object recognition. CoRR abs/1602.01510 (2016)

Design of Spiking Rate Coded Logic Gates
for C. elegans Inspired Contour Tracking

Shashwat Shukla(&), Sangya Dutta, and Udayan Ganguly

Indian Institute of Technology Bombay, Mumbai, India
shashwat.shukla@iitb.ac.in

Abstract. Bio-inspired energy efficient control is a frontier for autonomous
navigation and robotics. Binary input-output neuronal logic gates are demon-
strated in literature – while analog input-output logic gates are needed for
continuous analog real-world control. In this paper, we design logic gates such
as AND, OR and XOR using networks of Leaky Integrate-and-Fire neurons with
analog rate (frequency) coded inputs and output, where refractory period is
shown to be a critical knob for neuronal design. To demonstrate our design
method, we present contour tracking inspired by the chemotaxis network of the
worm C. elegans and demonstrate for the first time an end-to-end Spiking
Neural Network (SNN) solution. First, we demonstrate contour tracking with an
average deviation equal to literature with non-neuronal logic gates. Second, 2x
improvement in tracking accuracy is enabled by implementing latency reduction
leading to state of the art performance with an average deviation of 0.55% from
the set-point. Third, a new feature of local extrema escape is demonstrated with
an analog XOR gate, which uses only 5 neurons – better than binary logic
neuronal circuits. The XOR gate demonstrates the universality of our logic
scheme. Finally, we demonstrate the hardware feasibility of our network based
on experimental results on 32 nm Silicon-on-Insulator (SOI) based artificial
neurons with tunable refractory periods. Thus, we present a general framework
of analog neuronal control logic along with the feasibility of their implemen-
tation in mature SOI technology platform for autonomous SNN navigation
controller hardware.

Keywords: Spiking Neural Network � Motor control
Neuromorphic computing

1 Introduction

Spiking Neural Networks (SNNs) are third generation Artificial Neural Networks that
attempt to model neurons as computing units with underlying temporal dynamics that
resembles the spiking nature of biological neurons. While SNNs have been used to
solve a variety of problems in classification and regression, an equally intriguing aspect
is the implementation of control in a natural setting that could serve the dual purpose of
(i) demystifying complex biological behavior and (ii) inspiring efficient robotics
applications. Chemotaxis in Caenorhabditis elegans (C. elegans) is an example of such
a biological behaviour which requires control. C. elegans is a free living nematode,

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 273–283, 2018.
https://doi.org/10.1007/978-3-030-01418-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_27&domain=pdf
https://doi.org/10.1007/978-3-030-01418-6_27

which can sense a large number of chemicals including NaCl. This ability allows these
worms to find and subsequently move along a set point in the chemical concentration
space so as to locate food sources. Typically, the sensory neurons ASEL and ASER
provide chemical gradient information [4], and this information is used by interneurons
in the worm to decide the direction to subsequently move along to reach the chemical
set-point. The output of this computation is fed to motor neurons, which actuate their
motion. Santurkar et al. [3] proposed a SNN model for chemical contour tracking
inspired by C. elegans. They demonstrate the superiority of spiking architectures over
non-spiking models and their tolerance to noise using the biologically realistic model of
sensory neurons proposed in [4]. However, the inter-neuronal operations required to
drive motor neurons were computed without using neural circuits. Instead, an artificial
mathematical computation was used. Hence the SNN is not performing integrated, end-
to-end control of all three stages of computation i.e. (i) sensory neuron (ii) interneuron
(iii) motor neuron levels. Such external control is neither biologically realistic nor
energy-area efficient. Further, more sophisticated/realistic behaviour, such as escaping
a local extrema, without which the worm fails to reach the desired concentration over
arbitrary concentration landscapes, has not been demonstrated in neuronal circuits.

Existing SNN based logic gates [11–14] encode binary logic values using fixed
spiking frequencies (low/high). But, the output spiking frequency of the gate should
vary proportionately to one or more input spiking frequencies so that the worm turns in
proportion to the urgency of sensory signals. This motivates the design of analog rate
coded logic gates.

In this paper, first, we implement analog rate-coded logic gates (AND, OR, XOR)
by designing neuronal responses using refractory periods. Second, we integrate AND
and OR with the sensory and motor neurons to demonstrate end-to-end control in the
chemotaxis network. Third, we incorporate an additional sub-network using the XOR
gate to escape a local extrema. The XOR, being a universal gate, also enables random
logic circuit implementation. Our design enables a reduced number of neurons for logic
gates which leads to lower response latency (measured between sensory input and
motor neuron output), critical for many control applications. Fourth, we modify the
response of sensory neurons proposed in [3] to reduce response latency to enable
significantly improved tracking compared to state-of-the-art. Finally, a hardware neu-
ron with configurable refractory period is demonstrated on a highly matured 32 nm
silicon-on-insulator CMOS technology.

2 Network Architecture

Figure 1 shows the proposed SNN architecture for chemotaxis in C. elegans. All the
neurons in our network are Leaky Integrate and Fire neurons. The following sections
will discuss the functional role of all the neurons used in this network.

274 S. Shukla et al.

2.1 Turning Left and Right: The AND Sub-network

2.1.1 Sensory Neurons
As shown in Fig. 1, the neurons N1 and N2 are threshold detectors. N1 fires when the
current concentration (C) is greater than the set-point CT i.e. C[CT , while N2 fires
when C\CT . A hard-threshold (ideally a step-function) is compared to a soft-threshold
based N1 in Fig. 2. N3 and N4 are gradient (dC=dt) detectors, firing respectively for
positive (dC=dt[0) and negative (dC=dt\0) changes in concentration. The input to
all four sensory neurons, at each time step (t), is the concentration at the current
location of the worm. The equations for the ionic currents that implement the required
responses have been delegated to the appendix.

2.1.2 Motor Neurons
The target for the worm is to reach the desired concentration set-point CT . If at a
particular time instant, the worm detects dC=dt[0 (i.e. N3 spikes) and C[CT (i.e. N1

spikes), the worm infers that it is moving away from CT and hence tries to turn around.
In this case the worm turns right by 3° and moves forward at a velocity of 0.01 mm/s
with the rate of turning being proportional to dC=dt. The motor neuron N5 encodes this
command. Hence, the spiking frequency of N5 has to be the output of an AND
operation over the spiking frequencies of N1 and N3. i.e. N5 = AND(N1, N3). The bold
face is used to denote spiking frequency of the corresponding neuron. Similarly, the
motor neuron N6 spikes if dC=dt\0 (i.e. N4 spikes) and C\CT (i.e. N2 spikes). In this
case, the worm turns left by 3° at a velocity of 0.01 mm/s and the motor neuron N6

encodes this command i.e. N6 = AND(N2, N4). When dC=dt[0 and C\CT or
dC=dt\0 and C[CT , the worm infers that it is moving towards CT and hence keeps
moving forward at a constant velocity without turning.

2.1.3 Design Principles for the AND Sub-network
Under the rate-coded approximation (which implies that injected current is assumed to
be proportional to the spiking frequency), a neuron fires if the sum of the input spiking

Fig. 1. Block diagram of the proposed SNN for contour tracking. N1; N2; N3 and N4 are sensory
neurons, receiving input from the concentration sensor. N5; N6; N7; N12 are motor neurons.
N8; N9; N10; N11 are the interneurons used to implement the XOR sub-network. The spiking
frequency of N12 is the XOR of the spiking frequencies of N5 and N6.

Design of Spiking Rate Coded Logic Gates for C. elegans 275

frequencies (fi) multiplied by the corresponding synaptic weights (wi) is greater than fth.
Hence the general firing condition for a neuron with k pre-synaptic neurons is:

Xk

i¼1

wifi [fth ð1Þ

Without a refractory period, the spiking frequency of N3 varies linearly with the
observed gradient. This gradient can be very large in some parts of the environment,
leading to very high spiking frequency, which in turn can make N5 spike by itself even
if N1 is not spiking. The saturation in the responses of N1 and N3 ensures that N5 only
fires when both N1 and N3 fire and hence acts as an AND gate. We choose w1 and w3

such that: w1f1;max ¼ w3f3;max ¼ f�th , where f1;max; f3;max are respectively the maximum
spiking frequencies of N1 and N3, and f�th is some value close to, but smaller than fth
We choose f�th to be close to fth so that even a small value of f3 will lead to N5 spiking,
hence ensuring the control circuit’s sensitivity to very small gradients as well.

The responses of the threshold detectors (N1 and N2) were taken as step functions in
[3] with the transition at the desired set-point. This discontinuous response is softened
to a sigmoid (as shown in Fig. 2(b)) by introducing a refractory period (chosen using
the same logic as for N3). The onset of the sigmoidal response is chosen to be before
the set-point, allowing the worm to turn a little before it has reached the set-point. This
enables latency reduction and closer tracking of the set-point. Identical reasoning holds
for the N2, N4 and N6 sub-network.

Fig. 2. (a) A typical LIF neuron (blue dashed line) has almost a rectified linear unit (ReLU)
behaviour where the slope decreases with the membrane time constant sRC of the LIF neuron.
Adding a refractory period sref

� �
limits maximum frequency (fmax) to 1=sref . (b) N1 neuron f Cð Þ

behaviour where it fires when C exceeds CT . Softer threshold initiates spiking before the hard-
threshold. (c) N3 neuron has f dC=dtð Þ behaviour which has a spike frequency proportional to the
dC=dt[0; Both N1 and N3 have an fmax\fcrit such that neither can individually cause N5 to
spike but they need to fire together to cause N5 to fire to enable the analog AND operation where
N5 fires proportionally to N3 only if N1 also fires. Otherwise, N5 does not fire. (Color figure
online)

276 S. Shukla et al.

2.2 Random Walk

When the worm is on flat terrain and hence no gradient is detected (dC=dt � 0), the
worm explores its surroundings randomly. This random search is initiated by motor
neuron N7. The spiking of N7 causes the worm to move at an increased velocity of
0.3 mm/s and to randomly turn by an angle uniformly distributed in [−22.5°, 22.5°].
This strategy allows for rapid exploration of a local space, with N7 continuing to fire
until a gradient is detected.

2.3 Escaping Local Extrema: The XOR Sub-network

When the worm has found, and is tracking the set-point, N5 and N6 fire alternately as
the worm keeps swerving left and right. However if only N5 or only N6 fires exclu-
sively, then the worm is only turning left or right and hence going around in circles.
Such a scenario is described in Fig. 3. If the worm starts anywhere in the valley, it will
not be able to get out, as every time it moves up towards the rim of the valley (i.e.
dC=dt[0), N3 fires with continuous firing of N1 as C[CT at every point. As a
consequence, N5 will fire, making the worm turn back towards the basin. The worm
then moves straight and now climbs up the other side and this process repeats.
A second case where the worm would again be stuck is the scenario obtained when
Fig. 3 is inverted on its head i.e. a small peak surrounded by a valley.

Hence to solve this problem of getting stuck close to a local extrema, the XOR sub
network is developed whose output is N12. N12 is supposed to fire, if only N5 or only N6

is found to spike over some time period, i.e. N12 = XOR(N5, N6). When N12 fires, the
worm moves straight for 10 s, without turning, at a velocity of 0.5 mm/s and then
resumes normal operation, having escaped the area where it was stuck. Such behavior
has been observed in biology as well [5].

Fig. 3. Panels depicting the worm stuck in a valley at four consecutive time steps, in the absence
of the XOR subnetwork.

Design of Spiking Rate Coded Logic Gates for C. elegans 277

2.3.1 Design Principles for the XOR Sub-network
To enable XOR function, only the spiking events at N5 or N6 need to be detected. For
such operation, we introduce a large refractory period of 10 s in the interneurons N8

and N9 and also set a very low voltage threshold for both these neurons, such that a
single spike from N5 is enough to make N8 fire. Once N8 fires, it will remain unre-
sponsive for 10 s due to the refractory period. N8 hence acts as a timed event detector.
The same description holds for N6 and N9.

If we consider a long enough time period (*10 s) for our control problem, and N8

fires once before and once after this period, without any spike from N9, we infer that
only N5 has been firing for a significant amount of time. Hence, the worm needs to
escape from this region. Similarly, if N9 fired once before and once after a period of
10 s with N8 not firing in between, the worm must escape this area.

We design N10 such that it fires once for every two times that N8 fires. Note that if
N9 fires intermittently in the refractory period of N8, then N10 will not fire due to the
inhibitory connection linking N9 to N10. Interchanging the roles of N8 and N9 yields the
behavior of N11.

It is important to note that the current injected into N10 and N11 by N8 and N9 decay
at a time scale much faster than the refractory period. Thus we chose very small values
for the membrane conductance of N8 and N9 i.e. these two neurons are not very leaky
and effectively function as integrators over this time-scale. Finally, N12 has a low
spiking threshold, and functions as an OR gate. It fires when either N10 or N11 fires, i.e.
N12 = OR(N10, N11). The firing of N12 causes the worm to move straight for 10 s,
without turning. N5, N6 and N7 are inhibited from firing during this 10 s period by
injecting them with a large inhibitory EPSP current with timescale of the order of 10 s.

3 Results: Worm Dynamics

Our simulatedworm is placed in a chemotaxis assay of dimensions 10 cm � 10 cm,with
some arbitrary concentration distribution of the chemical NaCl. Figure 4 demonstrates
the AND operation with the concentration seen by the worm and corresponding spiking
patterns for N1, N3 and N5. In Fig. 4,N1 uses a hard threshold to fire for C[CT (Fig. 4
(b)) and N3 fires for C[CT (Fig. 4(c)) which produces an AND behaviour at N5 with
significant latency (Fig. 4(d)). Figure 5 shows the behavior of our simulated worm for
CT = 54 mM. The wormmoves about randomly at first, and then follows a gradient until
it reaches the set-point and then continues to closely track the set-point, CT . We observe
that the worm swerves left and right, as it is slightly overshoots the tracking concentra-
tion, corrects it course and this process repeats. The corresponding concentration seen by
the worm, shown in Fig. 6 shows an average 0.82% (absolute) deviation from set-point
(as a fraction of the range of concentration in this space).

In Fig. 7, N1 uses a pre-emptive soft threshold to fire earlier for C[CT (Fig. 7(b))
and N3 fires for C[CT (Fig. 7c)). This produces an AND behaviour at N5 with reduced
latency (Fig. 7(d)). Figure 9 shows the concentration seen by the worm as it traced the
trajectory in Fig. 8 to show 0.55% tracking accuracy, which is a 1.5� improvement over
that in Fig. 6 due to the pre-emptive soft threshold. Figure 10 shows a simulated scenario
where the worm gets stuck in a local minimum and is unable to escape. With the XOR
sub-network added to our SNN, it can be seen that the worm can successfully come out of
the concentration valley and starts tracking the set point as shown in Fig. 11.

278 S. Shukla et al.

Fig. 4. (a) Concentration
vs time (b) Response of
N1 for C[CT with hard
threshold and (c) N3 for
dC/dt > 0 which produces
(d) an AND function res-
ponse at N5 with a sign-
ificant latency (red arrow).
(Color figure online)

Fig. 5. Contour tracking with
hard thresholding, CT = 54 mM.

Fig. 6. Concentration track-
ing shows 0.82% deviation
about set point due to hard-
thresholding response of N1.

Fig. 7. (a) Concentration
vs time (b) Response of
N1 with soft threshold
f o r C[CT and (c) N3

for dC/dt > 0 which pro-
duces (d) an AND func-
tion response at N5 with
a reduced latency (red
arrow). (Color figure
online)

Fig. 8. Improved contour track-
ing with soft thresholding,
CT = 54 mM.

Fig. 9. Concentration track-
ing shows 0.55% deviation
which is a 1:5X improvement
due to softened response
of N1.

Design of Spiking Rate Coded Logic Gates for C. elegans 279

4 Benchmarking

Table 1 benchmarks our network with previously reported contour tracking algorithms.
We achieve state-of-the-art performance, with lower spiking frequencies, making our
network more energy efficient. Table 2 shows the efficiency of our XOR gate imple-
mentation in terms of number of neurons used. It also works in an analog fashion
unlike other reported SNN based gates, which is essential for our network.

5 Hardware Feasibility

Hardware realization of such a SNN calls for both the feasibility as well as des-
ignability of the neuronal response. Recently our group has proposed and experi-
mentally demonstrated a SOI MOSFET based LIF neuron [2]. The neuronal
functionality has been achieved by using the SOI transistor’s intrinsic carrier dynamics.
The response of the SOI neuron shows high sensitivity with MHz order frequency
range.

Figure 12a shows the TEM image of the fabricated SOI neuron. Figure 12b
shows the response curves of such SOI neuron for different refractory periods (tref).

Fig. 10. Worm stuck in a valley (XOR sub-
network is disabled).

Fig. 11. The part of the trajectory marked in
red is traversed when N12 fires, allowing the
worm to escape and then resume tracking the
CT . (Color figure online)

Table 1. Benchmarks for contour tracking
algorithm

Table 2. Benchmarks for design of the
XOR gate

280 S. Shukla et al.

Without any refractory period, the response keeps increasing with input stimuli.
Addition of tref limits the firing rate and the frequency saturates at a particular value
like biological neurons. Such a tunable response provides freedom in SNN design for
various applications and also aids the scope of hardware implementation. Figure 12c
shows the block diagram for the implementation of refractory period in SOI neuron.
The proposed electronic neuron is highly energy (35 pJ/spike) efficient and con-
sumes lesser area (*1700 F2 at 32 nm technology node) compared to state of the art
CMOS neurons.

6 Conclusions

A complete end-to-end SNN based control circuit is proposed for chemotaxis in C.
elegans. To implement this, analog rate-coded AND, OR, and XOR logic gates based
inter-neuronal circuits are proposed. We implemented these gates using a small number
of neurons, allowing for energy and area efficiency as well as reduced network latency,
which is crucial for many robotics applications. The network latency was further
reduced by modifying the response of the threshold detecting sensory neurons. We
ensure correct operation of the network over arbitrary concentration ranges and choose
parameters of the network using an analytic approach designed using the rate-coded
approximation. The neuronal behaviors required to implement the neural logic gates are
achieved by LIF neurons with configurable refractory periods. State-of-the-art accuracy
of tracking is demonstrated (<0.6% deviation from set-point). To address the problem
of being stuck around a local extrema en route to a set-point, we designed a novel XOR
based sub-network that presents a biologically relevant solution. As XOR is a universal
gate, this enables the implementation of any arbitrary logical functions in SNN.

0.2 0.3 0.4 0.50

5

10

15

20

25

Input (V)
Fr

eq
ue

nc
y

(M
H

z)

tref = 0 ns
tref = 50 ns
tref = 100 ns

(a) (b) (c)

Fig. 12. (a) TEM image of the PD SOI MOSFET fabricated using 32 nm SOI technology [2].
(b) Experimental frequency vs. input curve. Without tref , the response increases sharply with
input, whereas adding tref limits the frequency range. (c) Block diagram demonstrating the
implementation of refractory period in SOI neuron. The neuron generates current output which is
fed to the threshold detector. At threshold, the driver circuit elicits a spike enabling the timer
circuit. The timer circuit deactivates the neuron during the refractory period. The reset circuit
initializes the neuron. The expected transient output is shown at the output of three circuit block.

Design of Spiking Rate Coded Logic Gates for C. elegans 281

Further, we show hardware implementation of such neurons on advanced 32 nm SOI
platform.

Acknowledgement. The authors wish to acknowledge Nano Mission & MeitY, Government of
India, for providing funding for this work.

Appendix: LIF Model and Ionic Currents

All the neurons used in our model are LIF neurons with refractory periods [17]. N1, N2,
N3 and N4 have ionic channels that inject input current Ie(t). The specific nature of Ie(t)
is what allows them to functions as threshold and gradient detectors. The ionic currents
injected into N1 and N2 respectively are Ie1(t) and Ie2(t), given as:

Ie;1ðtÞ ¼ Ie;0maxð0; C � CT � dÞ; Ie;2ðtÞ ¼ Ie;0maxð0; CT þ d� CÞ ð2Þ

The d governs the degree of preemptive response of the threshold detectors. A set
of equations that define Ie3(t) and Ie4(t) was proposed in [4] and used in [3]. We also use
the same equations for the gradient detectors N3 and N4. These equations along with a
detailed explanation can be found in Sect. II of [3].

References

1. Maas, W.: Networks of spiking neurons: the third generation of neural network models.
Neural Netw. 10(9), 1659–1671 (1997)

2. Dutta, S., et al.: Leaky integrate and fire neuron by charge-discharge dynamics in floating-
body MOSFET. Sci. Rep. 7, 8257 (2017)

3. Santurkar, S., Rajendran, B.: C. elegans chemotaxis inspired neuromorphic circuit for
contour tracking and obstacle avoidance. In: Neural Networks, IJCNN (2015)

4. Appleby, P.A.: A model of chemotaxis and associative learning in C. elegans. Biol. Cybern.
106(6–7), 373–387 (2012)

5. Gray, J.M., Hill, J.J., Bargmann, C.I.: A circuit for navigation in Caenorhabditis elegans.
Proc. Natl. Acad. Sci. U. S. A. 102(9), 3184–3191 (2005)

6. Galarreta, M., Hestrin, S.: Fast spiking cells and the balance of excitation and inhibition in
the neocortex. In: Hensch, T.K., Fagiolini, M. (eds.) Excitatory-Inhibitory Balance. Springer,
Boston (2003). https://doi.org/10.1007/978-1-4615-0039-1_11

7. Kato, S., et al.: Temporal responses of C. elegans chemosensory neurons are preserved in
behavioral dynamics. Neuron 81(3), 616–628 (2014)

8. Liu, Q., Hollopeter, G., Jorgensen, E.M.: Graded synaptic transmission at the Caenorhabditis
elegans neuromuscular junction. Proc. Natl. Acad. Sci. U. S. A. 106, 10823–10828 (2009)

9. Goldental, A., et al.: A computational paradigm for dynamic logic-gates in neuronal activity.
Front. Comput. Neurosci. 8, 52 (2014)

10. Yang, J., Yang, W., Wu, W.: A novel spiking perceptron that can solve XOR problem.
ICS AS CR (2011)

11. Reljan-Delaney, M., Wall, J.: Solving the linearly inseparable XOR problem with spiking
neural networks. https://doi.org/10.1109/sai.2017.8252173

282 S. Shukla et al.

http://dx.doi.org/10.1007/978-1-4615-0039-1_11
http://dx.doi.org/10.1109/sai.2017.8252173

12. Berger, D.L., de Arcangelis, L., Herrmann, H.J.: Learning by localized plastic adaptation in
recurrent neural networks (2016)

13. Ferrari, S., et al.: Biologically realizable reward-modulated Hebbian training for spiking
neural networks. In: Neural Networks, IJCNN (2008)

14. Wade, J., et al.: A biologically inspired training algorithm for spiking neural networks.
Dissertation. University of Ulster (2010)

15. Kunitomo, H., et al.: Concentration memory-dependent synaptic plasticity of a taste circuit
regulates salt concentration chemotaxis in Caenorhabditis elegans. Nat. Commun. 4, 2210
(2013)

16. Suzuki, H., et al.: Functional asymmetry in Caenorhabditis elegans taste neurons and its
computational role in chemotaxis. Nature 454(7200), 114 (2008)

17. Naud, R., Gerstner, W.: The performance (and limits) of simple neuron models:
generalizations of the leaky integrate-and-fire model. In: Le Novère, N. (ed.) Computational
Systems Neurobiology. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-007-
3858-4_6

Design of Spiking Rate Coded Logic Gates for C. elegans 283

http://dx.doi.org/10.1007/978-94-007-3858-4_6
http://dx.doi.org/10.1007/978-94-007-3858-4_6

Gating Sensory Noise in a Spiking
Subtractive LSTM

Isabella Pozzi(B), Roeland Nusselder, Davide Zambrano, and Sander Bohté

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
isabella.pozzi@cwi.nl

Abstract. Spiking neural networks are being investigated both as bio-
logically plausible models of neural computation and also as a potentially
more efficient type of neural network. Recurrent neural networks in the
form of networks of gating memory cells have been central in state-of-
the-art solutions in problem domains that involve sequence recognition or
generation. Here, we design an analog Long Short-Term Memory (LSTM)
cell where its neurons can be substituted with efficient spiking neurons,
where we use subtractive gating (following the subLSTM in [1]) instead of
multiplicative gating. Subtractive gating allows for a less sensitive gating
mechanism, critical when using spiking neurons. By using fast adapting
spiking neurons with a smoothed Rectified Linear Unit (ReLU)-like effec-
tive activation function, we show that then an accurate conversion from
an analog subLSTM to a continuous-time spiking subLSTM is possible.
This architecture results in memory networks that compute very effi-
ciently, with low average firing rates comparable to those in biological
neurons, while operating in continuous time.

Keywords: Spiking neurons · LSTM · Recurrent neural networks
Supervised learning · Reinforcement learning

1 Introduction

With the manifold success of biologically inspired deep neural networks, networks
of spiking neurons are being investigated as potential models for computational
and energy efficiency. Spiking neural networks mimic the pulse-based communi-
cation in biological neurons: in brains, neurons spike only sparingly – on average
1–5 spikes per second [2]. A number of successful convolutional neural networks
based on spiking neurons have been reported [3–7], with varying degrees of bio-
logical plausibility and efficiency. Still, while spiking neural networks have thus
been applied successfully to solve image-recognition tasks, many deep learning
algorithms use recurrent neural networks (RNNs), especially variants of Long
Short-Term Memory (LSTM) layers [8] to implement dynamic kinds of memory.
Compared to convolutional neural networks, LSTMs use memory cells to store
select information and various gates to direct the flow of information in and out
of the memory cells. The state-changes in such networks are iterative and lack an
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 284–293, 2018.
https://doi.org/10.1007/978-3-030-01418-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_28&domain=pdf

Spike-Based SubLSTM 285

intrinsic notion of continuous time. To translate LSTMs-like networks into net-
works, such a notion of time has to be included. At present, the only spike-based
version of LSTM has been realized for the IBM TrueNorth platform [9]: this work
proposes an approximate LSTM specifically for TrueNorth’s constrains by using
a store-and-release mechanism synchronized across its modules, effectively still
iterative and synchronized model of computation; Intel recently introduced the
first semi-commercial spike-based hardware [10], obviating the need for efficient
and effective spiking neural network algorithms. Here, we propose a biologically
plausible spiking LSTM network based on an asynchronous approach. While a
continuous time model in LSTMs can be implemented by taking small, finite
time-steps, a key problem in spiking LSTM models is the multiplicative nature
of the gating mechanism: such gating requires a graded response from spiking
neurons to create a gradient for learning the proper degree of gating. We found
that multiplicative gating also needs to be precise, in that noisy gating signal
disturbed the learning of memory tasks. We exploit subtractive gating, the “sub-
LSTM” [1], to use spiking neurons that effectively compute a fast ReLU function,
enabling a spiking subLSTM network to operate in continuous time. We con-
struct a spiking subLSTM network and successfully demonstrate the efficacy of
this approach on two standard machine learning tasks: we show that it is indeed
possible to use standard analog neurons for the training phase of the modified
subLSTM and accurately convert the networks into spiking versions, such that
during inference phase spike-based computation is sparse (comparable to active
biological neurons) and efficient.

2 Model

To construct a spiking subLSTM network, we first describe the Adaptive Spik-
ing Neurons we aim to use, and we show how we can approximate their effective
corresponding activation function. We then show how an LSTM network com-
prised of a spiking memory cell and a spike-driven input-gate can be constructed
and we discuss how analog versions of this subLSTM network are trained and
converted to spiking networks.

Adaptive Spiking Neuron. The requirements of the network architectures
guide us in the demands put on spiking neuron models. Here, we use Adaptive
Spiking Neurons (ASNs) as described in [11]. ASNs are a variant of an adapting
Leaky Integrate & Fire (LIF) neuron model that includes fast adaptation to the
dynamic range of input signals. The behavior of the ASN is determined by the
following equations:

incoming postsynaptic current: I(t) =
∑

i

∑

ti
s

wiϑ(tis) exp
(

tis − t

τβ

)
, (1)

input signal: S(t) = (φ ∗ I)(t), (2)

286 I. Pozzi et al.

threshold: ϑ(t) = ϑ0 +
∑

ts

mfϑ(ts) exp
(

ts − t

τγ

)
, (3)

internal state: Ŝ(t) =
∑

ts

ϑ(ts) exp
(

ts − t

τη

)
, (4)

where wi is the weight (synaptic strength) of the neuron’s incoming connection;
tis < t denote the spike times of neuron i, and ts < t denote the spike times
of the neuron itself; φ(t) is an exponential smoothing filter with a short time
constant τφ; ϑ0 is the resting threshold; mf is a variable controlling the speed of
spike-rate adaptation; τβ , τγ , τη are the time constants that determine the rate
of decay of I(t), ϑ(t) and Ŝ(t) respectively. The ASN emits spikes following a
firing condition defined as S(t) − Ŝ(t) > ϑ(t)

2 , and, instead of sending binary
spikes, the ASNs here communicate with “analog” spikes of which the height is
equal to the value of the threshold at the time of firing; note that this model
speculatively implies a tight coupling between spike-triggered adaptation and
short-term synaptic plasticity (see [12] and [11] for more details).

Activation Function of the Adaptive Analog Neuron. In order to create
a network of ASNs that performs correctly on typical LSTM tasks, our approach
is to train a network of Adaptive Analog Neurons (AANs) and then convert the
resulting analog network into a spiking one, similar to [5,6,11]. We define the
activation function of the AANs as the function that maps the input signal S
to the average PSC I that is perceived by the next (receiving) ASN. We then fit
the normalized spiking activation function with a softplus-shaped function as:

AAN(S) = a · log (1 + b · exp(c · S)), (5)

with derivative:
dAAN(S)

dS
=

a · b · c · exp(c · S)
1 + b · exp(c · S)

, (6)

Fig. 1. Left panel: average output signal of the ASN as a function of its incoming PSC
I, where the error bars indicate the standard deviation of the spiking simulation, and
the corresponding AAN curve. The shape of the ASN curve is well described by the
AAN activation function, Eq. 5; right panel: the output signal of the ASN alone.

Spike-Based SubLSTM 287

Input cell Output cell

Input gate

CEC

AAN

AAN AAN

Input gate

Input cell CEC + Output cell

ASN

ASN

CF

Adaptive Analog subLSTM cell Adaptive Spiking subLSTM cell

xt ht xt htwxc

wxi wxi

wxc wCECwCEC

Fig. 2. Overview of the construction of an Adaptive Analog subLSTM and an Adaptive
Spiking subLSTM cell. This compares to a subLSTM with only an input gate.

where, for the neuronal parameters used, we find a = 0.04023, b = 1.636 and
c = 23.54. Using this mapping from the AAN to the ASN (see Fig. 1), the
activation function can be used during training of the network with analog AANs:
thereafter, the ASNs are used as “drop in” replacements for the AANs. The ASNs
use τη = τβ = τγ = 10 ms, and ϑ0 and mf are set to 0.3 and 0.18 for all neurons.

Adaptive Spiking subLSTM. An LSTM cell usually consists of an input and
output gate, an input and output cell and a CEC [8]. Deviating from the origi-
nal formulation and more recent versions where forget gates and peepholes were
added [13], the LSTM architecture as we present it here only consists of a (sub-
tractive) input gate, input and output cells, and a CEC. Moreover, the original
formulation, an LSTM unit uses a sigmoidal activation function in the input gate
and input cell. However, when using spiking neurons, this causes inaccuracies
between the analog and spiking network, as, due to the variance in the spike-
based approximation, the gates are never completely closed nor completely open.
In a recently proposed variation from the original LSTM architecture, called
subLSTM [1], the typical multiplicative gating mechanism is substituted with a
subtractive one, not requiring thus for the gates to output values exclusively in
the range [0, 1]. This allows us to use neurons characterized by a smoothed ReLU
as activation function. Mathematically, the difference between the integration in
the CEC in the LSTM and subLSTM is given as:

LSTM: ct = ct−1 + zt � it, | subLSTM: ct = ct−1 + zt − it, (7)

with ct value of the memory cell at time t, zt and it represent the signal coming
from the input cell and the input gate, respectively.

As noted, to obtain a working Adaptive Spiking subLSTM, we first train its
analog equivalent, the Adaptive Analog subLSTM. Figure 2 shows the schematic
of the Adaptive Analog subLSTM and its spiking analogue: we aim for a one-on-
one mapping from the Adaptive Analog subLSTM to the Adaptive Spiking sub-
LSTM. This means that while we train the Adaptive Analog subLSTM network
with the standard time step representation, the conversion to the continuous-
time spiking domain is achieved by presenting each input for a time window of
size Δt, which is determined by the neuronal parameters and by the size of the
network. We find that by simply multiplying the signal incoming to the spiking

288 I. Pozzi et al.

CEC times a conversion factor (i.e. CF in Fig. 2), the two architectures process
inputs identically, even if the time component is treated differently.

Spiking Input Gate and Spiking Input Cell. The AAN functions are used
in the Adaptive Analog LSTM cell for the input gate, input cell and output cell.
From the activation value of the input cell the activation value of the input gate is
subtracted, before it enters the CEC, see Fig. 2. Correspondingly, in the spiking
version of the input gate, the outgoing signal is subtracted from the spikes that
move from the ASN of the input cell to the ASN of the output cell. This leads to
a direct mapping from the Adaptive Analog subLSTM to the Adaptive Spiking
subLSTM.

Spiking Constant Error Carousel (CEC) and Spiking Output Cell.
The Constant Error Carousel (CEC) is the central part of the LSTM cell and
avoids the vanishing gradient problem [8]. In the Adaptive Spiking subLSTM,
we merge the CEC and the output cell to one ASN with an internal state that
does not decay – in the brain could be implemented by slowly decaying (seconds)
neurons [14]. The value of the CEC in the Adaptive Analog LSTM corresponds
with state I of the ASN output cell in the Adaptive Spiking LSTM. In the
Adaptive Spiking subLSTM, we set τβ in Eq. 1 to a very large value for the
CEC cell to obtain the integrating behavior of a CEC. Since no forget gate is
implemented this results in a spiking CEC neuron that fully integrates its input.
When τβ is set to ∞, every incoming spike is added to a non-decaying PSC I. So if
the state of the sending neuron (ASNin in Fig. 3) has a stable inter-spike interval
(ISI), then I of the receiving neuron (ASNout) is increased with incoming spike
height h every ISI, so h

ISI per time step. The same integrating behavior needs to
be translated to the analog CEC. Since the CEC cell of the Adaptive Spiking
subLSTM integrates its input S every time step by S

τη
, we can map this to the

CEC of the Adaptive Analog subLSTM. The CEC of a traditional LSTM without
a forget gate is updated every time step by CEC(t) = CEC(t − 1) + S, with S
its input value (i.e. zt − it for a subtractive LSTM). The CEC of the Adaptive
Analog subLSTM is updated every time step by CEC(t) = CEC(t−1)+ S

τη
. This

is depicted in Fig. 2 via a weight after the input gate with value 1
τη

. To allow
a correct continuous-time representation after the spike-coding conversion, we
divide the incoming connection weight to the CEC, WCEC, by the time window
Δt. In our approach then, we train the Adaptive Analog subLSTM as for the
traditional LSTM (without the τη factor), which effectively corresponds to set
a continuous-time time window Δt = τη. Thus, to select a different Δt, in the
spiking version WCEC has to be set to WCEC = τη/Δt. The middle plot in Fig. 3
shows that setting τβ to ∞ for ASNout in a spiking network results in the same
behavior as using an analog CEC that integrates with CEC(t) = CEC(t−1)+S,
since the slope of the analog CEC is indeed the same as the slope of the spiking
CEC. Here, every time step in the analog experiment corresponds to Δt = 40 ms.

Spike-Based SubLSTM 289

AANin CEC AANout
I

ASNin
I

Fig. 3. A simulation to illustrate how the analog CEC integrates its input signal with
the same speed as an ASN with τβ = ∞ provided that the input signal does not change
and that 1 analog time step corresponds to Δt = 40 ms (middle). In the right panel,
the spiking output signal approximates the analog output.

Learning Rule. To train the analog subLSTMs on the supervised tasks, a
customized truncated version of real-time recurrent learning (RTRL) was used.
This is the same algorithm used in [13], where the partial derivatives w.r.t. the
weights Wxc and Wxi (see Fig. 2) are truncated. For the reinforcement learning
(RL) tasks we used RL-LSTM [15], which uses the same customized, truncated
version of RTRL that was used for the supervised tasks. RL-LSTM also incor-
porates eligibility traces to improve training and Advantage Learning [16]. All
regular neurons in the network are trained with traditional backpropagation.

3 Experiments

Since the presented Adaptive Analog subLSTM only has an input gate and no
output or forget gate, we present four classical tasks from the LSTM literature
that do not rely on these additional gates.

Sequence Prediction with Long Time Lags. The main concept of LSTM,
the ability of a CEC to maintain information over long stretches of time, was
demonstrated in [8] in a Sequence Prediction task: the network has to pre-
dict the next input of a sequence of p + 1 possible input symbols denoted as
a1, . . . , ap−1, ap = x, ap+1 = y. In the noise free version of this task, every sym-
bol is represented by the p + 1 input units with the i-th unit set to 1 and all
the others to 0. At every time step a new input of the sequence is presented. As
in the original formulation, we train the network with two possible sequences,
(x, a1, a2, . . . , ap−1, x) and (y, a1, a2, . . . , ap−1, y), chosen with equal probability.
For both sequences the network has to store a representation of the first element
in the memory cell for the entire length of the sequence (p). We train 50 networks
on this task for a total of 200k trials, with p = 100, on an architecture with p+1
input units and p + 1 output units. The input units are fully connected to the
output units without a hidden layer. The same sequential network construction
method from the original paper was used to prevent the “abuse problem”: the
Adaptive Analog subLSTM cell is only included in the network after the error
stops decreasing [8]. In the noisy version of the sequence prediction task, the
network still has to predict the next input of the sequence, but the symbols
from a1 to ap−1 are presented in random order and the same symbol can occur

290 I. Pozzi et al.

Table 1. Summary of the results. The number of iterations necessary for the network
to learn is shown both for the original [8,15] and current implementation. Success-
fully trained networks (%), ASN accuracy (%) over the number of successfully trained
networks, total number of spikes per task and average firing rate (Hz) are also reported.

Task Orig. conv. (%) AAN conv. (%) ASN (%) Nspikes (Hz)

Seq. prediction 5040 (100) 4562 (100) 100 2578 ± 18 (129)

Noisy seq. prediction 5680 (100) 64428 (100) 100 2241 ± 22 (112)

T-Maze 1M (100) 15633 (86) 97 1901 ± 249 (77)

noisy T-Maze 1.75M (100) 20440 (94) 92 1604 ± 216 (65)

multiple times. Therefore, only the final symbols ap and ap+1 can be correctly
predicted. This version of the sequence prediction task avoids the possibility that
the network learns local regularities in the input stream. We train 50 networks
with the same architecture and parameters of the previous task, for 200k trials.

T-Maze Task. In order to demonstrate the generality of our approach, we
trained a network with Adaptive Analog subLSTM cells on a Reinforcement
Learning task, originally introduced in [15]. In the T-Maze task, an agent has
to move inside a maze to reach a target position in order to be rewarded while
maintaining information during the trial. The maze is composed of a long cor-
ridor with a T-junction at the end, where the agent has to make a choice based
on information presented at the start of the task. The agent receives a reward
of 4 if it reaches the target position and −0.2 if it moves against the wall. If it
moves to the wrong direction at the T-junction it also receives a reward of −0.2
and the system is reset. The agent has 3 inputs and 4 outputs corresponding to
the 4 possible directions it can move to. At the beginning of the task the input
can be either 011 or 110 (which indicates on which side of the T-junction the
reward is placed). Here, we chose the corridor length N = 20. A noiseless and
a noisy version of the task were defined: in the noiseless version the corridor is
represented as 101, and at the T-junction 010; in a noisy version the input in
the corridor is represented as a0b where a and b are two uniformly distributed
random variables in a range of [0, 1]. While the noiseless version can be learned
by LSTM-like networks without input gating [17], the noisy version requires the
use of such gates. The network consists of a fully connected hidden layer with 12
AAN units and 3 Adaptive Analog subLSTMs. The same training parameters
are used as in [15]; we train 50 networks for each task and all networks have the
same architecture. As a convergence criteria we checked whenever the network
reached on average a total reward greater than 3.5 in the last 100 trials.

4 Results

As shown in Table 1, for the noise-free and noisy Sequence Prediction tasks all of
the networks were both successfully trained and could be converted into spiking

Spike-Based SubLSTM 291

Fig. 4. Top panels: output values of the analog (left) and spiking (right) network for
the noise-free sequence prediction task. Only the last 5 input symbols of the series
are shown. The last symbol y (black) is correctly predicted both in the last time step
(analog) and in the last 40ms (spiking). Bottom panels: Q-values of the analog (left)
and spiking (right) network for the noisy T-Maze task. At the last time step/40 ms it
correctly selects the right action (solid gray line).

Fig. 5. The values of the analog CECs and spiking CECs for the noise-free sequence
prediction (left panel) and noisy T-Maze (right panel) tasks. The spiking CEC is the
internal state Ŝ of the output cell of the Adaptive Spiking LSTM.

292 I. Pozzi et al.

networks. The top panels in Fig. 4 show the last 5 inputs of a noise-free Sequence
Prediction task before (left) and after (right) the conversion, demonstrating the
correct predictions made in both cases. In the noisy task, all the successfully
trained networks were also still working after the conversion. Finally, we found
that the number of trials needed to reach the convergence criterion were, on
average, lower than the one reported in [8] for the noiseless task, while much
higher for the noisy task. Both the training and the conversion resulted harder
for the T-Maze task, with a few networks non converting correctly into spiking.
The bottom panels in Fig. 4 show the Q-values of a noisy T-Maze task, demon-
strating the correspondence between the analog and spiking representation even
in presence of noisy inputs. In general, we see that the spiking CEC value is
close to the analog CEC value, while always exhibiting some deviations. Table 1
reports also the average firing rate per neuron, showing reasonably low values
compatible with those recorded from real (active) neurons.

5 Discussion

Gating is a crucial ingredient in recurrent neural networks that are able to learn
long-range dependencies [8,18]. Input gates in particular allow memory cells to
maintain information over long stretches of time regardless of the presented -
irrelevant - sensory input [8]. The ability to recognize and maintain information
for later use is also that which makes gated RNNs like LSTM so successful in the
great many sequence-related problems, ranging from natural language processing
to learning cognitive tasks [15]. To transfer deep neural networks to networks of
spiking neurons, a highly effective method has been to map the transfer function
of spiking neurons to analog counterparts and then, once the network has been
trained, substitute the analog neurons with spiking neurons [5,6,11]. Here, we
showed how this approach can be extended to gated memory units, and we
demonstrated this for a subLSTM network comprised of an input gate and a
CEC. Hence, we effectively obtained a low-firing rate asynchronous subLSTM
network which was then shown to be suitable for learning sequence prediction
tasks, both in a noise-free and noisy setting, and a standard working memory
reinforcement learning task. The learned network could then successfully be
mapped to its spiking neural network equivalent for the majority of the trained
analog networks. Further experiments will be needed in order to implement other
gates and recurrent connections from the output cell of the subLSTM. Although
the adaptive spiking LSTM implemented in this paper does not have output
gates [8], they can be included by following the same approach used for the
input gates: a modulation of the synaptic strength. The reasons for our approach
are multiple: first of all, most of the tasks do not really require output gates;
moreover, modulating each output synapse independently is less intuitive and
biologically plausible than for the input gates. A similar argument can be made
for the forget gates, which were not included in the original LSTM formulation:
here, the solution consists in modulating the decaying factor of the CEC. It must
be mentioned that which gates are really needed in an LSTM network is still an
open question, with answers depending on the kind of task to be solved [19,20].

Spike-Based SubLSTM 293

Acknowledgments. DZ is supported by NWO NAI project 656.000.005.

References

1. Costa, R., Assael, I.A., Shillingford, B., de Freitas, N., Vogels, T.: Cortical micro-
circuits as gated-recurrent neural networks. In: Advances in Neural Information
Processing Systems, pp. 272–283 (2017)

2. Attwell, D., Laughlin, S.: An energy budget for signaling in the grey matter of the
brain. J. Cereb. Blood Flow Metab. 21(10), 1133–1145 (2001)

3. Esser, S., et al.: Convolutional networks for fast, energy-efficient neuromorphic
computing. In: PNAS, p. 201604850, September 2016

4. Neil, D., Pfeiffer, M., Liu, S.C.: Learning to be efficient: algorithms for training
low-latency, low-compute deep spiking neural networks (2016)

5. Diehl, P., Neil, D., Binas, J., Cook, M., Liu, S.C., Pfeiffer, M.: Fast-classifying,
high-accuracy spiking deep networks through weight and threshold balancing. In:
IEEE IJCNN, pp. 1–8, July 2015

6. O’Connor, P., Neil, D., Liu, S.C., Delbruck, T., Pfeiffer, M.: Real-time classification
and sensor fusion with a spiking deep belief network. Front. Neurosci. 7, 178 (2013)

7. Hunsberger, E., Eliasmith, C.: Spiking deep networks with LIF neurons. arXiv
preprint arXiv:1510.08829 (2015)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput, 9(8),
1735–1780 (1997)

9. Shrestha, A., et al.: A spike-based long short-term memory on a neurosynaptic
processor (2017)

10. Davies, M., Srinivasa, N., Lin, T.H., Chinya, G., Cao, Y., Choday, S.H., Dimou,
G., Joshi, P., Imam, N., Jain, S.: Loihi: a neuromorphic manycore processor with
on-chip learning. IEEE Micro 38(1), 82–99 (2018)

11. Zambrano, D., Bohte, S.: Fast and efficient asynchronous neural computation with
adapting spiking neural networks. arXiv preprint arXiv:1609.02053 (2016)

12. Bohte, S.: Efficient spike-coding with multiplicative adaptation in a spike response
model. In: NIPS, vol. 25, pp. 1844–1852 (2012)

13. Gers, F.A., Schraudolph, N.N., Schmidhuber, J.: Learning precise timing with
LSTM recurrent networks. J. Mach. Learn. Res. 3(Aug), 115–143 (2002)

14. Denève, S., Machens, C.K.: Efficient codes and balanced networks. Nature Neu-
rosci. 19(3), 375–382 (2016)

15. Bakker, B.: Reinforcement learning with long short-term memory. In: NIPS, vol.
14, pp. 1475–1482 (2002)

16. Harmon, M., Baird III, L.: Multi-player residual advantage learning with general
function approximation. Wright Laboratory, 45433–7308 (1996)

17. Rombouts, J., Bohte, S., Roelfsema, P.: Neurally plausible reinforcement learning
of working memory tasks. In: NIPS, vol. 25, pp. 1871–1879 (2012)

18. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)

19. Greff, K., Srivastava, R.K., Koutńık, J., Steunebrink, B.R., Schmidhuber, J.:
LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10),
2222–2232 (2017)

20. Jozefowicz, R., Zaremba, W., Sutskever, I.: An empirical exploration of recur-
rent network architectures. In: International Conference on Machine Learning, pp.
2342–2350 (2015)

http://arxiv.org/abs/1510.08829
http://arxiv.org/abs/1609.02053
http://arxiv.org/abs/1406.1078

Spiking Signals in FOC Control Drive

L. M. Grzesiak(B) and V. Meganck(B)

Institute of Control and Industrial Electronics, Warsaw University of Technology,
Warsaw, Poland

{Lech.Grzesiak,Vincent.Meganck}@ee.pw.edu.pl

Abstract. This paper proposes to apply spiking signals to the control
of an AC motor drive at variable speed in real-time experimentation.
Innovative theoretical concepts of spiking signal processing (SSP, [1])
is introduced using the INa,p + IK neuron model [7]. Based on SSP
concepts, we designed a spiking speed controller inspired by the human
movement control. The spiking speed controller is then integrated in
the field oriented control (FOC, [13]) topology in order to control an
induction drive at various mechanical speed. Experimental results are
presented and discussed. This paper demonstrates that spiking signals
can be straightforwardly used for electrical engineering applications in
real time experimentation based on robust SSP theory.

Keywords: Spiking neuron · Firing rate · Spiking signal processing
FOC · AC drive

1 Spiking Signal Processing

1.1 Spiking Transformation

In previous paper [1], we assumed that a continuous signal x(t) (black curve
in Fig. 1) could be mathematically transformed by a single neuron into a series
of spikes ι(t − tn) (greek letter iota) called xι(t) (blue spikes in Fig. 1) and
representing the exact image of the original continuous signal x(t).

xι(t) =
n=+∞∑

n=0

ι(t − tn) (1)

x(t) ≈ xι(t) (2)

To ensure equivalence between both signals in (2), we have to set the firing
frequency νx(t) (greek letter nu) of the neuron as the image of the continuous
signal x(t).

νx(t) ≈ x(t) (3)

The firing rate or firing frequency ν[n] is defined as the frequency between
two consecutive spikes fired at tn and tn−1 with Δt[n] being the elapsed time
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 294–303, 2018.
https://doi.org/10.1007/978-3-030-01418-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_29&domain=pdf
http://orcid.org/0000-0002-2890-8163
http://orcid.org/0000-0003-0344-9025

Spiking Signals in FOC Control Drive 295

(Fig. 1). The Eq. (4) represents the firing rate in a discrete form since a fired spike
can be identified by its position tn. The next upcoming firing rate is represented
in a continuous form (5) since time runs until the next potential upcoming spike.

νx[n] = 1/Δtx[n] = 1/(tn − tn−1) (4)

νx(t) = 1/Δtx(t) = 1/(t − tn−1) (5)

By (4) and (5), we can express the series xι (1) according to its spiking
elapsed time Δt (7) or firing frequency ν (8). The equations below are different
ways to express the same spiking series xι (blue spikes in Fig. 1).

xι(t) =
n=+∞∑

n=0

ι(t − (tn−1 + Δtx[n])) (6)

=
n=+∞∑

n=0

ι(Δtx(t) − Δtx[n])) (7)

=
n=+∞∑

n=0

ι(νx(t) − νx[n])) (8)

Taking into account the assumption (3), we can express the spiking series
xι(t) as

xι(t) =
n=+∞∑

n=0

ι(x(t) − 1/Δtx(t)) (9)

=
n=+∞∑

n=0

ι(x(t) − νx(t)) (10)

Despite their different aspects, we will see in real time experimentation that
the spiking signal xι(t) (blue spikes in Fig. 1) is the approximation of the original
continuous signal x(t) (black curve in Fig. 1).

1.2 Accuracy

In Fig. 1, we see that the firing rate decomposition νx(t) of the spiking series
xι(t) (blue spikes in Fig. 1) better approximates the signal x(t) at higher signal
amplitude. Low amplitude of x(t) induces a low firing rate νx(t) and a long
Δtx(t) sampling step with a poor approximation accuracy. In order to increase
the accuracy, we set the constant a in (12) to artificially increase the firing
frequency νx(t). We call a the sensitivity of the neuron. When the parameter a
increases, the accuracy increases.

In order to conserve the energy equality between signals x(t) and xι(t), it is
necessary to decrease the energy of the spike by the same factor a (red spikes in
Fig. 1). The spiking series ultimately equals:

296 L. M. Grzesiak and V. Meganck

Fig. 1. Spiking sampling of x(t) with a = 1 (in blue) and a = 3 (in red). (Color figure
online)

xι(t) =
1
a

n=+∞∑

n=0

ι(x(t) − 1/aΔtx(t)) (11)

=
1
a

n=+∞∑

n=0

ι(x(t) − νx(t)/a) (12)

Figure 1 shows the firing rate ν accuracy with a sensitivity parameter a = 1
(in blue) and a = 3 (in red). The accuracy of the red curve is enhanced compared
to the blue one.

The accuracy principle is equivalent to the movement control principle found
in the human body. Small and fast accurate movement requires fast muscle
fibers excited by moto-neurons with small spike amplitude, while high amplitude
movement requires slow muscle fibers exited by other types of neurons giving
less accuracy in the movement. This movement control principle will be applied
in the next chapter in real-time experimentation.

2 Spiking Signals in FOC Control Drive Experimentation

In this chapter, we apply SSP theoretical basis to design a spiking speed con-
troller on real time AC control drive experimentation. After presenting the FOC
(Field Oriented Control, [8–13]) control strategy and the experimental setup, the
classical PI speed controller is replaced by a spiking speed controller inspired by
the human movement control. Experimental results are presented and discussed
for different control parameters.

Spiking Signals in FOC Control Drive 297

2.1 Space Vector Modulation (SVM) - Field Oriented Control
(FOC)

The principle of the FOC strategy is to allow a decoupling in the control of flux
and electromagnetic torque such as DC machine does but without the drawbacks
of high cost of maintenance concerning the usury of commutators and brushes. A
coordinate frame (d, q) aligned and fixed to the rotor flux allow such decoupled
torque and magnetization control.

Figure 2 presents the FOC control structure:

– the 3-phase stator current measurements (isa, isb, isc) are transformed in (d, q)
components (isd, isq) through Clarke’s and Park’s transformations

– the reference rotor flux component (isd,ref) is kept constant and the refer-
ence electromagnetic torque component (isq,ref) is generated by a PI Speed
controller

– the (d, q) stator current components (isd, isq) are controlled through PI cur-
rent controllers generating the adequate (d, q) stator voltage (usd, usq) to
apply

– after Park’s inverse matrix transformation, the stator voltage components
(usα, usβ) produce the stator voltage vector to apply to the motor.

SVM uses a 6 vectors rosace in ordre to rebuild the stator voltage vector. The
two adjacent rosace vectors are time weighted in a sample period to produce
the desired output voltage. In conclusion, the input for the SVM is the reference
stator voltage vector and the outputs are the times to apply each of the IGBT
transistors of the inverter. The stator voltage vector is electrically produced by
SVM control technique and supply to the AC motor with the desired phase
voltages.

Fig. 2. PI speed controller in FOC AC drive.

298 L. M. Grzesiak and V. Meganck

2.2 Spiking Speed Controller in FOC

In order to test spiking signals in real-time experimentation, the classical PI
speed controller [2–6] has been replaced by a spiking speed controller in FOC
structure (Fig. 3 and [8–13]). The controller receives speed error e(t) as input and
generates a spiking time series as reference stator current iιsq,ref equivalent to a
spiking reference electromagnetic torque. The topology of the spiking speed con-
troller is inspired by the human movement control [1]. The main characteristics
and parameters are detailed hereunder.

– The controller uses the reciprocity principle transforming negative speed error
signal e(t) into positive spiking series eι(t) by different reciprocal group of
neuron (such as reciprocal muscles in the human arm).

– The main proportional action loop has an accuracy increasing with the neuron
sensitivity parameter a.

– The controller uses a secondary loop called the tremor found in the human
body. The tremor reflex loop innervates permanently the muscle in order
to keep the arm bend in a steady state target position. The neurons fire
permanently and react to any small drift of the reference arm position. The
neuron has a high sensitivity parameter b which induces fast firing rate of
small spikes increasing the controllability and the reactivity of the neuron.
Moreover, an offset has been added in order to permanently fire a spiking
control signal at steady state speed increasing the motor speed controllability.

– In the human body, motoneurons innervate low pass filter muscles in order to
create a continuous action signal. In the control topology of Fig. 3, we use the
current control loop and the AC drive as final low pass filter organ smooth-
ing and integrating spike series. The resulting spiking action signal defines
the spiking reference current iιsq,ref . Spikes are transformed into continuous
speed ω(t) and electric current iιsq signals through the FOC drive topology
in the same manner as muscle does.

The spiking speed controller in FOC topology was coded using the Code
Composer Studio (CCS rev.5) and implemented in the microcontroller C2000
Delfino F28035.

The High Voltage Digital Motor Control (DMC) kit from Texas Instrument
(TI) [8–12] was used in order to control the AC Induction Motor of 1.5 kW at
1725 rpm nominal speed (Fig. 3) with a number of pair poles p = 2.

2.3 Experimental Results

The experimental setup was used to gather experimental results plotted for the
two presented FOC structures with a PI speed controller (Fig. 2) or a spiking
speed controller (Fig. 3).

Experimental results are expressed in per-unit (pu) system. It means that
presented numerical values are fractions of a defined base unit quantity (base).

Figures 4 (speed) and 5 (electric q-current) present experimental results for
the PI speed controller of Fig. 2. The PI speed controller has the following control
parameters:

Spiking Signals in FOC Control Drive 299

Fig. 3. Spiking speed controller in FOC AC drive.

Fig. 4. PI speed controller in FOC AC drive. Reference speed (black line 0); speed (red
line 1) (Color figure online)

– proportional gain Kp = 1
– integral gain KI = 0.04s−1.

Figures 6 (speed) and 7 (electric q-current) present experimental results for
the spiking speed controller of Fig. 3. Spiking speed controller has the following
control parameters:

– proportional action loop parameter a = 104

– tremor action loop parameter b = 105

300 L. M. Grzesiak and V. Meganck

Fig. 5. PI speed controller in FOC AC drive. Reference q-current (black line 0); q-
current (red line 1). (Color figure online)

Fig. 6. Spiking speed controller (a = 104, b = 105) in FOC AC drive. Reference speed
(black line 0); speed (blue line 1). (Color figure online)

Figure 7 depicts the spiking reference stator current iιsq,ref composed of its
proportional (black line 0) and tremor spiking series (grey line 1). The firing fre-
quency decomposition of the spiking reference stator current is given in Fig. 8. It
has to be emphasized that, despite the different reference stator current shapes

Spiking Signals in FOC Control Drive 301

Fig. 7. Spiking speed controller (a = 104, b = 105) in FOC AC drive. Spiking reference
stator current iιsq,ref composed of proportional loop spikes (black line 0) and tremor
loop spikes (grey line 1). q-current (blue line 2). (Color figure online)

Fig. 8. Spiking speed controller (a = 104, b = 105) in FOC AC drive. Firing frequency
decomposition of the spiking reference stator current iιsq,ref with proportional loop
(black line 0) and tremor loop (grey line 1).

of the PI solution (Fig. 5) and the spiking solution (Fig. 7), similar speed control
performances (Figs. 4 and 6) and stator current shapes (Fig. 9) are observed. Dif-
ferent stator current shapes in the FOC control structure will give different stator

302 L. M. Grzesiak and V. Meganck

Fig. 9. q-current from spiking speed controller (blue line 0) and from PI controller (red
line 1) (Color figure online)

Fig. 10. Spiking speed controller in FOC AC drive. Reference speed (black line 0);
Spiking controller with a = 0.5 ∗ 104, b = 0 (blue line 1); a = 104, b = 0 (red line 2)
(Color figure online)

voltage shape applies to the motor by SVM technique. However, performances
remain equivalent no matter we use continuous signal (PI speed controller) or
spiking signal (Spiking speed controller). Those results confirm the signal equiv-
alence between x(t) and xι(t) expressed in (2).

Spiking Signals in FOC Control Drive 303

Figure 10 (speeds) compares the control performances of the spiking speed
controller for different parameters:

– 1 (blue line) - Spiking speed controller with a = 0.5 ∗ 104, b = 0
– 2 (red line) - Spiking speed controller with a = 104, b = 0

Figure 10 shows that, even by increasing the parameter a, a spiking controller
without tremor action b does not reach a zero steady-state error. However, in
Fig. 6, after adding a tremor action, the speed quickly reaches the reference
speed.

3 Conclusion

This paper applies and demonstrates in real-time experimentation the robustness
of spiking signal processing principle and formulas. Thanks to SSP theory, clear
and simple description of spiking controller topology and parameters has been
realized. Experimental results show that spiking signals are able to achieve com-
parable control performances than classical continuous signals. Researches are
now open to apply firing rate decomposition of continuous signal for controller
design and system identification.

References

1. Grzesiak, L.M., Meganck, V.: Spiking signal processing - principle and applications
in control system. Neurcomputing 308, 31–48 (2018). https://doi.org/10.1016/j.
neucom.2018.03.054

2. Smith, S.W.: The Scientist and Engineer’s Guide to Digital Signal Processing, 2nd
edn. California Technical Publishing, San Diego (1999)

3. Ogata, K.: Discrete Time Control System, 2nd edn. Prentice-Hall International,
Upper Saddle River (1995)

4. Tymerski, R.: Control Systems Design II. Portland State University (1994–2015).
http://web.cecs.pdx.edu/tymerski/ece452/Chapter3.pdf

5. Arnould, B.: Automatique, Haute Ecole Leonard de Vinci ECAM (2003)
6. Maret, L.: Regulation Automatique, Presse polytechnique romanes (1987)
7. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitabil-

ity and Bursting. Springer, Heidelberg (2004)
8. Texas Instruments: High Voltage Motor Control and PFC Kit Hardware Reference

Guide, Texas Instruments, October 2010
9. Texas Instruments: HVMotorCtrl+PFC (R1.1) Kit How to Run Guide, Texas

Instruments (2010)
10. Akin, B., Bhardwaj, M.: Sensored field oriented control of 3-phase induction

motors, Texas Instruments, July 2013
11. Texas Instruments: IQmath Library A Virtual Floating Point Engine Module

User’s Guide C28x Foundation Software, Texas Instruments, June 2012
12. Wikipedia: TMS320C2000 Motor Control Primer, February (2005). http://

processors.wiki.ti.com/index.php/TMS320C2000 Motor Control Primer
13. Zelechowski, M.: Space vector modulated - direct torque controlled (DTC - SVM)

inverter - fed induction motor drive, Ph.D. Thesis, Warsaw University of Technol-
ogy (2005)

https://doi.org/10.1016/j.neucom.2018.03.054
https://doi.org/10.1016/j.neucom.2018.03.054
http://web.cecs.pdx.edu/tymerski/ece452/Chapter3.pdf
http://processors.wiki.ti.com/index.php/TMS320C2000_Motor_Control_Primer
http://processors.wiki.ti.com/index.php/TMS320C2000_Motor_Control_Primer

Spiking Neural Network Controllers
Evolved for Animat Foraging Based
on Temporal Pattern Recognition
in the Presence of Noise on Input

Chama Bensmail1, Volker Steuber2, Neil Davey2, and Borys Wróbel1,3(B)

1 Evolving Systems Laboratory, Adam Mickiewicz University in Poznan,
Poznan, Poland

{chamabens,wrobel}@evosys.org
2 Center for Computer Science and Informatics Research,

University of Hertfordshire, Hertfordshire, UK
3 IOPAN, Sopot, Poland

Abstract. We evolved spiking neural network controllers for simple
animats, allowing for these networks to change topologies and weights
during evolution. The animats’ task was to discern one correct pattern
(emitted from target objects) amongst other different wrong patterns
(emitted from distractor objects), by navigating towards targets and
avoiding distractors in a 2D world. Patterns were emitted with variable
silences between signals of the same pattern in the attempt of creating
a state memory. We analyse the network that is able to accomplish the
task perfectly for patterns consisting of two signals, with 4 interneurons,
maintaining its state (although not infinitely) thanks to the recurrent
connections.

Keywords: Spiking neural networks · Temporal pattern recognition
Animat · Adaptive exponential integrate and fire

1 Introduction

Brains process information through generating and recognizing temporal activity
patterns of neurons [1,3,5,7,8,11,14]. Neuronal spike trains carry information
about the environment received through different modalities, including audition
[10], olfaction [9], and vision [20]. Neurons perform temporal pattern recognition
of sensory neuron activity in order to decode this information [3,6], which in
turn requires temporal storage of stimuli or maintenance of an internal state
[12,16–19].

Several evolutionary neural-driven robotic models have attempted to repro-
duce insect phonotaxis, that is, movement based on the temporal recognition of
sound [4,13,15,21]. The abstract task explored in this and our previous paper
[2] was inspired by phonotaxis in the sense that animats had to navigate towards
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 304–313, 2018.
https://doi.org/10.1007/978-3-030-01418-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_30&domain=pdf

Spiking Neural Networks Controlling Animat Foraging 305

target objects emitting one simple temporal pattern of signals (which could rep-
resent sounds, scents, or flashes of light) and avoid distractor objects, which
emitted other patterns. In contrast to the previous work [2], here we allowed the
silences between letters of the same pattern to vary, hoping for the emergence
of a state maintenance mechanism in evolution. We allowed all types of con-
nections between interneurons and an unlimited size of the network (although a
relatively small number of generations during artificial evolution did not allow
the networks to grow very much).

Our long-term goal is to understand how small networks can accomplish non-
trivial computational tasks (here, control of foraging that depends on temporal
pattern recognition) with robustness against noise (on input and/or state vari-
ables) and damage (variation of the parameters of the environment, the animat,
and/or neurons).

2 The Model

We used the platform GReaNs [22] to evolve networks of adaptive exponential
integrate and fire neurons with tonic spiking, as we did previously [2]. In con-
trast with our previous work [2], in the experiments described here, during both
evolution and testing, (i) the objects did not reappear after collection, (ii) they
were placed at a random position as before, but imposing a minimum and maxi-
mum distance (10 and 45 times, respectively, the radius of the animat) from the
starting point of the animat, (iii) the world was open (not toroidal as previously
during evolution), (iv) the duration of silences between the signals of the same
pattern was drawn from a Poisson distribution with λ = 30 ms (the length of a
signal (letter) remained fixed, at 10 ms; the silences between the patterns also
remained fixed, at 150 ms), (v) the intensity of signals remained constant for
both signals of the pattern (this makes the task more difficult—as the distance,
measured considering the position of the animat at the start of the pattern,
changes as the animat moves—but simplifies the analysis of how the network
solves the assigned task). As previously, the intensity of the signals encoded the
direction to the source of the pattern, as 1

1+e−10(SR−SL) , where SR (SL) is the
distance between the source a point on the right (left) side of the animat; thus
if the source is on the left, the value is above 0.5, and if it is on the right, it
is below 0.5. Also as previously, the patterns consisted of two signals; we will
refer to patterns sent by the target as AB, while the distractor sends (wrong)
patterns (ba, aa, bb).

We carried out 200 independent runs (population size 300, size-2 tournament
selection, no elitism), aiming to minimise the fitness function:

ffitness = 1 − (
T − 2D

N
+ c

α

β
), (1)

where T is the number of targets collected; D is the number of distractors col-
lected; N is the total number of targets that can be collected if the animat moves
at maximum speed (which was 1 target during evolution); c is 0 for the first 100

306 C. Bensmail et al.

generations and 0.5 for remaining generations; α is the length of a straight line
connecting the start position of the animat to the position of the target and β is
the length of the path made by the animat from the start position to the target
(if it is collected) or to the last position of the animat during simulation. This
reward term promotes directional movement toward target rather than circu-
lar motion at top speed often seen when this term was omitted (such circular
motion allows to hit the target without directional movement). Since only one
target and one distractor was present during evolution, the lowest (best) possible
value for this fitness function was −0.5 and the highest (worst) was 3.

The mutation parameters used here are the same as in [2], but with a differ-
ence in the rate of duplication (0.002 per genome instead of 0.001 in our previous
work) and the rate of deletion (0.001, instead of previously 0.0001). Although
the duplication rate was twice the deletion rate, the networks did not grow large
even though (in contrast to [2]) we allowed for an unlimited number of nodes in
the network.

Each evolutionary run had 2500 generations, if an animat with fitness below
−0.15 was detected, the run was stopped after additional 50 generations. In
each generation, we evaluated first over 15 random worlds (worlds with different
positions of objects and orientation of the animat) and 200 patterns for each
world. Each target emitted pattern AB, and each distractor emitted a mixture
of the other (wrong) patterns (with equal probability): aa, ba, and bb. The
percentage of the correct pattern occurrence for these 15 evaluations (perAB)
was 30%. Then the animat was evaluated over additional 3 worlds, with perAB =
50%, but this time with the distractor emitting always a specific wrong pattern
(for example, only aa). Finally, the 18 values of the fitness function obtained for
18 maps were averaged.

3 Results and Discussion

3.1 The Efficiency to Discern Correct Pattern

Out of 200 runs, 20 ended with ffitness < −0.25. The 20 champions were ranked
by their ability to collect targets and avoid distractors. The best champion out
of the 20 (the winner) was a perfect recogniser such that T = 1000 in 1000 maps
while D = 0. The winner had 4 interneurons, and showed a directional walk
without circling (Fig. 1), which made it amenable to analysis. The networks’
sizes of the remaining 19 champions ranged from 3 to 12 interneurons. In the
rest of the paper, we will focus on the winner and analyse its performance and
the underlying mechanism.

When the winner was tested for various frequencies of the correct pattern, we
kept the number of occurrences of ABs constant, at 60. Even at 1% frequency
of the correct pattern, the winner collected the target in 700 worlds out of 1000,
while it could collect between 960 and 1000 for percentages greater than 10%.
Thus, even for large numbers of wrong patterns, the task could still be achieved
with high precision.

The winner was also tested for a wide range of durations of silent interval
between letters (Fig. 2; in these tests, unlike during evolution, the duration of

Spiking Neural Networks Controlling Animat Foraging 307

Fig. 1. Visualisation of the performance of the winner. The test world has 6 targets
(black circles) and 6 distractors (red squares), the black swiping line is the movement
trajectory of the animat. (Color figure online)

the interval was kept constant). When this interval was between 17 and 37 (close
to the mean of the Poisson distribution that was used during evolution, 30 ms),
the animat behaved almost perfectly. Longer duration of silences between letters
led to an abrupt drop in performance, and no targets were collected for silences
45 ms and above. The loss of performance for values smaller than 17 ms was
mainly due to whether or not a spike coming from neuron N0 coincided with
another spike from neuron N1 (see Fig. 3 and Sect. 3.3), for a target on the left.
Such a spike coincidence is necessary to trigger neuron N2 to spike, which in
turn makes the animat turn left and thus to forage in a swiping fashion: going
left-right-left-. . . , but keeping an overall direction towards the target (Fig. 1).
On the other hand, when there was no silence at all between letters of the same
pattern, the spike coincidence allowed the animat to still collect 346 targets.

Furthermore, long silences between patterns did not affect the performance of
the animat. Even when they were 1000 ms long, the animat still collected much
more targets than distractors (the ratio between the average number of targets T
and distractors D hit over 1000 maps, T/D, was above 50). However, the number
of collected targets decreased for silences below 40 ms—yet no distractor was hit
during this test. Any decrease in the length of a stimulus (less than 10 ms) let
to a circling movement around the starting point or to no movement at all.
On the other hand, an increase to up to 13 ms allowed for a fair recognition
(T/D = 997/128 = 7.79).

3.2 Robustness of the Winner

When we increased the number of objects equally for targets and distractors
(up to 10 each), T/D remained within the range 12–18. In order to test the

308 C. Bensmail et al.

Fig. 2. The number of targets collected by the winner over 1000 random worlds, for
various duration of silence interval between letters within the same pattern.

efficiency of the animat in foraging one target while avoiding a large number
of distractors, we set the number of targets to 1 and distractors to 20 and
evaluated the animat’s performance with 700 patterns (140 s simulation time)
on 1000 worlds. The animat collected 999 targets out of a total of 1000, and only
170 distractors out of a total of 20000.

We then investigated the robustness of the behavior to changes in the param-
eters of the animat. The winner showed robustness to changes in actuator forces;
a two-fold increase of both actuator forces resulted in T/D = 1000/44 = 22.73.
Surprisingly, even when we increased the forces 33 times, the animat could still
maintain its discrimination ability (T/D = 889/85 = 10.46).

Furthermore, we investigated the ability of the animat to recognise patterns
with a larger number of signals in a pattern. We tested AAB being sent from
the target, inter-spaced with wrong patterns (ba, aa, bb). This gave T/D < 1.
In contrast, for all patterns that started with A, followed by any number of Bs,
the animat showed the ability to perform pattern recognition such that T/D
was between 6 and 19. This could be explained by the way the network of the
winner solves this task (Sect. 3.3).

Next, we perturbed the inhibitory gain of synapses, and obtained T/D =
1000/77 = 12.99 for a gain value of 0.5 nS (6 times less than the default value, 3
nS), whereas for 6 nS (2-fold increase) the quotient was 9.9 (T = 1000, D = 101).
However, any slight change in the excitatory synaptic gain resulted in T/D � 1.

The controller of the winner was not robust to any change of neuronal param-
eters apart from the change of Vr. When the Vr (reset voltage) was changed to
a value 3 mV less/more then the default value (from −58 mV to −55 mV or
−61 mV) for all neurons in the network, the winner showed a small but observ-
able preference for correct patterns over wrong patterns by collecting more than
twice as many targets as distractors (T/D = 2.65).

Spiking Neural Networks Controlling Animat Foraging 309

3.3 Analysis of the Network

The key mechanism that causes the animat to adapt the direction towards the
target while navigating is the sustained activation of interneuron N2 (see Fig. 3).
The network holds a state that indicates A was received by sustained (thanks to
a self-loop) firing of N0. When the network in such a state receives B from the
left (the input is at a high level), first N1 spikes once, which together with the
activity of N0 causes sustained (again, thanks to a self-loop) spiking of N2. AL
can only spike thanks to the sustained spiking of N0 and a spike from N3. This
N3 spike is triggered by SB (the input to the network that presents the signal B).
The animat turns left only in this situation, because AR receives an excitatory
connection only from N2. AR is the output (motor) neuron that controls the
right actuator, so if its spikes outnumber AL spikes, the animat turns left. On
the other hand, when the pattern is received from the right (the level of both
inputs is low), N2 remains quiescent, and so does AR. N2 does not spike in this
case—it does not receive any spike from N1, because the input is too low to
cause N1 to spike.

To sum up, when the animat receives the pattern AB from the left side, it
keeps turning left until the position of the animat changes enough for it to be
in a location where the pattern is received from the right side, then it turns
right, until again the signals in the correct pattern are received from the left.
The alternation of these two movements results in an overall navigation towards
the target, while ignoring all wrong patterns. Though the network can be in the
state indicating A was received, wait for B , it does not produce a different action
when more than one B is received after A (this scenario was not encountered
during evolution).

The response of the network to the wrong stimuli (Fig. 3) agrees with the
explanation above. Motor neurons are active only for one wrong pattern, aa. N0
starts sustained spiking when a is received (SA active), making AL spike and
thus the animat turns right. N2 is silent because of the absence of activity in
SB, therefore AR does not spike. So whether the distractor is placed on the left
or on the right, the animat turns in a clockwise circle.

For ba, N2 does not spike, despite sustained spiking of N0, and—in the case
of high stimulation from inputs, i.e. the source is on the left—N1 and N2 spiking
once each. The reason is that when SB activation precedes SA activation, N1
spikes before N0, and thus N2 cannot spike. When the source is on the right,
N1 cannot spike due to low stimulation from SB, and the final output behavior
is similar to when the source is on the left. For bb, the absence of SA activity
causes N0 to be quiescent, thus none of the two actuators can spike.

We then investigated the network responses to the target stimulus AB when
presented with different sensory input levels. For a very low input level, there is
no activity of interneurons and output neurons. The animat turns right only for
input levels �0.5 (that is, when the target is on the right). Greater values result
in a larger number of spikes in AR than in AL, thus causing a left turn of the
animat. The activity of interneurons for different input level values is similar to
the activity showed in Fig. 3. N0 is the only interneuron that starts firing after

310 C. Bensmail et al.

Fig. 3. The network topology of the winner and spike trains of the four patterns for two-
level sensory inputs. Excitatory links are shown with arrow heads (orange), inhibitory
are bar-headed (cyan). The voltage traces (vertical axes: voltage in mV, horizontal
axes: time in ms) in green are the responses for signals coming from the right, red
traces for signals coming from the left. (Color figure online)

Spiking Neural Networks Controlling Animat Foraging 311

receiving an activation from SA for higher values, and sustains activity until B
is received. This is followed by the activity of neuron N3, right after receiving
B, and only then AL spikes. N2 is triggered after a high rate spiking activity of
N0, and does not require—for high values of input—any longer the coincidence
of N0 and N1 spikes shown in Fig. 3 (Fig. 4). N2 starts spiking before N1 due to
the stimulation from SB. As long as N2 spikes, AR spikes as well, at a higher
rate for higher input values, hence outnumbering the number of spikes fired by
AL and pushing the animat to turn left when the source is placed on the left.

Fig. 4. The response of the network to the correct pattern (AB) and to one wrong
pattern (aa). The raster plots are presented separately for interneurons and outputs.
The sensory nodes are active during the time slots shaded in gray, at a constant level
over a full range (vertical axis: gray horizontal lines are at the level 0.45 and 0.55, red
line at 0.5; horizontal axis: simulation time covering all spikes of one stimulus) (Color
figure online)

312 C. Bensmail et al.

For the other wrong stimuli, similar output activities as in Fig. 3 can be observed
for a wider spectrum of input levels, for example aa results in only one actuator
(AL) being active, regardless of source location (Fig. 4).

4 Conclusions and Future Work

We have evolved a simple simulated robot governed by a very small neural
network, which is capable of achieving a simple yet non-trivial temporal pattern
recognition task while foraging in a 2D world. The evolved network showed a
maintenance of state for a finite time, which was based on recurrent connections
within the network. Although the network was robust against variation of silences
between letters and between patterns during the simulation of the animat, it
was not robust against changes in neuronal parameters. In the future, in order
to explore the robustness of such small networks, we plan to evolve the network
in the presence of voltage noise. Preliminary results (not covered in this paper)
show that such networks are much more robust to alterations of some of the
neuronal parameters.

Acknowledgments. This work was supported by the Polish National Science Center
(project EvoSN, UMO-2013/08/M/ST6/00922).

References

1. Ahissar, E., Arieli, A.: Figuring space by time. Neuron 32, 185–201 (2001)
2. Bensmail, C., Steuber, V., Davey, N., Wróbel, B.: Evolving spiking neural networks

to control animats for temporal pattern recognition and foraging. In: 2017 IEEE
Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2017)

3. Bialek, W., Rieke, F., de Ruyter van Steveninck, R., Warland, D.: Reading a neural
code. Science 252, 1854–1857 (1991)

4. Damper, R.I., French, R.L.B.: Evolving spiking neuron controllers for phototaxis
and phonotaxis. In: Cagnoni, S., et al. (eds.) EvoWorkshops 2003. LNCS, vol. 2611,
pp. 616–625. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36605-
9 56

5. Decharms, R.C., Zador, A.: Neural representation and the cortical code. Ann. Rev.
Neurosci. 23, 613–647 (2000)

6. Florian, R.V.: Biologically inspired neural networks for the control of embodied
agents. Center for Cognitive and Neural Studies (Cluj-Napoca, Romania), Techni-
cal report Coneural-03-03 (2003)

7. Gerstner, W., Kempter, R., van Hemmen, J.L., Wagner, H.: A neuronal learning
rule for sub-millisecond temporal coding. Nature 383, 76–78 (1996)

8. Huxter, J., Burgess, N., O’Keefe, J.: Independent rate and temporal coding in
hippocampal pyramidal cells. Nature 425, 828–832 (2003)

9. Isaacson, J.S.: Odor representations in mammalian cortical circuits. Curr. Opin.
Neurobiol. 20, 328–331 (2010)

10. Joris, P., Yin, T.C.: A matter of time: internal delays in binaural processing. Trends
Neurosci. 30, 70–78 (2007)

https://doi.org/10.1007/3-540-36605-9_56
https://doi.org/10.1007/3-540-36605-9_56

Spiking Neural Networks Controlling Animat Foraging 313

11. Laurent, G.: Dynamical representation of odors by oscillating and evolving neural
assemblies. Trends in Neurosci. 19, 489–496 (1996)

12. Maex, R., Steuber, V.: The first second: models of short-term memory traces in
the brain. Neural Netw. 22, 1105–1112 (2009)

13. Reeve, R., Webb, B., Horchler, A., Indiveri, G., Quinn, R.: New technologies for
testing a model of cricket phonotaxis on an outdoor robot. Rob. Auton. Syst. 51,
41–54 (2005)

14. Rieke, F.: Spikes: Exploring the Neural Code. MIT Press, Cambridge (1999)
15. Rost, T., Ramachandran, H., Nawrot, M.P., Chicca, E.: A neuromorphic approach

to auditory pattern recognition in cricket phonotaxis. In: European Conference on
Circuit Theory and Design (ECCTD), pp. 1–4. IEEE (2013)

16. Steuber, V., De Schutter, E.: Rank order decoding of temporal parallel fibre input
patterns in a complex Purkinje cell model. Neurocomputing 44, 183–188 (2002)

17. Steuber, V., Willshaw, D.: A biophysical model of synaptic delay learning and
temporal pattern recognition in a cerebellar Purkinje cell. J. Comput. Neurosci.
17, 149–164 (2004)

18. Steuber, V., Willshaw, D., Van Ooyen, A.: Generation of time delays: simplified
models of intracellular signalling in cerebellar Purkinje cells. Netw.: Comput. Neu-
ral Syst. 17, 173–191 (2006)

19. Steuber, V., Willshaw, D.J.: Adaptive leaky integrator models of cerebellar Purk-
inje cells can learn the clustering of temporal patterns. Neurocomputing 26, 271–
276 (1999)

20. Thorpe, S., Fize, D., Marlot, C.: Speed of processing in the human visual system.
Nature 381, 520 (1996)

21. Webb, B.: Using robots to model animals: a cricket test. Rob. Auton. Syst. 16,
117–134 (1995)

22. Wróbel, B., Abdelmotaleb, A., Joachimczak, M.: Evolving networks processing
signals with a mixed paradigm, inspired by gene regulatory networks and spiking
neurons. In: Di Caro, G.A., Theraulaz, G. (eds.) BIONETICS 2012. LNICST,
vol. 134, pp. 135–149. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06944-9 10

https://doi.org/10.1007/978-3-319-06944-9_10
https://doi.org/10.1007/978-3-319-06944-9_10

Spiking Neural Networks Evolved
to Perform Multiplicative Operations

Muhammad Aamir Khan1, Volker Steuber2, Neil Davey2,
and Borys Wróbel1,3(B)

1 Evolving Systems Laboratory, Adam Mickiewicz University in Poznan,
Poznan, Poland

{aamir,wrobel}@evosys.org
2 Center for Computer Science and Informatics Research,

University of Hertfordshire, Hertfordshire, UK
3 IOPAN, Sopot, Poland

Abstract. Multiplicative or divisive changes in tuning curves of indi-
vidual neurons to one stimulus (“input”) as another stimulus (“mod-
ulation”) is applied, called gain modulation, play an important role in
perception and decision making. Since the presence of modulatory synap-
tic stimulation results in a multiplicative operation by proportionally
changing the neuronal input-output relationship, such a change affects
the sensitivity of the neuron but not its selectivity. Multiplicative gain
modulation has commonly been studied at the level of single neurons.
Much less is known about arithmetic operations at the network level. In
this work we have evolved small networks of spiking neurons in which
the output neurons respond to input with non-linear tuning curves that
exhibit gain modulation—the best network showed an over 3-fold multi-
plicative response to modulation. Interestingly, we have also obtained a
network with only 2 interneurons showing an over 2-fold response.

Keywords: Gain modulation · Multiplicative operation
Spiking neural network · Artificial evolution
Adaptive exponential integrate and fire

1 Introduction

Multiplicative or divisive changes in a tuning curve of individual neurons to one
stimulus (here, input) as another stimulus (here, modulation) is applied, called
gain modulation, are thought to play an important role in neural computation
[6,7,10,12]. Gain modulation has been observed in the neurons responsible for
keeping stable course during flight in domestic flies [4], and in the auditory sys-
tem of owls [9] and crickets [5]. In the mammalian brain, neurons in cortical and
subcortical regions vary their output response in a multiplicative fashion relative
to a background modulatory synaptic input [7,10]. In this scenario, information
is aggregated from different stimuli and the output response is modulated so

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 314–321, 2018.
https://doi.org/10.1007/978-3-030-01418-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_31&domain=pdf

SNN Evolved to Perform Multiplicative Operations 315

Fig. 1. Target tuning curves. The curves, generated with Eq. 5, show the expected
number of spikes of the output neuron for different levels of input and different levels
of modulation, which correspond to different multiplier, m.

that a change in the slope of input-output firing rate is produced. The control of
the movement of the eyes and hands, the perception of visual information, and
motor memory are other examples where gain modulation was observed [11].

Since gain modulation is an operation observed in single biological neurons,
previous studies on modeling such multiplicative operations focused on models
of single neurons (e.g., [1,3]). Here, we take a different approach—we evolve
a network of simple neurons (adaptive exponential integrate and fire neurons
[2]) to perform multiplicative operations inspired by the operations performed
by single neurons—the fitness function in artificial evolution rewarded the net-
works that had a non-linear response (firing rate of the output neuron) to input,
varying proportionally to different levels of modulation (and therefore matching
the tuning curves in Fig. 1).

2 The Model

The adaptive exponential integrate and fire [2] neuronal model has four state
variables and a number of parameters (Table 1; the parameters we used result
in tonic spiking for constant input [8]):

C
dV

dt
= gI(EI − V) + gE(EE − V)

+gL(EL − V) + gLΔT e
(

V −VT
ΔT

) − w (1)

τw
dw

dt
= a(V − EL) − w (2)

dgE
dt

=
−gE
τE

(3)

dgI
dt

=
−gI
τI

. (4)

316 M. A. Khan et al.

Table 1. Neuronal parameters used in this paper

Parameter Value

τE/I excitatory/inhibitory time constant 5ms

GE/I excitatory/inhibitory synaptic gain 3 nS

gL total leak conductance 10 nS

EL effective rest potential −70 mV

EI inhibitory reversal potential −70 mV

EE excitatory reversal potential 0 mV

ΔT threshold slope factor 2mV

VT effective threshold potential −50 mV

C total capacitance 0.2 nF

a adaptation conductance 2 nS

b spike-triggered adaptation 0 pA

τw adaptation time constant 30ms

Vr reset voltage −58 mV

Vth spike detection threshold 0mV

A spike is generated when the voltage (V) crosses a threshold (V > Vth);
when this happens V takes a value Vr, and the adaptation (w) takes a value
w + b. When a neuron receives a spike from a neuron that connects to it (a
presynaptic neuron), the excitatory (inhibitory) conductance is increased by an
excitatory (inhibitory) gain multiplied by the synaptic weight. In this paper, we
use Euler integration with 1 ms time steps.

Each network, in addition to interneurons and the output neuron (all neurons
had the same parameters), has two nodes: input and modulation nodes, which
can be connected to interneurons but not to the output neuron. If an interneu-
ron receives an excitatory (inhibitory) connection from the input or modulation
node, at each time step the interneuron’s excitatory (inhibitory) conductance
is increased by the value of the input or modulation (a value between 0 and 1)
multiplied by the excitatory (inhibitory) synaptic gain and the weight of the
connection. In other words, each interneuron can receive stimulation (excitatory
or inhibitory) from other interneurons (or, indeed, itself), and input or modula-
tion nodes. But whereas each spike from a neuron in the network results in an
increase of the excitatory or inhibitory conductance by a value proportional to
the synaptic weight, the increase in the case of the stimulation from input or
modulation nodes is also proportional to input or modulation.

Both the input and modulation are presented for 240 ms, and the network
response (the spikes of the output neuron) is measured at the same time. In
order to avoid that the response to one pair (input, modulation) would affect a
response to another pair, all the neurons in the network are reset to their initial
state (V = EL, w = 0, gE = 0, gI = 0) after each pair is presented to the
network.

SNN Evolved to Perform Multiplicative Operations 317

We used the platform GReaNs [13,14] to evolve the networks. In GReaNs,
networks are encoded in linear genomes (Fig. 2); the encoding is inspired by
the way biological genetic networks are encoded in biological genomes [14]. In
principle, the number of interneurons encoded in the network and the number
of links between them is unlimited (here, for reasons of computational efficiency,
we limited the number of interneurons to 10; in practice, the networks did not
grow during evolution beyond 7 interneurons). Each interneuron is encoded by
a series of cis and trans genetic elements; input, modulation, and output nodes
are encoded by a genetic element each. Each genetic element has an associated
point in an abstract 2-dimensional affinity space. To determine the connectivity
of the network, first the Euclidean distance between each ordered pair of points
(trans, cis), (input, cis), (modulation, cis), and (trans, output) is obtained. This
distance translates to a contribution to the weight of the connection between
nodes in the network. Since each interneuron can be encoded by several cis
and trans elements, the weight contributions are summed. If the distance is
above a certain threshold, the contribution is zero. Otherwise, the contribution
is an inverse exponential function of the distance. The sign of the contribution
(positive or negative) is determined by the sign associated with each genetic
element—if both signs are the same, the contribution is positive, otherwise it
is negative. A positive (negative) sum of contributions results in an excitatory
(inhibitory) link in the network.

Each independent run of artificial evolution was limited to 2000 generations,
with a constant population (300 individuals), elitism (10), and size 2 tourna-
ment selection. The initial population consisted of random genomes created as
described previously [15], and the genetic operators were exactly the same as in
this previous work [15].

The fitness function rewarded the correct number of spikes of the output
neuron in response to a given pair of input and modulation. In other words,
the networks were evolved so to match target tuning curves (Fig. 1), which were
generated using the equation

T (I,m) = m ∗ (
35

1 + (exp(−8I + 4)
), (5)

where I is input and m is the multiplier, expected to be twice the modulation dur-
ing evolution (for example, modulation of 0.2 is expected to produce the output
corresponding to m = 0.4). The constant parameters in Eq. 5 were selected by

I M O C C C TCT T

Neuron 1 Neuron 2

type

sign

x

y

Fig. 2. The encoding of network in linear genome. Genetic elements I and M code for
the nodes that allow for presenting the stimulation by input and modulation, O encodes
the output neuron. See text for further details.

318 M. A. Khan et al.

Fig. 3. Absolute error of the evolved networks. Both the network with six interneurons
(champion 1, left) and two (champion 2, right) show the absolute error at most about
2 when compared to the best-fit tuning curves across 8 modulation levels experienced
during evolution (filled symbols) and 6 intermediate values (empty symbols) used only
in testing.

hand to give a clearly non-linear response (similar to the tuning curves observed
in [3]) with biologically realistic firing rates, and so that the network with a
perfect response would show a 5-fold multiplicative response (this is the ratio of
the highest multiplier divided by the lowest).

The fitness function minimises the sum of absolute differences between the
target and observed responses (absolute error), averaged over all np pairs of
input and multiplier:

ffitness =
1
np

n∑

k=1

p∑

l=1

|T (Ik,ml) − O(Ik,ml)| (6)

During evolution we presented 209 pairs of input and modulation, n = 19
levels of input, from 0.1 to 1.0, 0.05 apart, times p = 11 levels of modulation,
from 0.2 to 0.8, 0.1 apart, and from 0.85 to 1, 0.05 apart.

3 Results and Discussion

We have run 100 independent runs of artificial evolution, and then analysed the
responses of the champion networks. During this analysis, we have noticed that
none of the champions shows good responses for input values above 0.8, and
modulation levels above 0.85. We will aim to resolve this problem in our future
work. For the preliminary analysis in this paper, we have thus retested all the
champions for 15 input values (from 0.1 to 0.8, 0.05 apart) and 14 modulation
values, 8 presented during evolution (from 0.2 to 0.8, 0.1 apart, plus 0.85) and
additional 6 values from 0.25 to 0.75, 0.1 apart.

Since we are interested in evolving networks for multiplicative operations in
general, not networks whose responses match a particular set of tuning curves,
we fitted (using least squares as the goodness-of-fit measure) the parameter m
in Eq. 5 to the actual responses for these 14 levels of modulation, each over

SNN Evolved to Perform Multiplicative Operations 319

these 15 levels of input. Only two networks out of 100 had an absolute error
(averaged for all input levels for a given modulation level) of around 2 (Fig. 3)
for all 14 modulation levels—at most about 2 spikes difference from the best-fit
tuning curve. One of this networks (champion 1) had six interneurons, the other
(champion 2) had two—the genome coded for three, but one of the neurons did
not spike for any (input, modulation) pair and thus could be removed.

The ratio of the highest to the lowest m value (mmax/mmin) fitted as
described above for each network gives the maximum number by which the
network actually multiplies its response to the input as the modulation varies.
This ratio was 3.4 for champion 1 (the fitted value of m was mmin = 0.54 for
modulation = 0.2 and mmax = 1.82 for modulation = 0.8) and 2.3 for champion
2 (mmin = 0.74, mmax = 1.71). Thus the larger network showed a larger mul-
tiplicative response to modulation (Fig. 4). Since in 100 runs we obtained only
two networks with small absolute errors, we cannot judge yet if in general larger
networks thus obtained will show larger multiplicative responses. We plan to
investigate this in our future work.

The networks of both champion 1 and 2 had only excitatory connections.
Perhaps if we reformulated the task so that the networks were not reset after
each (input, modulation) pair, also inhibitory connections would be necessary.
This is another issue we plan to investigate in our future work.

The preliminary analysis of the activity in the smaller network (Fig. 5) shows
that while the firing rate of interneuron N1 is well above 100 Hz, the firing rate
of N0 is lower, around 30 Hz, and N0 does not respond to low modulation and
input levels. The activity of N1 is very similar to the activity of the output;
the most noticeable exceptions are in the response to high levels of input, which
in N1, unlike in output, does not change much with the varying modulation.

Fig. 4. The best-fit tuning curves of the evolved networks for three levels of modulation.
The tuning curves correspond to the best fit of m (see text of details), for the modulation
at the lowest (0.2), intermediate (0.6) and the highest level (0.8). The network with six
interneurons (champion 1, left) shows a 3.4-fold multiplicative response, the network
with two interneurons (champion 2, right) shows a 2.3-fold response.

320 M. A. Khan et al.

We can speculate that the connection from N0 to N1 together with a self-
connection of N1 is what allows the varied response to high input as the modu-
lation varies.

Fig. 5. The topology of the network with two interneurons with the responses of the
output neuron and the interneurons.

4 Conclusions and Future Work

We have successfully evolved a network of six plus one (interneurons plus output)
adaptive exponential neurons with a tuning curve that can be scaled multiplica-
tively 3.4 times, and a network with only two plus one such neurons with a
curve scalable 2.3-fold. In future work, our focus will be the absolute error in
the network response, so that we can scale up to higher multiplicative values.
We also plan to investigate if networks performing multiplicative operations can
be evolved in the presence of noise on the input and modulation and on the
state variables of the neurons. We would like to test the hypothesis if larger net-
works will allow for better matching of tuning curves and higher multiplicative
responses. We would also like to reformulate our model so not only the firing
rates of the neurons in the network are kept within the biologically realistic val-
ues, but also the currents resulting from the stimulation—this was not the case

SNN Evolved to Perform Multiplicative Operations 321

here, as the synaptic weights in the evolved networks reached very high values;
we plan to limit them by introducing an additional sigmoidal transformation in
the encoding of synaptic weights in our model.

Acknowledgements. This work was supported by the Polish National Science Center
(project EvoSN, UMO-2013/08/M/ST6/00922). MAK acknowledges the support of the
PhD program of the KNOW RNA Research Center in Poznan (No. 01/KNOW2/2014).

References

1. Ayaz, A., Chance, F.S.: Gain modulation of neuronal responses by subtractive and
divisive mechanisms of inhibition. J. Neurophysiol. 101, 958–968 (2009)

2. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effec-
tive description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005)

3. Chance, F.S., Abbott, L.F., Reyes, A.D.: Gain modulation from background synap-
tic input. Neuron 35, 773–782 (2002)

4. Götz, K.G.: The optomotor equilibrium of the Drosophila navigation system. J.
Comp. Physiol. 99, 187–210 (1975)

5. Hildebrandt, K.J., Benda, J., Hennig, R.M.: Multiple arithmetic operations in a
single neuron: the recruitment of adaptation processes in the cricket auditory path-
way depends on sensory context. J. Neurosci. 31, 14142–14150 (2011)

6. Koch, C., Poggio, T.: Multiplying with synapses and neurons. In: Single Neuron
Computation, pp. 315–345. Elsevier (1992)

7. Murphy, B.K., Miller, K.D.: Multiplicative gain changes are induced by excitation
or inhibition alone. J. Neurosci. 23, 10040–10051 (2003)

8. Naud, R., Marcille, N., Clopath, C., Gerstner, W.: Firing patterns in the adaptive
exponential integrate-and-fire model. Biol. Cybern. 99, 335–347 (2008)

9. Peña, J.L., Konishi, M.: Robustness of multiplicative processes in auditory spatial
tuning. J. Neurosci. 24, 8907–8910 (2004)

10. Salinas, E., Abbott, L.: Coordinate transformations in the visual system: how to
generate gain fields and what to compute with them. Progress Brain Res. 130,
175–190 (2001)

11. Salinas, E., Sejnowski, T.J.: Gain modulation in the central nervous system:
where behavior, neurophysiology, and computation meet. Neuroscientist 7, 430–
440 (2001)

12. Schnupp, J.W., King, A.J.: Neural processing: the logic of multiplication in single
neurons. Curr. Biol. 11, 640–642 (2001)

13. Wróbel, B., Abdelmotaleb, A., Joachimczak, M.: Evolving networks processing
signals with a mixed paradigm, inspired by gene regulatory networks and spiking
neurons. In: Di Caro, G.A., Theraulaz, G. (eds.) BIONETICS 2012. LNICST,
vol. 134, pp. 135–149. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06944-9 10

14. Wróbel, B., Joachimczak, M.: Using the genetic regulatory evolving artificial net-
works (GReaNs) platform for signal processing, animat control, and artificial mul-
ticellular development. In: Kowaliw, T., Bredeche, N., Doursat, R. (eds.) Grow-
ing Adaptive Machines. SCI, vol. 557, pp. 187–200. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55337-0 6

15. Yaqoob, M., Wróbel, B.: Robust very small spiking neural networks evolved with
noise to recognize temporal patterns. In: Proceedings of the 2018 Conference on
Artificial Life, ALIFE 2018, pp. 665–672. MIT Press (2018)

https://doi.org/10.1007/978-3-319-06944-9_10
https://doi.org/10.1007/978-3-319-06944-9_10
https://doi.org/10.1007/978-3-642-55337-0_6

Very Small Spiking Neural Networks
Evolved for Temporal Pattern

Recognition and Robust to Perturbed
Neuronal Parameters

Muhammad Yaqoob1 and Borys Wróbel1,2(B)

1 Evolving Systems Laboratory, Adam Mickiewicz University in Poznan,
Poznan, Poland

{yaqoob,wrobel}@evosys.org
2 IOPAN, Sopot, Poland

Abstract. We evolve both topology and synaptic weights of recurrent
very small spiking neural networks in the presence of noise on the mem-
brane potential. The noise is at a level similar to the level observed in
biological neurons. The task of the networks is to recognise three signals
in a particular order (a pattern ABC) in a continuous input stream in
which each signal occurs with the same probability. The networks con-
sist of adaptive exponential integrate and fire neurons and are limited to
either three or four interneurons and one output neuron, with recurrent
and self-connections allowed only for interneurons. Our results show that
spiking neural networks evolved in the presence of noise are robust to
the change of neuronal parameters. We propose a procedure to approx-
imate the range, specific for every neuronal parameter, from which the
parameters can be sampled to preserve, at least for some networks, high
true positive rate and low false discovery rate. After assigning the state
of neurons to states of the network corresponding to states in a finite
state transducer, we show that this simple but not trivial computational
task of temporal pattern recognition can be accomplished in a variety of
ways.

Keywords: Temporal pattern recognition · Spiking neural networks
Artificial evolution · Minimal cognition · Complex networks
Genetic algorithm · Finite state automaton · Finite state machine

1 Introduction

Information in biological neuronal systems is represented temporally by pre-
cise timing of voltage spikes [1,3,5,6,12,13,15]. Thus noise poses a fundamental
problem for informational processing in biological systems [9] (and also artificial
systems inspired by them). On the other hand, noise has been postulated to play
a computational role [14]. For example, neuronal noise enables the phenomenon
of stochastic resonance in neural networks—a process in which a weak signal
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 322–331, 2018.
https://doi.org/10.1007/978-3-030-01418-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_32&domain=pdf

Robust Small SNNs for Temporal Pattern Recognition 323

gets amplified to reach a threshold, or a strong signal is prevented from spiking
[7,20,21]. Moreover, neural networks formed in the presence of background noisy
synaptic activity can be expected to be robust to disturbances [11].

In this work, we analyse very small spiking neural networks (SNNs) evolved to
perform a simple temporal pattern recognition task in the presence of noise. We
will show that networks evolved with noise maintain functionality even when the
parameters of the neuronal model are changed. In contrast to our previous work
[23] in which just one neuronal parameter was varied at any given time (while
all the other parameters were kept at the default value), here we investigate
the robustness against varying all the parameters simultaneously. Although the
model for evolving the topology and weights in the SNNs we use here does not
in principle limit the number of neurons, we limited this number to either three
or four interneurons and one output neuron.

It has been observed before that the same computational task can be accom-
plished by networks with different structures [16,19]. Our long-term goal is
to understand how various solutions—obtained by evolving networks numer-
ous times, independently—can accomplish simple, but not trivial computational
tasks.

2 The Model

The networks in this work consist of adaptive exponential integrate and fire
neurons [17] with the default values of the parameters that result in tonic spiking
for constant input. The four state variables of each neuron, membrane potential
V , adaptation w, excitatory and inhibitory conductance gE and gI , are governed
by the equations

dV

dt
=

1
C

(gE(EE − V) + gI(EI − V) − w)

+
1

τm
(EL − V + ΔT e

(
V −VT

ΔT
)) (1)

τw
dw

dt
= a(V − EL) − w (2)

dgE
dt

=
−gE
τE

(3)

dgI
dt

=
−gI
τI

(4)

with 13 parameters in total; the default values of parameters are presented in
Table 1 [23,24]. We used Euler integration with 1 ms time step, and added a
random value drawn from the normal distribution centered at 0 with standard
deviation 2 mV to V at each step; this level of noise is similar to that observed
in biological neurons [2,8,10,18].

When V of a neuron is above 0 mV, V is reduced to Vr, while w changes
to w + b, and each neuron to which this neuron connects receives a spike. If

324 M. Yaqoob and B. Wróbel

Table 1. The ranges of robustness for champions with 3 and 4 interneurons that
were most robust (3/3 and 1/4, respectively) overall and for the most robust from the
champions maintaining state (8/3 and 7/4).

Parameter Default value 3/3 8/3 1/4 7/4

EL −70mV [−72,−67] [−72,−66] [−72,−67] [−74,−68]

Vr −58mV [−59,−55] [−60,−54] [−60,−55] [−59,−55]

VT −50mV [−51,−48] [−51,−48] [−52,−49] [−51,−48]

ΔT 2mV [1.6, 2.4] [1.8, 2.3] [1.8, 2.1] [1.9, 2.2]

C 0.2 nF [0.19, 0.22] [0.17, 0.23] [0.17, 0.21] [0.17, 0.22]

a 2 nS [−2, 4] [1, 6] [0, 3] [1, 4]

b 0 pA [0, 3] [0, 4] [0, 3] [0, 2]

τm 20ms [19, 22] [18, 23] [17, 21] [17, 23]

τw 30ms [29, 32] [29, 33] [27, 31] [27, 31]

τE 5ms [4.8, 5.2] [4.9, 5.3] [4.7, 5.1] [4.9, 5.3]

τI 5ms [4.9, 5.2] [4.9, 5.3] [4.6, 5.1] [4.9, 5.3]

EE 0mV [−2, 2] [−2, 4] [−3, 1] [−1, 2]

EI −70mV [−71,−67] [−73,−68] [−72,−67] [−71, 68]

gainE 7 nS [6.9, 7.3] [6.9, 7.3] [6.8, 7.3] [6.7, 7.2]

gainI 7 nS [6.8, 7.3] [6.8, 7.4] [6.8, 7.3] [6.7, 7.2]

the connection is excitatory (inhibitory), gE (gI) in such a postsynaptic neuron
is increased by the weight of the connection multiplied by the synaptic gain.
Encoding of SNNs in our model has been described previously [22–24]. In order
to recognise a subsequence of three signals in a random input stream, the network
has three input nodes (one for each signal), either three or four interneurons, and
a single output neuron. Dale rule [4] is not kept—a neuron can be both excitatory
and inhibitory at the same time. Furthermore, input nodes cannot connect to the
output neuron directly. Only interneurons can have self-loops. The settings for
the artificial evolution in this work are as in our previous work [23], with three
modifications: (i) the size of duplication of genetic elements was drawn from
a geometric distribution with mean 6 (it was 11 previously), (ii) the elements
coding for input and output were excluded both from duplications/deletions
and crossover (they were allowed to undergo crossover in [23]), (iii) finally and
most importantly, we modified slightly the way the fitness function is calculated,
resulting in the procedure as follows.

During evolution, each individual was evaluated on six input streams with
500 signals, each signal 6 ms in duration and followed by 16 ms silence (each
input stream thus lasted for 11 s). In four input streams, all signals (A, B and
C) occurred with equal probability; two input streams were constructed by con-
catenating four triplets (with equal probability of occurrence): ABC and ABA,
ABB, BBC (three triplets that our preliminary work showed the most problem-
atic to distinguish from the pattern to be recognised, ABC). To calculate the

Robust Small SNNs for Temporal Pattern Recognition 325

fitness function, we calculated R (for reward), the number of 22 ms intervals
(signal plus silence) of the last C of each ABC in the input sequence during
which the output neuron actually spiked, correctly, at least once, divided by the
total number of intervals in the input stream for which it should spike. In other
words, R is the true positive rate (TPR) of the network. We also calculated
P (for penalty), the number of other 22 ms intervals (signal plus silence) with
spikes on output (wrongly), divided by the total number of 22 ms intervals in
the input stream in which spikes should not occur. In contrast, false discovery
rate (FDR) of the network has the same numerator as P , but the denominator
is all the 22 ms intervals in which the spikes of the output neuron were observed.
The fitness function we used,

ffitness = 1 − R + 4P (5)

penalises strongly spikes that do not follow the target pattern. The constant 4 in
the penalty term was chosen by the preliminary exploration of values with the
objective to find a value that gave the highest yield of successful evolutionary
runs. We define a successful run as one that ends with a champion that is a
perfect recogniser. A perfect recogniser evolved without noise is a network that
spikes only after the correct pattern. For networks evolved with noise, we consider
an SNN a perfect recogniser if it has TPR> 0.99 and FDR< 0.01).

The slight modifications of the settings of the artificial evolution (from the
ones used in [23]) had a quite pronounced effect on the yield of perfect recognisers
when no noise was present (for three interneurons, 81% of runs versus 33% for
the settings in [23]). However, the effect on the evolvability in the presence of
noise was less pronounced.

For each champion, we obtained the ranges of parameters for which it was
robust using the following algorithm. We repeatedly extended the ranges of all
parameters around their default values, by a small value (specific for each param-
eter), at first in both directions. We then drew 100 random sets of parameters
using such extended ranges, gave the same parameters to all neurons in the net-
work, and checked if at least 90 among these 100 SNNs had TPR> 0.90 and
FDR< 0.10 (each network was tested for one random, and thus different, input
stream with 50000 signals, with equal probability of occurrence for A, B, and C).
If so, the extended ranges were kept. If not, the ranges were shrunk back to the
previous sizes and the problematic parameter was identified (by excluding one
by one the parameters from extension, in one of the two directions, in the set of
parameters for which the ranges can be extended, and checking if this allowed to
extend the range keeping TPR > 0.90 and FDF< 0.10). The algorithm stopped
when the set of parameters for which the range could be extended became empty.

The size of the ranges (maximum minus the minimum value) were compared
for the networks evolved with the limit of three versus four interneurons using
the James test implemented in the package Rfast of the R project (https://cran.
r-project.org/). Proportions were compared using function prop.test in R.

https://cran.r-project.org/
https://cran.r-project.org/

326 M. Yaqoob and B. Wróbel

3 Results and Discussion

In 100 independent runs for 3000 generations each, when we allowed for three
interneurons, 13 runs ended with perfect recognisers. When we allowed for four
interneurons, 19 runs out of 100 resulted in perfect recognisers. Our previous
work [23] suggested that at least three interneurons are needed to obtain perfect
recognisers in the presence of noise; here also we were unable to evolve with
noise when less than three interneurons were allowed, and none of the runs
when the limit was set to three resulted in a champion with less. In contrast,
two champions out of 19 obtained when the limit was set to four interneurons
ended up having three interneurons.

The size of the ranges of robustness for 13 networks evolved with the limit of
three versus 17 networks with four interneurons was not significantly different.
We then tested how robust were the networks when each neuron in the network
was given a different set of parameters drawn from the obtained range (dur-
ing the range expansion algorithm, all neurons always had the same parameters
drawn from the range; in this test, as during expansion, we made 100 evalu-
ations, each on a different random input stream with 50000 signals). None of
the networks remained perfect recognisers, but some—noticeably champion 3
evolved with three interneurons (champion 3/3)—were quite robust to such a
disruption (Table 2), and so were champions 8/3 and 5/3; and for the networks
with 4 interneurons, champions 1/4 and 12/4.

We have previously proposed a way to map the network activity to the states
of finite state transducers (FST) [23,24]. Before we did such a mapping for the
networks obtained here, we first analysed which networks could maintain their
state for a very long time (in practice, noise may prevent a given network from
maintaining the states infinitely). Nine out of 13 networks evolved with three
interneurons sustained elongation of intervals between signals from 16 ms to at
least 100 ms (Table 2; we assume that if the silence can be extended to 100 ms,
the network maintains its state). Only four out of 17 with four interneurons did
so (Table 2). Thus the fraction of perfect recognisers maintaining their state is

Table 2. Robustness of 13 networks evolved limiting the number of interneurons to
three (top) and 19 networks evolved limiting the number of interneurons to four (bot-
tom; champions with labels in bold evolved to have 3 interneurons), when sampling
the neuronal parameters from the ranges of robustness specific for each champion, and
their robustness to increased interval of silence between signals.

0/3 1/3 2/3 3/3 4/3 5/3 6/3 7/3 8/3 9/3 10/3 11/3 12/3
TPR>0.99 & FDR<0.01 37 37 27 80 19 53 47 52 67 14 24 16 8
TPR>0.95 & FDR<0.05 71 79 75 97 68 99 93 98 93 80 50 51 79
TPR>0.90 & FDR<0.10 84 86 86 100 85 99 97 99 99 91 71 65 93

Maximum interval of silence �100 35 �100 28 �100 �100 48 �100 �100 �100 �100 �100 19

0/4 1/4 2/4 3/4 4/4 5/4 6/4 7/4 8/4 9/4 10/4 11/4 12/4 13/4 14/4 15/4 16/4 17/4 18/4
TPR>0.99 & FDR<0.01 5 66 1 39 39 18 58 39 11 34 17 38 64 17 5 24 29 7 48
TPR>0.95 & FDR<0.05 64 88 70 69 75 75 90 86 58 89 67 74 92 76 47 65 70 72 96
TPR>0.90 & FDR<0.10 90 94 92 85 86 91 93 98 83 95 86 83 98 93 73 81 82 90 98

Maximum interval of silence 17 20 24 21 36 �100 �100 �100 19 27 18 18 29 �100 23 50 18 �100 28

Robust Small SNNs for Temporal Pattern Recognition 327

S hA hAB hABC

B/0, C/0 A/0

A/0

C/0

B/0

A/0

C/1

A/0B/0

B/0, C/0

Fig. 1. Minimal FST for recognizing ABC. The nodes represent the states and edges
represent the transitions from one state to another state on receiving an input symbol
{A, B, C} and producing an output {0: no spike(s), 1: spike(s) of the output neuron}.

significantly larger for networks with three interneurons (p = 0.017; one-sided
test). The reason for this might be that in networks with four interneurons
the additional neuron acts as one more source of noise disrupting the memory
maintained as self-sustained high-frequency spiking (see below).

We considered the network most robust if it had the highest number of sets
of parameter values among 100 sets independently sampled from the robust-
ness ranges (such as shown in Table 1) that gave TPR > 0.99 and FDR< 0.01.
Interestingly, the most robust networks (3/3 and 1/4) failed to maintain their
state. For mapping the network states on to the states of an FST, we have cho-
sen therefore networks 8/3 and 7/4—the most robust of networks maintaining
memory (Figs. 2 and 3).

There are four states in a minimal-size FST that recognises a pattern that
consists of three different signals in a specific order in a stream of three signals
(Fig. 1). In both networks (8/3 and 7/4) the state of the network after they
receive ABC (state hABC, for had ABC) is reached after a transition from a
state in which all interneurons have zero or zero/low activity (neural states Z or
L, respectively; Tables 3 and 4). The same was the case for all the other perfect
recognisers obtained in this work (not shown). This means that the output in
each network will spike if the input stream consists of a single signal, C. Since
we are interested here in recognition in a continuous stream of signals, we do not
consider it a serious issue. Perhaps, however, introducing a strong penalty for
output spikes after the initial C would allow us to obtain networks with different
structure and activity; we plan to investigate this in our future work.

The interneurons of 8/3 are fully connected (Fig. 2), and all the interneurons
have excitatory self-loops. However, it is not the case that full connectivity with
self-loops for interneurons in networks evolved for three interneurons is a suffi-
cient and necessary condition for state maintenance (for example, 6/3 and 12/3
have such a topology, but do not maintain the state, while 11/3 does so without
full connectivity).

Going back to 8/3; both interneurons N1 and N2 self-excite themselves
strongly—high-frequency spiking (H state) of N1 and N2 is observed in all states
but hAB (which is maintained trivially—all neurons are inactive). When signal

328 M. Yaqoob and B. Wróbel

Fig. 2. The topology and activity of network 8/3.

Table 3. States of the neurons in network 8/3 in network states mapped on the states
of the minimal FST. Z: zero, L: (zero or) low, H: high-spiking activity. See text for
further details.

S hA hAB hABC

Neuron 0 L: 0, 2, 3 spikes Z Z L: 3 spikes

Neuron 1 H: 332± 1Hz L: 0, 1, 2 spikes Z H: 331± 1Hz

Neuron 2 H: 333Hz H: 334± 1Hz L: 1, 2 spikes H: 329Hz

Output Z Z Z L: 1, 2 spikes

A is received, strong connection of input A to N2 puts N2 in the H state, and
because of a strongly inhibitory connection both from input A and N2 to N1, N1
is in an L state in the network state hA. The activity of input B strongly inhibits
N2; this is why the transition from network state hA to hAB corresponds to L
or Z states of all interneurons. When a network in such a state receives a C, the
excitatory connection from input C to N0 and N0’s weak self-excitation combine
to make N0 spike exactly three times, which is necessary for the output to spike
once or twice (output can be excited only by N0); connections from N0 to N1
and from N1 to N2 are mainly responsible for putting both N1 and N2 in an
H state. When, however, C is received in any other state, either N2 (state hA)
or both N1 and N2 (states S and hABC) are in state H; their strong inhibitory
connections to output prevent output from spiking (Fig. 2).

Limitations of space prohibit us from providing a similar analysis for 7/4.
We do, however, provide the data (Fig. 3, Table 4) sufficient for making it.

Our preliminary analysis of the variability of the ways in which computation
in this task is accomplished in networks that show state maintenance indicates
that networks evolved with three interneurons belong to four distinct classes

Robust Small SNNs for Temporal Pattern Recognition 329

Fig. 3. The topology and activity of network 7/4.

Table 4. States of the neurons in network 7/4 in network states mapped on the states
of the minimal FST. Z: zero, L: (zero or) low, H: high-spiking activity. See text for
further details.

S hA hAB hABC

Neuron 0 Z L: 2, 3 spikes Z Z

Neuron 1 H: 330± 3Hz H: 280± 3Hz L: 1 spike H: 330Hz

Neuron 2 H: 332± 2Hz L: 0, 1, 3 spikes Z H: 333Hz

Neuron 3 L: 0, 4 spikes Z Z L: 4 spikes

Output Z Z Z L: 1, 2 spikes

based on the assignment of neural states to network states. For network 8/3
we can encode this assignment as (S, hA, hAB, hABC) = (LHH, ZLH, ZZL,
LHH), where Z means zero activity, L means zero or low activity (a few spikes at
most), and H means high-frequency spiking. The order of symbols in each triplet
assigned to a state follows the order of interneurons’ labels (Table 3). Three other
networks belong to this class, 0/3, 9/3, and 11/3 (such matching requires, of
course, appropriate ordering of interneurons in each network). The other three
possible classes are: (i) 4/3 and 7/3 have (ZHH, ZHL, ZLZ, LHH), (ii) 2/3 and
5/3 have (HHH, HLZ, LZZ, HHH), and (iii) 10/3 has (HHH, LHH, ZLL, HHH).
The four networks that show state maintenance with four interneurons all belong
to different classes based on such an assignment: whereas (i) 7/4 has (ZHHL,
LHLZ, ZLZZ, ZHHL) (Table 4), (ii) 5/4 has (HZHH, HZHZ, LZHZ, HLHH),
(iii) 13/4 has (HHHH, HLLH, LZZL, HHHH), and (iv) 17/4 has (HLLH, LZZH,
ZZZL, HLLH). In our future work, we plan to further analyse the relationship
between these classes and the network topologies, considering the signs and
weights of the connections.

330 M. Yaqoob and B. Wróbel

4 Conclusions and Future Work

We show that SNNs evolved to perform a simple but not trivial computational
task in the presence of noise on neuronal membrane potential are robust to sam-
pling all neuronal parameters from a certain range, and provide a procedure
to approximate this range. Not surprisingly, we show that the range for vary-
ing all parameters is narrower than for varying a single parameter each time
(as we did previously [23]). In future work, we plan to further fine tune this
methodology—for example, by giving all neurons different parameters during
this procedure, and considering the dependence relationships between parame-
ters (we have observed, for example, that increasing the value of one parameter
may allow increasing the value of another).

Setting a limit for the number of interneurons one higher than necessary to
accomplish the tasks increased the yield of successful evolutionary runs (i.e., the
evolvability), but resulted in a smaller fraction of networks that could maintain
their state in the successful runs. Furthermore, there was no significant impact
on the range of robustness to changes of parameters between slightly smaller
and larger networks. In future work, we plan to investigate if larger networks
will allow obtaining solutions in the presence of higher levels of noise. We would
also like to see if other models of noise (such as an Ornstein-Uhlenbeck process,
commonly used in computational neuroscience) impact evolvability and robust-
ness. Another possible direction for future work is to investigate the evolution
of recognition of longer patterns in the presence of noise.

In this work, we performed a preliminary analysis of how the networks accom-
plish the temporal pattern recognition with state maintenance by assigning neu-
ral states in network states corresponding to the state of an FST. We show that
the solutions belong to different classes, and thus different topologies can allow
solving this task. In future work, we will analyse in more detail the variety of
solutions obtained in independent runs. We would also like to see if changing
the spiking behavior of neurons during evolution (e.g., to bursting) or the model
itself (e.g., to leaky integrate and fire) leads to other classes of solutions.

Acknowledgements. This work was supported by the Polish National Science Center
(project EvoSN, UMO-2013/08/M/ST6/00922). MY acknowledges the support of the
KNOW RNA Research Center in Poznan (No. 01/KNOW2/2014). We are grateful to
Volker Steuber and Neil Davey for discussions and suggestions.

References

1. Ahissar, E., Arieli, A.: Figuring space by time. Neuron 32, 185–201 (2001)
2. Anderson, J.S., Lampl, I., Gillespie, D.C., Ferster, D.: The contribution of noise to

contrast invariance of orientation tuning in cat visual cortex. Science 290, 1968–
1972 (2000)

3. Bialek, W., Rieke, F., de Ruyter van Steveninck, R.R., Warland, D., et al.: Reading
a neural code. In: Neural Information Processing Systems, pp. 36–43 (1989)

4. Burnstock, G.: Autonomic neurotransmission: 60 years since sir henry dale. Ann.
Rev. Pharmacol. Toxicol. 49, 1–30 (2009)

Robust Small SNNs for Temporal Pattern Recognition 331

5. Buzsáki, G., Chrobak, J.J.: Temporal structure in spatially organized neuronal
ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol. 5, 504–510
(1995)

6. Decharms, R.C., Zador, A.: Neural representation and the cortical code. Ann. Rev.
Neurosci. 23, 613–647 (2000)

7. Destexhe, A., Rudolph, M., Fellous, J.M., Sejnowski, T.: Fluctuating synaptic con-
ductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107,
13–24 (2001)

8. Destexhe, A., Paré, D.: Impact of network activity on the integrative properties of
neocortical pyramidal neurons in vivo. J. Neurophysiol. 81, 1531–1547 (1999)

9. Faisal, A.A., Selen, L.P., Wolpert, D.M.: Noise in the nervous system. Nat. Rev.
Neurosci. 9, 292–303 (2008)

10. Finn, I.M., Priebe, N.J., Ferster, D.: The emergence of contrast-invariant orienta-
tion tuning in simple cells of cat visual cortex. Neuron 54, 137–152 (2007)

11. Florian, R.V.: Biologically inspired neural networks for the control of embodied
agents. Center for Cognitive and Neural Studies (Cluj-Napoca, Romania), Techni-
cal report Coneural-03-03 (2003)

12. Gerstner, W., Kempter, R., van Hemmen, J.L., Wagner, H.: A neuronal learning
rule for sub-millisecond temporal coding. Nature 383, 76–78 (1996)

13. Huxter, J., Burgess, N., O’keefe, J.: Independent rate and temporal coding in
hippocampal pyramidal cells. Nature 425, 828–832 (2003)

14. Jacobson, G., et al.: Subthreshold voltage noise of rat neocortical pyramidal neu-
rones. J. Physiol. 564, 145–160 (2005)

15. Laurent, G.: Dynamical representation of odors by oscillating and evolving neural
assemblies. Trends Neurosci. 19, 489–496 (1996)

16. Marder, E.: Variability, compensation, and modulation in neurons and circuits.
Proc. Natl. Acad. Sci. USA 108(Suppl. 3), 15542–15548 (2011)

17. Naud, R., Marcille, N., Clopath, C., Gerstner, W.: Firing patterns in the adaptive
exponential integrate-and-fire model. Biol. Cybern. 99, 335–347 (2008)

18. Paré, D., Shink, E., Gaudreau, H., Destexhe, A., Lang, E.J.: Impact of spontaneous
synaptic activity on the resting properties of cat neocortical pyramidal neurons in
vivo. J. Neurophysiol. 79, 1450–1460 (1998)

19. Prinz, A.A., Bucher, D., Marder, E.: Similar network activity from disparate circuit
parameters. Nat. Neurosci. 7, 1345–1352 (2004)

20. Stacey, W., Durand, D.: Stochastic resonance improves signal detection in hip-
pocampal neurons. J. Neurophysiol. 83, 1394–402 (2000)

21. Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice
ages to crayfish and squids. Nature 373, 33–36 (1995)

22. Wróbel, B., Abdelmotaleb, A., Joachimczak, M.: Evolving networks processing
signals with a mixed paradigm, inspired by gene regulatory networks and spiking
neurons. In: Di Caro, G.A., Theraulaz, G. (eds.) BIONETICS 2012. LNICST,
vol. 134, pp. 135–149. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06944-9 10

23. Yaqoob, M., Wróbel, B.: Robust very small spiking neural networks evolved with
noise to recognize temporal patterns. In: ALIFE 2018: Proceedings of the 2018
Conference on Artificial Life, pp. 665–672. MIT Press (2018)

24. Yaqoob, M., Wróbel, B.: Very small spiking neural networks evolved to recognize
a pattern in a continuous input stream. In: 2017 IEEE Symposium Series on Com-
putational Intelligence (SSCI), pp. 3496–3503. IEEE (2017)

https://doi.org/10.1007/978-3-319-06944-9_10
https://doi.org/10.1007/978-3-319-06944-9_10

Machine Learning/Autoencoders

Machine Learning to Predict Toxicity
of Compounds

Ingrid Grenet1(B), Yonghua Yin2, Jean-Paul Comet1, and Erol Gelenbe1,2

1 University Côte d’Azur, I3S Laboratory, UMR CNRS 7271, CS 40121,
06903 Sophia Antipolis Cedex, France

grenet@i3s.unice.fr
2 Intelligent Systems and Networks Group, Department of Electrical and Electronic

Engineering, Imperial College, London, UK

Abstract. Toxicology studies are subject to several concerns, and they
raise the importance of an early detection of the potential for toxicity of
chemical compounds which is currently evaluated through in vitro assays
assessing their bioactivity, or using costly and ethically questionable in
vivo tests on animals. Thus we investigate the prediction of the bioac-
tivity of chemical compounds from their physico-chemical structure, and
propose that it be automated using machine learning (ML) techniques
based on data from in vitro assessment of several hundred chemical com-
pounds. We provide the results of tests with this approach using several
ML techniques, using both a restricted dataset and a larger one. Since
the available empirical data is unbalanced, we also use data augmenta-
tion techniques to improve the classification accuracy, and present the
resulting improvements.

Keywords: Machine learning · Toxicity · QSAR · Data augmentation

1 Introduction

Highly regulated toxicology studies are mandatory for the marketing of chemi-
cal compounds to ensure their safety for living organisms and the environment.
The most important studies are performed in vivo in laboratory animals dur-
ing different times of exposure (from some days to the whole life-time of the
animal). Also, in order to rapidly get some indication of a compound’s effects,
in vitro assays are performed using biological cell lines or molecules, to obtain
hints about the bioactivity of chemicals, meaning their ability to affect biological
processes. However, all of these studies raise ethical, economical and time con-
cerns; indeed it would be ideal if the toxicity of chemical compounds could be
assessed directly through physical, mathematical, computational and chemical
means and processes.

Therefore, in order to predict as early as possible the potential toxic effect of
a chemical compound, we propose to use machine learning (ML) methods. The
ambitious objective is to predict long term effects that will be observed in in vivo
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 335–345, 2018.
https://doi.org/10.1007/978-3-030-01418-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_33&domain=pdf

336 I. Grenet et al.

studies, directly from chemical structure. Nonetheless, this long term prediction
seems to be difficult [24] because of the high level of biological variability and
because toxicity can result from a long chain of causality. Therefore, in this paper
we investigate whether taking into consideration the in vitro data, can improve
the quality of the prediction. In such a case the global objective of the long term
toxicity prediction could be split into two parts: (i) first the prediction of in vitro
bioactivity from chemical structure [27], and (ii) secondly the prediction of long
term in vivo effects from in vitro bioactivity [23].

Here we focus on the first part (i) using ML approaches to determine a
“quantitative structure-activity relationship” (QSAR) [17]. QSAR models aim
at predicting any kind of compounds activity based on their physico-chemical
properties and structural descriptors. Our purpose is to predict using an ML app-
roach, whether a compound’s physico-chemical properties, can be used to deter-
mine whether the compound will be biologically active during in vitro assays. If
ML could be shown to be effective in this respect, then it would serve to screen
compounds and prioritize them for further in vivo studies. Then, in vivo toxicity
studies would only be pursued with the smaller set of compounds that ML has
indicated as being less bioactive, and which must then be certified via in vivo
assessment. Thereby a significant step forward would be achieved, since animal
experimentation could be reduced significantly with the help of a relevant ML
based computational approach.

This paper is organized as follows. Section 2 details the data, algorithms
and performance metrics used in this work. Section 3 presents the first results
obtained on a subset of data. Section 4 shows the performance of an algorithm
on the global dataset. Finally, we conclude in Sect. 5.

2 Learning Procedure

In this section we first describe the data used, then the ML algorithms that are
tested and finally the metrics used to evaluate performances of the models.

2.1 Data Description

Since the long term objective aims at predicting in vivo toxicity, we need publicly
available data for both in vivo and in vitro experimental results. The US Envi-
ronmental Protection Agency (EPA) released this type of data in two different
databases: (i) ToxCast database contains bioactivity data obtained for around
10,000 of compounds tested in more than several hundreds in vitro assays [7], (ii)
the Toxicity Reference database (ToxRefDB) gathers results from several types
of in vivo toxicity studies performed for several hundreds of chemicals [20]. It
is important to notice that not all the compounds have been tested in all the
assays from ToxCast and in each type of in vivo studies present in ToxRefDB.

Still guided by the long term objective, we consider a subset of these data
including compounds for which both in vitro and in vivo results were available.

Machine Learning to Predict Toxicity of Compounds 337

The subset selection follows three steps. First, we look for the overlap of com-
pounds present both in ToxCast and ToxRefDB and having results for in vivo
studies performed in rats during two years. We obtain a matrix with 418 com-
pounds and 821 assays, with a lot of missing values. Secondly, we look for a large
complete sub-matrix and we obtain a matrix of 404 compounds and 60 in vitro
assays. Finally, in order to be sure to get a minimum of active compounds in
the datasets, i.e. compounds for which an AC50 (half maximal activity concen-
tration), could be measured, we remove assays with less than 5% of them and
obtain a final matrix of 404 compounds and 37 assays.

For each of the 37 assays, we build a QSAR classification model to predict
the bioactivity of a compound. These models use structural descriptors com-
puted from the compound’s structure described in Structured Data Files. Two
types of descriptors are used: (i) 74 physico-chemical properties (e.g. molecular
weight, logP, etc.) which are continuous and normalized variables and (ii) 4870
fingerprints which are binary vectors representing the presence or absence of a
chemical sub-structure in a compound [21]. Fingerprints being present in less
than 5% of compounds are removed, leading to a final set of 731 fingerprints.
Therefore, the obtained dataset is composed of 805 structural descriptors for the
404 compounds.

The property that we wish to predict, is the activity in each in vitro assay in
a binarised form. It is generally measured as a AC50 value which is the dose of
compound required to obtain 50% of activity in the assay. In the following, we
consider that the binary version of the activity is 0 if AC50 value equals 0 and
1 otherwise.

2.2 Learning Algorithms

– The Random Neural Network (RNN) is a mathematical model of the
spiking (impulse-like) probabilistic behaviour of biological neural systems [9,
11] and it has been shown to be a universal approximator for continuous and
bounded functions [10]. It has a compact computationally efficient “product
form solution”, so that in steady-state the joint probability distribution of the
states of the neurons in the network can be expressed as the product of the
marginal probabilities for each neuron. The probability that any cell is excited
satisfies a non-linear continuous function of the states of the other cells, and it
depends on the firing rates of the other cells and the synaptic weights between
cells. The RNN has been applied to many pattern analysis and classification
tasks [6]. Gradient descent learning is often used for the RNN, but in this
work we determine weights of the RNN using the cross-validation approach
in [28].

– The Multi Layer RNN (MLRNN) uses the original simpler structure
of the RNN and investigates the power of single cells for deep learning [25].
It achieves comparable or better classification at much lower computation
cost than conventional deep learning methods in some applications. A cross-
validation approach is used to determine the structure and the weights and

338 I. Grenet et al.

20 trials are conducted to average the results. The structure of the MLRNN
used here is fixed as having 20 inputs and 100 intermediate nodes.

– The Convolutional Neural Network (CNN) is a deep-learning tool [18]
widely used in computer vision. Its weight-sharing procedure improves train-
ing speed with the stochastic gradient descent algorithm recently applied to
various types of data [15,26]. In this work, we use it with the following layers:
“input-convolutional-convolutional-pooling-fully*connected-output” [5].

– Boosted Trees (called XGBoost in the sequel) is a popular tree ensemble
method (such as Random Forest). The open-source software library XGBoost
[4] provides an easy-to-use tool for implementing boosted trees with gradient
boosting [8] and regression trees.

2.3 Classification Settings and Performance Metrics

For each of the 37 assays, we randomly subdivide the corresponding dataset D
into a training set DT and a testing set Dt. From D we randomly create 50
instances of DT and its complementary test set Dt so that for each instance,
D = DT ∪ Dt. Each of the ML techniques listed above are first trained on each
DT and then tested on Dt. The results we present below are therefore averages
over the 50 randomly selected training and testing sets. Since the output of the
datasets is either 0 or 1, this is a binary classification problem.

Let TP, FP, TN and FN denote the number of true positives, false positives,
true negatives and false negatives, respectively. Then the performance metrics
that we use to evaluate the results are the Sensitivity (TP/(TP + FN)), the
Specificity (TN/(TN + FP)) and the BalancedAccuracy, denoted for short
BA ((Sensitivity + Specificity)/2).

3 Classification Results

In the 37 datasets corresponding to the 37 assays, the ratio between positive
and negative compounds varies between 5% and 30% with a mean around 12%.
This highlights the unbalanced property of the data in the favor of negative
compounds. Here we test the ML algorithms on these unbalanced data and after
balancing using data augmentation.

3.1 Results on Unbalanced Datasets

The MLRNN, RNN, CNN and XGBoost algorithms are exploited to classify the
50 × 37 pairs of training and testing datasets and results are summarized into
Fig. 1. Since these are unbalanced datasets, the BA may be a better metric to
demonstrate the classification accuracy. In addition, the situation of misclassify-
ing positive as negative may be less desirable than that of misclassifying negative
as positive. Therefore, the metric of Sensitivity is also important.

When looking at the BA obtained on the training data set (Fig. 1(a)), we
observe that the RNN method is not good at learning from these unbalanced
datasets, while the CNN, MLRNN and XGBoost techniques learn much better.

Machine Learning to Predict Toxicity of Compounds 339

Assay index

0.5

0.6

0.7

0.8

0.9

1
Tr

ai
ni

ng
 B

al
an

ce
d

A
cc

ur
ac

y
R

at
e

CNN

MLRNN

XGBoost

RNN

(a) Training BA

0 10 20 30 40 0 10 20 30 40
Assay index

0

0.2

0.4

0.6

0.8

1

Tr
ai

ni
ng

 S
en

si
tiv

ity

CNN
MLRNN
XGBoost
RNN

(b) Training sensitivity

0 10 20 30 40
Assay index

0.9

0.92

0.94

0.96

0.98

1

Tr
ai

ni
ng

 S
pe

ci
fic

ity

CNN
MLRNN
XGBoost
RNN

(c) Training specificity

0 10 20 30 40
Assay index

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Te
st

in
g

B
al

an
ce

d
A

cc
ur

ac
y

R
at

e CNN

MLRNN

XGBoost

RNN

(d) Testing BA

0 10 20 30 40
Assay index

0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

in
g

S
en

si
tiv

ity
CNN

MLRNN

XGBoost

RNN

(e) Testing sensitivity

0 10 20 30 40
Assay index

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Te
st

in
g

S
pe

ci
fic

ity

CNN

MLRNN

XGBoost

RNN

(f) Testing specificity

Fig. 1. Training and testing mean-value results (Y-axis) versus different assays (X-axis)
when the CNN, MLRNN, XGBoost, RNN are used for classification.

Compared to the training accuracy, the performance on the testing dataset is
more important since it demonstrates whether the model generalises accurately
with regard to classifying previously unseen chemical compounds. The testing
results are presented in Figs. 1(d) to (f). Here, we see that RNN performs the
worst in identifying true positives (Sensitivity) and tends to classify most unseen
chemical compounds as inactive, except for some assays. It can be explained by
the overall number of inactive compounds much larger than the number of active
compounds in the training dataset. The CNN, MLRNN and XGBoost perform
a bit better in identifying the TPs, and the MLRNN performs the best. But
Sensitivity is still low and really depends on the assays and probably on the
balance between active and inactive compounds in the corresponding datasets.

Among all assays, the highest testing BA achieved by these classification
tools is 68.50% attained by the CNN for assay number 4, with the corresponding
Sensitivity being 47.10%. Among all assays, the highest testing Sensitivity is
47.75% (MLRNN for assay 17) with a corresponding BA of 60.80%.

3.2 Results on Balanced Datasets

From the previous results, it appears that most of the classification techniques
used are not good at learning unbalanced datasets. Therefore, we try balancing
the 50 × 37 training datasets with data augmentation, while the corresponding
testing datasets remain unchanged.

Here, the CNN, MLRNN, RNN and XGBoost are used to learn from the
50 × 37 datasets which are augmented for balanced training using the SMOTE

340 I. Grenet et al.

method [3] as implemented in the Python toolbox unbalanced learn [19]. The
resulting Sensitivity, Specificity and BA are summarised in Fig. 2.

Assay index

0.7

0.75

0.8

0.85

0.9

0.95

1

Tr
ai

ni
ng

 B
al

an
ce

d
A

cc
ur

ac
y

R
at

e

CNN

MLRNN

XGBoost

RNN

(a) Training BA

Assay index

0.75

0.8

0.85

0.9

0.95

1

Tr
ai

ni
ng

 S
en

si
tiv

ity CNN

MLRNN

XGBoost

RNN

(b) Training sensitivity

Assay index

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Tr
ai

ni
ng

 S
pe

ci
fic

ity

CNN

MLRNN

XGBoost

RNN

(c) Training specificity

Assay index

0.45

0.5

0.55

0.6

0.65

0.7

Te
st

in
g

B
al

an
ce

d
A

cc
ur

ac
y

R
at

e

CNN

MLRNN

XGBoost

RNN

(d) Testing BA

Assay index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

in
g

S
en

si
tiv

ity

CNN

MLRNN

XGBoost

RNN

(e) Testing sensitivity

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Assay index

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Te
st

in
g

S
pe

ci
fic

ity

CNN

MLRNN

XGBoost

RNN

(f) Testing specificity

Fig. 2. Training and testing mean-value results (Y-axis) versus different assays (X-axis)
on balanced datasets.

Compared to the training balanced accuracies given in Figs. 1(a) and 2(a)
shows that it is now evident that all the classification techniques we have dis-
cussed are capable of learning the training datasets after data augmentation.
The training BA of the RNN method is still the lowest, but its testing BA is
the highest for most of the assays.

Among all assays, the highest testing BA is 68.88% which is obtained with
the RNN for the assay 17, with the corresponding testing Sensitivity being 66%
and which is also the highest testing Sensitivity observed. Note that these values
are higher than those reported in Fig. 1.

Finally, for a better illustration, Fig. 3 compares the highest testing results
obtained among all classification tools for classifying the datasets before and after
data augmentation. This figure highlights the clear improvement of Sensitivity
for all assays, which also leads to a better BA for most of them. Not surpris-
ingly, Specificity is decreased after data augmentation since the proportion of
negatives in the balanced training sets is much lower compared to the original
ones. Therefore, the models do not predict almost everything as negative as they
did before data augmentation.

Machine Learning to Predict Toxicity of Compounds 341

0 10 20 30 40
Assay index

0.5

0.55

0.6

0.65

0.7

Te
st

in
g

Ba
la

nc
ed

 A
cc

ur
ac

y
R

at
e

Before data augmentation
After data augmentation

(a) Highest testing BA

0 10 20 30 40
Assay index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

in
g

S
en

si
tiv

ity

Before data augmentation
After data augmentation

(b) Highest testing sensitivity

0 10 20 30 40
Assay index

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Te
st

in
g

S
pe

ci
fic

ity

Before data augmentation
After data augmentation

(c) Highest testing specificity

Fig. 3. Comparison between the highest testing results (Y-axis) versus different assay
index (X-axis) on both unbalanced and balanced datasets.

4 Classification Results on Extended Datasets

4.1 New Datasets and Learning Procedure

In this section we use a bigger dataset of 8318 compounds to classify the same 37
assays. This 8318 × 37 matrix is not complete since not all the compounds were
tested in all the assays. Thus, for each of the 37 assays, we build a classification
model based on the compounds which were actually tested in the assay, leading to
different datasets for each assay. Note that, as previously, the instance numbers
of the two classes are very unbalanced.

Compared to the previous datasets, all the generated fingerprints are included
in the global dataset which corresponds to 4870 fingerprints in total (added to
the 74 molecular descriptors previously described). Nonetheless, for each of the
37 assays and before the learning, a descriptor selection is performed based on
two steps: (i) descriptors having a variance close to 0 (in such case, they are
not sufficiently informative) are removed, (ii) Fisher test is computed between
each descriptor and the output assay and descriptors are ranked according to
the obtained p-value; we keep the 20% best descriptors.

Random Forest (RF) classifier, an ensemble technique that combines many
decision trees built using random subsets of training examples and features [2],
is used for the learning because is has the advantage to deal with a large number
of features without overfitting. A 10-fold cross-validation is performed 10 times
and the average Sensistivity, Specificity and BA are computed to evaluate the
internal performance of the classifiers. As previously, we test the RF classifier
on both unbalanced and balanced datasets.

4.2 Results on Unbalanced Datasets

Figure 4 presents the results obtained with the method described above applied
to the datasets used in Sect. 3 as well as to the extended ones described in
Sect. 4.1. We observe that, for both ensembles of datasets, the RF method is not
good at identifying TPs (Sensitivity < 50%) and is predicting almost all com-
pounds as negatives (Specificity > 90%). However, we see that the extended

342 I. Grenet et al.

datasets lead to higher performance for most of the assays. Among all, the highest
BA achieved by the RF is 71.08% for the assay 17 with corresponding Sensitivity
and Specificity of 47.10% and 95.05% respectively. When looking at the dis-
tribution between active and inactive compounds in all assays, we see that the
assay 17 is the one which has the less unbalanced dataset with 30% of actives
in the initial dataset and 22% in the extended one. This could explain that
this assay always lead to the best performances. Also, the percentage of active
compounds for each assay in the extended dataset is always lower compared to
the initial dataset (data not shown). Nevertheless, since the results are better
with the extended dataset, it seems that the total number of observations has
an impact on the results and not only the ratio between actives and inactives.

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

● ● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.50

0.55

0.60

0.65

0.70

Assay index

B
a
la

n
ce

d
 A

cc
u
ra

cy

Dataset size
●

●

404 compounds

8318 compounds

RF algorithm without data augmentation

(a) BA

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

● ●

●

●

● ●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Assay index

S
e
n
si

tiv
ity

Dataset size
●

●

404 compounds

8318 compounds

RF algorithm without data augmentation

(b) Sensitivity

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
● ● ●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

0.90

0.92

0.94

0.96

0.98

1.00

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Assay index

S
p
e
ci

fic
ity

Dataset size
●

●

404 compounds

8318 compounds

RF algorithm without data augmentation

(c) Specificity

Fig. 4. Results of RF algorithm (Y-axis) versus different assays (X-axis).

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

0.50

0.55

0.60

0.65

0.70

Assay index

B
a
la

n
ce

d
 A

cc
u
ra

cy

Dataset size
●

●

404 compounds

8318 compounds

RF algorithm with data augmentation

(a) BA

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

Assay index

S
e
n
si

tiv
ity

Dataset size
●

●

404 compounds

8318 compounds

RF algorithm with data augmentation

(b) Sensitivity

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

0.90

0.92

0.94

0.96

0.98

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Assay index

S
p
e
ci

fic
ity

Dataset size
●

●

404 compounds

8318 compounds

RF algorithm with data augmentation

(c) Specificity

Fig. 5. Results of the RF algorithm (Y-axis) versus different assays (X-axis) on bal-
anced datasets.

4.3 Results on Balanced Datasets

Figure 5 presents the results obtained with the same protocol but with the data
augmentation method SMOTE applied to each training dataset of the cross-
validation. As in Sect. 3, we observe that for extended datasets, all the results
are improved after data augmentation (Sensitivity is increased by 8% in average
and BA by 3%). But still, the Sensivity is low compared to the Specificity.
Among all assays, the highest BA achieved by the RF on the extended dataset is

Machine Learning to Predict Toxicity of Compounds 343

73.64% with corresponding Sensitivity and Specificity of 54.93% and 92.36%
respectively, still for the assay 17. These results highlight that both the total
number of compounds in the dataset and the ratio between active and inactive
compounds have an impact on the performance of the models. Indeed, having a
bigger dataset which is balanced allows increasing performances.

5 Conclusion and Perspectives

From the results presented here, we can draw several conclusions. First, the
methods we have proposed can correctly predict bioactivity from the physico-
chemical descriptors of compounds. However, some methods appear to be signif-
icantly better than others. Also, this appears to depend strongly on the assays
themselves and their corresponding datasets. Moreover, we showed that the use
of a larger dataset improves the classification performance, even if the data is
unbalanced. Furthermore, we see that data augmentation techniques can play
an important role in classification performance for the unbalanced datasets.

This work on ML applied to toxicology data raises further interesting issues.
Since there is no absolute winner among the classification techniques that we
have used, we may need to test other methods such as Support Vector Machines
(SVM) [1] or Dense Random Neural Networks (DenseRNN) [14]. Also, it would
be interesting to apply the algorithms used on the small dataset to the extended
one and compare against the RF method. We may also test other data augmen-
tation techniques to seek the most appropriate ones [16]. Furthermore, in order
to assess the prediction accuracy of bioactivity for a new compound, it is impor-
tant to know if this compound has a chemical structure that is similar to the
ones used in the training set. For this, we could use the “applicability domain”
approach [22] as a tool to define the chemical space of a ML model. Finally, if we
refer to the long term objective of this work which is to link the molecular struc-
ture to in vivo toxicity, we could think about using the approach we have used
as an intermediate step, and also train ML techniques to go from in vitro data to
the prediction of in vivo effects. However, some preliminary tests that we have
carried out (and not yet reported), reveal a poor correlation between in vitro
and in vivo results, so that other data that is more directly correlated to toxicity,
could be considered in future ML predictive models of toxicity. In addition, we
could consider combining the results obtained with several ML methods, similar
to a Genetic Algorithm based combination [12,13], to enhance the prediction
accuracy.

References

1. Akbani, R., Kwek, S., Japkowicz, N.: Applying support vector machines to imbal-
anced datasets. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
ECML 2004. LNCS (LNAI), vol. 3201, pp. 39–50. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30115-8 7

2. Breiman, L.: Random Forests. Mach. Learn. 45, 5–32 (2001)

https://doi.org/10.1007/978-3-540-30115-8_7

344 I. Grenet et al.

3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

4. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 785–794. ACM (2016)

5. Chollet, F., et al.: Keras (2015). https://github.com/fchollet/keras
6. Cramer, C.E., Gelenbe, E.: Video quality and traffic QoS in learning-based sub-

sampled and receiver-interpolated video sequences. IEEE J. Sel. Areas Commun.
18(2), 150–167 (2000)

7. Dix, D.J., Houck, K.A., Martin, M.T., Richard, A.M., Setzer, R.W., Kavlock, R.J.:
The ToxCast program for prioritizing toxicity testing of environmental chemicals.
Toxicol. Sci. 95(1), 5–12 (2007)

8. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann.
Stat. 29(5), 1189–1232 (2001). https://doi.org/10.1214/aos/1013203451

9. Gelenbe, E.: Learning in the recurrent random neural network. Neural Comput.
5(1), 154–164 (1993)

10. Gelenbe, E., Mao, Z.H., Li, Y.D.: Function approximation with spiked random
networks. IEEE Trans. Neural Netw. 10(1), 3–9 (1999)

11. Gelenbe, E.: Réseaux neuronaux aléatoires stables. Comptes rendus de l’Académie
des Sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’Univers, Sciences
de la Terre 310(3), 177–180 (1990)

12. Gelenbe, E.: A class of genetic algorithms with analytical solution. Rob. Auton.
Syst. 22, 59–64 (1997)

13. Gelenbe, E.: Learning in genetic algorithms. In: Sipper, M., Mange, D., Pérez-
Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 268–279. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0057628

14. Gelenbe, E., Yin, Y.: Deep learning with dense random neural networks. In: Gruca,
A., Czachórski, T., Harezlak, K., Kozielski, S., Piotrowska, A. (eds.) ICMMI 2017.
AISC, vol. 659, pp. 3–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-67792-7 1

15. Goh, G.B., Hodas, N.O., Vishnu, A.: Deep learning for computational chemistry.
J. Comput. Chem. 38(16), 1291–1307 (2017)

16. He, H., Garcia, E.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng.
21(9), 1263–1284 (2009)

17. Hansch, C.: Quantitative structure-activity relationships and the unnamed science.
Acc. Chem. Res. 26(4), 147–153 (1993)

18. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

19. Lemâıtre, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to
tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res.
18(17), 1–5 (2017)

20. Martin, M.T., Judson, R.S., Reif, D.M., Kavlock, R.J., Dix, D.J.: Profiling chemi-
cals based on chronic toxicity results from the U.S. EPA ToxRef database. Environ.
Health Perspect. 117(3), 392–399 (2009)

21. Rogers, D., Hahn, M.: Extended-connectivity fingerprints. J. Chem. Inf. Model.
50(5), 742–754 (2010)

22. Schultz, T.W., Hewitt, M., Netzeva, T.I., Cronin, M.T.D.: Assessing applicability
domains of toxicological QSARs: definition, confidence in predicted values, and the
role of mechanisms of action. QSAR Comb. Sci. 26(2), 238–254 (2007)

23. Sipes, N.S., et al.: Predictive models of prenatal developmental toxicity from Tox-
Cast high-throughput screening data. Toxicol. Sci. 124(1), 109–127 (2011)

https://github.com/fchollet/keras
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1007/BFb0057628
https://doi.org/10.1007/978-3-319-67792-7_1
https://doi.org/10.1007/978-3-319-67792-7_1

Machine Learning to Predict Toxicity of Compounds 345

24. Thomas, R.S., et al.: A comprehensive statistical analysis of predicting in vivo
hazard using high-throughput in vitro screening. Toxicol. Sci. 128(2), 398–417
(2012)

25. Yin, Y., Gelenbe, E.: Single-cell based random neural network for deep learning.
In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 86–93
(2017)

26. Yin, Y., Wang, L., Gelenbe, E.: Multi-layer neural networks for quality of service
oriented server-state classification in cloud servers. In: 2017 International Joint
Conference on Neural Networks (IJCNN), pp. 1623–1627 (2017)

27. Zang, Q., Rotroff, D.M., Judson, R.S.: Binary classification of a large collection of
environmental chemicals from estrogen receptor assays by quantitative structure-
activity relationship and machine learning methods. J. Chem. Inf. Model. 53(12),
3244–3261 (2013)

28. Zhang, Y., Yin, Y., Guo, D., Yu, X., Xiao, L.: Cross-validation based weights
and structure determination of chebyshev-polynomial neural networks for pattern
classification. Pattern Recogn. 47(10), 3414–3428 (2014)

Energy-Based Clustering for Pruning
Heterogeneous Ensembles

Javier Cela(&) and Alberto Suárez

Computer Science Department, Universidad Autónoma de Madrid,
C/ Francisco Tomás y Valiente, 11, 28049 Madrid, Spain

javiercela1007@gmail.com, alberto.suarez@uam.es

Abstract. In this work, an energy-based clustering method is used to prune
heterogeneous ensembles. Specifically, the classifiers are grouped according to
their predictions in a set of validation instances that are independent from the ones
used to build the ensemble. In the empirical evaluation carried out, the cluster that
minimizes the error in the validations set, besides reducing computational costs
for storage and the prediction times, is almost as accurate as the complete
ensemble. Furthermore, it outperforms subensembles that summarize the com-
plete ensemble by including representatives from each of the identified clusters.

Keywords: Machine learning � Clustering analysis � Classifier ensembles
Bagging � Random forests

1 Introduction

In ensemble learning, the outputs of a collection of diverse predictors are combined to
yield a global prediction that is expected to be more accurate than the individual ones.
The key to obtaining accuracy improvements is that the predictors be complementary.
This means that their errors should be independent, so that the mislabeling of an
instance by a given classifier can be compensated in the combination process by correct
predictions from other classifiers. A homogeneous ensemble is composed of predictors
of the same type. Since the ensemble classifiers are trained on the same set of labeled
data, diversification mechanisms are needed to generate predictors that are actually
different (Dietterich 2000). To this end, instabilities of the learning algorithm that is
used to build the individual ensemble members can be exploited. Heterogeneous
ensembles are composed of classifiers of different types. In practical applications they
have proven to be very effective: The aggregation of the predictions of classifiers of
different types can be used to compensate their individual biases, which should be
distinct. In spite of their practical advantages, heterogeneous ensembles have not been
analyzed as extensively as their homogeneous counterparts. This analysis is the major
novelty of this work. One reason for this gap in the literature is the difficulty of
analyzing their aggregated prediction. Specifically, it is no longer possible to assume
that the predictions of the classifiers on an individual instance are independent iden-
tically distributed random variables (Lobato et al. 2012).

The main drawback of ensemble methods is their high computational costs in terms
of space and time: All the predictors need to be stored in memory. Furthermore, one

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 346–351, 2018.
https://doi.org/10.1007/978-3-030-01418-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_34&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_34&domain=pdf

needs to query every ensemble member to compute the final, aggregated prediction. In
homogeneous ensembles, pruning techniques have been designed to identify subsets of
classifiers whose predictive accuracy is equivalent, or, in some cases, better than the
complete ensemble (Suárez et al. 2009). In this manner, both memory costs and pre-
diction times are reduced, which could be a key advantage in real-time applications. In
this work, we propose to analyze the problem of pruning heterogeneous ensembles
using a novel perspective based on clustering techniques. Previously, clustering has
been used to identify representatives that can be used to effectively summarize a
complete ensemble (Bakker and Heskes 2003). For homogeneous ensembles, clus-
tering can be made on the basis of the parameters of the models or based on the models’
outputs on a dataset, typically a validation or a test set independent of the data used for
training. Given the disparate nature of the ensemble classifiers, in heterogeneous
ensembles only the latter ensemble clustering technique can be applied. For the sake of
completeness, we describe the energy-based clustering algorithm described in (Bakker
and Heskes 2003) in the following section.

2 Ensemble Clustering Based on Model Outputs

Let Dtrain ¼ xtrainn ; ytrainn

� �� �Ntrain

n¼1 be a set of labeled instances used to build the
ensemble. The components of the vector xtrainn �X are the attributes of the nth instance
in the training set. The value ytrainn � Y is the corresponding class label. An ensemble
H ¼ hcf gCc¼1 is composed of C predictors. The cth predictor in the ensemble is a
function hc : X ! Y that takes attribute vectors as inputs and yields a class label.
Specifically, hc xð Þ is the prediction of the cth ensemble member on the instance
characterized by the vector of attributes x �X. The global ensemble prediction for this
instance is given an aggregation of the individual prediction xð Þ ¼ A hcf gCc¼1

� �
. In this

work, the individual outputs of the ensemble predictors are aggregated using (un-
weighted) majority voting.

The goal of clustering is to making groupings based on similarities among the
outputs of the members of the ensemble on an set of validation instances

hvalc ¼ hc xvaln

� �� �Nval

n¼1� Y
Nval . To avoid biases, the validation set should be independent

of the training set. Since the class labels are not needed for clustering, the test set, if
available in the training phase, can be used for clustering. The clusters are characterized
by their centroids mk � YNval ; k ¼ 1; . . .;Kf g. To identify the clusters one could use
some standard algorithm, such as K-means or its fuzzy version (Bezdek et al. 1984)
(MacQueen 1967). However, from our empirical investigation, the energy-based
clustering method introduced in (Bakker and Heskes 2003) is more effective. In this
procedure, one minimizes the free energy, which is the difference between an enthalpic
and an entropic term

P�;M�ð Þ ¼ arg min
P;Mð Þ

F P;Mð Þ ¼ arg min
P;Mð Þ

H P;Mð Þ � TS Pð Þ½ �: ð1Þ

Energy-Based Clustering for Pruning Heterogeneous Ensembles 347

The free energy depends on the C xK matrices M ¼ mkf gKk¼1 and P ¼ pkf gKk¼1
where pk ¼ pckf gCc¼1 and pck is the probability that the classifier hc belongs to cluster

k. By normalization,
PK

k¼1
pck ¼ 1. The enthalpy is the average distance of the classifiers

to the cluster centroids

H P;Mð Þ ¼
XC

c¼1

XK

k¼1
pckD hc;mkð Þ; ð2Þ

where D hc;mkð Þ is the distance between the cth classifier in the ensemble and centroid
k. In principle, any distance function, such as the mean-square error, or the cross-
entropy error can be used. The minimum of (2) is achieved when all the ensemble
members are assigned to the nearest cluster; that is, predictor hc is assigned to cluster

k� ¼ arg min
k � 1;...;Kf g

D hc;mkð Þ: ð3Þ

The entropy is a measure of how sharply the clusters are defined

S Pð Þ ¼ �
XC

c¼1

XK

k¼1
pck log pck: ð4Þ

The term proportional to the entropy is included in the objective function to avoid
that the clustering algorithm gets trapped in a local minimum. At the beginning of the
search, in the absence of knowledge of the structure of the clusters, the temperature
parameter takes a high value to favor exploration. As the algorithm proceeds, T is
decreased according to a deterministic annealing schedule (Rose 1998). At a fixed
temperature T > 0, and for fixed values of the cluster centroids mkf gKk¼1, the solution of
the optimization problem (1) is of the softmax form

p�ck ¼
e�bD hc;mkð Þ

PK
l¼1 e�bD hc;mlð Þ ; k ¼ 1; . . .; K; ð5Þ

where b ¼ 1
T is the inverse temperature (Rose 1990; Buhmann and Kühnel 1993;

Bakker and Heskes 2003). In the infinite temperature limit b!1, a given ensemble
member is assigned to all clusters with equal probability. At low temperatures, only
configurations around the minimum of (2) are explored. In the limit of zero temperature
b! 0, the clusters become sharply defined according to (3). For each annealing epoch,
the value of the temperature is fixed. The expectation-maximization algorithm is then
used to find the optimum of the free energy. If the mean-squared error or the cross-
entropy error are used as distance function, starting from an initial configuration of the

probabilities p 0½ �
k , the update rule is

348 J. Cela and A. Suárez

m i½ �
k arg max

mk

XC

c¼1
p i�1½ �
ck D hc;mkð Þ ¼

PC
c¼1 p

i�1½ �
ck hc

PC
c¼1 p

i�1½ �
ck

; k ¼ 1; . . .; K ð6Þ

p i½ �
k

e�bD hc;m
i½ �
kð Þ

PK
l¼1 e

�bD hc;m
i½ �
lð Þ ; k ¼ 1; . . .;K ð7Þ

Iterative updates of the maximization and the expectation steps, given by Eqs. (6)
and (7), respectively are made until convergence. While the cluster centroids and the
probabilities have not converged, the inverse temperature is incremented according to
the annealing schedule. Following the prescription given in (Bakker and Heskes 2003),
initially b ¼ 1. This value is incremented by 1 at each annealing epoch until the
clusters become sufficiently sharp (the centroids have reached convergence and the
clusters remain practically unalterable).

3 Empirical Evaluation

The goal of ensemble pruning is to reduce the costs of storage and the time for the
predictions without a significant loss (in some cases, with improvements) of accuracy.
Clustering can be used to carry out this selection in different ways. For instance, the
ensemble can be replaced by representatives from each of the identified clusters, as in
(Bakker and Heskes 2003). In this work, we take a different approach and attempt to
identify the most accurate cluster. To this end, we select the cluster that has the lowest
error in a validation set k� ¼ arg mink � 1;...;Kf g Eval Hkð Þ, where Hk is the subset of
predictors assigned to cluster k. The accuracy of this subensemble is then evaluated on
a test set that is independent of both the training and the validation set.

The experiments have been carried out in 10 different classification problems from
the UCI repository (Bache and Lichman 2017). For each classification problem, 1/3 of
the labeled instances are set aside for testing. From the remaining 2/3, 80% are used for
training and 20% for validation. Using the training data, 100 multilayer percetrons
(MLP) and 100 random trees (RT) are built using the Scikit-learn Python package [10].
Each of the classifiers in this heterogeneous ensemble is built on a bootstrap sample of
the same size as the original training set, as in bagging (Breiman 1996). The random
trees are built as in random forest (Breiman 2001), using the following settings:
Random subsets whose size is the square root of the total number of attributes are
considered for the splits at the inner nodes of the random trees. The split that minimizes
the Gini impurity is selected. Splits are made until either the node is pure or it has only
2 instances. Five different clusters are identified on the basis of the predictions of the
ensemble classifiers on the validation instances using the algorithm described in the
previous section. Similar accuracies (but different pruning rates) are obtained fixing the
number of clusters to 2, 3 or 7. The best cluster is selected using also the validation set,
which is independent from the one used for training. The results of the empirical
evaluation performed are summarized in Table 1. The values displayed in the columns
labeled Etest are the test error rate averaged over 30 independent train/test partitions

Energy-Based Clustering for Pruning Heterogeneous Ensembles 349

followed by the standard deviation after the ± symbol. The errors reported in second
column correspond to the homogenous bagging ensemble composed of the 100 MLPs
that have been built. The second column corresponds to a random forest composed of
the 100 random trees generated. The third column corresponds to the heterogeneous
ensemble that includes both the 100 MLPs and the 100 RFs. Finally, the composition
of the optimal cluster (k�) and the corresponding test error are displayed in the fourth
and fifth columns, respectively. The size of the optimal cluster is Ck� . The number of

MLP’s in this cluster is C MLP½ �
k� . The number of RT’s is C MLP½ �

k� .

From these results it is apparent that, in most of the problems analyzed, the
accuracy of the selected cluster is comparable to the best among the three complete
ensembles. Furthermore, one achieves a pruning rate of �20%, which directly trans-
lates into a five-fold reduction of storage needs and prediction times. These optimal
clusters are fairly homogeneous: In six of the problems analyzed, it is composed mostly
of MLPs; in the remaining four, random trees form a majority.

An interesting question is whether these pure ensembles are more accurate that
ensembles that retain a single representative per cluster as in (Bakker and Heskes
2003). To provide a more fair comparison, we consider also the possibility of sum-
marizing the ensemble by retaining multiple representatives per cluster so that the final
subensemble has the same size as the selected cluster. The results of this comparison,
which are presented in Table 2 show that, in fact, the increased diversity of the
ensembles of representatives, is detrimental and increases the test error.

In summary, we have applied an energy-based clustering method to identify a
subensemble whose accuracy is comparable to the complete heterogeneous ensemble,
which is composed of random trees and multilayer perceptrons. The selected

Table 1. Summary of the results of the empirical evaluation

Ensemble MLP RF MLP + RF Best cluster k�

Etest Etest Etest Ck� C MLP½ �
k� þC MLP½ �

k�

� 	
Etest

Blood 0.246 ± 0.026 0.263 ± 0.024 0.252 ± 0.018 42 (42 + 0) 0.243 ± 0.026
Breast
cancer
Wisconsin

0.046 ± 0.011 0.062 ± 0.011 0.068 ± 0.011 43 (42 + 1) 0.045 ± 0.009

Cars 0.123 ± 0.024 0.103 ± 0.015 0.118 ± 0.016 51 (7 + 44) 0.118 ± 0.016
Chess 0.021 ± 0.006 0.025 ± 0.004 0.023 ± 0.005 45 (30 + 15) 0.021 ± 0.005
Diabetes
(Pima)

0.239 ± 0.022 0.246 ± 0.013 0.239 ± 0.009 35 (32 + 3) 0.239 ± 0.021

German 0.275 ± 0.021 0.285 ± 0.017 0.269 ± 0.015 46 (42 + 4) 0.271 ± 0.019
Heart
disease

0.472 ± 0.045 0.466 ± 0.040 0.450 ± 0.033 47 (2 + 45) 0.452 ± 0.035

Liver 0.391 ± 0.043 0.382 ± 0.075 0.454 ± 0.062 37 (1 + 36) 0.387 ± 0.077
SPECT
heart

0.350 ± 0.044 0.350 ± 0.031 0.336 ± 0.029 43 (34 + 9) 0.350 ± 0.039

Tic-tac-toe 0.203 ± 0.028 0.118 ± 0.024 0.132 ± 0.019 44 (3 + 2) 0.118 ± 0.023

350 J. Cela and A. Suárez

subensemble is fairly homogeneous: it is either composed mainly of MLPs or mainly of
RTs. Contrary to what could be expected, in this particular setting the reduction of
diversity leads to improvements of accuracy.

Acknowledgements. The authors acknowledge financial support from the Spanish Ministry of
Economy, Industry and Competitiveness, project TIN2016-76406-P.

References

Bache, K., Lichman, M.: UCI Machine Learning Repository (2017). http://archive.ics.uci.edu/ml
Bakker, B., Heskes, T.: Clustering ensembles of neural network models. Neural Netw. 16, 261–

269 (2003)
Bezdek, J., Elrich, R., Full, W.: The fuzzy C-means clustering algorithm. Comput. Geosci. 10,

191–203 (1984)
Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
Buhmann, J., Kühnel, H.: Vector quantization with complexity costs. IEEE Trans. Inf. Theory

39, 1133–1145 (1993)
Dietterich, T.G.: Ensemble methods in machine learning. In: Proceedings of Multiple Classifier

Systems: First International Workshop, MCs 2000, Cagliari, Italy, 21–23 June 2000, pp. 1–15
(2000)

Lobato, D.H., Muñoz, G.M., Suárez, A.: On the independence of the individual predictions in
parallel randomized Ensembles. In: 20th European Symposium on Artificial Neural
Networks, Bruges (2012)

MacQueen, J.: Some methods for classification and analysis of multivariate observations. In:
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,
pp. 281–297 (1967)

Rose,K.: Statisticalmechanics of phase transition in clustering. Phys.Rev.Lett.65, 945–948 (1990)
Rose, K.: Deterministic annealing for clustering, compression, classification, regression and

related optimization problems. In: Proceedings for the IEEE, pp. 2210–2239 (1998)
Suárez, A., Hernández-Lobato, D., Martínez-Muñoz, G.: An analysis of ensemble pruning

techniques based on ordered aggregation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 245–
259 (2009)

Table 2. Test error rates for clustering-based pruned ensembles

Ensemble Single representatives Multiple representatives Best cluster k�

Blood 0.251 ± 0.023 0.253 ± 0.023 0.243 ± 0.026
Breast cancer Wisconsin 0.055 ± 0.015 0.056 ± 0.015 0.045 ± 0.009
Cars 0.123 ± 0.024 0.123 ± 0.024 0.118 ± 0.016
Chess 0.023 ± 0.004 0.023 ± 0.004 0.021 ± 0.005
Diabetes (Pima) 0.0246 ± 0.017 0.249 ± 0.015 0.239 ± 0.021
German 0.277 ± 0.020 0.277 ± 0.020 0.271 ± 0.019
Heart disease 0.472 ± 0.045 0.479 ± 0.044 0.452 ± 0.035
Liver 0.392 ± 0.059 0.394 ± 0.060 0.387 ± 0.077
SPECT heart 0.347 ± 0.044 0.345 ± 0.038 0.350 ± 0.039
Tic-tac-toe 0.162 ± 0.046 0.159 ± 0.048 0.118 ± 0.023

Energy-Based Clustering for Pruning Heterogeneous Ensembles 351

http://archive.ics.uci.edu/ml

Real-Time Hand Gesture Recognition
Based on Electromyographic Signals

and Artificial Neural Networks

Cristhian Motoche(B) and Marco E. Benalcázar(B)

Departamento de Informática y Ciencias de la Computación,
Escuela Politécnica Nacional, Quito, Ecuador

{cristhian.motoche,marco.benalcazar}@epn.edu.ec

Abstract. In this paper, we propose a hand gesture recognition model
based on superficial electromyographic signals. The model responds in
approximately 29.38 ms (real time) with a recognition accuracy of 90.7%.
We apply a sliding window approach using a main window and a sub-
window. The sub-window is used to observe a segment of the signal seen
through the main window. The model is composed of five blocks: data
acquisition, preprocessing, feature extraction, classification and postpro-
cessing. For data acquisition, we use the Myo Armband to measure the
electromyographic signals. For preprocessing, we rectify, filter, and detect
the muscle activity. For feature extraction, we generate a feature vector
using the preprocessed signals values and the results from a bag of func-
tions. For classification, we use a feedforward neural network to label
every sub-window observation. Finally, for postprocessing we apply a
simple majority voting to label the main window observation.

Keywords: Artificial Neural Networks · Electromyography
Hand gesture recognition · Machine learning · Signal processing

1 Introduction

Hand gesture recognition consists of identifying the instant and the class associ-
ated with a movement of the hand [1]. Hand gesture recognition has many appli-
cations in the scientific and technological fields, for example: human computer
interfaces (HCI), active prosthesis, and interaction with virtual environments [2].
A model that is suitable for these types of applications requires high recognition
accuracy and usually has to respond in real time (i.e., in less than 300 ms) [3].
Additionally, some applications (e.g., HCI) require a recognition model to run
on a computer with limited resources of RAM memory and processing. Hand
gesture recognition models commonly use sensors like instrumented gloves, color
cameras, depth cameras, and electromyographic sensors to acquire the input
data for the model [4–6]. In this work, we use electromyographic (EMG) sensors
because they are not affected by the variations of light, position and orientation

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 352–361, 2018.
https://doi.org/10.1007/978-3-030-01418-6_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_35&domain=pdf

Hand Gesture Recognition Based on sEMG Signals and ANN 353

of the hand. According to the scientific literature, the state-of-the-art recogni-
tion accuracy is about 85% for the models that use electromyographic sensors for
hand gesture recognition [7]. For this reason, in this work our goal is to develop
a model that achieves a recognition accuracy higher than 85% and responds in
real time with limited resources of memory and processing.

Machine learning is a framework that can be used to solve the problem of
hand gesture recognition based on superficial electromyographic (sEMG) sig-
nals. The most common classifiers for hand gesture recognition include: Support
Vector Machines [8], Artificial Neural Networks [9,10], Deep Convolutional Neu-
ral Networks [11], and k-Nearest Neighbors [12,13]. The conventional features
used for hand gesture recognition are defined in the following domains: time
(e.g., Mean Absolute Value and Zero Crossing), frequency (e.g., Mean Frequency
and Frequency Histograms) and time-frequency (e.g., Wavelets). Models based
on these classifiers and feature domains present high recognition accuracy and
respond in real time. However, they also have some disadvantages, for instance:
small number of predicted classes [7], too many repetitions for training the model
[14], and demand for high computational resources [11]. Therefore, hand gesture
recognition is still an open problem for new research.

In this paper, we develop a hand gesture recognition model based on sEMG
signals that responds in real time, achieves a recognition accuracy over the state-
of-the-art, and works in a computer with limited resources of RAM memory and
processing. The proposed model follows a sliding window approach using a main
window and a sub-window. The model is composed of the following blocks: data
acquisition, preprocessing, feature extraction, classification, and postprocessing.
For data acquisition, we measure the sEMG signals using the Myo Armband. For
preprocessing, we rectify, filter and detect the muscle activity in the main window
observation. For feature extraction, we generate a feature vector by concatenat-
ing the values of the preprocessed signal with the results of applying a bag of
functions. For classification, we use a feedforward neural network to label every
sub-window observation. Finally, for postprocessing we apply a simple majority
voting, based on the labels from the sub-window classification, to label the main
window observation with the corresponding gesture. The source code and the
data used in this work are publicly available in the following link: https://drive.
google.com/drive/folders/1rNgBFC38WXfruBocWmJnWNrR0iuA0HQw.

Following this introduction, this paper is organized in three sections. In
Sect. 2, we describe the materials and methods used in this work. In Sect. 3,
we present the results obtained. Finally, in Sect. 4, we present the conclusions
and outline future work.

2 Materials and Methods

2.1 Materials

Myo Armband. In this work, we use the Thalmic’s Myo Armband illustrated
in Fig. 1(a) because it provides an open software development kit, has low cost,
can be expanded from 19 to 34 cm, and weighs only 93 g. [15]. The Myo includes

https://drive.google.com/drive/folders/1rNgBFC38WXfruBocWmJnWNrR0iuA0HQw
https://drive.google.com/drive/folders/1rNgBFC38WXfruBocWmJnWNrR0iuA0HQw

354 C. Motoche and M. E. Benalcázar

the following components: 8 superficial electromyographic sensors (Fig. 1(b)), a
Bluetooth 4.0, and a 9-axes inertial measurement unit. The Myo streams data
at 200 Hz and represents every measured value with 8 bits [16]. The Myo is
also equipped with a proprietary software (black box model) that recognizes five
gestures: Fist, Wave In, Wave Out, Fingers Spread, and Double Tap (Fig. 1(c)).

Fig. 1. (a) Myo Armband and (b) its channels. (c) Gestures detected by the Myo.

Dataset. In this paper, we use the data of 10 healthy volunteers used previously
in [12,13] for training, validation and testing. We used this dataset to compare
the proposed model with the previous models presented in [12,13]. This dataset
contains a set for training and another set for testing. The training set consists of
five repetitions of the five gestures indicated in Fig. 1(c) recorded during two sec-
onds. Additionally, the training set includes five sEMG measurements recorded
during two seconds with the arm in the relax position. This set was used for
training and validation. The testing set consists of 30 repetitions recorded dur-
ing five seconds of only the five gestures in Fig. 1(c). For every repetition, the
volunteer started with his arm relaxed, then performs the gesture (around the
middle of the recording), and then returns the arm to the relaxed position until
the end of the recording.

2.2 Methods

Notation. In this paper, we denote the matrices with bold uppercase letters
(e.g., A). The vectors are denoted with bold lowercase letters (e.g., x). Constants
are denoted with uppercase letters (e.g., N) and indices are denoted with italic
lowercase letters (e.g., i).

Data Acquisition. For this block, we apply a sliding window approach using
a main window of length N. We represent the sEMG signals acquired with the
Myo Armband and seen trough the main window as a matrix A of size N × 8,
where 8 is the number of sensors of the Myo Armband. The value Ai,j represents
the measure in the instant of time i and from the sensor j, where i = 1, 2, . . . ,N
and j = 1, 2, . . . , 8, respectively. Each element of the matrix A is in the range

Hand Gesture Recognition Based on sEMG Signals and ANN 355

[−1, 1]. To generate the feature vectors for training the model, we use a main
window MWtrain of length Ntrain = 400 for every repetition in the training set. To
validate and test the model, we use a main window MWtest of length Ntest = 200
with a stride of 20 points between two consecutive windows.

Preprocessing. The sEMG signals can be modeled by a non-stationary stochas-
tic process [13]. This means that the probability distribution of the sEMG
changes with time. However, we can reduce the non-stationarity of the sEMG
by smoothing out its values. The idea of this process is to reduce the changes
of the probability distribution of the sEMG over the time assuming that the
smoothed sEMG is locally stationary [17]. In this work, for smoothing out the
sEMG signals we apply rectification and filtering. The preprocessing starts with
the signal rectification using the absolute value function. Then, a Butterworth
low-pass filter ψ of fourth order and cutoff frequency of 5 Hz is applied to A.

Additionally, we apply a muscle activity detection function Φ to the main
window observation, which is described in [13]. The function Φ returns the initial
and final indices that contain the muscle activity within MWtrain. This function
is used to remove the head and tail that refer to the relaxed position of the hand
for every repetition in the training set. In addition, we apply a muscle activity
verification function Ω to the main window observation in the testing set. The
function Ω is described in Eq. (1), where C is the observation of the signal
rectified and τpreprocessing is a threshold. If Ω(C) is true, then the recognition
process continues, otherwise the response is No Gesture for the main window.

Ω(C) =
N∑

i=1

8∑

j=1

Cij > τpreprocessing (1)

We apply Φ only to the training set because Φ returns the boundaries of the
muscle activity. In contrast, Ω only verifies if there is or not activity within the
main window observation. Additionaly, Φ increases the time of preprocessing
compared to Ω. We tested different thresholds and τpreprocessing = 0.39 gave us
the best results in the validation set.

Feature Extraction. For this block, we use a sub-window SW to observe a
segment of the signal seen trough the main window (Fig. 2(a)). The segment of
the signal seen through the sub-window SW is represented by a matrix E of
size M × 8; meanwhile, the signals observed through the main window MW are
represented as a matrix A of size N × 8, where N > M. We use a stride of one
point for two consecutive sub-windows (Fig. 2(b)).

The features for our classifier came from two different sources: the values of
the preprocessed signals and the results of applying a bag of functions to the
raw signals. We only use functions from the time domain because using functions
from the frequency and the time-frequency domains increases the computational
cost of this block. We apply the following steps to extract feature vectors, where
the index i represents the ith instant of the sEMG signal seen through MW:

356 C. Motoche and M. E. Benalcázar

Fig. 2. (a) Signals seen through both the main and the sub windows. (b) Movement
of the sub-windows over the main window for feature extraction, classification, and
postprocessing. (c) Process to generate a feature vector from a sub-window observation.

1. Align the first point of the sub-window SW with the point i = 1 of the sEMG
signal seen through the main window MW.

2. Preprocess the sub-window observation E to get F = ψ(abs(E)). Convert the
matrix F into a feature vector vi by concatenating its rows.

3. Apply a bag of functions to the raw values of E to get the feature vector zi.
4. Concatenate vi with zi horizontally to get the vector xi.
5. Move the first point of the sub-window SW to the instant i := i + 1 and

repeat the steps from (2) to (5) until i = N − M + 1.

The process for feature extraction is illustrated in Fig. 2(c). Every xi is of
length |vi| + |zi| (where |x| denotes the length of vector x) and is associated
with a label yi that corresponds to the gesture of the repetition from which xi

comes from. Empirically, we found that a sub-window length of M = 75 gave
us the highest recognition accuracy in the validation set. The length of v is
equal to M ∗ 8 so there is |v| = 75 ∗ 8 = 600 features. The bag of functions is
composed of the Mean Absolute Value, Slope Sign Changes, Waveform Length,
Root Mean Square, and the Hjorth parameters [18]. The application of these
functions creates a vector z of 56 features. The final length of the feature vector
x is equal to |x| = 600 + 56 = 656 features. The number of training vectors
obtained from the sub-window observation along the main window is N − M + 1
per gesture repetition. Therefore, the total number of vectors is (N − M + 1) ∗
NumberOfGestures ∗ RepetitionsPerGesture =(N − M + 1) ∗ 5 ∗ 5. The number
of vectors for training is different per user (between 2995 and 5606) because the
length of the muscle activity varies from one repetition to the others.

We used the t-Distributed Stochastic Neighbor Embedding (t-SNE) to visual-
ize how the training feature vectors from each user and from each class (gesture)
are clustered in the feature space. The results from the t-SNE applied to a
single user are displayed in Fig. 3. We can note that when the length of the sub-
window increases, the projected feature vectors of each class get closer to each

Hand Gesture Recognition Based on sEMG Signals and ANN 357

other. However, if the length of the sub-window increases, then the amount of
feature vectors from a repetition is reduced and the length of the feature vector
increases. This effect causes that the recognition model tends to overfitting.

-100

-50

0

50

100
Sub-Window length N = 10

Double Tap
Fingers Spread
Fist
No Gesture
Wave Out
Wave In

-100

-50

0

50

100
Sub-Window length N = 50

Double Tap
Fingers Spread
Fist
No Gesture
Wave Out
Wave In

-100

-50

0

50

100
Sub-Window length N = 75

Double Tap
Fingers Spread
Fist
No Gesture
Wave Out
Wave In

-100 -80 -60 -40 -20 0 20 40 60 80 100 -100 -80 -60 -40 -20 0 20 40 60 80 100

-100 -80 -60 -40 -20 0 20 40 60 80 100 -100 -80 -60 -40 -20 0 20 40 60 80 100
-100

-50

0

50

100
Sub-Window length N = 150

Double Tap
Fingers Spread
Fist
No Gesture
Wave Out
Wave In

Fig. 3. t-SNE results from different sub-window lengths.

Classification. In this work, we use artificial neural networks (ANN) for clas-
sification because this family of functions are universal approximators [19]: a
feedforward neural network with only three layers (input, hidden and output),
with a sigmoid transfer functions and an appropriate number of nodes in the hid-
den layer is able to approximate any function. For our model, we implemented
an ANN with three layers and trained this network using full batch gradient
descent, with a cross entropy cost function and 75 epochs. The input layer of
the network has 656 nodes, which corresponds to the length of the feature vec-
tors. After experimenting with different number of nodes in the hidden layer,
we obtained the best recognition results in the validation set using 328 nodes,
which is half of nodes in the input layer. The output layer has only 6 nodes,
which corresponds to the number of predicted gestures. We tested the following
transfer functions for the hidden layer: logsig, relu, softplus, elu and tanh. We
obtained the best results in the validation set using the tanh transfer function.
For training the network, we applied regularization using weight decay with a
factor λ = 750/(N − M + 1) ∗ 5 ∗ 5. Additionally, we applied feature scaling
using x′ = (xi − x̄)./σ, where x̄ is a vector with the mean values, and σ is also a
vector with the standard deviation values for each feature of the vector xi, and
./ represents the element wise division between two vectors.

358 C. Motoche and M. E. Benalcázar

Postprocessing. For each observation of the sEMG using the main window, we
obtain a vector of labels, where each label corresponds to the feature vector of a
sub-window observation. We define a threshold τpostprocessing and apply a simply
majority voting to assign a label to the main window observation. We assign the
label that has more than the τpostprocessing of occurrences in the vector of labels
of the main window. Otherwise, we assign the label No Gesture. After testing
different thresholds, we found that τpostprocessing = 70% gave us the highest
recognition accuracy in the validation set.

3 Results and Discussion

3.1 Evaluation Method

In addition to evaluating the proposed model, we also evaluated a model that is
based only on the preprocessed signal values (rectification and low pass filtering)
and another model that is based only on the results from the bag of functions.
Lets remember that the proposed model combines these two types of features.

To evaluate the recognition accuracy, we trained a model for each volunteer
using his/her own training set. Then, we used the model to predict the label
of every repetition of the testing set using a window of length Ntest = 200
with a stride of 20 points. The application of our method returns a vector with
(1000−20)/200 = 40 labels for each repetition of the testing set. Lets remember
that the length of every repetition of the testing set is around 1000 points.
A recognition was considered successful when all the labels different from the
class No Gesture match with the actual class of the repetition. Otherwise, the
recognition was considered wrong and the label returned from the repetition
was the first label of the vector different from No Gesture [12]. To measure the
response time of the tested models, we used a desktop computer with an Intel
Core i7-3770S processor and 4GB of RAM. The average time reported in this
paper is the mean of all the times of classifying each window observation in the
testing set.

3.2 Results

The confusion matrix for the proposed model is illustrated in Fig. 4. This con-
fusion matrix shows an overall recognition accuracy of 90.7%. The gesture Fist
was the one with the highest sensitivity (98.3%) and Double tap was the one
with the lowest (85.3%). Regarding precision, the gesture Wave Out had the
highest result (99.6%) and the gesture Fist the lowest (86.8%). Therefore, the
best predictions of the proposed model are for the gesture Wave Out. On the
other hand, the proposed model is more likely to predict the gesture Fist incor-
rectly. Additionally, some repetitions are predicted as No Gesture because they
did not pass the thresholds for preprocessing or postprocessing.

Hand Gesture Recognition Based on sEMG Signals and ANN 359

No-
Ges

tu
re Fist

W
av

e
In

W
av

e
Out

Fing
er

s S
pr

ea
d

Dou
ble

 T
ap

Target Class

No-Gesture

Fist

Wave In

Wave Out

Fingers Spread

Double Tap
O

u
tp

u
t

C
la

ss

 Confusion Matrix

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

0
0.0%

NaN%
NaN%

3
0.2%

295
19.7%

0
0.0%

0
0.0%

0
0.0%

2
0.1%

98.3%
1.7%

11
0.7%

12
0.8%

272
18.1%

1
0.1%

1
0.1%

3
0.2%

90.7%
9.3%

4
0.3%

8
0.5%

12
0.8%

273
18.2%

2
0.1%

1
0.1%

91.0%
9.0%

18
1.2%

4
0.3%

4
0.3%

0
0.0%

265
17.7%

9
0.6%

88.3%
11.7%

9
0.6%

21
1.4%

8
0.5%

0
0.0%

6
0.4%

256
17.1%

85.3%
14.7%

0.0%
100%

86.8%
13.2%

91.9%
8.1%

99.6%
0.4%

96.7%
3.3%

94.5%
5.5%

90.7%
9.3%

Fig. 4. Confusion matrix for the proposed model.

3.3 Discussion

Table 1 shows that the proposed model, which uses both types of features (the
preprocessed signal values and the results from the bag of functions), has the
best accuracy compared to the other models. The model that uses only the
preprocessed signal values responds quickly and its recognition accuracy is higher
than the model that uses only the results from the bag of functions. However, the
model that uses only the bag of functions has the lowest training time because
its architecture is less complex. Table 1 also shows that the proposed model
responds in 29.38 ms that is much lower than the real time limit (300 ms).

Table 1. Summary and comparative table.

Model Accuracy (%) Response (ms) Training (s)

Evaluated models:

- Model using both approaches 90.7 29.38 34.78

- Model using only the

preprocessed signals values 88.3 2.59 29.71

- Model only using only the

results from the bag of functions 86.1 26.52 2.08

Other models:

- Private Myo Armband model [12,13] 83.1

- Model using k-NN and DTW [12] 86.0 245.50

- Model using k-NN and DTW

with muscle activity detection [13] 89.5 193.10

360 C. Motoche and M. E. Benalcázar

The results from Table 1 show that the proposed model is faster than the
models that use the Dynamic Time Warping (DTW) algorithm with k-Nearest
Neighbor (k-NN) classifier because the feature extraction and the classification
performed by the ANN is less computational expensive. Also, the proposed model
overcome the other models in terms of accuracy.

4 Conclusions

In this paper, we have presented a hand gesture recognition model based on
sEMG signals. The model is trained for each user and requires 5 repetitions for
each class to recognize. The model responds in 29.38 ms, which is lower than
the limit defined for real time (300 ms), using a computer with limited resources
of RAM memory and processing. In addition, the model showed a recognition
accuracy of 90.7% that is higher than the state-of-the-art (85%).

For this model, we applied a sliding window approach using a main win-
dow and a sub-window. The sub-window allowed us to observe a segment of the
signal seen through the main window. The model is composed of five blocks:
data acquisition, preprocessing, feature extraction, classification, and postpro-
cessing. For data acquisition, we used the Myo Armband to acquire the sEMG
signals. For preprocessing, we rectified, filtered and detected the muscle activ-
ity in the main window observation. For feature extraction, we used two sets of
features: the preprocessed signal values and the results from a bag of functions.
For classification, we used an ANN of three layers to classify every sub-window
observation. Finally, for postprocessing we applied a simple majority voting on
the results of the ANN to decide the final gesture within the main window.

We found that the recognition accuracy of the proposed model improves when
we combine the values of the preprocessed signal with the results of applying a
bag of functions. Future work includes defining a generalized model for all the
users with high accuracy, that works in real time, and uses limited computational
resources of RAM and processing.

Acknowledgment. The authors gratefully acknowledge the financial support pro-
vided by Escuela Politécnica Nacional for the development of the research project PIJ-
16-13 ‘Clasificación de señales electromiográficas del brazo humano usando técnicas de
reconocimiento de patrones y machine learning’.

References

1. Konar, A., Saha, S.: Gesture Recognition: Principles, Techniques and Applications.
SCI, vol. 724, pp. 1–29. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-62212-5

2. Xu, Y., Dai, Y.: Review of hand gesture recognition study and application. Con-
temp. Eng. Sci. 10, 375–384 (2017)

3. Mizuno, H., Tsujiuchi, N., Koizumi, T.: Forearm motion discrimination technique
using real-time EMG signals. In: 2011 Annual International Conference of the
IEEE, Engineering in Medicine and Biology Society, EMBC, pp. 4435–4438 (2011)

https://doi.org/10.1007/978-3-319-62212-5
https://doi.org/10.1007/978-3-319-62212-5

Hand Gesture Recognition Based on sEMG Signals and ANN 361

4. Chen, L., Wang, F., Deng, H., Ji, K.: A survey on hand gesture recognition. In:
2013 International Conference on Computer Sciences and Applications (2013)

5. Khan, R.Z., Ibraheem, N.A.: Survey on various gesture recognition technologies.
Int. J. Comput. Appl. 50(7), 38–44 (2012)

6. Pradipa, R., Kavitha, S.: Hand gesture recognition analysis of various techniques,
methods and their algorithm. Int. J. Innov. Res. Sci. Eng. Technol. 3(3), 2003–2010
(2014)

7. Benatti, S., et al.: A sub-10 mW real-time implementation for EMG hand gesture
recognition based on a multi-core biomedical SoC. In: 2017 7th IEEE International
Workshop on Advances in Sensors and Interfaces (IWASI), Vieste, Italy (2017)

8. Mesa, I., Rubio, A., Diaz, J., Legarda, J., Segado, B.: Reducing the number of chan-
nels and signal-features for an accurate classification in an EMG pattern recogni-
tion task. In: Proceedings of the International Conference on Bio-inspired Systems
and Signal Processing, San Sebastian, Spain, pp. 38–48 (2012)

9. Ahsan, R., Ibn Ibrahimy, M., Khalifa, O.: Electromygraphy (EMG) signal based
hand gesture recognition using Artificial Neural Network (ANN). In: 4th Interna-
tional Conference on Mechatronics (ICOM) (2011)

10. Chowdhury, R., Reaz, M., Mohd, A., Bakar, A., Kalaivani, C., Chang, T.: Surface
electromyography signal processing and classification techniques. Sensors 13(12),
12431–12466 (2013)

11. Geng, W., Du, Y., Jin, W., Wei, W., Hu, Y., Li, J.: Gesture recognition by instan-
taneous surface EMG images. Sci. Rep. 6(1), 1–8 (2016)

12. Benalczar, M., Jaramillo, A.G., Zea, J.A., Paez, A., Andaluz, V.H.: Hand gesture
recognition using machine learning and the Myo armband. In: 2017 25th European
Signal Processing Conference (EUSIPCO) (2017)

13. Benalczar, M., et al.: Real-time hand gesture recognition using the myo armband
and muscle activity detection. In: 2017 IEEE Second Ecuador Technical Chapters
Meeting (ETCM) (2017)

14. Xu, Z., Xiang, C., Lantz, V., Kong-qiao, W., Wen-hui, W., Ji-hai, Y.: Hand gesture
recognition and virtual game control based on 3D accelerometer and EMG sensors.
In: Proceedings of the 13th International Conference on Intelligent User Interfaces
- IUI 2009, pp. 401–405 (2009)

15. Myo Thalmic Labs Inc. https://www.myo.com/techspecs
16. Myo Support Thalmic Labs Inc. https://support.getmyo.com/hc/en-us/articles/

202536726-How-do-I-access-the-raw-EMG-data-from-the-Myo-armband
17. Peter, K.: The ABC of EMG. A Practical Introduction to Kinesiological Elec-

tromyography. Noraxon U.S.A. Inc., Scottsdale (2006)
18. Ct-Allard, U., et al.: Deep Learning for Electromyographic Hand Gesture Signal

Classification by Leveraging Transfer Learning (2018)
19. Farago, A., Lugosi, G.: Strong universal consistency of neural network classifiers.

IEEE Trans. Inf. Theory, San Antonio 39, 1146–1151 (1993)

https://www.myo.com/techspecs
https://support.getmyo.com/hc/en-us/articles/202536726-How-do-I-access-the-raw-EMG-data-from-the-Myo-armband
https://support.getmyo.com/hc/en-us/articles/202536726-How-do-I-access-the-raw-EMG-data-from-the-Myo-armband

Fast Communication Structure
for Asynchronous Distributed ADMM Under

Unbalance Process Arrival Pattern

Shuqing Wang and Yongmei Lei(&)

School of Computer Engineering and Science,
Shanghai University, Shanghai 200444, China

lei@shu.edu.cn

Abstract. The alternating direction method of multipliers (ADMM) is an
algorithm for solving large-scale data optimization problems in machine
learning. In order to reduce the communication delay in a distributed environ-
ment, asynchronous distributed ADMM (AD-ADMM) was proposed. However,
due to the unbalance process arrival pattern existing in the multiprocessor
cluster, the communication of the star structure used in AD-ADMM is ineffi-
cient. Moreover, the load in the entire cluster is unbalanced, resulting in a
decrease of the data processing capacity. This paper proposes a hierarchical
parameter server communication structure (HPS) and an asynchronous dis-
tributed ADMM (HAD-ADMM). The algorithm mitigates the unbalanced
arrival problem through process grouping and scattered updating global vari-
able, which basically achieves load balancing. Experiments show that the HAD-
ADMM is highly efficient in a large-scale distributed environment and has no
significant impact on convergence.

Keywords: Consensus optimization � ADMM � Asynchronous
Hierarchical communication structure

1 Introduction

With the rapid growth of Internet data, the performance and efficiency of a single
computer cannot meet current computing needs. Therefore, how to solve machine
learning problems in cluster is increasingly important.

The alternating direction method of multipliers (ADMM) decomposes the original
problem into sub-problems for parallel iterations. It can solve a variety of machine
learning problems, such as SVM [1] and the optimization of neural networks [2].
The ADMM was first proposed by [3] and [4]. Then, [5] proved that the ADMM is
suitable for distributed optimization problems. [6] have applied the ADMM to the
global consensus optimization problem. [7] solves the decentralized consensus opti-
mization problem by ADMM.

However, in the global consensus problem, the ADMM needs to synchronize
variables at each iteration. So network delay become the bottleneck of algorithm
efficiency. [8] proposed an asynchronous ADMM algorithm (AD-ADMM) for the
global consensus optimization problem. [9] and [10] added a penalty term based on [8]

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 362–371, 2018.
https://doi.org/10.1007/978-3-030-01418-6_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_36&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_36&domain=pdf

to improve the convergence efficiency of non-convex problems. However, the AD-
ADMM was implemented in master-slave model, whose communication efficiency is
low in multiprocessor cluster.

On the one hand, for the distributed environment, such as MPI, intra-node and inter-
node communication is different greatly. This is called unbalanced arrival problem [11,
12]. For this issue, [13] proposes RDMA-based process arrival model to optimizes
aggregate communication, [14] uses remote shared memory to improve the communi-
cation speed, [15] overlaps inter-node communications with intra-node communications
through a pipelined method. On the other hand, all slaves need to communicate with the
master. The large load of the master can be reduced through the parameter server. The
concept of parameter server derives from [16], which uses distributed Memcached as a
storage parameter. There are already many frameworks for parameter server, such as
Petuum [17] and ps-lite [18], which divide the nodes into several masters and workers.
The worker updates local parameters, and the master updates global variables.

In this paper, in order to increase communication efficiency and achieve load
balancing, a hierarchical parameter server structure (HPS) is designed. Besides, an
asynchronous ADMM based on HPS (HAD-ADMM) and AD-ADMM is proposed. In
addition, a number of simulation experiments verify that HAD-ADMM basically has
no great impact on convergence and performs well in a large multiprocessor distributed
environment.

2 Distributed ADMM

In general, many distributed machine learning problems can be expressed as the fol-
lowing global consensus optimization problem:

min f xð Þ ¼
XN

i¼1
fi xið Þ; s:t: xi � z ¼ 0; i ¼ 1; . . .; N ð1Þ

where x 2 Rn, fi : Rn ! R[þ1f g, z is the consensus variable. The local variables xi
should be equal to each other. (1) divides the objective function f xð Þ into N parts, so
this problem can be solved with N processes. Solving (1) through the ADMM is:

xkþ 1
i ¼ argmin

xi
fi xið Þþ ykTi xi � zk

� �þ q
2

xi � zk
�� ��2

2

� �
ð2aÞ

zkþ 1 ¼ argmin
z

fi x
kþ 1
i

� �þ ykTi xkþ 1
i � z

� �þ q
2

xi � zk
�� ��2

2

� �
ð2bÞ

ykþ 1
i ¼ yki þ q xkþ 1

i � zkþ 1� � ð2cÞ

where yi is the Lagrangian multipliers, q[0 is the penalty parameter.
According to (2a), (2b), (2c), x and y can update independently across N processes,

while z needs to aggregate all the local variables in cluster. So the network delay is
high. Therefore, the AD-ADMM [8] is proposed to reduce the time overhead by partial
barrier and bounded delay.

Fast Communication Structure for Asynchronous Distributed ADMM 363

2.1 Asynchronous Distributed ADMM

The AD-ADMM divides processes into one master and N workers. The master does
not have to wait for all workers, but receives parameters from A workers, 0\A\N, i.e.
partial barrier. In order to guarantee convergence, the AD-ADMM constrains the
staleness to a certain range, i.e. bounded delay. The AD-ADMM sets a clock k for each
process, and the clock increases after each iteration. Master should wait workers whose
clock is greater than s[0. The AD-ADMM is given in Table 1.

where d1; d2. . .dNf g records the clock of N workers’ last arrival. Ak is the set of
workers which is reached in the clock k. Ac

k is the complement of Ak.

2.2 Star Communication Topology

The AD-ADMM is based on the master-slave model, which adopts a star structure.
This section analyzes the problems in the star structure. We start with some definitions:

Definition 1. In a cluster with Nn nodes, each node has Mi [0 workers,
i 2 1; 2; . . .Nn. There is only one master in the entire cluster on the nth node. There are
N workers in the cluster, i.e.

PNn
1 Mi ¼ N.

Because of the process arrival pattern in MPI, the Mn workers in the nth node must
wait for other workers. In addition, the master must communicate with the N workers,

Table 1. Asynchronous distributed ADMM (AD-ADMM).

364 S. Wang and Y. Lei

causing network congestion. Finally, the master needs to store N worker parameters,
which is a big challenge. For these issues, this paper proposes the HPS structure.

3 Asynchronous Distributed ADMM Based on Hierarchical
Parameter Server

3.1 Hierarchical Parameter Server

This paper expands the parameter server into HPS through process grouping. Similar to
[15], the communication of intra-node and inter-node is distinguished.

Processing Grouping. HPS associates processes with the node, and sets a master in
each node called submaster. And a master is set up to communicate with each sub-
master. The workers only communicate with their own submasters. The submaster only
communicates with the master and the workers. Therefore, except the communication
between submasters and master, the rest is the intra-node communication. When the
node size is large, HPS can effectively reduce the times of inter-node communication.

Update Strategy. Every submaster store variables from workers on the same node,
and uses these parameters to update z. The master storages and aggregates parameters
from submasters. This strategy greatly reduces the load of the master. The HPS
topology and the star topology is shown in Fig. 1:

3.2 Asynchronous Distributed ADMM Based on HPS

HAD-ADMM is similar to AD-ADMM, but provides a new update strategy based on
HPS. The clock of submaster is equal to workers belong to it.

Updating xij and yij by Worker. HAD-ADMM updates y first, updates x secondly,
and finally transfers variables to the submaster. Otherwise, the dual variable y sent by
the worker is the result of the kth iteration. The worker procedure only changed the
update order compared to AD-ADMM. And the subscript of x and y means the jth
Worker in ith SubMaster.

Fig. 1. The star and HPS topology.

Fast Communication Structure for Asynchronous Distributed ADMM 365

Aggregation xij and yij by SubMaster. From (2b), we have that

zkþ 1 ¼ 1
N

XN

i¼1
xkþ 1
i þ 1

q
yki

� �
ð3Þ

(3) is separable. The submaster updates the global variable z dispersed, and then sends
zki þ 1
i to master. The procedure of submaster is shown in Table 2.

where Pi is the set of workers in ith node.

Update z by Master. The master receives and aggregates zki þ 1
i . And finally sends z to

each submaster. The procedure of master is shown in Table 3:

where A0
k is the set of submaster arrived when the clock is k, An � A0

k

		 		�Nn.

Table 2. Asynchronous distributed ADMM based on HPS (HAD-ADMM) – submaster

Table 3. Asynchronous distributed ADMM based on HPS (HAD-ADMM) – master

366 S. Wang and Y. Lei

The algorithm procedure of HAD-ADMM is shown in Fig. 2, the processes in the
same color in the figure are on the same node.

4 Convergence and Performance Analysis

4.1 Convergence Analysis

First, a definition of the relevant variables is given in the following paragraph.

Definition 2. Assume that the clock k has run for T iterations, and Ti is the number of
iterations when the clock of the ith worker is ki. z

ki
i is the ẑ received by ith worker at its

kith iteration. �xi is the average of xi throughout its Ti iterations. Similarly, �z is the
average of z through T iterations.

[8] proves that Theorem 1 is practical under Assumption 1.

Assumption 1 [8]. At any master iteration k, updates of the N workers have the same
probability of arriving at the master.

Theorem 1 [8]. Let x�; z�ð Þ be the optimal solution of problem (1), and y�i is the
optimal dual variable in ith worker. Then

E

XN

i¼1
fi �xið Þ � fi x

�ð Þþ y�i ;�xi � �z

 �h i

� Ns
2TA

XN

i¼1
q z0i � z�
�� ��2 þ 1

q
y0i � y�i

�� ��2�

ð4Þ

where z0i and y0i are the initial values of zi and yi.

In other words, the convergence rate of AD-ADMM is O Ns
TA

� �
. HAD-ADMM only

changes A into
PAn

i¼1 Mi, i 2 A0
k . Therefore, under Assumption 2, the convergence rate

of HAD-ADMM is basically the same as AD-ADMM.

Assumption 2. At any master iteration, when A ¼ PAn
i¼1 Mi; i 2 A0

k ,
P A0

kj j
i¼1 Mi � Akj j.

Fig. 2. Asynchronous distributed ADMM based on HPS (HAD-ADMM) (Color figure online)

Fast Communication Structure for Asynchronous Distributed ADMM 367

4.2 Performance Analysis

In order to simplify the analysis, assume that the master in the cluster is on the first
node.

Star Topology. The time required for one iteration Tstar is:

Tstar ¼ tcalcs þ 2
X Akj j

i¼1
twmi ð5Þ

where tcalcs is the compute time. twmi is the communication time of master and ith
worker, i ¼ 1; 2; . . .; Akj j. If the master and the worker are on the same node, let the
communication time be tintra, whereas the communication time is tinter. Therefore,

Tstar � tcalcs þ 2 M1tintra þ Akj j �M1ð Þtinter½ � ð6Þ

HPS Topology. The time THPS required by one iteration is:

THPS ¼ tcalch þ 2
X A0

kj j
i¼1

tsmi þ
X A0

kj j
i¼1

XMi

j¼1
twijs1

� �
ð7Þ

where twijs1 is the communication time between the worker and the ith submaster, tsmi is
the communication time between ith submaster and master. Similarly, if the master and
the submaster are on the same node, let the communication time be t0intra, otherwise the
communication time is t0inter. In addition, let the communication time between the
submaster and the worker be t00intra. Thus

THPS � tcalch þ 2 A0
k

		 		� 1
� �

t0inter þ t0intra þ
X A0

kj j
i¼1

XMi

j¼1
t00intra

� �
ð8Þ

where i 2 A0
k . In the same cluster, tcalcs � tcalcl, t00intra � tintra, Make Tstar � THPS, so

MT ¼ 2 A0
k

		 		� 1
� �

Mtinter � t0inter
� �þ 2 M �M A0

k

		 		� �
tintra � t0intra

� � ð9Þ

Since the submaster in the HAD-ADMM only sends one variable to the master, and
workers in the AD-ADMM needs to send two variables to the master. So, t0inter\tinter.
Similarly, t0intra\tintra. Let MT [0, then

tinter � tintra [
1

M A0
k

		 		� 1
� � t0inter þ t0intra

� � ¼ l t0inter þ t0intra
� � ð10Þ

If A0
k

		 		 ¼ 1, MT\0. When A0
k

		 		[1, l� 1. Therefore, when l is small enough,
MT[0.

368 S. Wang and Y. Lei

5 Experiment

In order to test the convergence and performance of HAD-ADMM, a simulation
experiment was carried.

The data is set as T ¼ a1; b1ð Þ; a2; b2ð Þ; . . .; aS; bSð Þf g, where ai 2 RS is feature
vector, bi 2 0; 1f g is label, T is evenly distributed over N nodes. So the global con-
sensus optimization problem of LR problem is:

min
wi

XN

i¼1
L wið Þ ¼

XN

i¼1

XS

j¼1
bj wi � aj
� �� log 1þ exp wi � aj

� �� �� � ð11aÞ

s:t: wi � z ¼ 0; i ¼ 1; . . .; N ð11bÞ

In this paper, two clusters are used. One cluster has 8 compute nodes with fast
Ethernet. The other has 16 nodes with Gigabit Ethernet. There are 4 cores and 8 GB
memory in each node. In addition, the data set is a sparse set with dimension s ¼
10000000 and size S ¼ 43264. The algorithm is implemented in C++ and MPICH
v3.2. For each worker, L-BFGS is chosen to solve (2a). The penalty parameter q ¼ 1.
The stopping criterion is that the residual rk and sk [5] satisfy:

rk
�� ��

2 � 10�2
ffiffiffi
S

p
þ 10�4max wk

�� ��
2; zk

�� ��
2

n o
; sk
�� ��

2 � 10�2 ffiffi
s

p þ 10�4 yk
�� ��

2 ð12Þ

where

rk
�� ��2

2¼
XN

i¼1
wk
i � zk

�� ��2
2; sk

�� ��2
2¼ Nq2 zk � zk�1

�� ��2
2 ð13Þ

5.1 Convergence Test

Figure 3 shows the dual residual variation with the number of iteration. Assumption 1
[8] and Assumption 2 are established in the experiment. In some cases, it was found that
workers that reached the master process on each iteration of the HAD-ADMM were
basically the same as the AD-ADMM. Even under different conditions, the convergence
of the two algorithms is similar. This is consistent with the analysis in Sect. 4.1.
Therefore, the performance of HAD-ADMM is mainly related to l from Eq. 10.

Fig. 3. The convergence of HAD-ADMM and AD-ADMM.

Fast Communication Structure for Asynchronous Distributed ADMM 369

5.2 Performance Test

It can be seen from Fig. 4(a) that the value of s has a great influence on the running
time. There is a big difference of s ¼ 4 and s ¼ 8, which is the characteristic of the
asynchronous algorithm. When Nn ¼ 2 and Nn ¼ 4, the effect of the l on run time is
consistent with the analysis in Sect. 4.2. In the cluster used in this paper, the HAD-
ADMM has a shorter running time if l� 1=3. When Nn ¼ 8, l has little effect. Under
this condition, the algorithm runtime of HAD-ADMM is much shorter than
AD-ADMM. The reason may be when the number of nodes is large, the communi-
cation load of the Master in the AD-ADMM has greater influence.

Figure 4(b) shows experiments on Gigabit Ethernet, which s ¼ 4 and Ak ¼ 0:5M.
It can be seen that HAD-ADMM is better than AD-ADMM obviously when l� 1=5.
Because of the smaller tinter � tintra on Gigabit Ethernet, smaller l is needed to maintain
MT\0.

6 Conclusion

Aiming at AD-ADMM and MPI, this paper proposes HPS structure based on the
parameter server, which reduces the inter-node communication through processing
grouping and balance the load through scattered update. In addition, this paper pro-
poses the HAD-ADMM based on AD-ADMM, and analyzes the convergence and
performance in experiment. Experiments show that HAD-ADMM performs better in
large-scale distributed clusters. In the future, application on other distributed algorithm
based on HPS will be paid more attention.

Acknowledgements. This research was supported in part by Innovation Research program of
Shanghai Municipal Education Commission under Grant 12ZZ094, and High-tech R&D Program
of China under Grant 2009AA012201, and Shanghai Academic Leading Discipline Project
J50103, and ZiQiang 4000 experimental environment of Shanghai University.

Fig. 4. The runtime of HAD-ADMM and AD-ADMM.

370 S. Wang and Y. Lei

References

1. Chen, Q., Cao, F.: Distributed support vector machine in master–slave mode. Neural Netw.
Off. J. Int. Neural Netw. Soc. 101, 94 (2018)

2. Taylor, G., Burmeister, R., Xu, Z., et al.: Training neural networks without gradients: a
scalable ADMM approach. In: International Conference on International Conference on
Machine Learning, pp. 2722–2731. JMLR.org (2016)

3. Glowinski, R., Marrocco, A.: On the solution of a class of non linear Dirichlet problems by a
penalty-duality method and finite elements of order one. In: Marchuk, G.I. (ed.)
Optimization Techniques IFIP Technical Conference. LNCS. Springer, Heidelberg (1975).
https://doi.org/10.1007/978-3-662-38527-2_45

4. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems
via finite element approximation. Comput. Math Appl. 2(1), 17–40 (1976)

5. Boyd, S., Parikh, N., Chu, E., et al.: Distributed optimization and statistical learning via the
alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010)

6. Lin, T., Ma, S., Zhang, S.: On the global linear convergence of the ADMM with multi-block
variables. SIAM J. Optim. 25(3), 1478–1497 (2014)

7. Wang, Y., Yin, W., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth
optimization. J. Sci. Comput., 1–35 (2018)

8. Zhang, R., Kwok, J.T.: Asynchronous distributed ADMM for consensus optimization. In:
International Conference on Machine Learning, pp. II-1701. JMLR.org (2014)

9. Chang, T.H., Hong, M., Liao, W.C., et al.: Asynchronous distributed alternating direction
method of multipliers: algorithm and convergence analysis. In: IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 4781–4785. IEEE (2016)

10. Chang, T.H., Liao, W.C., Hong, M., et al.: Asynchronous distributed ADMM for large-scale
optimization—Part II: linear convergence analysis and numerical performance. IEEE Trans.
Signal Process. 64(12), 3131–3144 (2016)

11. Faraj, A., Patarasuk, P., Yuan, X.: A study of process arrival patterns for MPI collective
operations. In: International Conference on Supercomputing, pp. 168–179. ACM (2007)

12. Patarasuk, P., Yuan, X.: Efficient MPI Bcast across different process arrival patterns. In:
IEEE International Symposium on Parallel and Distributed Processing, pp. 1–11. IEEE
(2009)

13. Qian, Y., Afsahi, A.: Process arrival pattern aware alltoall and allgather on InfiniBand
clusters. Int. J. Parallel Program. 39(4), 473–493 (2011)

14. Tipparaju, V., Nieplocha, J., Panda, D.: Fast collective operations using shared and remote
memory access protocols on clusters. In: International Parallel & Distributed Processing
Symposium, p. 84a (2003)

15. Liu, Z.Q., Song, J.Q., Lu, F.S., et al.: Optimizing method for improving the performance of
MPI broadcast under unbalanced process arrival patterns. J. Softw. 22(10), 2509–2522
(2011)

16. Smola, A., Narayanamurthy, S.: An architecture for parallel topic models. VLDB Endow. 3,
703–710 (2010)

17. Xing, E.P., Ho, Q., Dai, W., et al.: Petuum: a new platform for distributed machine learning
on big data. In: ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 1335–1344. IEEE (2015)

18. Li, M., Zhou, L., Yang, Z., Li, A., Xia, F.: Parameter server for distributed machine learning.
In: Big Learning Workshop, pp. 1–10 (2013)

Fast Communication Structure for Asynchronous Distributed ADMM 371

http://dx.doi.org/10.1007/978-3-662-38527-2_45

Improved Personalized Rankings Using
Implicit Feedback

Josef Feigl(B) and Martin Bogdan

Department of Computer Engineering, University of Leipzig,
Augustusplatz 10, 04109 Leipzig, Germany

{feigl,bogdan}@informatik.uni-leipzig.de

Abstract. Most users give feedback through a mixture of implicit and
explicit information when interacting with websites. Recommender sys-
tems should use both sources of information to improve personalized
recommendations. In this paper, it is shown how to integrate implicit
feedback information in form of pairwise item rankings into a neural
network model to improve personalized item recommendations. The pro-
posed two-sided approach allows the model to be trained even for users
where no explicit feedback is available. This is especially useful to allevi-
ate a form of the new user cold-start problem. The experiments indicate
an improved predictive performance especially for the task of personal-
ized ranking.

Keywords: Personalized ranking · Neural networks
Collaborative filtering · Implicit feedback

1 Introduction

Personalized feedback about user preferences is mostly limited to clicks, pur-
chases or other forms of implicit information. It is rather uncommon that users
give explicit feedback, for example in form of ratings. Recommender systems for
both types of information are well covered in the collaborative filtering literature
[7,10]. However, a more realistic problem is given when dealing with a mixture
of both sources of information. This is especially interesting when information
about most users is limited to implicit feedback.

This paper builds on the results of [4] and [5] aiming to make use of both
sources of information to improve the predictions of explicit user preferences.
Therefore, our proposed neural network model integrates implicit feedback by
learning additional user-specific pairwise item preferences, similar to the popular
Bayesian Personalized Ranking criterion (BPR) [14]. Aside from the increased
predictive performance of this approach, the model can thus also be trained for
users where no explicit information is present. This is useful to ease a form of
the common cold-start problem for new users.

Therefore, the main contributions of this paper are (i) to show a novel way of
integrating implicit feedback in a recommender system using pairwise rankings,
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 372–381, 2018.
https://doi.org/10.1007/978-3-030-01418-6_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_37&domain=pdf

Improved Personalized Rankings Using Implicit Feedback 373

(ii) to introduce mixed feedback dataset and show how to deal with them and (iii)
to evaluate the impact of implicit feedback for personalized ranking. This paper
is structured as followed: A brief description of the general problem is given in
Sect. 2. Afterwards in Sect. 3, we give an overview of the proposed neural network
architecture. In Sect. 4, we detail how to train the model. The proposed model
is evaluated in Sect. 5. We summarize our findings in Sect. 6.

2 Preliminaries

Let U = {1, . . . , N} be a set of users and I = {1, . . . ,M} a set of items with
N,M ∈ N. The set of all ratings is given by R = {−1, 0, 1}, where the value 1 is
given if a user liked the item and vice versa for 0. The value −1 highlights that
no explicit information is available for this user-item tuple.

We have a dataset of observed interactions S with

S := Sexpl ∪ Simpl, (1)

where
Sexpl := {(u, i, r) | u ∈ U, i ∈ I, r ∈ R} (2)

defines the set of all explicit feedback information and

Simpl := {(u, i,−1) | u ∈ U, i ∈ I} (3)

defines the set of all implicit information. For each sample of Simpl, the user
interacted with an item in some way but did not explicitly assign it a rating.
Both datasets can easily be visualized by a table with three columns (see Table 1).

We are calling an item i positive for user u if this user had some kind of
interaction with the item. Let I+u be the set of all positive items of user u. It is
defined as:

I+u := {i | (u, i, r) ∈ S} (4)

Therefore, all interactions with an explicit rating, even if the rating was negative,
are also considered as positive feedback. Analogous to the definition above, we
use I−

u for the set of all negative items, e.g. all items, user u had no interaction
with [5].

Table 1. Training data (left): The rating value of −1 highlights that no explicit infor-
mation was available. User 1 has explicit as well as implicit information in his training
data. User 2 has only implicit data. Test data (right): Explicit ratings have to be
predicted for both users.

User Item Rating

1 1 0
1 2 1
1 3 -1
2 1 -1
2 4 -1

User Item Rating

1 4 0
2 2 1
2 3 0

374 J. Feigl and M. Bogdan

3 Model

3.1 Main Idea

Common matrix factorization models learn a set of latent user and latent item
factors to predict a target. Our model learns an additional set of item factors:
one for the explicit and one for the implicit information in the dataset. The final
target prediction of our model is a weighted average of two separate predictions:
one using the user factors in combination with the explicit item factors and one
using the user factors in combination with the implicit item factors.

Therefore, our model consists of one part to train the explicit item factors
and one part to train the implicit item factors. However, both parts share the
same user factors. Each part will update their relevant item factors, but both
parts will use and update the same user factors.

While the explicit item factors are updated using all available explicit feed-
back information (similar to most matrix factorization models), the implicit
item factors are trained to rank positive and negative items. This is similar to a
matrix factorization model using the BPR criterion (BPRMF) [14]. Therefore,
our model is a combination of a biased regularized matrix factorization model
(BRMF) [4] and a BPRMF model.

3.2 Model Overview

Our proposed network consists of two parts: one part to process the explicit
feedback and one for the implicit feedback (see Fig. 1). The network is a con-
catenation of five specific layers L: An user layer L1 with N units. This layer has
as many units as there are users and is responsible for learning the user represen-
tations. The next layer is the hidden layer L2 with K units, which determines
the size of all learned representations. The following item layer L3 holds the
explicit and implicit item representations. It has 2 · M units. The second to last
layer is the bias layer L4, which is responsible for dealing with user, item and
global biases. The last layer L5 is a combination layer, which merges the outputs
of the explicit as well as the implicit part of the network.

3.3 Notation

The following short notations are used in this paper: let U be the set of weights
connecting the user layer to the hidden layer. It can be represented as a weight
matrix U ∈ R

N×K . A single representation of user u is given by the weights
connecting unit u of the user layer with all units of the hidden layer. We use the
notation Uu for this single user representation [4].

Let Iexpl ∈ R
K×M be the set of weights connecting the hidden layer to

the explicit item layer. Analogous to the user layer, we use Iexpli to define the
explicit representation for the item i. Similar notations are used for the implicit
item weights Iimpl ∈ R

K×M . Additionally, al defines the activation of layer l [5].

Improved Personalized Rankings Using Implicit Feedback 375

Fig. 1. The upper part of the network leading to rui handles the prediction of explicit
ratings. The final prediction of this part is a weighted average of one prediction using
the implicit item factors (green) and one using the explicit item factors (red). The
lower part leading to xuij updates the implicit item factors by learning to rank user-
specific positive and negative items. The letter b symbolizes the addition of biases to
the activation of the item layer. (Color figure online)

We use rui as a short notation for the rating r given by user u for item i.
The prediction r̂ui for this rating is made by the explicit part of our model. The
implicit part of the network measures the difference between the preferences of
a positive and a negative item of user u. We use xui as the measure of preference
to determine how much user u likes item i. Therefore, user u prefers item i over
item j if xui > xuj . The output of the implicit part of the network xuij is given
by the probability that user u prefers item i over item j [5].

4 Training

We use a two-sided approach to train the network. All explicit samples are used
to train the explicit part of the network. The implicit part of the network is
trained by learning to rank positive and negative items. To do this, we need two
separate training sets.

4.1 Preparation of Training Sets

To train the network, we need training samples for the explicit as well as the
implicit part of the model (see Fig. 2). All samples for the explicit part are given
in Sexpl. For consistency, we use the notation T expl := Sexpl for this set.

The training samples for the implicit part T impl are created using the fol-
lowing process: to create a set of p training samples, we choose a uniformly

376 J. Feigl and M. Bogdan

User Item Ra ng

1 1 0

1 2 1

1 3 -1

2 1 -1

2 4 -1User Item Ra ng

1 1 0

1 2 1

User Posi ve
Item

Nega ve
Item

1 1 4

1 3 4

2 1 2

2 4 3

Fig. 2. Starting from the full training data (middle table), we create explicit (left table)
and implicit training sets (right table). The explicit training set consists of all available
explicit samples. The implicit training set is sampled from user-specific positive and
negative items.

randomly selected set of p users u ∈ U (with replacement). For each user, one
of his positive items i ∈ I+u and one of his negative items j ∈ I−

u is randomly
selected (uniformly distributed with replacement):

T impl ⊆ {
(u, i, j) | u ∈ U, i ∈ I+u , j ∈ I−

u

}
. (5)

A model should therefore learn to rank xui above xuj for each training triple
(u, i, j) ∈ T impl.

4.2 Explicit Part

Let (u, i, r) ∈ T expl be a single training triple for the explicit part of the network,
where u ∈ U is a user, i ∈ I is an item and r ∈ {0, 1} is a rating.

A binarized version a1 = 1u ∈ {0, 1}N of u is used as the input for the
network. It is defined as the indicator vector 1u := (z0, z1, · · · , zN) with zj = 1
if j = u and zj = 0 otherwise. Using 1u as input for the network implies that
only the weights Uu contribute anything to the input of the hidden layer [4].
The output a2 ∈ R

K is therefore given by:

a2 = U · a1
= Uu. (6)

We select the implicit and explicit weights for item i to compute the output
of the item layer a3:

a30 = a2 · Iexpli (7)

a31 = a2 · Iimpl
i (8)

In our evaluation, we found no benefit from using anything other than identity
activation functions for the hidden and item layer. We are therefore omitting the
notation of activation functions for these two layers.

Improved Personalized Rankings Using Implicit Feedback 377

The following bias layer is responsible for adding a user bias, an explicit item
bias and a global bias to the previous output. The output of the explicit part of
our network r̂ui is therefore given by:

r̂ui = σ(w1 · r̂explui + w2 · r̂impl
ui) (9)

with

r̂explui = f(a30 + bu + bexpli + bg), (10)

r̂impl
ui = f(a31 + bu + bimpl

i + bg). (11)

The function f : R → R is the activation function of the bias layer. For the
combination layer, we use the logistic sigmoid activation function σ to get the
probability estimate that user u likes item i.

After forward-propagating, we compare the prediction r̂ui with the target
rui and back-propagate the loss rui − r̂ui using the common cross entropy cost
function [2,15]. We are updating all weights except the implicit item weights
and the implicit item bias, which get updated during the training of the implicit
part of the network.

We achieved our best results using the weights w1 = 0.5 and w2 = 0.5 instead
of letting the network learn them. This way the network is forced to use both
parts of the network equally. Using w1 = 1 and w2 = 0 disables the implicit part
and reduces our model to a BRMF model [4,17].

4.3 Implicit Part

Let (u, i, j) ∈ T impl be a single training triple for the implicit part, where u ∈ U
is a user, i ∈ I+u is a positive item and j ∈ I−

u is a negative item for this user.
Similarly to the training of the explicit part of our network, feed-forwarding this
sample through the implicit part of the network yields:

x̂uij = σ(x̂impl
ui − x̂impl

uj) (12)

with

x̂impl
ui = f(Uu · Iimpl

i + bu + bimpl
i + bg), (13)

x̂impl
uj = f(Uu · Iimpl

j + bu + bimpl
j + bg). (14)

Again, we use the logistic sigmoid activation function σ to get the probability
estimate that user u prefers item i over item j.

The training samples T impl are missing target values y in the classical
machine learning sense, but our training set is constructed in such a way that
ximpl
ui > ximpl

uj for each sample (Subsect. 4.1). This means that, the measure of
preference of a positive item is always greater than this measure for a negative
item. Learning to maximize the probability x̂uij is sufficient to achieve this goal
and we can therefore set y = 1 for every training sample (also see [5]). Again,

378 J. Feigl and M. Bogdan

using the cross entropy cost function, we back-propagate the loss 1 − x̂uij and
update the user weights, the implicit item weights and the implicit item bias.

The constant weights of the combination layer force the implicit part of our
network to learn pairwise item rankings. This part of the model is therefore
equivalent to a BPRMF model [5,14].

4.4 Mini-Batch-Processing

For each training epoch, we have a set of |T expl| samples for the explicit part and
a set of |T impl| samples for the implicit part of our model. Instead of processing a
single sample at a time, we split each set into mini-batches of P samples. During
each training epoch, we process all available mini-batches in a random order,
which helps to improve convergence of both parts of the network. An epoch is
finished once all mini-batches were processed. We create a new set of training
samples T impl for each training epoch.

Using the set of negative items I−
u to create T impl can be memory-consuming

and computationally slow. Since most users interact only with a small percentage
of all items, we found it to be sufficient to sample item from all possible items
instead of using I−

u . We found no significant loss of predictive performance using
this approximate approach.

5 Experiments and Results

5.1 Setting

The MovieLens 1M dataset [6] and the Netflix Prize dataset [1] are used to
evaluate our model. Since both datasets contain explicit movie ratings in the
range [1, 5], we convert these ratings to binary targets by checking if the rating
is above or equal to 3.

To simulate the situation where users have only provided few or even no
explicit feedback information, we create multiple mixed variants of these two
datasets. The following process was used to create all benchmark datasets: at
first, a given percentage s of all explicit ratings are dropped. Afterwards, all
explicit ratings of t percent of all users are dropped. This way, t percent of all
users have only implicit information left and the remaining users lose about s per-
cent of their provided explicit information. We use the short notation ML(s, t)
and Netflix(s, t) to denote all benchmark datasets, which were created using
the explained process on the Movielens 1M and Netflix Prize dataset, respec-
tively. Using this notation, ML(0, 0) and Netflix(0, 0) simply refer to the full
datasets.

For the Movielens 1M dataset, we used a 5-fold cross-validation. The Netflix
Prize dataset comes with a predefined probe dataset, which we use as test set to
validate all predictions. To speed up computation, we randomly selected 10 000
out of 480 189 users of the Netflix Prize dataset in each run. The process to
create the benchmark datasets was applied on the training data of each run. The

Improved Personalized Rankings Using Implicit Feedback 379

test data was left untouched since we want to benchmark our model predicting
explicit ratings even if there was no explicit information in the training data of
a user. We did a total of five runs for each dataset and averaged the results.

Our model is compared against two popular baseline models:

BRMF. A biased regularized matrix factorization model, which is implemented
using the explicit part of our model (see 4.2). This model is especially useful
as a fair comparison with our full network to directly evaluate the impact of
the integration of implicit information.

FM. A factorization machine was used as the second baseline model [12]. The
results for this model were computed using the open-source library libFM
[13].

We are using three metrics to evaluate the model performance: The Area
Under the Receiver Operating Characteristic Curve (AUC) to measure the rank-
ing quality [3], logistic loss (LogLoss) and Accuracy to measure the general pre-
dictive performance.

5.2 Network Initialization Details

The user weights and the explicit and implicit item weights are initialized with
uniformly distributed random numbers from the range [−0.01, 0.01]. We are
using a SELU activation function in the bias layer [9] and two Adam optimizer
[8]: one for the explicit and one for the implicit part of the network. To regularize
the network, we use L2 [11] and max-norm regularization [16] for all weights.

5.3 Results

The evaluation results of all models for the movielens 1M datasets can be found
in Table 2 and for the Netflix Prize datasets in Table 3.

Our model achieves a significantly improved predictive performance com-
pared to the BRMF model on all metrics and on all datasets. This is especially

Table 2. Evaluation results for the Movielens 1M dataset

Metric Model ML (0, 0) ML (0.5, 0.25) ML (0.5, 0.5) ML (0.5, 0.75)

AUC BRMF 0.8216 0.7830 0.7633 0.7382

FM 0.8248 0.7877 0.7668 0.7410

Our Model 0.8249 0.7901 0.7709 0.7455

LogLoss BRMF 0.5196 0.5574 0.5737 0.5929

FM 0.5032 0.5438 0.5642 0.5885

Our Model 0.5119 0.5466 0.5635 0.5860

Accuracy BRMF 0.7470 0.7173 0.7032 0.6855

FM 0.7504 0.7217 0.7067 0.6890

Our Model 0.7512 0.7233 0.7089 0.6918

380 J. Feigl and M. Bogdan

Table 3. Evaluation results for the netflix prize dataset

Metric Model Netflix
(0, 0)

Netflix
(0.5, 0.25)

Netflix
(0.5, 0.5)

Netflix
(0.5, 0.75)

AUC BRMF 0.7844 0.7446 0.7181 0.6868

FM 0.7879 0.7482 0.7211 0.6889

Our Model 0.7871 0.7486 0.7237 0.6969

LogLoss BRMF 0.5443 0.5812 0.6001 0.6194

FM 0.5373 0.5751 0.5955 0.6171

Our Model 0.5416 0.5784 0.5975 0.6151

Accuracy BRMF 0.7221 0.6906 0.6733 0.6513

FM 0.7279 0.6942 0.6733 0.6521

Our Model 0.7255 0.6950 0.6756 0.6583

interesting since both models share many similarities, with the only difference
being the integration of implicit feedback using pairwise item rankings.

It can also be seen, that the FM model performs significantly better than
the BRMF model. This is no surprise, since the FM model can easily mimic
most matrix factorization models [12].

Our model performs consistently better or at least equally good than the FM
model on the AUC and Accuracy metrics. The difference between both models
also gets larger the more of the explicit information is dropped from the dataset.
This is to be expected, because our model can still use the remaining implicit
information. It can also be seen, that integrating implicit information in form of
pairwise item rankings is especially beneficial for the AUC metric. This is due
to the fact that the implicit part of our model is basically a matrix factorization
model using the BPR criterion, which is well suited to optimize AUC [12].

The FM model performs especially better than our model regarding the
LogLoss metric on both full datasets. Nevertheless, integrating the implicit infor-
mation helps to close this gap and enables our model to perform even stronger
than the FM model regarding the LogLoss metric on the sparser mixed datasets.

6 Summary

In this paper, we have proposed a neural network recommender system to solve
collaborative filtering problems where users give feedback through a mixture
of implicit and explicit information and in particular the case where all infor-
mation about most users is limited to implicit feedback. Our model integrates
implicit information by additionally learning personalized item rankings using
the Bayesian Personalized Ranking criterion. These features are further used
to influence the processing of the explicit information. This two-sided approach
enables the model to be trained for users that never gave any explicit feedback,
which is useful to improve recommendations and alleviate the cold start problem

Improved Personalized Rankings Using Implicit Feedback 381

for new users. It was shown that integrating implicit feedback using our proposed
approach leads to an increase of predictive performance especially for the task
of personalized ranking.

References

1. Bennett, J., Lanning, S., Netflix, N.: The Netflix Prize. In: KDD Cup andWorkshop
in Conjunction with KDD (2007)

2. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer, New York Inc., Heidelberg, New York (2006)

3. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)

4. Feigl, J., Bogdan, M.: Collaborative filtering with neural networks. In: ESANN
2017, 25th European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, pp. 441–446 (2017)

5. Feigl, J., Bogdan, M.: Neural networks for implicit feedback datasets. In: ESANN
2018, 26th European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, pp. 255–260 (2018)

6. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM
Trans. Interact. Intell. Syst. 5(4), 19:1–19:19 (2015)

7. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: Proceedings of the 2008 Eighth IEEE International Conference on
Data Mining, ICDM 2008, pp. 263–272 (2008)

8. Kingma, D.P., Ba, J.: ADAM: a method for stochastic optimization. CoRR
abs/1412.6980 (2014)

9. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural
networks. CoRR abs/1706.02515 (2017)

10. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

11. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In:
Advances in Neural Information Processing Systems, vol. 4, pp. 950–957. Morgan
Kaufmann (1992)

12. Rendle, S.: Factorization machines. In: Proceedings of the 2010 IEEE International
Conference on Data Mining, ICDM 2010, pp. 995–1000. IEEE Computer Society,
Washington (2010). https://doi.org/10.1109/ICDM.2010.127

13. Rendle, S.: Factorization machines with LIBFM. ACM Trans. Intell. Syst. Technol.
3(3), 57:1–57:22 (2012)

14. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, UAI 2009, pp. 452–461. AUAI
Press, Arlington (2009)

15. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Neurocomputing: foundations of
research. In: Learning Representations by Back-propagating Errors, pp. 696–699.
MIT Press, Cambridge (1988)

16. Srebro, N., Rennie, J.D.M., Jaakkola, T.S.: Maximum-margin matrix factorization.
In: Proceedings of the 17th International Conference on Neural Information Pro-
cessing Systems, NIPS 2004, pp. 1329–1336. MIT Press, Cambridge (2004). http://
dl.acm.org/citation.cfm?id=2976040.2976207

17. Takács, G., Pilászy, I., Németh, B., Tikk, D.: Scalable collaborative filtering
approaches for large recommender systems. J. Mach. Learn. Res. 10, 623–656
(2009)

https://doi.org/10.1109/ICDM.2010.127
http://dl.acm.org/citation.cfm?id=2976040.2976207
http://dl.acm.org/citation.cfm?id=2976040.2976207

Cosine Normalization: Using Cosine Similarity
Instead of Dot Product in Neural Networks

Chunjie Luo1,2, Jianfeng Zhan1,2(&), Xiaohe Xue1, Lei Wang1,
Rui Ren1, and Qiang Yang3

1 State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences,

Beijing, China
zhanjianfeng@ict.ac.cn

2 University of Chinese Academy of Sciences, Beijing, China
3 Beijing Academy of Frontier Science and Technology, Beijing, China

Abstract. Traditionally, multi-layer neural networks use dot product between
the output vector of previous layer and the incoming weight vector as the input
to activation function. The result of dot product is unbounded, thus increases the
risk of large variance. Large variance of neuron makes the model sensitive to the
change of input distribution, thus results in poor generalization, and aggravates
the internal covariate shift which slows down the training. To bound dot product
and decrease the variance, we propose to use cosine similarity or centered cosine
similarity (Pearson Correlation Coefficient) instead of dot product in neural
networks, which we call cosine normalization. We compare cosine normaliza-
tion with batch, weight and layer normalization in fully-connected neural net-
works, convolutional networks on the data sets of MNIST, 20NEWS GROUP,
CIFAR-10/100, SVHN. Experiments show that cosine normalization achieves
better performance than other normalization techniques.

Keywords: Neural networks � Cosine similarity � Cosine normalization

1 Introduction

Deep neural networks have received great success in recent years in many areas.
Training deep neural networks is nontrivial task. Gradient descent is commonly used to
train neural networks. However, due to gradient vanishing problem [1], it works badly
when directly applying to deep networks.

In previous work, multi-layer neural networks use dot product (also called inner
product) between the output vector of previous layer and the incoming weight vector as
the input to activation function.

net ¼ w � x ð1Þ

where net is the input to activation function (pre-activation), w is the incoming weight
vector, and x is the input vector which is also the output vector of previous layer, �
indicates dot product. Equation 1 can be rewritten as Eq. 2, where cos h is the cosine of
angle between w and x, jj is the Euclidean norm of vector.

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 382–391, 2018.
https://doi.org/10.1007/978-3-030-01418-6_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_38&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_38&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_38&domain=pdf

net ¼ jwjjxj cos h ð2Þ

The result of dot product is unbounded, thus increases the risk of large variance.
Large variance of neuron makes the model sensitive to the change of input distribution,
thus results in poor generalization. Large variance could also aggravate the internal
covariate shift which slows down the training [2]. Using small weights can alleviate
this problem. Weight decay (L2-norm) [3] and max normalization (max-norm) [4, 5]
are methods that could decrease the weights. Batch normalization [2] uses statistics
calculated from mini-batch training examples to normalize the result of dot product,
while layer normalization [6] uses statistics from the same layer on a single training
case. The variance can be constrained within certain range using batch or layer nor-
malization. Weight normalization [7] re-parameterizes the weight vector by dividing its
norm, thus partially bounds the result of dot product.

To thoroughly bound dot product, a straight-forward idea is to use cosine similarity.
Similarity (or distance) based methods are widely used in data mining and machine
learning [8]. Particularly, cosine similarity is most commonly used in high dimensional
spaces. For example, in information retrieval and text mining, cosine similarity gives a
useful measure of how similar two documents are [9].

In this paper, we combine cosine similarity with neural networks. We use cosine
similarity instead of dot product when computing the pre-activation. That can be seen
as a normalization procedure, which we call cosine normalization. Equation 3 shows
the cosine normalization.

netnorm ¼ cos h ¼ w � x
jwjjxj ð3Þ

To extend, we can use the centered cosine similarity, Pearson Correlation Coeffi-
cient (PCC), instead of dot product. By dividing the magnitude of w and x, the input to
activation function is bounded between −1 and 1. Higher learning rate could be used
for training without the risk of large variance. Moreover, network with cosine nor-
malization can be trained by both batch gradient descent and stochastic gradient des-
cent, since it does not depend on any statistics on batch or mini-batch examples.

We compare our cosine normalization with batch, weight and layer normalization
in fully-connected neural networks on the MNIST and 20NEWS GROUP data sets.
Additionally, convolutional networks with different normalization techniques are
evaluated on the CIFAR-10/100 and SVHN data sets. Experiments show that cosine
normalization and centered cosine normalization (PCC) achieve better performance
than other normalization techniques.

2 Background and Motivation

Large variance of neuron in neural network makes the model sensitive to the change of
input distribution, thus results in poor generalization. Moreover, variance could be
amplified as information moves forward along layers, especially in deep network. Large
variance could also aggravate the internal covariate shift, which refers the change of
distribution of each layer during training, as the parameters of previous layers change [2].

Cosine Normalization: Using Cosine Similarity Instead of Dot Product 383

Internal covariate shift slows down the training because the layers need to continuously
adapt to the new distribution. Traditionally, neural networks use dot product to compute
the pre-activation of neuron. The result of dot product is unbounded. That is to say, the
result could be any value in the whole real space, thus increases the risk of large variance.

Using small weights can alleviate this problem, since the pre-activation net in Eq. 2
will be decreased when jwj is small. Weight decay [3] and max normalization [4, 5] are
methods that try to make the weights to be small. Weight decay adds an extra term to the
cost function that penalizes the squared value of each weight separately. Max normal-
ization puts a constraint on themaximum squared length of the incomingweight vector of
each neuron. If update violates this constraint, max normalization scales down the vector
of incoming weights to the allowed length. The objective (or direction to objective) of
original optimization problem is changed when using weight decay (or max normaliza-
tion). Moreover, they bring additional hyper parameters that should be carefully preset.

Batch normalization [2] uses statistics calculated from mini-batch training examples
to normalize the pre-activation. The normalized value is re-scaled and re-shifted using
additional parameters. Since batch normalization uses the statistics on mini-batch
examples, its effect is dependent on the mini-batch size. To overcome this problem,
normalization propagation [10] uses a data-independent parametric estimate of mean
and standard deviation, while layer normalization [6] computes the mean and standard
deviation from the same layer on a single training case. Weight normalization [7] re-
parameterizes the incoming weight vector by dividing its norm. It decouples the length
of weight vector from its direction, thus partially bounds the result of dot product. But
it does not consider the length of input vector. These methods all bring additional
parameters to be learned, thus make the model more complex.

An important source of inspiration for our work is cosine similarity, which is
widely used in data mining and machine learning [8, 9]. To thoroughly bound dot
product, a straight-forward idea is to use cosine similarity. We combine cosine simi-
larity with neural network, and the details will be described in the next section.

3 Methods

3.1 Cosine Normalization

To decrease the variance of neuron, we propose a new method, called cosine nor-
malization, which simply uses cosine similarity instead of dot product in neural net-
work. Cosine normalization bounds the pre-activation between −1 and 1. The result
could be even smaller when the dimension is high. As a result, the variance can be
controlled within a very narrow range. A simple multi-layer neural network is shown in
Fig. 1. Using cosine normalization, the output of hidden unit is computed by Eq. 4,
where netnorm is the normalized pre-activation, w is the incoming weight vector and x is
the input vector, f is nonlinear activation function.

o ¼ f ðnetnormÞ ¼ f ðcos hÞ ¼ f
w � x
jwjjxj

� �
ð4Þ

384 C. Luo et al.

We use gradient descent (back propagation) to train the neural network with cosine
normalization. Comparing to batch normalization, cosine normalization does not
depend on any statistics on batch or mini-batch examples, so the model can be trained
by both batch gradient descent and stochastic gradient descent. The procedure of back
propagation in neural network with cosine normalization is the same as ordinary neural
network except the derivative of netnorm with respect to w or x.

To show the derivative conveniently, the cosine normalization can be rewritten as
Eq. 5. Then, the derivative of netnorm with respect to wi or xi can be calculated by Eq. 6
or Eq. 7.

netnorm ¼ cos h ¼
P

i ðwixiÞffiffiffiffiffiffiffiffiffiffiffiffiffiP
i w

2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiP
i x

2
i

p ð5Þ

@netnorm
@wi

¼ xiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i w

2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiP
i x

2
i

p � wi
P

i ðwixiÞP
i w

2
i

� �3P
i x

2
i

ð6Þ

@netnorm
@xi

¼ wiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i w

2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiP
i x

2
i

p � xi
P

i ðwixiÞP
i x

2
i

� �3P
i w

2
i

ð7Þ

As pointed in [11], centering the inputs of units can help the training of neural
networks. Batch or layer normalization centers the data by subtracting the mean of
batch or layer, while mean-only batch normalization can enhance the performance of
weight normalization [7]. We can use Pearson Correlation Coefficient (PCC), which is
centered cosine similarity as shown Eq. 8, to extend cosine normalization, where lw is
the mean of w and lx is the mean of x.

netnorm ¼ ðw� lwÞ � ðx� lxÞ
jw� lwjjx� lxj

ð8Þ

Fig. 1. A simple neural network with cosine normalization. The output of hidden unit is the
nonlinear transform of cosine similarity between input vector and incoming weight vector.

Cosine Normalization: Using Cosine Similarity Instead of Dot Product 385

3.2 Implementation

When implementing of cosine normalization in fully-connected nets, we just need
divide the norm of incoming weight vector, as well as the norm of input vector. The
input vector is the output vector of previous layer. That is to say, the hidden units in the
same layer have the same norm of input vector. While in the convolutional nets, the
input vector is constrained in a receptive field. Different receptive fields have different
input norms, but the same incoming weight norm since different receptive fields share
the same weight.

Empirically, we find that using ReLU activation function, the result of normal-
ization needs no re-scaling and re-shifting. Therefore, there is no additional parameter
to be learned or hyper-parameter to be preset. However, when using other activation
functions, like Sigmoid, Tanh, or Softmax, the result of normalization should be re-
scaled and re-shifted to fully utilize the non-linear regime of the functions.

One thing should be noticed is that cosine similarity can only measure the similarity
between two non-zero vectors, since denominator can not be zero. Non-zero bias can
be added to avoid the situation of vector of zero. Let w ¼ ½w1;w2; . . .;wi�, and
x ¼ ½x1; x2; . . .; xi�. After adding bias, then w becomes ½w0;w1;w2; . . .;wi�, and x
becomes ½x0; x1; x2; . . .; xi�, where w0 and x0 should be non-zero.

As mentioned above, cosine normalization makes the pre-activation within a very
narrow range. As a result, when using non ReLU activation functions, e.g. Sigmoid,
Tanh, or Softmax, the result of normalization should use larger re-scaling coefficient to
fully utilize the non-linear regime of the functions. Besides, as shown in Eqs. 6 and 7,
the magnitudes of derivatives are much smaller since they are also divided by the
length of w and x. Therefore, we need larger learning rate to train the network with
ReLU activation when the result of normalization do not re-scale and re-shift.

4 Experiments

In this section, we compare our cosine normalization and centered cosine normalization
(PCC) with batch, weight and layer normalization in fully-connected neural networks
on the MNIST and 20NEWS GROUP data sets. Additionally, convolutional networks
with different normalization are evaluated on the CIFAR-10, CIFAR-100 and SVHN
data sets.

4.1 Fully-Connected Networks

There are two data sets used in this section. (1) MNIST. The MNIST [12] data set
consists of 28 � 28 pixel handwritten digit black and white images. The task is to
classify the images into 10 digit classes. There are 60, 000 training images and 10, 000
test images in the MNIST data set. We scale the pixel values to the [0, 1] range before
inputting to our models. (2) 20NEWS GROUP. The original training set contains
11269 text documents, and the test set contains 7505 text documents. Each document is
classified into one topic out of 20. For convenience of using mini-batch gradient
descent, 69 examples in training set and 5 examples in test set are randomly dropped.

386 C. Luo et al.

As a result, there are 11200 training examples and 7500 test examples in our experi-
ments. The words, of which document frequency is larger than 5, are used as the input
features. There are 21567 feature dimensions finally. Then, the model of Term
Frequency-Inverse Document Frequency (TF-IDF) is used to transform the text doc-
uments into vectors. After that, each feature is re-scaled to the range of [0, 1].

A fully-connected neural network which has two hidden layers is used in experi-
ments of MNIST and 20NEWS GROUP. Each hidden layer has 1000 units. The last
layer is the Softmax classification layer with 10-class for MNIST, and 20-class for
20NEWS GROUP. ReLU activation function is used in the hidden layers. All weights
are randomly initialized by truncated normal distribution with 0 mean and 0.1 variance.
Mini-batch gradient descent is used to train the networks. The batch size is 100. In our
experiments, we use no re-scaling and re-shifting after normalization for hidden layers
which use ReLU activation. However, for the last layer, we re-scale the normalized
values before inputting to Softmax. The learning rate of the cosine normalization,
centered cosine normalization (PCC), batch normalization, weight normalization, layer
normalization is 10, 10, 1, 1, 1, respectively in our experiments. No any regularization,
dropout, or dynamic learning rate is used. We train the fully-connected nets with 200
epochs since the performances are not improved anymore.

The results of test error for MNIST are shown in Fig. 2. As we can see, the
converging speeds for different normalization techniques are close. That observation is
also true for other data sets we will present next. That is to say, cosine normalization
can accelerate the training of networks as well as other normalization. We can also
observe that centered cosine normalization (Pearson Correlation Coefficient) and cosine
normalization achieve similar test errors, and which are slightly better than layer
normalization. Centered cosine normalization achieves the lowest mean of test error
1.39%, while cosine and layer normalization achieve 1.40%, 1.43% respectively.
Weight normalization has the highest test error 1.65 comparing to other normalization.
Although batch normalization gets lowest test error at some point, it causes large

Fig. 2. The MNIST test errors of different normalization techniques.

Cosine Normalization: Using Cosine Similarity Instead of Dot Product 387

variance of test error as training continues. Large fluctuation of batch normalization is
caused by the change of statistics on different mini-batch examples.

The results for 20NEWS GROUP are shown in Fig. 3. Centered cosine normal-
ization achieves the lowest test error 29.37%, and cosine normalization achieves the
second lowest test error 31.73%. The batch normalization performs poorly in this task
of high dimensional text classification. It only achieves 43.94% test error. Weight
normalization (33.55%) and layer normalization (33.29%) achieve close performances.
Both batch and weight normalization have larger variances of test error than other
normalization.

Fig. 3. The 20NEWS test errors of different normalization techniques

Fig. 4. The CIFAR-10 test errors of different normalization techniques.

388 C. Luo et al.

4.2 Convolutional Networks

In this section, convolutional networks with different normalization are evaluated on
the CIFAR-10, CIFAR-100 and SVHN data sets. (1) CIFAR-10/100. CIFAR-10 [13] is
a data set of natural 32 � 32 RGB images in 10-classes with 50, 000 images for
training and 10, 000 for testing. CIFAR-100 is similar with CIFAR-10 but with 100
classes. To augment data, the images are cropped to 24 � 24 pixels, centrally for
evaluation or randomly for training. Then, a series of random distortions are applied:
(a) randomly flip the image from left to right, (b) randomly distort the image brightness,
(c) randomly distort the image contrast. The procedure of augmentation is the same as
CIFAR-10 example in Tensorflow [14]. (2) SVHN. The Street View House Numbers
(SVHN) [15] dataset includes 604, 388 images (both training set and extra set) and
26, 032 testing images. Similar to MNIST, the goal is to classify the digit centered in
each 32 � 32 RGB image. We augment the data using the same procedure as CIFAR-
10/100 mentioned above.

Fig. 5. The CIFAR-100 test errors of different normalization techniques.

Fig. 6. The SVHN test errors of different normalization techniques.

Cosine Normalization: Using Cosine Similarity Instead of Dot Product 389

To evaluate the convolutional networks, a VGG-like architecture, with 3 * Con-
v512 - Maxpooling - 3 * Conv512 - Maxpool - 3 * Conv512 - Maxpool - 2 * Ful-
ly1000 - Softmax, is evaluated in experiments of CIFAR-10/100 and SVHN. Each
convolutional layer has 3 � 3 receptive fields with a stride of 1, and each max pool
layer has 2 � 2 regions with a stride of 1. We train the convolutional nets 105 step
since the performances are not improved anymore. The batch size is 128. Other setups
are the same as the experiments of fully-connected networks.

The results for CIFAR-10 are shown in Fig. 4. Centered cosine normalization
achieves the lowest test error 6.39%, and cosine normalization achieves the second
lowest test error 7.33%. The layer normalization also achieves good performance,
better than batch normalization, in this experiment. It achieves 7.42% test error. Batch
normalization achieves test error 8.08%, and still has larger variance of test error than
other normalization. Weight normalization achieves the highest test error 8.55%.

The results for CIFAR-100 are shown in Fig. 5. Centered cosine normalization
achieves the lowest test error 27.49%. Cosine normalization and batch normalization
achieve very close performance, 31.02% and 31.01% respectively. But batch nor-
malization has larger variance of test error. Weight normalization achieves the highest
test error 37.87%.

The results for SVHN are shown in Fig. 6. Centered cosine normalization achieves
the lowest test error 2.22%, and cosine normalization achieves the second lowest test
error 2.34%. Batch and layer normalization achieve test error 2.49%, 2.58% respec-
tively. Weight normalization has the highest test error 2.63%.

5 Conclusions

In this paper, we propose a new normalization technique, called cosine normalization,
which uses cosine similarity or centered cosine similarity, Pearson correlation coeffi-
cient, instead of dot product in neural networks. Cosine normalization bounds the pre-
activation of neuron within a narrower range, thus makes lower variance of neurons.
Moreover, cosine normalization makes the model more robust for different input
magnitude. Networks with cosine normalization can be trained using back propagation.
It does not depend on any statistics on batch or mini-batch examples, and performs the
same computation in forward propagation at training and inference times. We evaluate
cosine normalization on the fully-connected networks, convolutional networks and
recurrent networks on various data sets. Experiments show that cosine normalization
and centered cosine normalization (PCC) achieve better performance than other nor-
malization techniques.

References

1. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent nets: the
difficulty of learning long-term dependencies (2001)

2. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing
internal covariate shift. In: Proceedings of the 32nd International Conference on Machine
Learning, pp. 448–456 (2015)

390 C. Luo et al.

3. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In: NIPS, vol. 4,
pp. 950–957 (1991)

4. Srebro, N., Shraibman, A.: Rank, trace-norm and max-norm. In: Auer, P., Meir, R. (eds.)
COLT 2005. LNCS (LNAI), vol. 3559, pp. 545–560. Springer, Heidelberg (2005). https://
doi.org/10.1007/11503415_37

5. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a
simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–
1958 (2014)

6. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450
(2016)

7. Salimans, T., Kingma, D.P.: Weight normalization: a simple reparameterization to accelerate
training of deep neural networks. In: Advances in Neural Information Processing Systems,
p. 901 (2016)

8. Tan, P.N., et al.: Introduction to Data Mining. Pearson Education India, London (2006)
9. Singhal, A.: Modern information retrieval: a brief overview. IEEE Data Eng. Bull. 24(4),

35–43 (2001)
10. Arpit, D., Zhou, Y., Kota, B.U., Govindaraju, V.: Normalization propagation: a parametric

technique for removing internal covariate shift in deep networks. arXiv preprint arXiv:1603.
01431 (2016)

11. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Montavon, G.,
Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700,
pp. 9–48. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_3

12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

13. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)
14. Abadi, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed

systems. arXiv preprint arXiv:1603.04467 (2016)
15. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural

images with unsupervised feature learning. In: NIPS Workshop on Deep Learning and
Unsupervised Feature Learning, vol. 2011, p. 5 (2011)

Cosine Normalization: Using Cosine Similarity Instead of Dot Product 391

http://dx.doi.org/10.1007/11503415_37
http://dx.doi.org/10.1007/11503415_37
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1603.01431
http://arxiv.org/abs/1603.01431
http://dx.doi.org/10.1007/978-3-642-35289-8_3
http://arxiv.org/abs/1603.04467

Discovering Thermoelectric
Materials Using Machine Learning:

Insights and Challenges

Mandar V. Tabib1(B), Ole Martin Løvvik2(B), Kjetil Johannessen1,
Adil Rasheed1, Espen Sagvolden2, and Anne Marthine Rustad1

1 SINTEF Digital, Mathematics and Cybernetics, Trondheim, Norway
Mandar.Tabib@sintef.no

2 SINTEF Industry, Sustainable Energy Technology, Oslo, Norway
OleMartin.Lovvik@sintef.no

Abstract. This work involves the use of combined forces of data-driven
machine learning models and high fidelity density functional theory for
the identification of new potential thermoelectric materials. The tradi-
tional method of thermoelectric material discovery from an almost lim-
itless search space of chemical compounds involves expensive and time
consuming experiments. In the current work, the density functional the-
ory (DFT) simulations are used to compute the descriptors (features) and
thermoelectric characteristics (labels) of a set of compounds. The DFT
simulations are computationally very expensive and hence the database
is not very exhaustive. With an anticipation that the important features
can be learned by machine learning (ML) from the limited database and
the knowledge could be used to predict the behavior of any new com-
pound, the current work adds knowledge related to (a) understanding
the impact of selection of influence of training/test data, (b) influence of
complexity of ML algorithms, and (c) computational efficiency of com-
bined DFT-ML methodology.

Keywords: Machine learning · Density functional theory
Thermoelectric · Material screening · Discovery

1 Introduction

Thermoelectric (TE) materials are receiving wide attention due to their poten-
tial role in mitigating global greenhouse effects as they enable conversion of
waste heat energy directly to electrical energy. Currently, the three approaches
to find better thermoelectric material involve: (a) traditional experimental app-
roach, (b) physics based computational approach like Density Functional The-
ory (DFT), and (c) recent machine learning (ML) based data-driven approach.
Amongst these, the machine learning approach has shown some success in find-
ing new chemistries (that are capable of being thermoelectric) but it is a nascent
application area with limited published work. There are certain limitations with
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 392–401, 2018.
https://doi.org/10.1007/978-3-030-01418-6_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_39&domain=pdf

Data-Driven and Simulation-Driven Analysis for Material Screening 393

all the approaches, like: (a) The traditional experimental approaches are not
efficient way of exploring new unknown chemistries and they focus mostly on
modifying known material compounds by doping and nano-structuring to make
these known thermoelectric materials better, while, (b) high fidelity physics
based models like DFT are computationally prohibitive to use, and (c) for ML,
obtaining bountiful data is an expensive process. ML models need to be able to
generalize well, and learn patterns well enough from a small pool of available
training data to be able to search for new potential materials in the vast expense
of search-space of unknown materials. The current work aims to contribute to
the field of machine learning and material screening by understanding influence
of limited dataset, and whether it can be mitigated by studying: (a) influence of
training-test split in model development, (b) influence of model selection and (c)
by applying a framework combining data-driven machine learning models with
physics-based density functional theory (DFT) to identify potential thermoelec-
tric materials using a metric called ‘figure of merit’. DFT enables generation
of training data for ML, and a trained ML is expected to save time in finding
potential material in the vast material search-space. The main objectives of this
work can be enumerated as:

1. In the limited dataset scenario: understand the influence of training/test com-
pound selection on ML predictions.

2. Combine data-driven models with physics-driven models to mitigate limited
dataset scenarios, and understanding efficiency of this approach in identifying
potential thermoelectric materials.

3. Compare the performance of the two ML algorithms: Random Forest (RF)
and Deep Neural Network (DNN) for the limited dataset scenario.

2 Methodology and Data

This is treated as a regression problem, where the ML model learns to predict the
figure of merit (ZT) values of a given compound at a given temperature and at
a given chemical potential state. The performance of a material as a thermoelec-
tric material is evaluated using this ZT . A material with a high ZT is supposed
to be a good thermoelectric material. The ZT is a function of Seebeck coeffi-
cient, temperature, electrical conductivity, the electronic thermal conductivity,
and lattice thermal conductivity. Previous research on thermoelectric materials
involving machine learning did not use ZT as a characteristics, instead, it used
the key properties in a stand-alone way (i.e. band gap, Seebeck coefficient, etc.).
The three key components needed for developing the methodology are described
next: (a) Data: data for model development (cross-validation/training data), for
model testing (hidden test data) and for model application (search-space data
to look for potential materials), (b) Descriptors (features), and (c) Choice of ML
algorithms. These three components are discussed next:

394 M. V. Tabib et al.

2.1 Descriptors

Descriptors (known as features in ML community) are the characteristics of
materials (e.g., crystal structure, chemical formula, etc.) that might correlate
with material’s properties of interest (ZT). Here, we use 50 features (descrip-
tors or independent variables) for a given data-point. The features involve both
numerical variables and categorical variables (crystal shape). The list of 50 fea-
tures used are: temperature, chemical potential - eV, elements in cell, mean and
variance of atomic mass, atomic radius, electronegativity, valence electrons, a
set of features related to periodic table (group numbers, row numbers,electronic
configurations), 6 one-hot encoded features for crystal shape (‘tetragonal’, ‘trig-
onal’, ‘orthorhombic’, ‘cubic’, ‘monoclinic’, ‘triclinic’, ‘hexagonal’).

2.2 Data

Limited Data Scenario: The dataset is deemed limited in this work because
based on the available training dataset of just 115 compounds (having about
87,975 instances/data points with known ZT values), the trained ML model
has to learn to predict potential compounds (i.e. ZT values) in a vast chemical
search-space of 4800 compound (having 2,40,312 data-points). The compounds
in training dataset will be different than the compounds in the chemical search-
space.

Data Generation and DFT: It is time-consuming to generate dataset using
experiments. Here, the database is generated using high-fidelity physics-driven
DFT followed by semi-classical Boltzmann theory. The DFT is a computational
quantum mechanical modeling method used to investigate the electronic struc-
ture (principally the ground state) of many-body systems, in particular atoms,
molecules, and the condensed phases. Using this theory, the properties of a sys-
tem can be determined by using functionals, i.e. functions of the spatially depen-
dent electron density. Boltzmann theory helps to estimate the Boltzmann trans-
port properties of candidate materials (like, Seebeck Coefficient, thermal con-
ductivity, electrical conductivity) based on DFT-predicted band structures. The
ZT for each compound is then computed using these transport properties. The
ZT values of about 115 materials (compounds) have been generated. A database
of about 87,975 instances (datapoints) comprising of 115 compounds materials
has been created, as each compound material is studied over 15 temperature
levels and over 51 chemical potential states. Thus, the number of datapoints are
115×51×15 = 87, 975. Each instance (or data-point) has 50 features associated
with it. Thus, the input data matrix for building ML model is 87, 975 × 50 -
which is to be divided into training data (training and validation sets) and test
data set.

Uniqueness in Splitting the Training and Test Dataset: We do not ran-
domly split the 87,975 datapoints into training and test dataset. The dataset is

Data-Driven and Simulation-Driven Analysis for Material Screening 395

split so that ML model is trained on certain compounds and the model is tested
on unseen compounds. About 85% of data-set (about 98 compounds - a dataset
of 74, 970× 50) is used for model building through both training and validation
sets, and 15% of dataset (about 17 compounds - a dataset of 13, 005 × 50) is to
test the model. Since, the purpose is to test the generalization ability of the ML
model to discover new chemical species - so, we looked at whether the ML model
trained on 98 compounds can help to predict the ZT values of the unseen 17
compounds. Hence, sensitivity of selection of compounds into training and test
data needs to be checked. This is checked by creating 3 cases of train/test split
data:

1. Case 1. Test/train split. Randomly selecting 17 compounds in test (corre-
sponding to 13,005 datapoints) and 98 compounds in train (corresponding to
74,970 datapoints) (with random seed 0.2).

2. Case 2. Test/train split. Randomly selecting 17 compounds in test and 98
compounds in train (with random seed 0.4). A different random selection
gives different sets of compounds in train/test than case 1.

3. Case 3. Deterministically selecting Test and train compound. Out of the 115
compound database, a chunk of 17 compounds lying in the middle have been
selected as test data. These 17 compounds in the middle do not possess
extreme characteristics (like either being too simple compound or too com-
plex compound, which are represented in the values of features associated
with the compound), while the training data encompasses all types of com-
pound. Here, by complex compounds, we refer to compounds with more than
3 elements.

Search-Space Data: For screening and discovering potential thermoelectric
materials, the trained machine learning model has been applied on database of
silicides (silica based compounds). This database is extracted from the material
science project, and is called chemical search-space data set in this work. The
search-space data-matrix size is: 2,40,312 data instance × 50 features.

2.3 Choice of Algorithms

Here, two different algorithms have been tested: Random Forest [1] and a more
complex Deep Neural Network [2]. This work is intended to understand whether
with the limited dataset, a complex model can perform well or not.

2.4 Model Selection - Cross Validation and Learning Curve

The two machine learning models have been compared using the cross-validation
(CV) method. CV is a model validation technique for assessing the generalization
ability of a machine learning algorithm to an independent data set. In our work,
we split the original dataset into the ‘training’ and the ‘test’ dataset. Here, we
have selected a 3-fold CV procedure, where the ‘training set’ is split further into

396 M. V. Tabib et al.

3 different smaller sets. The model prediction is learned using 2 of these 3 folds
at a time, and the 3rd fold that is left out is used for validation (called validation
set). The average R2 (coefficient of determination) score from 3-fold CV is used as
performance measure accuracy. Best possible R2 score is 1.0 suggesting a model
with high accuracy and the score can be negative if the model performs badly.
The learning curve helps to obtain the best parameter sets for the two models
using the above CV process. In Fig. 1, we use CV procedure to obtain a learning
curve. The curve shows the variation of average R2 score with training data
and validation data (for RF) and variation of average R2 score with increasing
epochs (iteration) for DNN. These curves help in understanding the bias-variance
tradeoff. The learning curve (in Fig. 1) is shown for only case (case 3), and for
only the best parameter sets of case 3 (for brevity). For case 3, the best parameter
sets are: RF: Maximum number of trees - 30. The maximum depth of the tree
is 20. DNN : The network used in this work comprises of an input layer (with 50
neurons representing the 50 input feature), an output layer and six hidden layers
(comprising of following number of units in each successive layer: 43; 20; 20; 15;
10; 5 respectively). A combination of ReLU and Tanh activation functions are
used in this work.

The learning curve (in Fig. 1) suggests some over-fitting for both the models;
which is more dominant in the case of DNN compared to the RF model. This
could be attributed to the need for larger data needed by DNN models. The R2
score on training data for both RF and DNN are in the range of 0.95–1, while, for
the validation data (called test in DNN figure here), the R2 scores fall drastically
in case of DNN to R2 = 0.45, while, the R2 scores falls slightly to 0.985 for RF.
The overfitting (variance errors) is seen in other cases too (case 1 and case 2, but
these learning curves are not shown here for brevity). The influence of 3 different
train-test split on the performance of two ML models is considered next. It needs
to be seen whether proper selection of training compound-test compound split
can mitigate the overfitting and improve generalization ability of ML models.

(a) CASE 3 . DNN . (b) CASE 3 . RF .

Fig. 1. Judging bias (underfitting) vs variance (overfitting) errors for RF and complex
DNN models for the two cases

Data-Driven and Simulation-Driven Analysis for Material Screening 397

3 Results and Discussion

Material screening is challenging in the sense that using the available limited
database of known chemistry, the trained ML model should have learned the
ability to find new potential material characteristics in new unseen chemistry
in the vast material search-space. It is important to understand whether the
way to split the limited material database into training dataset (training and
validation dataset) and testing dataset (of unseen compounds) will influence the
performance of the two machine learning models (simple RF or complex DNN).

3.1 Sensitivity Study: Influence of Training and Testing Dataset
Selection

Figure 2 shows the influence of splitting the training/test data on the perfor-
mance of models for the three cases. For each case, the Fig. 2 shows the predicted
ZT values vis-a-vis the actual ZT values for the compounds in training and test
data by the two models (RF and DNN). Results for the 3 cases show:

Case 1 and Case 2 (Comparing R2 Scores on Train and Test Data by the Two
Models): Both cases have randomly generated but different sets of 98 compounds
for training and 18 compounds in test.

DNN Performance: R2 score for case 1 drops to 0.2; while, the corresponding
case 1 train R2 score is 0.97. Similarly, case 2 test R2 score drops to −0.14; while,
the corresponding case 2 train R2 score is 0.97. The large drop in R2 scores for
test indicates poorer generalization ability for DNN.

RF Performance: In case of RF too, R2 scores drop for the two test dataset, but
its performance is much better than the DNN. For RF, the Case 1 test R2 score is
0.82; while the corresponding case 1 train R2 score is 0.99. Similarly, Case 2 test
R2 score drops to 0.23; while the corresponding case 2 train R2 score of 0.99.

Thus, for both RF and DNN, as the split of train/test varies, the gener-
alization ability is influenced (despite selecting the best parameter set of the
respective model for that database during CV). The reason for lower R2 scores
in case 2 test dataset (for both the models) as compared to their case 1 test scores
is that the 98 randomly selected compounds in case 2 training dataset with their
features (a dataset of 74,970× 50) do not provide similar pattern characteristics
(i.e. variation of ZT with features) as in the 17 compound case2-test dataset (a
dataset of 13,004× 50).

Case 3 (Comparing R2 Scores on Train and Test Data): Case 3 involves 98
training compounds that encompasses both simple and extreme compounds, and
hence the models trained on it are able to capture the pattern to enable determi-
nation of ZT values of data-points pertaining to the 17 unseen test compounds.
That is why we see improved predictions by the DNN and RF model on the case
3-test dataset: DNN shows a case 3-test R2 score of 0.45; while corresponding
case 3 train R2 score is 0.96.

RF shows a case 3 test R2 score of 0.76; while corresponding case 3 train R2
score of 0.99.

398 M. V. Tabib et al.

(a) CASE 1. DNN. (b) CASE 1. RF.

(c) CASE 2. DNN. (d) CASE 2. RF.

(e) CASE 3. DNN. (f) CASE 3. RF.

Fig. 2. Predicted vs actual ZT (with R2-score) for DNN and RF on training and
unseen test data for the three cases.

Data-Driven and Simulation-Driven Analysis for Material Screening 399

Next, we check whether the improvements in generalization ability (better
test R2 scores) brought about by balanced training-test split leads to better
predictions of material in both models?.

3.2 Comparison of RF vs. DNN Models: Material Screening and
Efficiency

Searching for Potential Thermoelectric in New Search-Space: Figure 3
shows the best two thermoelectric materials identified in a new chemical search-
space of silicide materials of 4800 compounds for the 3 cases. For brevity, only
top two are shown in Fig. 3 but the results explained are beyond the best two
predicted. This chemical search-space has not been exposed to the ML models
during their training/validation/testing phase. In all the figures, the predicted
figure of merit (ZT) is plotted against one of the most influential features (chem-
ical potential - eV). These six compounds below have the highest predicted ZT
values as obtained by DNN and RF.

The RF is mostly predicting comparatively simpler compounds than the
DNN with maximum value of ZT in the range of 3–3.6. RF has predicted only
simple compounds (such as Li2MgSi, SrMgSi, BeSilr2, SiP2O7, VSiPt) as poten-
tial thermoelectric silicides in its top two predictions. While, DNN is predicting
complex compounds (with more than 3 elements) in about 66% of the top two
predictions (with compounds such as Sr2AI3Si3HO13 in case 1, LiCoSiO4 in
case 2, and Na3CaAI3Si3SO16 and Na3VSiBO7 in case 3) with higher maximum
value of ZT in range 4–5. Both DNN and RF have identified a common thermo-
electric silicide (BeSilr2) as potential candidate but predict a different maximum
ZT value (RF predicts ZT of 3.5, while DNN predicts around ZT = 4.5).

DNN is learning complex patterns than RF and predicting higher ZT values
due to overfitting (higher variance error) as observed in previous fits in Fig. 2.
Further, DNN is predicting erroneous profile of Zt as a function of chemical
potential (Fig. 3(c) left, and (e) both) as they are not physically realistic. Thus,
the split in training data is not benefitting DNN. The solution for overfitting
in DNN is to either build artificial neural network (ANN) models with simpler
architecture or to generate a larger training dataset.

Since the intention of this paper was to gain knowledge about possible behav-
ior of DNN in current material screening applications (where most have limited
dataset), so simpler ANN models were not shown in this work. DNN despite
being the most popular model today does not work when dataset is limited.

Validation of Selecting Training/Test Dataset and Model Selection:
In the literature, currently the materials of the form Mg2LiSi are under inves-
tigation [3]. Li2MgSi is the closest form that has been predicted by RF in the
balanced Case 3 training/test dataset. This work shows the importance of bal-
ancing training/test dataset when the dataset is limited and when, the trained
model has to have good generalization ability so as to find materials in new
chemical space. Most of the complex compounds predicted by DNN are not pos-
sible to test experimentally in lab, but the overfitting seen in DNN performance

400 M. V. Tabib et al.

(a) CASE 1. DNN.

(b) CASE 1. RF.

(c) CASE 2. DNN.

(d) CASE 2. RF.

(e) CASE 3. DNN.

(f) CASE 3. RF.

Fig. 3. DNN vs RF (shaded) predicted best two thermoelectric materials for the three
cases. eV refers to chemical potential on the horizontal axis. DNN suggests more com-
plex compounds as compared to the Random Forest.

Data-Driven and Simulation-Driven Analysis for Material Screening 401

suggests that it is better not to pursue those complex models (as the results may
not be reliable).

Computational Efficiency: For DFT alone, the CPU consumption is between
25 and 1500 h to evaluate ZT value of a composition (compound), and the average
CPU time per compound is 85 h for finding Zt of material. It would take around
4,08,000 CPU hrs for discovering the material with best ZT amongst the 4800
compound chemical search-space. For ML step alone, the computation cost for
obtaining Zt values of about 4800 compounds, after getting trained on dataset of
115 compounds is: 132 s for DNN and 80 s for RF. The cost of preparing training
base for these 115 compounds from DFT could be around = 85 h per compound
× 115 compounds =9775 h. Thus, we can neglect the 132 s from DNN and 80
s of RF with respect to the 9775 h required to generate the training database.
Thus, the total cost for evaluating Zt using ML approach for 4800 compounds
is just 2% of time needed by the DFT-alone method.

4 Conclusions

1. In limited dataset scenario: RF has lesser variance error than DNN and is
seen to predict potentially simpler compounds from the search-space data
than the DNN model. DNN predicts complex compounds from search-space
data (that are difficult to make in lab and verify). Further, DNN sometimes
shows physically unrealistic Zt profile prediction due to overfitting and the
solution to this is that only more data can make the DNN better.

2. Significant influence of training-test split on the model is seen despite using
CV procedure to select the best model parameters for generalization. Hence,
when dataset is limited - this aspect should be checked. Amongst the three
cases (two random and one deterministic train-test split), the variances error
lowered for the case where training data could encompass compounds with
extreme features. The RF model also provided the ‘verifiable’ predicted poten-
tial thermochemical in search-space (Li2MgSi) from this balanced determin-
istic train-test dataset, but this strategy did not benefit DNN.

3. Combined DFT and machine learning approach with RF is computationally
efficient than an approach involving DFT alone.

Acknowledgment. We would like to thank SINTEF Foundation for the internal SEP
funding for enabling the methodology development.

References

1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
2. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
3. Nieroda, P., Kolezynski, A., Oszajca, M., Milczarek, J., Wojciechowski, T.: Struc-

tural and thermoelectric properties of polycrystalline p-type Mg2-x LixSi. J. Elec-
tron. Mater. 45, 3418 (2016)

Auto-tuning Neural Network
Quantization Framework

for Collaborative Inference
Between the Cloud and Edge

Guangli Li1,2, Lei Liu1(B), Xueying Wang1,2, Xiao Dong1,2, Peng Zhao1,2,
and Xiaobing Feng1

1 State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

{liguangli,liulei,wangxueying,dongxiao,zhaopeng,fxb}@ict.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. Recently, deep neural networks (DNNs) have been widely
applied in mobile intelligent applications. The inference for the DNNs is
usually performed in the cloud. However, it leads to a large overhead of
transmitting data via wireless network. In this paper, we demonstrate
the advantages of the cloud-edge collaborative inference with quantiza-
tion. By analyzing the characteristics of layers in DNNs, an auto-tuning
neural network quantization framework for collaborative inference is pro-
posed. We study the effectiveness of mixed-precision collaborative infer-
ence of state-of-the-art DNNs by using ImageNet dataset. The experi-
mental results show that our framework can generate reasonable network
partitions and reduce the storage on mobile devices with trivial loss of
accuracy.

Keywords: Neural network quantization · Auto-tuning framework
Edge computing · Collaborative inference

1 Introduction

In recent years, deep neural networks (DNNs) [14] are widely used and show
impressive performance in various fields including computer vision [12], speech
recongnition [9], natural language processing [15], etc. As the neural network
architectures become more complex and deeper—from LeNet [13] (5 layers) to
ResNet [8] (152 layers), the storage and computation of the model is increasing.
In other words, it leads to more resource requirements for network training and
inference. The large size of DNN models limits the applicability of the network
inference on mobile edge devices. Therefore, most of artificial intelligence (AI)
applications on mobile devices send input data of DNN to cloud servers, and
the procedure of network inference is executed in the cloud only. However, the
cloud-only inference has some assignable weaknesses: (1) transmission overhead:
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 402–411, 2018.
https://doi.org/10.1007/978-3-030-01418-6_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_40&domain=pdf

Auto-tuning Neural Network Quantization Framework 403

it leads to a large overhead of uploading data especially when the mobile edge
devices are in the low-bandwidth wireless environments. (2) privacy disclosure:
sometimes, personal data, e.g. one’s photos and videos, are not allowed to send
to the cloud servers directly.

Today’s mobile devices, such as Apple’s iPhone and NVIDIA’s Jetson TX2,
have more powerful computability and larger memory. In addition, many neural
network quantization methods [3,4,7,18,19] have been proposed for reducing the
resource consumption of DNNs. By using quantization, the data of a network
can be represented by low-precision values, e.g. INT8 (8-bit integer). On the one
hand, low-precision data reduces storage of DNNs and enables network models to
be stored on the mobile edge device with limited resources. On the other hand,
with the use of high-performance libraries for low-precision computing [1,2],
the speed of the network inference will be improved. This makes it possible to
perform some or all parts of neural network inference on mobile devices and
leads to a new inference mode: cloud-edge collaborative inference.

Fig. 1. Overview of auto-tuning framework

In this paper, we propose an auto-tuning neural network quantization frame-
work as shown in Fig. 1. During deployment, the framework profiles the operators
of DNNs on edge devices and generates the candidate layers as partition points.
When the neural network is ready to be used, the framework starts auto-tuning
for network partition. In the time of inference, the first part of the network is
quantized and executed on the edge devices, and the second part of the network
is executed in the cloud servers. On the edge, we use quantized neural network
to reduce storage and computation. In the cloud, we use original full-precision
network to achieve high accuracy.

In the collaborative inference, quantized neural networks can reduce the stor-
age of models. Intermediate results of quantized networks are also low-precision

404 G. Li et al.

data, which can reduce data communication between cloud and edge. So user’s
mobile device could transmit less data when using AI applications. Additionally,
transmitting intermediate result data, rather than the original input data, can
protect personal information. In realistic scenarios, the process of analysis and
testing is tedious and time-consuming. It’s unfriendly for a program developer
to test and decide how to partition the network. Our automatic tuning frame-
work will help developers find the most reasonable partition of a DNN. The
contributions of this paper are summarized as follows:

• Analysis of DNN partition points – We analyze the structures of deep neural
networks and show which layers are reasonable partition points. Based on the
analysis, we could generate candidate layers as partition points of a specific
neural network (Sect. 2.2)

• Auto-tuning quantization framework for collaborative inference – We develop
an auto-tuning neural network quantization framework for collaborative infer-
ence between cloud and edge. The framework quantizes neural networks
according to the candidate partition points and provides an optimal mixed-
precision partition for cloud-edge inference by auto-tuning (Sect. 2.3).

• Experimental study – We show the performance of collaborative inference of
state-of-the-art DNNs by using ImageNet dataset. The framework generates
reasonable network partitions and reduces the storage of inference on mobile
devices with trivial loss of accuracy (Sect. 3).

2 Auto-tuning Quantization Framework

In this section, we present our auto-tuning neural network quantization frame-
work. Firstly, we briefly introduce neural network quantization. Secondly, we
analyze the structures of the state-of-the-art DNNs. Finally, we describe the
auto-tuning partition algorithm.

2.1 Neural Network Quantization

In order to accelerate inference and compress the size of DNN models, many
network quantization methods are proposed. Some studies focus on scalar and
vector quantization [4,7], while others center on fixed-point quantization [18,19].
In this paper, we are mainly interested in scalar quantization of INT8, which is
supported by many advanced computing libraries such as Google’s gemmlowp
[1] and NVIDIA’s cuDNN [2]. In general, an operator computation of scalar
quantized neural networks can be summarized as follows:

• Off-line Quantization
Step 1. Find quantization thresholds (Tmin and Tmax) for calculating scale
factors of Input, Weights and Output;

Auto-tuning Neural Network Quantization Framework 405

Step 2. Quantize Input and Weights according to the following formula:

DataQ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Data(x) − Tmin

|Tmax − Tmin| × RangeLP x ∈ (Tmin, Tmax)

‖Vlow−precision‖∞ x ≥ Tmax

‖Vlow−precision‖−∞ x ≤ Tmin

(1)

where: RangeLP is the range of low-precision values (e.g. 255 for INT8),
Vlow−precision is the set of low-precision values, Data(x) is the original value,
DataQ(x) is the quantized value.

• On-device Computation
Step 1. OutputQ = Operator(InputQ, WeightsQ);
Step 2. Dequantize OutputQ according to the following formula:

Output =
|Tmax − Tmin|

RangeLP
× OutputQ(x) + Tmin (2)

Step 3. Output = ActivationFunction(Output);
Step 4. Quantize Output as InputNext according to Formula 1.

2.2 Candidate Network Partition Points

In general, a deep neural network contains many kinds of layers such as con-
volution layers, fully-connected layers and activation layers. We analyze the
characteristics of different network layers and decide how to select candidate
layers as reasonable partition points. The set of candidate layers, Rule =
{L1, L2, . . . , Ln}, is based on the results of the following analysis.

(a) (b)

Fig. 2. Partition points of DNNs

406 G. Li et al.

Table 1. Analysis of inception

Partition
points

Brother branch
exists?

Inference mode of
the brother branch

Data transmission

1, 13 No / INT8 × 1

2, 3, 4, 5
7, 8, 9
6, 10, 11, 12

Yes Mobile edge INT8 × 4

2, 3, 4, 5
7, 8, 9
6, 10, 11, 12

Yes Cloud INT8 × 1 + FP32 × 1

Layers in Inception Networks. Inception is a structure that contains
branches, and these branches are executed in parallel and their results are merged
into a network layer (e.g. concat layer). Figure 2(a) is an example of inception
from GoogLeNet [17]. As shown, the inception contains 13 possible partition
points. If we try all the partition points, it will take a lot of time. We divide
these partition points into two groups according to whether they have at least
a brother branch (separate from the same layer and merge in the same layer).
The results of the analysis are shown in Table 1. When a partition point has no
brother branch (e.g. 1 and 13), the output of the sub-network on edge devices
contains only 1 × INT8 Blob (4D array for storing data). When a partition point
has a brother branch, there are two cases: (1) its brother branch runs on the edge
devices, and the sub-network output contains 4 × INT8 Blobs; (2) its brother
branch runs in the cloud, and the sub-network output contains 1 × INT8 Blob
and 1 × FP32 Blob. The transmission data in first group is smaller than it is
in the second group. Therefore, if a network layer in inception has a brother
branch, the framework will not choose it as a candidate layer.

Table 2. Analysis of residual network

Partition points Shortcut connection exists? Data transmission

1, 5 No INT8 × 1

2, 3, 4, 6 Yes INT8 × 1 + FP32 × 1

Layers in Residual Networks. There are many shortcut connections in the
residual network [8]. Figure 2(b) shows an example of a residual block which
contains a shortcut connection. There are 6 possible partition points in this
example. According to whether the shortcut connection of a partition points
exists, we divide these partition points into two groups. When a partition point
has no shortcut connection (e.g. 1 and 5), the output of the sub-network on edge
devices contains only 1 × INT8 Blob. Otherwise, the output of the sub-network

Auto-tuning Neural Network Quantization Framework 407

contains 1 × INT8 Blob and 1 × FP32 Blob. Table 2 shows the analysis result.
Therefore, the network layers with shortcut connections are not reasonable can-
didate layers.

Non-parametric Layers. Non-parametric layers, such as ReLU and pooling,
have no parameters, so they require almost no memory storage. In addition, the
computation of the non-parametric layers accounts for a very small proportion
of the total network computation. Therefore, our framework merges the non-
parametric layers into the nearest previous parametric layers, i.e. these non-
parametric layers will not be used as candidate layers.

2.3 Auto-Tuning Partition

According to the candidate rule Rule, the framework performs auto-tuning par-
tition for cloud-edge collaborative inference, as described in Algorithm1. The
input of the algorithm contains candidate layer rules and a neural network.
Firstly, candidate rules are used to select candidate partition points in the neu-
ral network (lines 1–2). Secondly, all candidate partition networks are tested,
and the information of performance is recorded in P (lines 3–9). The function
of PredictPerformance can predict the performance of collaborative inference
based on the results of off-line profiling. Finally, we find the best partition point
in P for collaborative inference of mixed-precision neural network (lines 10–14).

Algorithm 1. Auto-Tuning Partition
Input: candidate rules Rule, neural network Net = {L1, L2, . . . , Ln}
Output: optimize partition pbest

1 P ← Φ; pbest ← null;
2 Candidate ← {Li|Li ∈ Rule};
3 for Li in Candidate do
4 Netedge ← Net.Split(First, Li);
5 NetCloud ← Net.Split(Li + 1, Last);
6 EngineEdge ← NetEdge(DataType<INT8>);
7 EngineCloud ← NetCloud(DataType<FP32>);
8 (Li, info) ← PredictPerformance(EngineEdge, EngineCloud);
9 P ← P ∪ (Li, info);

10 Env = GetEnvironment(DeviceEdge);
11 for pi in P do
12 if Env(pi) is better than Env(pbest) then
13 pbest ← pi;

14 return pbest;

408 G. Li et al.

3 Experiments

In this section, we use ImageNet [6] dataset to test the collaborative inference of
DNNs [8,12,16,17] and show results of our auto-tuning framework. We illustrate
the most reasonable partition for each neural network. The inference of the edge
performs on a mobile platform – NVIDIA Jetson TX2 (NVIDIA’s latest mobile
SoC) – with 4 × ARM Cortex-A57 CPUs and 2 × Denver CPUs, 8G of RAM.
The inference of the cloud performs on a server with Intel Core-i7 CPU, NVIDIA
TITAN Xp GPU, 16G of RAM. We use Caffe [10] with cuDNN (version 7.0.5) on
the GPU of cloud servers. We use gemmlowp’s [1] implementation on the CPU
of the edge devices.

3.1 Experimental Results

Table 3 summarizes the results of our framework. We tested AlexNet, VGG16,
ResNet-18 and GoogLeNet in different wireless network environments. For each
neural network, the framework gives the best partition point and the fastest
partition point. According to the inference time and the speed-up in the table,
we can see that sometimes the speed of collaborative inference is faster than
that of the cloud inference only. This is due to the large transmission overhead
in the low-bandwidth wireless environments. In collaborative inference, we only
need to download the parameters required by the edge inference, which can
significantly reduce the size of download data. If users need to achieve the fastest
inference speed, the fastest partition point should be selected. If users need to
avoid privacy disclosure, the best partition point should be selected. In addition,
quantized neural networks do not lead to a significant drop in accuracy (usually
less than 1%).

Table 3. Experimental results of our framework

Neural network AlexNet VGG16 ResNet-18 GoogLeNet

Wireless upload (KB/s) 250 240 70 180

Best partition point conv5 conv1 2 res4a conv2

Inference time (s) 0.36 5.65 1.86 1.16

Speed-up 1.7× <1× 1.13× <1×
Model download (KB) 2278 38 1569 121

Model storage reduction 96.17% 99.97% 85.63% 98.22%

TOP-1 accuracy↓ −0.09% 0.00% −0.19% −0.10%

Figure 3 shows the collaborative inference time of each candidate layer in
the wireless network environments. We take AlexNet as an example. Each bar
represents a network partition, which consists of three parts: edge inference,
data upload and cloud inference. After auto-tuning of framework, conv5 layer is

Auto-tuning Neural Network Quantization Framework 409

-0.12%

-0.08%

-0.04%

0.00%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

input conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

tim
e

(s
)

Cloud inference Data upload
Edge inference TOP-1 accuracy

-0.35%

-0.30%

-0.25%

-0.20%

-0.15%

-0.10%

-0.05%

0.00%

0

2

4

6

8

10

12

14

tim
e

(s
)

Cloud inference Data upload
Edge inference TOP-1 accuracy

-0.25%

-0.20%

-0.15%

-0.10%

-0.05%

0.00%

0
0.5

1
1.5

2
2.5

3
3.5

4

input conv1 res2a res2b res3a res3b res4a res4b res5a res5b fc1000

tim
e

(s
)

Cloud inference Data upload
Edge inference TOP-1 accuracy

-0.30%

-0.25%

-0.20%

-0.15%

-0.10%

-0.05%

0.00%

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

input conv1 conv2 inc3a inc3b inc4a inc4b inc4c inc4d inc4e inc5a inc5b classifier

tim
e

(s
)

Cloud inference Data upload
Edge inference TOP-1 accuracy

(a) AlexNet

(b) VGG16

(c) ResNet-18

(d) GoogLeNet

↓

↓

↓

↓

Fig. 3. Performance of each DNN partition

selected as the best partition point (marked with a hollow pentagram) and the
fastest partition point (marked with a filled pentagram). On edge devices, we
feed input data to the neural network and perform inference of layers from conv1
to conv5. The output data of conv5 (pool and relu are merged) is uploaded to
the cloud, and then the inference of layers from fc6 to fc8 is executed in the
cloud. The approach of collaborative inference achieves 1.7× speed-up. It can be
seen that the accuracy drop of the network is trivial, and the largest accuracy
loss in all partitions is only −0.11%.

410 G. Li et al.

4 Related Work

Recently, many neural network quantization methods have been proposed. Gong
et al. [7] and Cheng et al. [4] explored scalar and vector quantization methods
for compressing DNNs. Zhou et al. [18], Zhou et al. [19] proposed fixed-point
quantization methods. Cuervo et al. [5] and Kang et al. [11] designed frameworks
that support collaborative computing of mobile applications. Their frameworks
perform off-line partition for full-precision neural networks, and ours performs
on-line partition for mixed-precision neural networks. Overall, the application of
quantization methods in cloud-edge collaborative inference has not been studied
yet. To the best of our knowledge, it is the first attempt to build framework for
cloud-edge collaborative inference of mixed-precision neural networks.

5 Conclusion

In this paper, we propose an auto-tuning neural network quantization framework
for collaborative inference. We analyze the characteristics of network layers and
provide candidate rules to choose reasonable partition points. The auto-tuning
framework helps developers get the most suitable partition of a neural network.
The cloud-edge mode (i.e. collaborative inference) reduces the storage of infer-
ence on mobile devices with trivial loss of accuracy and could protect personal
information.

Acknowledgement. This work is supported by the National Key R&D Program
of China under Grant No. 2017YFB0202002, the Science Fund for Creative Research
Groups of the National Natural Science Foundation of China under Grant No. 61521092
and the Key Program of National Natural Science Foundation of China under Grant
Nos. 61432018, 61332009, U1736208.

References

1. gemmlowp: a small self-contained low-precision GEMM library. https://github.
com/google/gemmlowp

2. NVIDIA TensorRT. https://developer.nvidia.com/tensorrt
3. Cheng, J., Wang, P., Li, G., Hu, Q., Lu, H.: Recent advances in efficient com-

putation of deep convolutional neural networks. CoRR abs/1802.00939, pp. 1–12
(2018). http://arxiv.org/abs/1802.00939

4. Cheng, J., Wu, J., Leng, C., Wang, Y., Hu, Q.: Quantized CNN: a unified approach
to accelerate and compress convolutional networks. IEEE Trans. Neural Netw.
Learn. Syst. 99, 1–14 (2017)

5. Cuervo, E., et al.: MAUI: making smartphones last longer with code offload. In:
International Conference on Mobile Systems, Applications, and Services, pp. 49–62
(2010)

6. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: Computer
Vision and Pattern Recognition, pp. 248–255. IEEE Computer Society (2009)

https://github.com/google/gemmlowp
https://github.com/google/gemmlowp
https://developer.nvidia.com/tensorrt
http://arxiv.org/abs/1802.00939

Auto-tuning Neural Network Quantization Framework 411

7. Gong, Y., Liu, L., Yang, M., Bourdev, L.D.: Compressing deep convolutional net-
works using vector quantization. CoRR abs/1412.6115, pp. 1–10 (2014). http://
arxiv.org/abs/1412.6115

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Computer Vision and Pattern Recognition, pp. 770–778 (2015)

9. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recogni-
tion: the shared views of four research groups. IEEE Signal Process. Mag. 29(6),
82–97 (2012)

10. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:
ACM International Conference on Multimedia, pp. 675–678 (2014)

11. Kang, Y., Hauswald, J., Gao, C., Rovinski, A., Mudge, T., Mars, J., Tang, L.:
Neurosurgeon: collaborative intelligence between the cloud and mobile edge. ACM
Sigplan Not. 52(4), 615–629 (2017)

12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

13. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

14. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

15. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556, pp. 1–14 (2014). http://arxiv.org/abs/
1409.1556

17. Szegedy, C., et al.: Going deeper with convolutions. In: Computer Vision and Pat-
tern Recognition, pp. 1–9 (2015)

18. Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental network quantization:
towards lossless CNNs with low-precision weights. CoRR abs/1702.03044, pp. 1–14
(2017). http://arxiv.org/abs/1702.03044

19. Zhou, S., Ni, Z., Zhou, X., Wen, H., Wu, Y., Zou, Y.: DoReFa-Net: training
low bitwidth convolutional neural networks with low bitwidth gradients. CoRR
abs/1606.06160, pp. 1–13 (2016). http://arxiv.org/abs/1606.06160

http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1412.6115
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1702.03044
http://arxiv.org/abs/1606.06160

GraphVAE: Towards Generation of Small
Graphs Using Variational Autoencoders

Martin Simonovsky(B) and Nikos Komodakis

Imagine & LIGM, Université Paris Est & École des Ponts,
Champs sur Marne, France

{martin.simonovsky,nikos.komodakis}@enpc.fr

Abstract. Deep learning on graphs has become a popular research topic
with many applications. However, past work has concentrated on learning
graph embedding tasks, which is in contrast with advances in generative
models for images and text. Is it possible to transfer this progress to
the domain of graphs? We propose to sidestep hurdles associated with
linearization of such discrete structures by having a decoder output a
probabilistic fully-connected graph of a predefined maximum size directly
at once. Our method is formulated as a variational autoencoder. We
evaluate on the challenging task of molecule generation.

1 Introduction

Deep learning on graphs has very recently become a popular research topic [3].
Past work has concentrated on learning graph embedding tasks so far, i.e. encod-
ing an input graph into a vector representation. This is in stark contrast with
fast-paced advances in generative models for images and text, which have seen
massive rise in quality of generated samples. Hence, it is an intriguing question
how one can transfer this progress to the domain of graphs, i.e. their decoding
from a vector representation. Moreover, the desire for such a method has been
mentioned in the past [5].

However, learning to generate graphs is a difficult problem, as graphs are
discrete non-linear structures. In this work, we propose a variational autoencoder
[9] for probabilistic graphs of a predefined maximum size. In a probabilistic
graph, the existence of nodes and edges, as well as their attributes, are modeled
as independent random variables.

We demonstrate our method, coined GraphVAE, in cheminformatics on the
task of molecule generation. Molecular datasets are a challenging but conve-
nient testbed for generative models, as they easily allow for both qualitative and
quantitative tests of decoded samples. While our method is applicable for gen-
erating smaller graphs only and its performance leaves space for improvement,
we believe our work is an important initial step towards powerful and efficient
graph decoders.

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 412–422, 2018.
https://doi.org/10.1007/978-3-030-01418-6_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_41&domain=pdf

GraphVAE: Towards Generation of Small Graphs 413

Fig. 1. Illustration of the proposed variational graph autoencoder. Starting from a
discrete attributed graph G = (A,E, F) on n nodes (e.g. a representation of propylene
oxide with 3 carbons and 1 oxygen), stochastic graph encoder qφ(z|G) embeds the
graph into continuous representation z. Given a point in the latent space, our novel
graph decoder pθ(G|z) outputs a probabilistic fully-connected graph ˜G = (˜A, ˜E, ˜F) on
predefined k ≥ n nodes, from which discrete samples may be drawn. The process can
be conditioned on label y for controlled sampling at test time. Reconstruction ability
of the autoencoder is facilitated by approximate graph matching for aligning G with ˜G.

2 Related Work

Graph Decoders in Deep Learning. Graph generation has been largely unexplored
in deep learning. The closest work to ours is by Johnson [8], who incrementally
constructs a probabilistic (multi)graph as a world representation according to a
sequence of input sentences to answer a query. While our model also outputs a
probabilistic graph, we do not assume having a prescribed order of construction
transformations available and we formulate the learning problem as an autoen-
coder.

Xu et al. [23] learns to produce a scene graph from an input image. They
construct a graph from a set of object proposals, provide initial embeddings to
each node and edge, and use message passing to obtain a consistent prediction.
In contrast, our method is a generative model which produces a probabilistic
graph from a single opaque vector, without specifying the number of nodes or
the structure explicitly.

Discrete Data Decoders. Text is the most common discrete representation. Gen-
erative models there are usually trained in a maximum likelihood fashion by
teacher forcing [22], which avoids the need to backpropagate through output dis-
cretization but may lead to expose bias [1]. Recently, efforts have been made to
overcome this problem by using Gumbel distribution [10] or reinforcement learn-
ing [24]. Our work also circumvents the non-differentiability problem, namely by
formulating the loss on a probabilistic graph.

414 M. Simonovsky and N. Komodakis

Molecule Decoders. Generative models may become promising for de novo design
of molecules fulfilling certain criteria by being able to search for them over a
continuous embedding space [14]. While molecules have an intuitive and richer
representation as graphs, the field has had to resort to textual representations
with fixed syntax, e.g. so-called SMILES strings, to exploit recent progress made
in text generation with RNNs [5,14,16]. As their syntax is brittle, many invalid
strings tend to be generated, which has been recently addressed by [11] by incor-
porating grammar rules into decoding. While encouraging, their approach does
not guarantee semantic (chemical) validity, similarly as our method.

3 Method

Our method is formulated in the framework of variational autoencoders (VAE)
[9]. The main idea is to output a probabilistic fully-connected graph and use a
graph matching algorithm to align it to the ground truth. We briefly recapitulate
VAE below and continue with introducing our novel graph decoder together with
an appropriate objective.

3.1 Variational Autoencoder

Let G = (A,E, F) be a graph specified with its adjacency matrix A, edge
attribute tensor E, and node attribute matrix F . We wish to learn an encoder
and a decoder to map between the space of graphs G and their continuous
embedding z ∈ R

c, see Fig. 1. In the probabilistic setting of a VAE, the encoder
is defined by a variational posterior qφ(z|G) and the decoder by a generative
distribution pθ(G|z), where φ and θ are learned parameters. Furthermore, there
is a prior distribution p(z) imposed on the latent code representation as a reg-
ularization; we use a simplistic isotropic Gaussian prior p(z) = N(0, I). The
whole model is trained by minimizing the upper bound on negative log-likelihood
− log pθ(G) [9]:

L(φ, θ;G) = Eqφ(z|G)[− log pθ(G|z)] + KL[qφ(z|G)||p(z)] (1)

The first term of L, the reconstruction loss, enforces high similarity of sampled
generated graphs to the input graph G. The second term, KL-divergence, regu-
larizes the code space to allow for sampling of z directly from p(z) instead from
qφ(z|G) later. While the regularization is independent on the input space, the
reconstruction loss must be specifically designed for each input modality.

3.2 Probabilistic Graph Decoder

In a related task of text sequence generation, the currently dominant approach
is character-wise or word-wise prediction [2]. However, graphs can have arbi-
trary connectivity and there is no clear way how to linearize their construction
in a sequence of steps: Vinyals et al. [21] empirically found out that the lin-
earization order matters when learning on sets. On the other hand, iterative

GraphVAE: Towards Generation of Small Graphs 415

construction of discrete structures during training without step-wise supervision
involves discrete decisions, which are not differentiable and therefore problematic
for back-propagation.

Fortunately, the task can become much simpler if we restrict the domain to
the set of all graphs on maximum k nodes, where k is fairly small (in practice
up to the order of tens). Under this assumption, handling dense graph repre-
sentations is still computationally tractable. We propose to make the decoder
output a probabilistic fully-connected graph ˜G = (˜A, ˜E, ˜F) on k nodes at once.
This effectively sidesteps both problems mentioned above.

In probabilistic graphs, the existence of nodes and edges is modeled as
Bernoulli variables, whereas node and edge attributes are multinomial variables.
While not discussed in this work, continuous attributes could be easily modeled
as Gaussian variables represented by their mean and variance. We assume all
variables to be independent.

Each tensor of the representation of ˜G has thus a probabilistic interpretation.
Specifically, the predicted adjacency matrix ˜A ∈ [0, 1]k×k contains both node
probabilities ˜Aa,a and edge probabilities ˜Aa,b for nodes a �= b. The edge attribute
tensor ˜E ∈ R

k×k×de indicates class probabilities for edges and, similarly, the
node attribute matrix ˜F ∈ R

k×dn contains class probabilities for nodes.
The decoder itself is deterministic. Its architecture is a simple multi-layer per-

ceptron (MLP) with three outputs in its last layer. Sigmoid activation function
is used to compute ˜A, whereas edge- and node-wise softmax is applied to obtain
˜E and ˜F , respectively. At test time, we are often interested in a (discrete) point
estimate of ˜G, which can be obtained by taking edge- and node-wise argmax in
˜A, ˜E, and ˜F . Note that this can result in a discrete graph on less than k nodes.

3.3 Reconstruction Loss

Given a particular instance of a discrete input graph G on n ≤ k nodes and its
probabilistic reconstruction ˜G on k nodes, evaluation of Eq. 1 requires compu-
tation of likelihood pθ(G|z) = P (G| ˜G).

Since no particular ordering of nodes is imposed in either ˜G or G and matrix
representation of graphs is not invariant to permutations of nodes, comparison
of two graphs is hard. However, approximate graph matching described further
in Subsect. 3.4 can obtain a binary assignment matrix X ∈ {0, 1}k×n, where
Xa,i = 1 only if node a ∈ ˜G is assigned to i ∈ G and Xa,i = 0 otherwise.

Knowledge of X allows to map information between both graphs. Specifically,
input adjacency matrix is mapped to the predicted graph as A′ = XAXT ,
whereas the predicted node attribute matrix and slices of edge attribute matrix
are transferred to the input graph as ˜F ′ = XT

˜F and ˜E′
·,·,l = XT

˜E·,·,lX. The
maximum likelihood estimates, i.e. cross-entropy, of respective variables are as
follows:

416 M. Simonovsky and N. Komodakis

log p(A′|z) = 1/k
∑

a

A′
a,a log ˜Aa,a + (1 − A′

a,a) log(1 − ˜Aa,a)+

+ 1/k(k − 1)
∑

a�=b

A′
a,b log ˜Aa,b + (1 − A′

a,b) log(1 − ˜Aa,b)

log p(F |z) = 1/n
∑

i

log FT
i,· ˜F ′

i,·

log p(E|z) = 1/(||A||1 − n)
∑

i�=j

log ET
i,j,· ˜E′

i,j,·

(2)

where we assumed that F and E are encoded in one-hot notation. The for-
mulation considers existence of both matched and unmatched nodes and edges
but attributes of only the matched ones. Furthermore, averaging over nodes and
edges separately has shown beneficial in training as otherwise the edges dominate
the likelihood. The overall reconstruction loss is a weighed sum of the previous
terms:

− log p(G|z) = −λA log p(A′|z) − λF log p(F |z) − λE log p(E|z) (3)

3.4 Graph Matching

The goal of (second-order) graph matching is to find correspondences X ∈
{0, 1}k×n between nodes of graphs G and ˜G based on the similarities of their
node pairs S : (i, j) × (a, b) → R

+ for i, j ∈ G and a, b ∈ ˜G. It can be
expressed as integer quadratic programming problem of similarity maximiza-
tion over X and is typically approximated by relaxation of X into continuous
domain: X∗ ∈ [0, 1]k×n [4]. For our use case, the similarity function is defined
as follows:

S((i, j), (a, b)) = (ET
i,j,· ˜Ea,b,·)Ai,j

˜Aa,b
˜Aa,a

˜Ab,b[i �= j ∧ a �= b]+

+ (FT
i,· ˜Fa,·) ˜Aa,a[i = j ∧ a = b]

(4)

The first term evaluates similarity between edge pairs and the second term
between node pairs, [·] being the Iverson bracket. Note that the scores con-
sider both feature compatibility (˜F and ˜E) and existential compatibility (˜A),
which has empirically led to more stable assignments during training. To sum-
marize the motivation behind both Eqs. 3 and 4, our method aims to find the
best graph matching and then further improve on it by gradient descent on the
loss. Given the stochastic way of training deep networks, we argue that solving
the matching step only approximately is sufficient. This is conceptually similar
to the approach for learning to output unordered sets [21], where the closest
ordering of the training data is sought.

In practice, we are looking for a graph matching algorithm robust to noisy
correspondences which can be easily implemented on GPU in batch mode. Max-
pooling matching (MPM) by [4] is a simple but effective algorithm following the
iterative scheme of power methods. It can be used in batch mode if similarity

GraphVAE: Towards Generation of Small Graphs 417

tensors are zero-padded, i.e. S((i, j), (a, b)) = 0 for n < i, j ≤ k, and the amount
of iterations is fixed.

Max-pooling matching outputs continuous assignment matrix X∗. Unfortu-
nately, attempts to directly use X∗ instead of X in Eq. 3 performed badly, as did
experiments with direct maximization of X∗ or soft discretization with softmax
or straight-through Gumbel softmax [7]. We therefore discretize X∗ to X using
Hungarian algorithm to obtain a strict one-on-one mapping. While this opera-
tion is non-differentiable, gradient can still flow to the decoder directly through
the loss function and training convergence proceeds without problems. Note that
this approach is often taken in works on object detection, e.g. [19], where a set
of detections need to be matched to a set of ground truth bounding boxes and
treated as fixed before computing a differentiable loss.

3.5 Further Details

Encoder. A feed forward network with edge-conditioned graph convolutions
(ECC) [17] is used as encoder, although any other graph embedding method
is applicable. As our edge attributes are categorical, a single linear layer for
the filter generating network in ECC is sufficient. As usual in VAE, we formu-
late the encoder as probabilistic and enforce Gaussian distribution of qφ(z|G)
by having the last encoder layer outputs 2c features interpreted as mean and
variance, allowing to sample zl ∼ N(μl(G), σl(G)) for l ∈ 1, .., c using the re-
parameterization trick [9].

Disentangled Embedding. In practice, rather than random drawing of graphs,
one often desires more control over generated graphs. In such case, we follow
[18] and condition both encoder and decoder on label vector y associated with
each input graph G. Decoder pθ(G|z,y) is fed a concatenation of z and y, while
in encoder qφ(z|G,y), y is concatenated to every node’s features just before
the graph pooling layer. If the size of latent space c is small, the decoder is
encouraged to exploit information in the label.

Limitations. The proposed model is expected to be useful only for generating
small graphs. This is due to growth of GPU memory requirements and number of
parameters (O(k2)) as well as matching complexity (O(k4)), with small decrease
in quality for high values of k. In Sect. 4 we demonstrate results for up to k = 38.
Nevertheless, for many applications even generation of small graphs is still very
useful.

4 Evaluation

We demonstrate our method for the task of molecule generation by evaluating
on two large public datasets of organic molecules, QM9 and ZINC.

418 M. Simonovsky and N. Komodakis

4.1 Application in Cheminformatics

Quantitative evaluation of generative models of images and texts has been trou-
blesome [20], as it very difficult to measure realness of generated samples in
an automated and objective way. Thus, researchers frequently resort there to
qualitative evaluation and embedding plots. However, qualitative evaluation of
graphs can be very unintuitive for humans to judge unless the graphs are planar
and fairly simple.

Fortunately, we found graph representation of molecules, as undirected
graphs with atoms as nodes and bonds as edges, to be a convenient testbed
for generative models. On one hand, generated graphs can be easily visualized
in standardized structural diagrams. On the other hand, chemical validity of
graphs, as well as many further properties a molecule can fulfill, can be checked
using software packages (SanitizeMol in RDKit [12]) or simulations. This makes
both qualitative and quantitative tests possible.

Chemical constraints on compatible types of bonds and atom valences make
the space of valid graphs complicated and molecule generation challenging. In
fact, a single addition or removal of edge or change in atom or bond type
can make a molecule chemically invalid. Comparably, flipping a single pixel in
MNIST-like number generation problem is of no issue.

To help the network in this application, we introduce three remedies. First,
we make the decoder output symmetric ˜A and ˜E by predicting their (upper)
triangular parts only, as undirected graphs are sufficient representation for
molecules. Second, we use prior knowledge that molecules are connected and, at
test time only, construct maximum spanning tree on the set of probable nodes
{a : ˜Aa,a ≥ 0.5} in order to include its edges (a, b) in the discrete pointwise
estimate of the graph even if ˜Aa,b < 0.5 originally. Third, we do not generate
Hydrogen explicitly and let it be added as “padding” during chemical validity
check.

4.2 QM9 Dataset

QM9 dataset [15] contains about 134k organic molecules of up to 9 heavy (non
Hydrogen) atoms with 4 distinct atomic numbers and 4 bond types, we set k = 9,
de = 4 and dn = 4. We set aside 10k samples for testing and 10k for validation
(model selection).

We compare our unconditional model to the character-based generator of
Gómez-Bombarelli et al. [5] (CVAE) and the grammar-based generator of Kusner
et al. [11] (GVAE). We used the code and architecture in [11] for both baselines,
adapting the maximum input length to the smallest possible. In addition, we
demonstrate a conditional generative model for an artificial task of generating
molecules given a histogram of heavy atoms as 4-dimensional label y, the success
of which can be easily validated.

Setup. The encoder has two graph convolutional layers (32 and 64 channels) with
identity connection, batchnorm, and ReLU; followed by the graph-level output

GraphVAE: Towards Generation of Small Graphs 419

NO NO
N

O
N

O

NH NH HN
O

N

NO N

O
N

O
NH O NH NH

N

O

N

O
NH O NH

O NH
NH2

OH

OH OH

NH

O
NH O

NH
H2O

O

O

O

NH OH

OH

OH
O

NH2

OH2

H2NH2O

O

O

O

NH

O
N

OH
OH

OH

O

OH2
NH2OH2 OH2

H2O

OHO OH

HO
H2O

OH

OH

HO

O

OH

OH2

OHHO
OH2

OH
OH2

HO
OH

OH

OH

OH2

OH2
OH

OH OH
O

OH
O

OH

OH

OH2
HO OH

O

OH

OH

OH

H2O

OH2 OH
HO

OH

OH

OH

O

OH

OH

OH

OH

HO

OH

OH

HO
O

OH

H2O

OH2

OH2

OH2

OH2
OH

HO

OH

OH

OH

OH

OH

OH

Fig. 2. Decodings over a random plane
in z-space. Chemically invalid graphs
in red. (Color figure online)

H2N

F

OH
N

F

N

H2N

OH

F

N

H2N

NH2

F

N

HN

NH2
F

O

NH

H2N F

N

NH

NH2

F

N

O

NH2

H2N

F

O
NH

O
NH

O

OH2
NH

OH2

NH

O
OH

NH

O

O

O
N

O

O N
O

O
HN

O

O

O

O

O

O

OH

O

O

OH

O

O

OH2

OH2

H2O

OH2

O

HO

O
OH2

OH2

H2O
OH2

OH2

OH2

O

OH

O

O

O

OH

O

OH

O

OH

O

HO
OH

HO
OH

HO
OH O

OH

OH

O

N
H2O N

OH2

H2O N
OH2

HO
N

OH

OH

N

OH

N

OH

O N

OH

N

O O

Fig. 3. Linear interpolation between
row-wise pairs of randomly chosen
molecules in z-space in a condi-
tional model. Color highlight leg-
end: encoder inputs (green), chemically
invalid graphs (red), valid graphs with
wrong label (blue). (Color figure online)

formulation in Eq. 7 in [13] with auxiliary networks being a single fully connected
layer (FCL) with 128 output channels; finalized by a FCL outputting (μ, σ). The
decoder has 3 FCLs (128, 256, and 512 channels) with batchnorm and ReLU;
followed by parallel triplet of FCLs to output graph tensors. We set c = 40,
λA = λF = λE = 1, batch size 32, 75 MPM iterations and train for 25 epochs
with Adam with learning rate 1e-3 and β1 = 0.5.

Embedding Visualization. To visually judge the quality and smoothness of the
learned embedding z of our model, we may traverse it in two ways: along a
slice and along a line. For the former, we randomly choose two c-dimensional
orthonormal vectors and sample z in regular grid pattern over the induced 2D
plane. Figure 2 shows a varied and fairly smooth mix of molecules (for uncondi-
tional model with c = 40 and within 5 units from the origin). For the latter, we
randomly choose two molecules G(1), G(2) of the same label from test set and
interpolate between their embeddings μ(G(1)), μ(G(2)). This also evaluates the
encoder, and therefore benefits from low reconstruction error. In Fig. 3 we can
find both meaningful (1st, 2nd and 4th row) and less meaningful transitions,
though many samples on the lines do not form chemically valid compounds.

Decoder Quality Metrics. The quality of a conditional decoder can be evaluated
by the validity and variety of generated graphs. For a given label y(l), we draw
ns = 104 samples z(l,s) ∼ p(z) and compute the discrete point estimate of their
decodings Ĝ(l,s) = arg max pθ(G|z(l,s),y(l)).

Let V (l) be the list of chemically valid molecules from Ĝ(l,s) and C(l) be
the list of chemically valid molecules with atom histograms equal to y(l). We

420 M. Simonovsky and N. Komodakis

are interested in ratios Valid(l) = |V (l)|/ns and Accurate(l) = |C(l)|/ns. Fur-
thermore, let Unique(l) = |set(C(l))|/|C(l)| be the fraction of unique correct
graphs and Novel(l) = 1 − |set(C(l)) ∩ QM9|/|set(C(l))| the fraction of novel
out-of-dataset graphs; we define Unique(l) = 0 and Novel(l) = 0 if |C(l)| = 0.
Finally, the introduced metrics are aggregated by frequencies of labels in QM9,
e.g. Valid =

∑

l Valid(l)freq(y(l)). Unconditional decoders are evaluated by
assuming there is just a single label, therefore Valid = Accurate.

In Table 1, we can see that on average 50% of generated molecules are chem-
ically valid and, in the case of conditional models, about 40% have the correct
label which the decoder was conditioned on. Larger embedding sizes c are less
regularized, demonstrated by a higher number of Unique samples and by lower
accuracy of the conditional model, as the decoder is forced less to rely on actual
labels. The ratio of Valid samples shows less clear behavior, likely because the
discrete performance is not directly optimized for. For all models, it is remarkable
that about 60% of generated molecules are out of the dataset, i.e. the network
has never seen them during training.

Looking at the baselines, CVAE can output only very few valid samples as
expected, while GVAE generates the highest number of valid samples (60%) but
of very low variance (less than 10%). Additionally, we investigate the importance
of graph matching by using identity assignment X instead and thus learning to
reproduce particular node permutations in the training set, which correspond
to the canonical ordering of SMILES strings from RDKit. This ablated model
(denoted as NoGM in Table 1) produces many valid samples of lower variety
and, surprisingly, outperforms GVAE in this regard. In comparison, our model
can achieve good performance in both metrics at the same time.

Likelihood. Besides the application-specific metric introduced above, we also
report evidence lower bound (ELBO) commonly used in VAE literature, which
corresponds to −L(φ, θ;G) in our notation. In Table 1, we state mean bounds
over test set, using a single z sample per graph. We observe both reconstruction
loss and KL-divergence decrease due to larger c providing more freedom. How-
ever, there seems to be no strong correlation between ELBO and Valid, which
makes model selection somewhat difficult.

4.3 ZINC Dataset

ZINC dataset [6] contains about 250k drug-like organic molecules of up to 38
heavy atoms with 9 distinct atomic numbers and 4 bond types, we set k = 38,
de = 4 and dn = 9 and use the same split strategy as with QM9. We investigate
the degree of scalability of an unconditional generative model. The setup is
equivalent as for QM9 but with a wider encoder (64, 128, 256 channels).

Our best model with c = 40 has archived Valid = 0.135, which is clearly
worse than for QM9. For comparison, CVAE failed to generated any valid sam-
ple, while GVAE achieved Valid = 0.357 (models provided by [11], c = 56). We
attribute such a low performance to a generally much higher chance of producing

GraphVAE: Towards Generation of Small Graphs 421

Table 1. Performance on conditional and unconditional QM9 models evaluated by
mean test-time reconstruction log-likelihood (log pθ(G|z)), mean test-time evidence
lower bound (ELBO), and decoding quality metrics (Sect. 4.2). Baselines CVAE [5]
and GVAE [11] are listed only for the embedding size with the highest Valid.

log pθ(G|z) ELBO Valid Accurate Unique Novel
C
on
d.

Ours c = 20 -0.578 -0.722 0.565 0.467 0.314 0.598
Ours c = 40 -0.504 -0.617 0.511 0.416 0.484 0.635
Ours c = 60 -0.492 -0.585 0.520 0.406 0.583 0.613
Ours c = 80 -0.475 -0.557 0.458 0.353 0.666 0.661

U
nc
on
di
tio

na
l

Ours c = 20 -0.660 -0.916 0.485 0.485 0.457 0.575
Ours c = 40 -0.537 -0.744 0.542 0.542 0.618 0.617
Ours c = 60 -0.486 -0.656 0.517 0.517 0.695 0.570
Ours c = 80 -0.482 -0.628 0.557 0.557 0.760 0.616

NoGM c = 80 -2.388 -2.553 0.810 0.810 0.241 0.610
CVAE c = 60 – – 0.103 0.103 0.675 0.900
GVAE c = 20 – – 0.602 0.602 0.093 0.809

a chemically-relevant inconsistency (number of possible edges growing quadrat-
ically). To confirm the relationship between performance and graph size k, we
kept only graphs not larger than k = 20 nodes, corresponding to 21% of ZINC,
and obtained Valid = 0.341 (and Valid = 0.185 for k = 30 nodes, 92% of ZINC).

5 Conclusion

In this work we addressed the problem of generating graphs from a continuous
embedding in the context of variational autoencoders. We evaluated our method
on two molecular datasets of different maximum graph size. While we achieved
to learn embedding of reasonable quality on small molecules, our decoder had a
hard time capturing complex chemical interactions for larger molecules. Never-
theless, we believe our method is an important initial step towards more powerful
decoders and will spark interest in the community.

Acknowledgments. We thank Shell Xu Hu for discussions on variational methods,
Shinjae Yoo for project motivation, and anonymous reviewers for their comments.

References

1. Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N.: Scheduled sampling for sequence
prediction with recurrent neural networks. In: NIPS, pp. 1171–1179 (2015)

2. Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Józefowicz, R., Bengio, S.: Gen-
erating sentences from a continuous space. In: CoNLL, pp. 10–21 (2016)

3. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4),
18–42 (2017)

422 M. Simonovsky and N. Komodakis

4. Cho, M., Sun, J., Duchenne, O., Ponce, J.: Finding matches in a haystack: a max-
pooling strategy for graph matching in the presence of outliers. In: CVPR, pp.
2091–2098 (2014)

5. Gómez-Bombarelli, R., et al.: Automatic chemical design using a data-driven con-
tinuous representation of molecules. CoRR abs/1610.02415 (2016)

6. Irwin, J.J., Sterling, T., Mysinger, M.M., Bolstad, E.S., Coleman, R.G.: ZINC: a
free tool to discover chemistry for biology. J. Chem. Inf. Model. 52(7), 1757–1768
(2012)

7. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with Gumbel-Softmax.
CoRR abs/1611.01144 (2016)

8. Johnson, D.D.: Learning graphical state transitions. In: ICLR (2017)
9. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. CoRR abs/1312.6114

(2013)
10. Kusner, M.J., Hernández-Lobato, J.M.: GANS for sequences of discrete elements

with the Gumbel-Softmax distribution. CoRR abs/1611.04051 (2016)
11. Kusner, M.J., Paige, B., Hernández-Lobato, J.M.: Grammar variational autoen-

coder. In: ICML, pp. 1945–1954 (2017)
12. Landrum, G.: RDKit: Open-source cheminformatics. http://www.rdkit.org
13. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neural

networks. CoRR abs/1511.05493 (2015)
14. Olivecrona, M., Blaschke, T., Engkvist, O., Chen, H.: Molecular de novo design

through deep reinforcement learning. CoRR abs/1704.07555 (2017)
15. Ramakrishnan, R., Dral, P.O., Rupp, M., von Lilienfeld, O.A.: Quantum chemistry

structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014)
16. Segler, M.H.S., Kogej, T., Tyrchan, C., Waller, M.P.: Generating focussed molecule

libraries for drug discovery with recurrent neural networks. CoRR abs/1701.01329
(2017)

17. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional
neural networks on graphs. In: CVPR (2017)

18. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep
conditional generative models. In: NIPS, pp. 3483–3491 (2015)

19. Stewart, R., Andriluka, M., Ng, A.Y.: End-to-end people detection in crowded
scenes. In: CVPR, pp. 2325–2333 (2016)

20. Theis, L., van den Oord, A., Bethge, M.: A note on the evaluation of generative
models. CoRR abs/1511.01844 (2015)

21. Vinyals, O., Bengio, S., Kudlur, M.: Order matters: sequence to sequence for sets.
arXiv preprint arXiv:1511.06391 (2015)

22. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recur-
rent neural networks. Neural Comput. 1(2), 270–280 (1989)

23. Xu, D., Zhu, Y., Choy, C.B., Fei-Fei, L.: Scene graph generation by iterative mes-
sage passing. In: CVPR (2017)

24. Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: sequence generative adversarial
nets with policy gradient. In: AAAI (2017)

http://www.rdkit.org
http://arxiv.org/abs/1511.06391

Generation of Reference Trajectories
for Safe Trajectory Planning

Amit Chaulwar1, Michael Botsch1(B), and Wolfgang Utschick2

1 Faculty of Electrical Engineering, Ingolstadt University of Applied Sciences,
Ingolstadt, Germany

{amit.chaulwar,michael.botsch}@thi.de
2 Department of Electrical Engineering, Technical University of Munich,

Munich, Germany
utschick@tum.de

Abstract. Many variants of a sampling-based motion planning algo-
rithm, namely Rapidly-exploring Random Tree, use biased-sampling for
faster convergence. One of such recently proposed variant, the Hybrid-
Augmented CL-RRT+, uses a predicted predefined template trajectory
with a machine learning algorithm as a reference for the biased sam-
pling. Because of the finite number of template trajectories, the conver-
gence time is short only in scenarios where the final trajectory is close
to predicted template trajectory. Therefore, a generative model using
variational autoencoder for generating many reference trajectories and a
3D-ConvNet regressor for predicting those reference trajectories for crit-
ical vehicle traffic-scenarios is proposed in this work. Using this frame-
work, two different safe trajectory planning algorithms, namely GATE
and GATE-ARRT+, are presented in this paper. Finally, the simulation
results demonstrate the effectiveness of these algorithms for the trajec-
tory planning task in different types of critical vehicle traffic-scenarios.

Keywords: Safe trajectory planning · Hybrid machine learning
Variational autoencoder

1 Introduction

Autonomous driving is one of the area extensively being researched, in both
academia and industry, because of its expected immense social and economic
impacts. In order to realize a fully autonomous driving, the vehicle must be able
to plan a trajectory with simultaneous intervention in the lateral and longitu-
dinal dynamics of the vehicle for the collision avoidance/mitigation in critical,
dynamic traffic-scenarios as well as for smooth and comfortable traveling.

Many motion planning algorithms have been proposed in the literature sum-
marized in [1]. A probabilistic sampling algorithm ‘Rapidly-exploring Random
Tree’ (RRT) [2] is most popular because of its fast runtimes and ability to plan
the path with dynamic constraints without discretizing the state-space. Many
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 423–434, 2018.
https://doi.org/10.1007/978-3-030-01418-6_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_42&domain=pdf

424 A. Chaulwar et al.

variants of this algorithm have been developed for different applications, as sum-
marized in [3]. Only few of these variants [4,5] claim to run in real time with
dynamic constraints. However, they either require precomputation of many safe
states or high performance computers.

RRT is a probabilistically complete algorithm, i.e., it always finds a solution,
if it exists, given infinite time. Therefore, many approaches define rule-based
heuristics for biased-sampling [7–12] to increase the convergence rate. Never-
theless, all of these methods require an initial approximate solution for biased-
sampling.

Machine learning algorithms can be used to find solutions for complex prob-
lems with short inference time. Since they are purely data-based methods they
are seen as black-box methods. Therefore, they are not used in safety critical
applications like vehicle trajectory planning. A learned Gaussian Mixture Mod-
els distribution is used for the biased-sampling in learned free spaces in [13] to
decrease the number of collision checks drastically for the trajectory planning
with the RRT algorithm. In another approach [15], a conditional variational
autoencoder is used to generate biased samples in space from a learned sampling
distribution to increase the convergence rate of the RRT algorithm. However,
both approaches perform biased-sampling in space only.

The use of hybrid machine learning algorithms, a combination of machine
learning algorithms and model-based search algorithms, opens a new way of
using machine learning algorithms in safety critical applications. AlphaGo [16]
and ExIT [17] are two examples of guided tree search algorithms with neural
networks for the board games Go and Hex, respectively. But, these algorithms
are limited to discrete state-spaces and action-spaces. The Hybrid Augmented
CL-RRT (HARRT) [14] and the Hybrid Augmented CL-RRT+ (HARRT+) [18]
are examples of hybrid machine learning algorithms for safe trajectory planning
in complex, critical traffic scenarios which use 3D convolutional neural networks
(3D-ConvNets)[19], in combination with RRT variants the Augmented CL-RRT
(ARRT) [6] and the Augmented CL-RRT+ (ARRT+) [18], respectively. The
HARRT+ algorithm is described briefly in Sect. 3 along with its drawbacks.

Other approaches of developing generative models for trajectories have been
proposed for different applications such as handwriting generation [21] and pre-
dicting basketball trajectories [22]. In this work, a methodology for generat-
ing better reference trajectories with two machine learning algorithms is pro-
posed. First one is a generative model for trajectory generation using a varia-
tional autoencoder (VAE) [23] and second is a 3D-ConvNet regressor for pre-
dicting those reference trajectories for critical traffic-scenario. Two different
motion planning algorithms are also presented by combining this machine learn-
ing framework with an optimization procedure and the ARRT+ algorithm to
decrease the convergence time further.

The paper is organised as follows: Sect. 2 briefly explains VAEs. Section 3
describes HARRT+ motion planning algorithm with its drawbacks. Two machine
learning algorithms, a generative model for trajectories and 3D-ConvNet regres-
sor, are presented in Sect. 4. Based on this framework, two new vehicle motion

Generation of Reference Trajectories for Safe Trajectory Planning 425

planning algorithms namely, GATE and GATE-ARRT+, are proposed in Sect. 5
followed by results and a conclusion.

Throughout this paper, upper case bold letters denote matrices and lower
case bold letters denote vectors.

2 Variational Autoencoder

This Section briefly reviews Variational autoencoder (VAE) [23] that is a key
mechanism used for developing a generative model for vehicle trajectories. It tries
to minimize the difference between model distribution Pθ (X) with parameters
θ and data distribution Pdata(X), given a data-set X = {xi}N

i=1 of N identical
and independent samples of some discrete or continuous random variable x. It
assumes that this data-set is generated with a two-step random process using a
latent variable z. First, a realization of z is sampled from a prior distribution
Pθ (z). Then, X is generated from a conditional distribution Pθ (X|z). The goal
is to maximize the probability of observing realizations X according to

Pθ (X) =
∫

Pθ (X|z)Pθ (z)dz. (1)

The problem with above equation is that it is intractable as it is impossible to find
Pθ (X) for every z. Also, the posterior distribution Pθ (z|X) is also intractable.
VAE proposes a solution for this by defining an encoder model Qφ(z|X) that
approximates Pθ (z|X). As X is fixed and Pθ (X) is not dependent on Qφ(z|X),
the log likelihood of the data can be found by taking the expectation with respect
to z using an encoder network Qφ(z|X) such that

log Pθ (X) = Ez∼Qφ (z |X) [log Pθ (X)] , (2)

Applying Bayes’ Rule to Eq. 2, the equation becomes

log Pθ (X) = Ez |X

[
log

Pθ (X|z)Pθ (z)
Pθ (z|X)

]
, (3)

where Ez∼Qφ (z |X) is replaced by Ez |X to avoid the clutter. Multiplying and
dividing by Qφ(z|X) and applying logarithmic rules, we get

log Pθ (X) = Ez |X [log Pθ (X|z)]−Ez |X

[
log

Qφ(z|X)
Pθ (z)

]
+Ez |X

[
log

Qφ(z|X)
Pθ (z|X)

]
.

(4)
Writing above equation with KL-terms, log data likelihood becomes

log Pθ (X) = Ez |X [log Pθ (X|z)] − DKL(Qφ(z|X)||Pθ (z))︸ ︷︷ ︸
L(X ,θ ,φ)

+

DKL(Qφ(z|X)||Pθ (z|X))︸ ︷︷ ︸
≥0

.
(5)

426 A. Chaulwar et al.

The estimate of the first term on right hand side of the Eq. 5 can be computed by
the decoder network through sampling. This non-continuous sampling procedure
is made differentiable through reparameterization technique [23] required for
backpropagation. Generally, cross-entropy or root mean square error criteria is
considered for calculating the reconstruction loss. The second term in Eq. 5 of KL
divergence between approximate posterior and the prior distribution is possible
to compute. This is because the approximate posterior Qφ(z|X) is often chosen
as a multivariate Gaussian with diagonal covariance matrix whose distribution
parameters are learnt from the data while the prior Pθ (z) is commonly chosen
as isotropic multivariate Gaussian. The third term in Eq. 5 is intractable as
Pθ (z|X) is intractable. But as per the definition of KL-Divergence it is always
equal to or greater than 0. The first two terms together are termed as variational
lower bound L(X,θ,φ) and the goal becomes to maximize the lower bound to
find the optimal θ∗ and φ∗ such that

θ∗,φ∗ = arg max
θ ,φ

L(X,θ,φ). (6)

3 HARRT+ Algorithm

The ARRT+ algorithm considers vehicle nonlinear dynamics for trajectory plan-
ning in the form

ṡ(t) = f(s(t),u(t)), (7)

where u(t) ∈ R
m is the control input and s(t) is the area occupied by the

EGO vehicle at time t which is the subspace in R
2. In an iterative process,

this algorithms construct a tree T with multiple safe states s(t). Throughout
this paper, the term safe used in context of states and trajectories means either
collision-free or with a predicted nonsevere collision. In every iteration, a random
point srand is sampled with some bias towards a goal region Sgoal. The state
snearest(t) which are previously stored in the tree T nearest to srand is found.
The tree is extended by an incremental motion towards srand from snearest(t).
The incremental extension is performed for the time interval Δt using differential
constraints f as in Eq. (7) to get the new state snew(t + Δt). The new state
snew(t+Δt) is added to the tree T , if the trajectory from snearest(t) to snew(t+
Δt) is collision-free or it encounters a collision with predicted low severity. A
two-track model [20] is used as a constraint f while extending the tree.

A traffic-scenario is converted into a sequence of predicted occupancy grids
M = {Gt0 , . . . ,Gt0+τ1} for the prediction interval [t0, t0+τ1] with each occupancy
grid Gt representing the occupancies of road objects at time t. The cells in the
predicted occupancy grid Gt which lie outside of the road or occupied by other
vehicle at time t are assigned a value 1. Rest of the grids are assigned a value
0 indicating they are free. A scenario described by {M,η}, where η are EGO
vehicle physical parameters like velocity, yaw-rate, etc. Due to the 3D structure
of the input M, the 3D-ConvNet is used as a machine learning algorithm. In a
simulation environment developed in Matlab, many critical traffic-scenarios are

Generation of Reference Trajectories for Safe Trajectory Planning 427

simulated and best trajectories π∗ are found by the ARRT+ algorithm. The
steering wheel angle profile and longitudinal acceleration profile are extracted
from the found trajectories and their clusters are formed using hierarchical clus-
tering based on Euclidean criteria. The combination of these clusters in which
the acceleration profile and steering wheel angle profile of the best trajectory for
a scenario lies is considered as a label for that scenario. The HARRT+ algorithm
uses the mean vectors of the predicted acceleration and steering wheel angle clus-
ters to generate a reference trajectory that is used for the biased-sampling to
increase the convergence speed of the algorithm. Basically, HARRT+ algorithm
predicts a template trajectory π̂t from total T template trajectories formed by
combination of mean vectors of all acceleration and steering wheel angle profile
clusters. The reference acceleration profile âx and waypoints Ŵ are extracted
from this template trajectory for simultaneous biased sampling in the lateral
and longitudinal dynamics. Figure 1 explains the procedure for finding π∗ with
HARRT+ algorithm.

π̂t

âx

Ŵ

Biased-
Samples

Random
Samples

π∗ARRT+

3D-ConvNet{M , η}

Fig. 1. HARRT+ algorithm

HARRT+ algorithm uses combination of biased and random sampling algo-
rithm. Therefore, it still have the property of probabilistic completeness even
with wrong prediction of template trajectory π̂t. However, the computation time
for finding a safe trajectory is high when a wrong cluster is predicted because of
the wrong bias generation. Even if a right template trajectory is predicted, the
final safe trajectory may not always lie near it (as it can lie on the boundary of
clusters) or the final safe trajectory has very different shape compared to π̂t. In
such situations as well, it is observed that HARRT+ algorithm converges slowly.

4 Generation of Reference Trajectories

From the explanation of the drawbacks of HARRT+ algorithm, it is clear that
the final computation time required for trajectory planning with HARRT+ algo-
rithm strongly depends on the quality of the predicted reference trajectory, i.e.,
closer the predicted reference trajectory π̂t in distance and shape to π∗ lesser
the computation time will require to find π∗. This will not be possible in all
scenarios with finite number of template trajectories. Therefore, a generative
model for trajectory generation using VAE is proposed with which many refer-
ence trajectories can be generated. This trained VAE is further used in the label
generation and inference procedure of the other machine learning algorithm,
i.e., 3D-ConvNet regressor, which maps the traffic-scenarios to the reference

428 A. Chaulwar et al.

trajectories. This section describes training procedure for both machine learning
algorithms and its usage for predicting reference trajectories for vehicle critical
traffic-scenarios.

4.1 Generative Model for Trajectories π

In order to train VAE for trajectories, 60000 different trajectories for time τ1
(=2 s) are generated using the two-track vehicle dynamic model [20] with differ-
ent initial velocities, lateral and longitudinal dynamic intervention over entire
trajectory with actuator and stable profile constraints as mentioned in [18]. These
trajectories are provided as input to the VAE in the form

π = {rxt0
, rxt0+Δt

. . . , rxτ1
, ryt0

, ryt0+Δt
, . . . , ryτ1

}, (8)

where rxti
and ryt0

are the coordinates of the center of gravity of the vehicle at
time ti. The encoder Qφ(z|π) maps trajectories to latent space mean vector zμ|π
and standard deviation vector zσ|π each of dimension 2. To avoid clutter, they
are simply written as zμ and zσ. As per the reparameterization trick, the samples
z are obtained by sampling ε from N (0, 1) and performing operation zμ + εzσ.
The decoder Pθ (π|z) reconstruct the trajectories using samples generated from
zμ and zσ as shown in Fig. 2. The root mean square criteria is used for the
reconstruction loss. Also, the trajectories are normalized before first layer in
the encoder and the final trajectories π̄ are obtained by denormalization and
smoothing with moving average filter. The activation function used in each layer
of the encoder and decoder is hyperbolic tan.

π

N
or
m
al
iz
at
io
n

F
C
1
(6
4
N
eu

ro
ns
)

F
C
2
(3
2
N
eu

ro
ns
)

Qφ(z|π)

D
en

or
m
al
iz
at
io
n

F
C
4
(6
4
N
eu

ro
ns
)

F
C
3
(3
2
N
eu

ro
ns
)

Pθ(π|z)

π̄

Sample ε from N (0, 1)

z

*

Sm
oo

th
in
g

zμ

(2 Neurons)

zσ

(2 Neurons)

Fig. 2. VAE for trajectories

4.2 3D-ConvNet Regressor

The task of 3D-ConvNet here is to predict the value of continuous variable zμ

instead of predicting only finite class labels as in HARRT+ algorithm. Therefore,
the 3D-ConvNet is used as regressor with the input {M ,η} and correspond-
ing target values zμ. The architecture of 3D-ConvNet used is same as in the
HARRT+ algorithm except the loss function calculation criteria changed from
the cross-entropy to the root mean square error.

Generation of Reference Trajectories for Safe Trajectory Planning 429

The label generation procedure for the 3D-ConvNet regressor is explained
in Fig. 3. For each traffic-scenario {M ,η}, the best trajectory π∗ is found with
the ARRT+ algorithm in the Matlab simulation environment. This trajectory
is fed to the encoder Qφ(z|π) of trained VAE to find corresponding zμ which is
assigned as a label for that scenario. In total 44692 curved road critical traffic-
scenarios with different radius of curvatures, number and type of objects are
used.

{M , η} ARRT+ π∗ Qφ(z|π) zμ

Fig. 3. Label generation using VAE

The inference procedure for 3D-ConvNet is defined in Fig. 4. When a traffic-
scenario {M ,η} is encountered, the trained 3D-ConvNet is used to predict ẑμ

which is directly fed to the decoder network Pθ (π|z), eliminating reparameter-
ization trick to get value of sample z as in VAE, to get the predicted reference
trajectory π̂.

{M , η} 3D-ConvNetẑμ π̂Pθ(π|z)

Fig. 4. Inference using VAE

5 Vehicle Motion Planning Algorithms

5.1 Generative Algorithm for Trajectory Exploration (GATE)

Because of the probabilistic nature of VAE, the latent space generated in VAE is
continuous unlike in simple autoencoders where deterministic mapping is used.
An optimization procedure can be carried out to find the optimal latent variable
values z∗, which generate the best trajectory π∗ using decoder Pθ (π|z), from the
randomly initialized z. The cost function J can be defined as per the application
based on criterias such as safety, comfort, etc. As the goal is to find trajectories
for the collision avoidance, the area occupied by the EGO vehicle during the
whole trajectory should not intersect with non-free area, i.e., area occupied by
other road participants and area outside of the road. Simultaneously, the criteria
of keeping as large as possible distance from other road participants is added so
that a small variation in other road participants prediction does not lead to a
collision. Therefore, the optimal z∗ is found such that

z∗ = arg min
z

[J]

= arg min
z

[∑
t

(Snf (t) ∩ sπ∼Pθ (π |z)(t)) − dπ∼Pθ (π |z)

]
, (9)

430 A. Chaulwar et al.

where Snf (t) is the non-free area of the road at time t, i.e., area outside of
the road and area within the road occupied by other road participants at time
t, sπ∼Pθ (π |z)(t) is the area occupied by the EGO vehicle at time t along the
trajectory π obtained by feeding z to decoder Pθ (π|z) and dmin is the shortest
distance between the sπ∼Pθ (π |z)(t) and Snf (t) over the whole trajectory π in
time interval t = [t0, t0 + τ1]. The first term on the right hand side of Eq. 9, is
the summation of intersection of non-free area of the road with EGO vehicle
along the trajectory π. The goal is to make this term zero and increase dmin.
The optimization solver used is a Matlab function for Nelder-Mead Simplex
method [24].

The final trajectory obtained by this procedure is highly dependent on the
initialization of the latent variable values. With wrong initialization, it may get
trapped in a local minima leading to suboptimal values which could generate a
trajectory with severe collision. Therefore, the trained 3D-ConvNet is used to
predict the initial values of the latent variables ẑ which should already very close
to z∗. This whole procedure is shown in Fig. 5 and this algorithm is named as
Generative Algorithm for Trajectory Exploration (GATE).

π̂ẑ π̃

J

Pθ(π/z)3D-ConvNet{M , η}
Tune z

Fig. 5. GATE algorithm

5.2 GATE-ARRT+

Although GATE provides an opportunity to sample trajectories directly, it is
still not a probabilistic complete algorithm like RRT algorithm. This is because
VAE only learns the approximate training data distribution and not true data
distribution. Therefore, its capacity of generating trajectories is dependent on
the training data. But, the reference trajectory generated by GATE can be
used to bias the sampling of the ARRT+ algorithm to increase its convergence
rate. This combination is named as the GATE-ARRT+ algorithm. As reference
trajectories generated by the GATE algorithm are closer to best trajectories
for that traffic-scenario compared to the reference trajectories predicted in the

π̃

ãx

W̃

Biased-
Samples

Random
Samples

π∗ARRT+
{M , η} GATE

Fig. 6. GATE-ARRT+ algorithm

Generation of Reference Trajectories for Safe Trajectory Planning 431

HARRT+ algorithm, the GATE-ARRT+ algorithm converges even more rapidly.
The procedure for finding best trajectories with the GATE-ARRT+ algorithm
is shown in Fig. 6.

6 Results

In order to validate the effectiveness of the proposed vehicle motion planning
algorithms, many different curved-road traffic-scenarios with different number
of objects having different initial velocities, positions are simulated in Matlab
simulation environment and safe trajectories with different motion planning algo-
rithms such as ARRT+, HARRT+, GATE and GATE-ARRT+ are found. The
search of collision-free trajectory is stopped when a collision-free trajectory is
found or the maximum number of samples used. The maximum number of sam-
ples N used for ARRT+ algorithm is 2100 as it uses pure random sampling
while for the HARRT+ and GATE-HARRT+ 300 samples used. The number of
iterations I for optimization procedure is limited to 10 and 2 with the GATE
and GATE-ARRT+ algorithm, respectively. Note that this optimization proce-
dure is optional in the GATE-ARRT+ algorithm. The results are summarized
in the Table 1. The results show that the scenarios with less number of object
(1–2 objects), the GATE algorithm is able to find a collision-free trajectory in
the highest number of traffic-scenarios with shortest computation time because
of lots of free space available. As the number of objects increases, the free space
available decreases, and therefore the GATE algorithm converges in lesser num-
ber of traffic-scenarios. In such cases, the GATE-ARRT+ algorithm is proven to
be more effective. The more efficiency of the GATE-ARRT+ algorithm compared
to the HARRT+ algorithm is because of better reference trajectory provided by
the VAE.

Figures 7, 8 and 9 shows the safe trajectory planned with algorithms GATE-
ARRT+, HARRT+ and GATE algorithm in a traffic-scenario where a collision
with pedestrian crossing the street is predicted. From figures it is clear that the
HARRT+ algorithm required more number of samples compared to the GATE-
ARRT+ algorithm. Also, the final trajectory (longest black trajectory) found

Table 1. Comparison of Vehicle Motion Planning Algorithms

ARRT+
(N = 2100)

HARRT+
(N = 300)

GATE
(I = 10)

GATE-ARRT+
(N = 300, I = 2)

1–2 objects

(834 scenarios)

Time (Sec.) 3.33 0.81 0.31 0.45

% Conv. 97.52 96.04 98.92 97.24

3–4 objects

(1728 scenarios)

Time (Sec.) 3.62 1.08 0.83 0.68

% Conv. 92.99 91.14 72.22 93.17

5–6 objects

(3625 scenarios)

Time (Sec.) 4.34 1.32 1.15 0.87

% Conv. 89.02 86 57.98 88.02

432 A. Chaulwar et al.

0 10 20 30 40 50 60
0

10

20

30

40

50

60

EGO Vehicle

Other Vehicle

Biased-Sample

Pedestrian

Tree

Random Sample

π from VAE

Fig. 7. Simulation result with GATE-ARRT+ algorithm

0 10 20 30 40 50 60
0

10

20

30

40

50

60

EGO Vehicle

Other Vehicle

Biased-Sample

Pedestrian

Tree

Random Sample

π from VAE

Fig. 8. Simulation result with HARRT+ algorithm

0 10 20 30 40 50 600

10

20

30

40

50

60

EGO Vehicle

Other Vehicle

Pedestrian

π from VAE

Fig. 9. Simulation result with GATE algorithm

by GATE-ARRT+ algorithm has smoother shape compared to ones found by
HARRT+ and GATE algorithm. This example shows indeed a better reference
trajectory will lead to better final trajectory found by the ARRT+ algorithm.

Generation of Reference Trajectories for Safe Trajectory Planning 433

7 Conclusion

This paper presents a methodology of using variational autoencoder for gener-
ating many template trajectories which can be used for biased-sampling with a
sampling-based motion planning algorithm. Two different motion planning algo-
rithms, namely GATE and GATE-ARRT+, are proposed using the framework
of generating trajectories with variational autoencoder. The simulation results
not only demonstrate increase in the convergence speed compared to previously
proposed sampling-based motion planning algorithms but also exemplarily show
improvement in the quality of the final trajectory produced.

References

1. Mohanan M., Salgoankar A.: A survey of robotic motion planning in dynamic
environments Robotics and Autonomous Systems (2017). https://doi.org/10.1016/
j.robot.2017.10.011

2. Kuffner, J., LaValle, S.: RRT-connect: an efficient approach to single-query path
planning. In: IEEE International Conference on Robotics and Automation (2000)

3. Elbanhawi, M., Simic, M.: Sampling-based robot motion planning: a review. IEEE
Access 2, 56–77 (2014)

4. Otte, M., Frazzoli, E.: RRT-X: real-time motion planning/replanning for environ-
ments with unpredictable obstacles. In: International Workshop on the Algorithmic
Foundations of Robotics (2014)

5. Kuwata, Y., et al.: Real-time motion planning with applications to autonomous
urban driving. IEEE Trans. Control Syst. Tech. 17, 1105–1118 (2009)

6. Chaulwar, A., et al.: Planning of safe trajectories in dynamic multi-object traffic-
scenarios. J. Traffic Logist. Eng. (2016)

7. Urmson, C., Simmons, R.: Approaches for heuristically biasing RRT growth. In:
IEEE International Conference on Intelligent Robots and Systems, vol. 2 (2003)

8. Kiesel, S., Burns, E., Ruml, W.: Abstraction-guided sampling for motion planning.
In: SoCS (2012)

9. Karaman, S., et al.: Anytime motion planning using the RRT*. In: IEEE Interna-
tional Conference on Robotics and Automation (2011)

10. Akgun, B., Stilman, M.: Sampling heuristics for optimal motion planning in high
dimensions. In: IROS (2011)

11. Kim, D., Lee, J., Yoon, S.: Cloud RRT*. In: IEEE International Conference on
Robotics and Automation (2014)

12. Gammell, J., Srinivasa, S., Barfoot, T.: Batch Informed Trees (BIT*): sampling-
based optimal planning via the heuristically guided search of implicit random geo-
metric graphs. In: IEEE International Conference on Robotics and Automation
(2015)

13. Huh, J., Lee, D.: Learning high-dimensional mixture models for fast collision
detection in rapidly-exploring random trees. In: IEEE International Conference
on Robotics and Automation (2016)

14. Chaulwar, A., Botsch, M., Utschick, W.: A hybrid machine learning approach for
planning safe trajectories in complex traffic-scenarios. In: International Conference
on Machine Learning and Applications (2016)

15. Ichter, B., Harrison, J., Pavone, M.: Learning sampling distributions for robot
motion planning. In: International Conference on Robotics and Automation (2018)

https://doi.org/10.1016/j.robot.2017.10.011
https://doi.org/10.1016/j.robot.2017.10.011

434 A. Chaulwar et al.

16. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529(7587), 484–489 (2016)

17. Anthony, T., Tian, Z., Barber, D.: Thinking fast and slow with deep learning and
tree search. arXiv:1705.08439 (2017)

18. Chaulwar, A., Botsch, M., Utschick W.: A machine learning based biased-sampling
approach for planning safe trajectories in complex traffic-scenarios. In: IEEE Intel-
ligent Vehicles Symposium (2017)

19. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human
action recognition. IEEE TPAMI 35, 221–231 (2013)

20. Jazar, R.: Vehicle Dynamics Theory and Application. Vehicle Planar Dynamics,
2nd edn. Springer, Heidelberg (2014). https://doi.org/10.1007/978-0-387-74244-1.
Chapter 10

21. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850 (2013)

22. Shah, R., Romijnders, R.: Applying deep learning to basketball trajectories. arXiv
preprint arXiv:1608.03793 (2016)

23. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: International
Conference on Learning Representations (ICLR) (2013)

24. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of
the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9(1), 112–147
(1998)

http://arxiv.org/abs/1705.08439
https://doi.org/10.1007/978-0-387-74244-1
http://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1608.03793

Joint Application
of Group Determination of Parameters
and of Training with Noise Addition

to Improve the Resilience
of the Neural Network Solution of the Inverse
Problem in Spectroscopy to Noise in Data

Igor Isaev1,2(&), Sergey Burikov1,2, Tatiana Dolenko1,2 ,
Kirill Laptinskiy1,2, Alexey Vervald2, and Sergey Dolenko1

1 D. V. Skobeltsyn Institute of Nuclear Physics,
M. V. Lomonosov Moscow State University, Moscow 119991, Russia

isaev_igor@mail.ru, dolenko@sinp.msu.ru
2 Physical Department, M. V. Lomonosov Moscow State University,

Moscow 119991, Russia

Abstract. In most cases, inverse problems are ill-posed or ill-conditioned,
which is the reason for high sensitivity of their solution to noise in the input
data. Despite the fact that neural networks have the ability to work with noisy
data, in the case of inverse problems, this is not enough, because the incor-
rectness of the problem “outweighs” the ability of the neural network. In pre-
vious studies, the authors have shown that separate use of methods of group
determination of parameters and of noise addition during training of neural
networks can improve the resilience of the solution to noise in the input data.
This study is devoted to the investigation of joint application of these methods.
The study is performed at the example of an inverse problem in laser Raman
spectroscopy - determination of concentrations of ions in a solution of inorganic
salts by Raman spectrum of the solution.

Keywords: Artificial neural networks � Perceptron
Multi-parameter inverse problems � Noise resilience
Group determination of parameters

1 Introduction

Inverse problems (IPs) represent a very important class of problems. Almost any
problem of indirect measurements belongs to this class. IPs include many problems
from the areas of geophysics [1], spectroscopy [2], various types of tomography [3],
and many others.

This study has been performed at the expense of the grant of Russian Science Foundation (project
no. 14-11-00579).

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 435–444, 2018.
https://doi.org/10.1007/978-3-030-01418-6_43

http://orcid.org/0000-0003-2884-8241
http://orcid.org/0000-0001-6214-3195
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_43&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_43&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_43&domain=pdf

Practical IPs have a number of features that significantly complicate their solution.
As a rule, they are nonlinear and often have high input dimension and high output
dimension (they are multi-parameter problems). In general, the IPs have no analytical
solution, so in most cases they are solved numerically.

Traditional methods for solving IPs are matrix methods using Tikhonov regular-
ization [4], as well as optimization methods based on multiple solutions of the direct
problem and minimization of the discrepancy in the space of the observed values [5].

However, traditional methods have a number of disadvantages. For methods based
on regularization, the main difficulty is the choice of the regularization parameter. In
addition, matrix methods are linear methods, so in order to use them to solve nonlinear
problems, it is necessary to perform nonlinear data preprocessing.

Optimization methods are characterized by high computational cost and require a
good first approximation (in some cases obtained by alternative measurement meth-
ods). The main disadvantage of optimization methods is the need to have a correct
model of solving the direct problem, in the absence of which this method is not
applicable. In addition, due to the incorrectness of IPs, a small discrepancy in the space
of the observed values does not guarantee a small error in the space of the determined
parameters [6].

Therefore, in this paper we consider artificial neural networks as an alternative that
is free from the shortcomings inherent in traditional methods of solving IPs.

In most cases, IPs are ill-posed or ill-conditioned, which is the reason for the high
sensitivity of their solutions to noise in the input data, both for traditional methods and
for neural networks. At the same time, the IP solutions will almost always deal with
noisy data, because any measurements are characterized by some measurement error.
As a result, the development of some approaches to improve the resilience of the IP
solution to noise in the input data is an urgent task.

Despite the fact that neural networks have the ability to work with noisy data, in the
case of IPs, this is not enough, because the incorrectness of the problem often “out-
weighs” the ability of the neural network.

This study, as well as a number of previous works of the authors [7–10], is devoted
to the development of approaches to improve the resilience of neural network solutions
of multi-parameter inverse problems to noise in the input data.

In [7, 8] it has been demonstrated that simultaneous determination of a group of
parameters in some cases allows increasing the resilience of the neural network solution
to noise in the input data. In this case, as a rule, the higher is the noise level, the more
pronounced is the effect of using this approach.

Adding noise during perceptron type neural network training showed itself as a
useful method to improve the trained network in various respects. The basis for use of
this method was founded in [9, 10], where it was demonstrated that it can improve the
generalizing capabilities of the network. In [11] it was shown that use of this method is
equivalent to Tikhonov regularization. In addition, it can be used to prevent network
overtraining [12–14], as well as to speed up learning [15]. The method is also used in
the training of deep neural networks [16]. In [17, 18], the authors used adding noise
during training to increase noise resilience of trained perceptron type neural networks
to noise in the input data, where it showed its effectiveness.

436 I. Isaev et al.

In this paper, the efficiency of the two named methods was compared at the data of
a high-dimensional multi-parameter non-linear inverse problem in laser Raman spec-
troscopy, and their combined use was investigated.

2 Problem Statement

The problem considered in this paper was to determine the concentrations of 10 ions
(Cl−, F−, HCO3

−, K+, Li+, Mg2+, Na+, NH4
+, NO3

−, SO4
2−) contained in multi-

component solutions of 10 inorganic salts (MgSO4, Mg(NO3)2, LiCl, LiNO3, NH4F,
(NH4)2SO4, KF, KHCO3, NaHCO3, NaCl) by their Raman scattering spectra (Fig. 1).
The investigated solutions contained 1 to all 10 of the salts in the concentration range
0–1.5 M (mole/liter) with an increment of 0.15–0.25 M. The excitation of the spectra
was performed with an argon laser with the wavelength of 488 nm. Spectrum regis-
tration was carried out by a multi-channel detector based on a CCD matrix. For each
solution, the spectrum was registered in 1824 channels in the range of Raman fre-
quencies of 565…4000 cm−1. The initial data set on which this study was performed
contained 4445 patterns.

The principle possibility of using Raman spectra to determine ion concentrations in
a solution is due to the high sensitivity of the spectrum to the type and concentration of
substances dissolved in water. Many complex ions (sulfides, sulfates, nitrates, phos-
phates etc.) have their proper Raman bands in the region of 300–2000 cm−1 (Fig. 1,
left) [19, 20]. The position of these lines strictly corresponds to the frequency of
oscillations of molecular groups of these ions, and the intensity of the lines depends on
their concentration in water. For the solution of several salts, the dependence of the line
intensity on the concentration is non-linear. Monoatomic (simple) ions (e.g. Na+, Cl−,
K+ etc.) have no proper Raman lines; however, they have an effect on the Raman
valence band of the water itself (Fig. 1, right) [21–24]. At present, no adequate
mathematical models describing such types of interactions are available; therefore,
practically the only way to solve the problem under consideration is to use machine
learning methods based on experimental data.

Fig. 1. Sample Raman spectra of multi-component solutions.

Joint Application of Group Determination of Parameters and of Training 437

3 Description of the Noise

For the considered problem, experimental data may contain the following types of data
distortions:

a. Inaccuracies in salt concentration values;
b. Random noise in determining the intensity of the spectrum in various channels;
c. Distortions arising from factors influencing the entire spectrum: excessive illumi-

nation of the sample, change in laser power, channel shifting of the spectrum due to
small changes of alignment etc.

In this paper, we consider case b – Random noise in determining the intensity of the
spectrum in various channels.

Two types of noise were considered: additive and multiplicative, and two kinds of
statistics: uniform noise (uniform noise distribution) and Gaussian noise (normal dis-
tribution). The value of each observed feature was transformed as follows:

xagni ¼ xi þ norminv random; l ¼ 0; r ¼ noise levelð Þ �max xið Þ

xauni ¼ xi þ 1� 2 � randomð Þ � noise level �max xið Þ

xmgni ¼ xi � 1þ norminv random; l ¼ 0; r ¼ noise levelð Þð Þ

xmuni ¼ xi � 1þ 1� 2 � randomð Þ � noise levelð Þ

for additive Gaussian (agn), additive uniform (aun), multiplicative Gaussian (mgn), and
multiplicative uniform (mun) noise, respectively. Here random is a random value in the
range from 0 to 1, norminv function returns the inverse normal distribution, max(xi) is
the maximum value of the given feature over all patterns, noise level is the level of
noise (the considered values were: 1%, 3%, 5%, 10%, 20%).

When working with noisy data, each pattern of the initial training and test sets had
10 implementations with noise. Each set contained noise of certain level, type and
statistics. Including a set without noise, there were total 21 out-of-sample (examination)
data sets: 5 noise levels � 2 noise types � 2 kinds of statistics + 1 = 21.

4 Solving the Problem

4.1 Use of Neural Networks

To solve the problem, one of the most widespread neural network architectures was
used – a multilayer perceptron (MLP). We used neural networks containing three
hidden layers with 64, 32 and 16 neurons in the 1st, 2nd and 3rd hidden layers,
respectively. The activation function in the hidden layers was logistic, in the output
layer it was linear. Training was carried out by the method of stochastic gradient
descent. Each network was trained 5 times with various weights initializations.
Statistics of application of these 5 networks were averaged.

438 I. Isaev et al.

To prevent overtraining of neural networks, the method of early stop of the training
was used. The initial data set was randomly divided into training, validation and test
sets. Training was performed on the training data set; training was stopped by the
minimum of the mean squared error on the validation set (after 1000 epochs without
improving the result). Independent evaluation of the results was performed on the test
(out-of-sample) set along with additional test sets with noise described in Sect. 3.

In the case of data without noise, the number of patterns in the training, validation
and test sets was 70, 20, 10% of the number of patterns in the original set. So, the
training data set contained 3112 patterns, validation set – 889 patterns, test set – 444
patterns.

In the case of data containing noise, each patterns of these sets was presented in 10
noise implementations. So, the size of the sets was: training – 31120 patterns, test –
4440 patterns each. The validation set was left unchanged (see Sect. 4.4).

When using training with noise, neural networks trained with noise were applied to
test sets with the same noise type and noise statistics. In the case of noise-free training,
neural networks were applied to all test sets.

4.2 Selection of Input Features

To reduce the input dimension of the problem, a priori knowledge about the object was
used. The input of the neural network was fed with the features representing the
spectrum intensities in the channels lying in the intervals 960–1143, 1312–1690, 3014–
3601 cm−1, which correspond to the most informative parts of the spectrum: the
valence band of water and the characteristic lines of complex ions. Thus, the input
dimension of the problem was reduced almost three-fold and amounted to 664 features.

4.3 Method of Group Determination of Parameters

The following ways of parameter determination were considered:

• Autonomous determination – for each ion, a separate single-output MLP was
trained.

• Simultaneous determination – with a single neural network with 10 outputs.
• Group determination – using the following grouping principles: simple ions,

complex ions, cations, anions. So, from 4 to 6 parameters were determined
simultaneously using a neural network with the corresponding number of outputs.

Each of the listed methods of parameter determination was presented both inde-
pendently and in conjunction with the method of training with noise.

4.4 Method of Training with Noise

This method was implemented by using training data sets containing a certain level of
noise. In this case it is possible to abandon the validation data set, because the addition
of noise is in itself a method of preventing overtraining [12–14]. In the case where the
validation set is used, it must contain noise with the same noise type and noise statistics
and with the same noise level as in the training set. It is possible to use a validation set

Joint Application of Group Determination of Parameters and of Training 439

that does not contain noise. In [17] it was shown that the optimal method of training
was when training was performed on a training set, which contained noise, and the
training was stopped on a validation set without noise. With this method, the quality of
the solution was higher, and the training time was lower.

This method was the one used in the present study.

5 Results

Figure 2 shows the dependence of the solution quality (mean absolute error, MAE) for
the original solution, separately for the method of training with noise and for the
method of group determination of parameters, on the noise level in the test set. It can be
seen that the resilience of the solution to noise in the data is higher for multiplicative
noise than for additive noise and higher for uniform noise than for Gaussian noise.

For the method of adding noise during training, it can be seen that the higher is the
noise level in the training data set, the worse the network performs on data without
noise, but the slower it degrades with increasing noise level. For other ions under
consideration, the nature of the dependencies is completely similar.

Fig. 2. The dependence of the quality of the solution (MAE) for the Cl− ion on the noise level in
the test set for different noise types and noise statistics. Red lines represent the original solution
(no noise and no grouping), other line colors represent the method of adding noise to the training
patterns; markers show the results of group determination. (Color figure online)

440 I. Isaev et al.

Fig. 3. The dependence of the solution quality (MAE) on the noise level in the test set for the K+

ion for additive Gaussian noise. Lines – only method of adding noise during training, markers –
joint use of both methods. Various graphs correspond to various noise levels added to the training
set.

Fig. 4. The dependence of the solution quality (MAE) on the noise level in the training set for
the NH4

+ ion for additive uniform noise. Lines – only method of adding noise during training,
markers – joint use of both methods. Various graphs correspond to various noise levels contained
in the test sets.

Joint Application of Group Determination of Parameters and of Training 441

It can be also seen that group determination of parameters in some cases allows
increasing the resilience of the solution. The higher is the noise level in the test set, the
higher is the effect of using this method. However, the method itself performs sig-
nificantly worse than the method of training with noise.

Figure 3 shows that the combined use of group determination and training with
noise can improve the resilience of the solution relative to use of only the method of
training with noise. As in the case of group determination, this approach has a more
pronounced effect at high noise levels in the test set. It can also be noted that the lower
the noise level in the training set, the more noticeable is the effect.

Figure 4 shows that the highest quality of the solution for the method of training
with noise only is observed when the noise level in the training and test sets are the
same. It can also be seen that the effect of the joint application of methods is mostly
observed at high test set noise levels.

6 Conclusions

Thus, in this paper the efficiency of the methods used was confirmed, and the following
conclusions were obtained:

• For the inverse problem of Raman spectroscopy for all the approaches used, the
resilience of the solution to the noise in the input data is higher for the multiplicative
noise type than for the additive noise type, and higher for the uniform noise dis-
tribution than for the Gaussian noise distribution.

• When using the method of adding noise during MLP training, the higher is the noise
level in the training data set, the worse the network performs on the data without
noise, but the slower it degrades with increasing noise level in the test set.

• Joint use of the methods of group determination and of training with noise improves
the resilience of the solution compared to use of only the method of training with
noise.

• When using group determination, both in the case of joint use with the method of
training with noise, and in the case of individual use, the effect is more pronounced
at high noise levels in the test set.

• The lower is the noise level in the training set, the more noticeable is the effect.
• The highest quality of the solution for the method of training with noise is observed

when the noise level in the training and test sets is the same.

Since the methods of group determination of parameters and of training with noise
were successfully used also for solving other inverse problems, it can be concluded that
the observed effects are a property of the perceptron as a data processing algorithm, and
they are not determined by the properties of the data.

442 I. Isaev et al.

References

1. Zhdanov, M.: Inverse Theory and Applications in Geophysics, 2nd edn. Elsevier,
Amsterdam (2015)

2. Yagola, A., Kochikov, I., Kuramshina, G.: Inverse Problems of Vibrational Spectroscopy.
De Gruyter, Berlin (1999)

3. Mohammad-Djafari, A. (ed.): Inverse Problems in Vision and 3D Tomography. Wiley,
Hoboken (2010)

4. Zhdanov, M.S.: Geophysical Electromagnetic Theory and Methods. Methods in Geochem-
istry and Geophysics, vol. 43. Elsevier, Amsterdam (2009)

5. Spichak, V.V. (ed.): Electromagnetic Sounding of the Earth’s Interior. Methods in
Geochemistry and Geophysics, vol. 40. Elsevier, Amsterdam (2006)

6. Isaev, I., Dolenko, S.: Comparative analysis of residual minimization and artificial neural
networks as methods of solving inverse problems: test on model data. In: Samsonovich, A.,
Klimov, V., Rybina, G. (eds.) Biologically Inspired Cognitive Architectures (BICA) for
Young Scientists. Advances in Intelligent Systems and Computing, vol. 449, pp. 289–295.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32554-5_37

7. Isaev, I., Obornev, E., Obornev, I., Shimelevich, M., Dolenko, S.: Increase of the resistance
to noise in data for neural network solution of the inverse problem of magnetotellurics with
group determination of parameters. In: Villa, A., Masulli, P., Pons Rivero, A. (eds.) ICANN
2016, LNCS, vol. 9886, pp. 502–509. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-44778-0_59

8. Isaev, I., Vervald, E., Sarmanova, O., Dolenko, S.: Neural network solution of an inverse
problem in Raman spectroscopy of multi-component solutions of inorganic salts: group
determination as a method to increase noise resilience of the solution. Procedia Comput. Sci.
123, 177–182 (2018)

9. Holmstrom, L., Koistinen, P.: Using additive noise in back-propagation training. IEEE
Trans. Neural Netw. 3(1), 24–38 (1992)

10. Matsuoka, K.: Noise injection into inputs in back-propagation learning. IEEE Trans. Syst.
Man Cybern. 22(3), 436–440 (1992)

11. Bishop, C.M.: Training with noise is equivalent to Tikhonov regularization. Neural Comput.
7(1), 108–116 (1995)

12. An, G.: The effects of adding noise during back propagation training on a generalization
performance. Neural Comput. 8(3), 643–674 (1996)

13. Zur, R.M., Jiang, Y., Pesce, L.L., Drukker, K.: Noise injection for training artificial neural
networks: a comparison with weight decay and early stopping. Med. Phys. 36(10), 4810–
4818 (2009)

14. Piotrowski, A.P., Napiorkowski, J.J.: A comparison of methods to avoid overfitting in neural
networks training in the case of catchment runoff modeling. J. Hydrol. 476, 97–111 (2013)

15. Wang, C., Principe, J.C.: Training neural networks with additive noise in the desired signal.
IEEE Trans. Neural Netw. 10(6), 1511–1517 (1999)

16. Yin, S., et al.: Noisy training for deep neural networks in speech recognition.
EURASIP J. Audio Speech Music. Process. 2015(2), 1–14 (2015)

17. Isaev, I.V., Dolenko, S.A.: Training with noise as a method to increase noise resilience of
neural network solution of inverse problems. Opt. Mem. Neural Netw. (Inf. Opt.) 25(3),
142–148 (2016)

Joint Application of Group Determination of Parameters and of Training 443

http://dx.doi.org/10.1007/978-3-319-32554-5_37
http://dx.doi.org/10.1007/978-3-319-44778-0_59
http://dx.doi.org/10.1007/978-3-319-44778-0_59

18. Isaev, I.V., Dolenko, S.A.: Adding noise during training as a method to increase resilience of
neural network solution of inverse problems: test on the data of magnetotelluric sounding
problem. In: Kryzhanovsky, B., Dunin-Barkowski, W., Redko, V. (eds.) Neuroinformatics
2017. Studies in Computational Intelligence, vol. 736, pp. 9–16. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-66604-4_2

19. Baldwin, S.F., Brown, C.W.: Detection of ionic water pollutants by laser excited Raman
spectroscopy. Water Res. 6, 1601–1604 (1972)

20. Rudolph, W.W., Irmer, G.: Raman and infrared spectroscopic investigation on aqueous
alkali metal phosphate solutions and density functional theory calculations of phosphate-
water clusters. Appl. Spectrosc. 61(12), 274A–292A (2007)

21. Furic, K., Ciglenecki, I., Cosovic, B.: Raman spectroscopic study of sodium chloride water
solutions. J. Mol. Struct. 6, 225–234 (2000)

22. Dolenko, T.A., Churina, I.V., Fadeev, V.V., Glushkov, S.M.: Valence band of liquid water
Raman scattering: some peculiarities and applications in the diagnostics of water media.
J. Raman Spectrosc. 31(8–9), 863–870 (2000)

23. Rull, F., De Saja, J.A.: Effect of electrolyte concentration on the Raman spectra of water in
aqueous solutions. J. Raman Spectrosc. 17(2), 167–172 (1986)

24. Gogolinskaia, T.A., Patsaeva, S.V., Fadeev, V.V.: The regularities of change of the 3100–
3700 cm−1 band of water Raman scattering in salt aqueous solutions. Dokl. Akad.
Nauk SSSR 290(5), 1099–1103 (1986)

444 I. Isaev et al.

http://dx.doi.org/10.1007/978-3-319-66604-4_2

Learning

Generating Natural Answers
on Knowledge Bases and Text

by Sequence-to-Sequence Learning

Zhihao Ye(B), Ruichu Cai, Zhaohui Liao, Zhifeng Hao, and Jinfen Li

School of Computer Science and Technology, Guangdong University of Technology,
Guangzhou, China

zhihaoye.chn@qq.com

Abstract. Generative question answering systems aim at generating
more contentful responses and more natural answers. Existing genera-
tive question answering systems applied to knowledge grounded conver-
sation generate natural answers either with a knowledge base or with
raw text. Nevertheless, performance of their methods is often affected
by the incompleteness of the KB or text facts. In this paper, we propose
an end-to-end generative question answering model. We make use of
unstructured text and structured KBs to establish an universal schema
as a large external facts library. Each words of a natural answer are
dynamically predicted from the common vocabulary and retrieved from
the corresponding external facts. And our model can generate natu-
ral answer containing arbitrary number of knowledge entities through
selecting from multiple relevant external facts by the dynamic knowl-
edge enquirer. Finally, empirical study shows that our model is efficient
and outperforms baseline methods significantly in terms of automatic
evaluation and human evaluation.

Keywords: Natural answers · Universal schema
Sequence-to-sequence learning

1 Introduction

Recent neural models of dialogue generation such as sequence to sequence model
can be trained in an end-to-end and completely data-driven fashion. However,
these fully data-driven models tend to generate safe responses that are bor-
ing and carry little information. In other words, these models can not have
access to any external knowledge, which makes it difficult to respond substan-
tively. From another perspective, we can consider generative question answering
as a special case of knowledge grounded conversation. As the examples shown
in Table 1, daily conversations generally depends on individual’s knowledge.
Recently, some researchers proposed neural conversation model that can gen-
erate natural answers and knowledge-grounded responses either with knowledge
base or with raw text.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 447–455, 2018.
https://doi.org/10.1007/978-3-030-01418-6_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_44&domain=pdf

448 Z. Ye et al.

Table 1. Examples of training instances for our model. The natural answer containing
mutil-number of knowledge entities is generated based on both Knowledge Bases and
Text.

KB fact (Peking University, President,Yan Fu)

text fact Yan Fu is the first President of Peking University.

UserA: Who was the first President of Peking University?
UserB: The first President is Yan Fu

KB fact (The Journey to the West, author, Wu Chenen)
(The Journey to the West, written time,Ming dynasty)

text fact Wu Chenen who is the author of The Journey to the West
was an outstanding novelist of the Ming dynasty.

UserA: Who is the author of ”journey to the west”.
UserB: It was wu chengen in the Ming dynasty.

In order to generate more contentful responses, more and more generative
question answering systems and knowledge-grounded conversation model are
proposed. On one hand, Ghazvininejad et al. [4] utilized external textual infor-
mation as the unstructured knowledge. They found that unstructured knowledge
can make a response more contentful. On the other hand, Yin et al. [18], He et
al. [6] and Zhu et al. [20] have proposed generative question answering (QA)
model that can generate natural answers by entities retrieved from the KB and
seq2seq model [15]. But, the performance of model above are often affected by
the incompleteness of the KB or text. How to generate more contentful resposes
or natural answer by exploiting KB and text together is necessary to study.

In this paper, we propose our neural generative dialogue model, which can
generate responses based on input message and external facts. For the first time,
we propose our approach that combined text and KB library as our external facts
by building the universal schema [10] to generate natural answer. In each time
step of generating the natural answer, the possible word may come from common
word vocabulary or knowledge entity vocabulary and the natural answer that
contains the relevant arbitrary number of entities can be generated. Finally we
conduct experiments on real-world datasets. Experimental results demonstrate
that combining unstructured knowledge with structured knowledge is effective
for generating natural answer, and our model is more efficient than the existing
end-to-end QA/Dialogue model.

2 Related Work

Recently, sequence-to-sequence [7,15] learning, which can predict target sequence
given source sequence, has been widely applied in dialogue systems. Shang

Generating Natural Answers on Knowledge Bases and Text 449

et al. [14] first utilized the encoder and decoder framework to generate responses
on micro-blogging websites. And after that, more and more dialogue system
[12,13,16] on the basis of seq2seq framework were proposed. In our work, our
model is also based on seq2seq framework and we try to combine the external
facts composed of KB and text to generate more contentful responses.

Many researchers propose open domain dialogue system which can incorpo-
rate external knowledge to enhance reply generation. Han et al. [5] proposed a
rule-based dialogue system by filling the response templates with retrieved KB.
Ghazvininejad et al. [4] utilized external textual information as the unstructured
knowledge. As demonstrated, the external textual information can convey more
relevant information to responses. Some recent work used external structured
knowledge graph to build end-to-end question answering systems. Yin et al. [18]
proposed a seq2seq-based model where answers were generated in two ways,
where one was based on a language model and the other was by some entities
retrieved from the KB. He et al. [6] and [20] further studied the cases where
questions require multiple facts and out-of-vocabulary entities.

In older to improve the performance of knowledge base QA model. Das et al.
[3] extend universal schema to natural language question answering, employing
memory networks to attend to the large amount of facts in the combination
of text and KB. Inspired by them, we also have built the universal schema
to combine KB and text and tried to employ a key-value MemNN model as
our knowledge enquirer. But different from them, our model can generate more
natural answer, rather than a single entity. Other work such as [17,19], also put
forward some models to exploit KB and the text together, but their formulations
are totally different from ours.

3 Our Framework

3.1 Framework Overview

In real-world environments, people prefer to reply one’s question with a more
natural way. Jsut like the example shown in Table 1, When user A asks “Who is
the first President of Peking University?”, user B should answer: “The first Pres-
ident is Yan Fu” rather than only one entity or an answer that is not relevant to
the question. For the above natural language question-answering scenario, in our
work,the problem can be defined as: given an input message Q = (x1, x2, ..., xL),
the problem is to generate an appropriate response Y = (y1, y2, ..., yL) based all
possible facts form text and KB. And in order to try to solve the above prob-
lems, we propose an end-to-end generative question answering system, which is
illustrated in Fig. 1.

3.2 Candidate Facts Retriever

The candidate facts retriever identifies facts that are related to the input mes-
sage. In our work, the model retrieve the relevant text facts by firstly finding the

450 Z. Ye et al.

Fig. 1. The overview of our model. Our model consists of message encoder, candidate
facts retriever, reply decoder, and universal schema containing external facts. When the
user inputs a question, the knowledge retrieval module is firstly employed to retrieve
related facts. And then message encoder encode the problem into hidden states. Finally,
hidden state from message encoder are feed to reply decoder for generating natural
answer.

relevant KB triples (subject-property-object) from the universal schema. Specif-
ically, We denote the entities of Q by E = (e1, e2, ..., em). E can be identified
by keyword matching, or detected by more advanced methods such as entity
linking or named entity recognition. Based on detected triples, we can retrieve
the relevant facts from universal schema. Usually, question contains the informa-
tion used to match the subject and property parts in a fact triple, and answer
incorporates the object part information.

3.3 Question Encoder

In older to catch the user’s intent and get hidden representations of input
message. We employ a bidirectional GRU [2,11] to transform the message
Q = (x1, x2, ..., xL) into a sequence of concatenated hidden states with two
independent GRU. Once a message is encoded by message encoder, the for-
ward and backward GRU respectively obtain the hidden state{−→h1,

−→
h1, ...,

−→
hL}

and {←−
hL, ...,

←−
h2,

←−
h1}, where L is the maximum length of the message. The con-

text memory of input message can be obtained by concatenated hidden state list
HQ = {h1, ..., ht, ..., hL}, where ht is equal to [

−→
h t,

←−
h (L−t+1)]. Besides, the last

hidden state ht is used to represent the entire message.

Generating Natural Answers on Knowledge Bases and Text 451

3.4 Reply Decoder

The reply decoder generates the final response Y based on the hidden represen-
tations of input message HQ and candidate facts FQ that come from the uni-
versal schema. There are two categories of possible words, the common words
and knowledge words, in the generated response. Specifically, the probability of
generating the answer:

p(y1, y2, ..., yLY
|HQ, FQ; θ) =

p(y1|HQ, FQ; θ)
LY∏

t=2

p(yt|y1, y2, ..., yt−1,HQ, FQ; θ) (1)

where θ represents the parameters in the model. The generation probability of
yt is specified by

p(yt|y1, y2, ..., yLY
,HQ, FQ; θ) = p(yt|yt−1, zt, st,HQ, FQ; θ) (2)

where st is the hidden state of the decoder model and zt ∈ {0, 1} is the value
predicted by a binary classifier. In generating the tth word yt in the answer, the
probability is given by the following mixture model.

p(yt|y1, y2, ..., yLY
,HQ, FQ; θ) = pc(yt|z = 0)p(z = 0|yt−1, st,HQ, FQ; θ)

+pe(yt|z = 1)p(z = 1|yt−1, st,HQ, FQ; θ) (3)

Response Words Prediction Classifier. In order to generate the final
response containing common words and knowledge words, we apply a MLP as
a binary classifier and at each time step, feeding a time step st−1, yt−1, the
MLP classifier outputs a predicted value zt ∈ {0, 1}. If zt = 0, it means that the
next generation word is from the entity vocabulary and in our work, the entity
vocabulary contains all the “object” of the KB triples. And conversely, if zt = 1,
the next generation word is generated from common vocabulary. In summary,
the yt is generated as:

p(yt|yt−1, zt, st,HQ, FQ; θ) = pc(yt)p(z = 0|yt−1, st,HQ, FQ; θ)
+pe(yt)p(z = 1|yt−1, st,HQ, FQ; θ) (4)

Universal Schema. To make full use of external facts from structured KBs and
unstructured text, our external knowledge M comprise of both KB and text. And
Inspired by Das et al. [3], we applied universal schema to integrate KB and text.
Each cell of universal schema is in the form of key-value pair. Specifically, let
(s, r, o) ∈ K represent a KB triple, the key k is represented by concatenating the
embeddings s and r and the object entity o is treated as it’s value v. For text, Let
(s, [w1, ..., entity1, ..., entity2, wn], o) ∈ T represent a textual fact, where entity1
and entity2 correspond to the positions of the entities subject and object. We
represent the key as the sequence formed by replacing entity1 with subject and
entity2 with a special ‘blank’ token, i.e., k = [w1, ..., s, ..., blank,wn], which is
converd to a distributed representation using a bidirectional GRU, and value as
just the entity object o.

452 Z. Ye et al.

Knowledge Enquirer. We have chosen two implementations that have similar
effect in our experiment as knowledge enquirer to calculate the matching scores
between question and candidate facts. The first model is a two-layer MLP. The
fact representation f is then defined as the concatenation of key and value. The
list of all related facts’ representations, {f} = {f1, f2, ..., fLF

} (LF denotes the
maximum of candidate facts), is considered to be a short-term memory of the
large body external knowledge memory M . We define the matching scores func-
tion between question and facts as function is S(q, st, fj) = DNN1(q, st, fj)
where st is the hidden state of decoder at time t and DNN1 is the two-layer
MLP. In addition, we also adopt the key-value MemNN proposeed by Miller et
al. [8] where each memory slot consists of a key and value. It is worth noting
that, excepting for question and related facts, We also need to use state st of
decoding process as the input of the key-value MemNN because the matching
results also depend on the state of decoding process at different times.

Common Word Generator. To generate richer content and more matching
answers to user questions, we applied a GRU model and attention mechanism
to generate common words. Firstly, we calculate a message context vector ct by
using the attention mechanism [1] on the message hidden vectors H with the
current generator hidden state st−1. And then, the word of the next time step
st is obtained as st = f(yt−1, st−1, ct). Finally, the predicted target word yt at
time t is performed by a softmax classifier over a settled vocabulary (e.g. 40,000
words) through function g:p(yt|y<t,X) = g(yt−1, st, ct).

State Update. In the generic decoding process, each hidden state st is updated
with the previous state st−1, the word embedding of previous predicted symbol
yt−1, and an optional context vector ct (with attention mechanism). However,
yt−1 may not come from entity vocabulary and not owns a word vector. There-
fore, we modify the state update process. More specifically, yt−1 will be repre-
sented as [e(yt−1), ζkt−1], where e(yt−1) is the word embedding associated with
yt−1 and ζkt−1 are the weighted sum of hidden states in MF corresponding to
yt−1.

ζkbt =
LF∑

j=1

δtjfi δtj =

{
1
KPe(fj |·) object(fj) = yt

0 otherwise
(5)

where object(f) indicate the “object” part of fact f, and K are the normaliza-
tion terms which equal

∑
j′:object(f ′

j)
Pe(f ′

j |·), which can consider the multiple
positions matching yt in external facts.

4 Experiments

4.1 Dataset

For our experimental data, we used the data set provided by He et al. [6]. In
addition, we have crawled the corresponding text facts from Baidu baike (a
Chinese encyclopedia website). In our work, all “subject” entities and “object”

Generating Natural Answers on Knowledge Bases and Text 453

entities of triples are used as encyclopedic items, and we crawl all article related
to these encyclopedic items. The texts in Chinese in the data are converted into
sequences of words using the Jieba Chinese word segmentor, then all related
text facts were extracted through Keyword matching with KB triples. After
extracting all the relevant facts from the article, we used the facts from text and
KB to establish the universal schema.

4.2 Model

Firstly, we use seq2seq model with attention (seq2seq+atten) as one of our base-
lines, which is widely used in chit-chat dialogues system. And then, we also use
generative QA model (GenQA [18] and COREQA [6]) as our baselines, which can
be applied in knowledge grounded conversation. Finally, We apply our model,
and compared three types of external knowledge source which respectively com-
prise of only KB, only textual and universal schema containing both text and
KB.

4.3 Evaluation Metrics

We have compared our model with baselines by both automatic evaluation and
human evaluation.

Automatic Evaluation. Following the existing works, we employ the BLEU
[9] automatic evaluation, which reflects the words occurrence between the ground
truth and the generated response. And to measure the information correctness,
we evaluate the performance of the models in terms of accuracy. Meanwhile
(same as COREQA [6]) we separately present the results according to the num-
ber of the facts which a question needs in knowledge base, including just one
single fact (marked as Single), multiple facts (marked as Multi) and all (marked
as Mixed). In our work, we randomly selected 5120 samples from data set as our
test set, and the result is shown in Table 2.

Human Evaluation. We also recruit human annotators to judge the quality of
the generated responses with aspects of Fluency, Correctness and grammar. All
scores range from 1 to 5. Higher score represents better performance in terms
of the above three metrics. In older to provide human evaluation, we randomly
selected 300 samples from our test set, and the result is shown in Table 3.

4.4 Results

Table 2 shows the accuracies of the models on the test set. We can clearly observe
that our model significantly outperforms all other baseline models and our model
can generate correct answer that need single fact or multiple facts. This also
proves that using KB and text as an external knowledge is helpful for generating
more accurate natural answers and generating contentful responses.

454 Z. Ye et al.

Table 2. The result of automatic evaluation on test data.

Models BLEU Single Multi Mixed

seq2seq+atten 0.39 20.1 3.5 19.4

GenQA 0.38 47.2 28.9 45.1

COREQA - 58.4 42.7 56.6

Our modelkb 0.42 56.2 45.9 54.7

Our modeltext 0.45 47.2 42.9 45.9

Our modeltext&kb 0.43 65.4 52.7 63.6

Table 3. The result of human evaluation on test data.

Models Fluency Correctness Grammar

seq2seq+atten 3.67 2.34 3.93

GenQA 3.56 3.39 3.73

Our modeltext&kb 4.12 4.42 4.19

As illustrated in Table 3, the results show that our framework outperforms
other baseline models. The most significant improvement is from correctness,
indicating that our model can generate more accurate answer.

5 Conclusion and Future Work

In this paper, we propose an end-to-end generative question answering system to
generate natural answers containing arbitrary number of knowledge entities. We
establish an universal schema as large external fact library using unstructured
text and structured KB. The experimental results show that our model can gen-
erate more natural and fluent answers and universal schema is a promising knowl-
edge source for generating natural answer than using KB or text alone. However,
after extracting related text facts from raw text through keyword matching with
KB triples, a lot of useful text data also were discarded. In the future, we plan to
explore ways to more effectively combine structured and unstructured knowledge
with a fuller use of text.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. Comput. Sci. (2014)

2. Chung, J., Gulcehre, C., Cho, K.H., Bengio, Y.: Empirical evaluation of gated
recurrent neural networks on sequence modeling. Eprint Arxiv (2014)

3. Das, R., Zaheer, M., Reddy, S., Mccallum, A.: Question answering on knowledge
bases and text using universal schema and memory networks, pp. 358–365 (2017)

4. Ghazvininejad, M., et al.: A knowledge-grounded neural conversation model (2017)

Generating Natural Answers on Knowledge Bases and Text 455

5. Han, S., Bang, J., Ryu, S., Lee, G.G.: Exploiting knowledge base to generate
responses for natural language dialog listening agents. In: Meeting of the Special
Interest Group on Discourse and Dialogue, pp. 129–133 (2015)

6. He, S., et al.: Generating natural answers by incorporating copying and retrieving
mechanisms in sequence-to-sequence learning. In: Meeting of the Association for
Computational Linguistics, pp. 199–208 (2017)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

8. Miller, A., Fisch, A., Dodge, J., Karimi, A.H., Bordes, A., Weston, J.: Key-value
memory networks for directly reading documents, pp. 1400–1409 (2016)

9. Papineni, S.: Blue: a method for automatic evaluation of machine translation. In:
Meeting of the Association for Computational Linguistics (2002)

10. Riedel, S., Yao, L., Mccallum, A., Marlin, B.M.: Relation extraction with matrix
factorization and universal schemas. In: NAACL-HLT, pp. xxi–xxii (2013)

11. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Press
(1997)

12. Serban, I.V., Sordoni, A., Bengio, Y., Courville, A., Pineau, J.: Building end-to-end
dialogue systems using generative hierarchical neural network models. In: Thirtieth
AAAI Conference on Artificial Intelligence, pp. 3776–3783 (2016)

13. Serban, I.V., et al.: A hierarchical latent variable encoder-decoder model for gen-
erating dialogues (2016)

14. Shang, L., Lu, Z., Li, H.: Neural responding machine for short-text conversation,
pp. 52–58 (2015)

15. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks, vol. 4, pp. 3104–3112 (2014)

16. Yao, K., Zweig, G., Peng, B.: Attention with intention for a neural network con-
versation model. Comput. Sci. (2015)

17. Yao, L., Riedel, S., Mccallum, A.: Collective cross-document relation extraction
without labelled data. University of Massachusetts, Amherst (2010)

18. Yin, J., Jiang, X., Lu, Z., Shang, L., Li, H., Li, X.: Neural generative question
answering, vol. 27, pp. 2972–2978 (2015)

19. Zeng, D., Liu, K., Chen, Y., Zhao, J.: Distant supervision for relation extraction
via piecewise convolutional neural networks. In: Conference on Empirical Methods
in Natural Language Processing, pp. 1753–1762 (2015)

20. Zhu, W., Mo, K., Zhang, Y., Zhu, Z., Peng, X., Yang, Q.: Flexible end-to-end
dialogue system for knowledge grounded conversation (2017)

Mitigating Concept Drift via Rejection

Jan Philip Göpfert1,2(B) , Barbara Hammer1, and Heiko Wersing2

1 Bielefeld University, Research Institute for Cognition and Robotics,
Universitätsstraße 25, 33615 Bielefeld, Germany

jgoepfert@techfak.uni-bielefeld.de
2 Honda Research Institute Europe GmbH,

Carl-Legien-Straße 30, 63065 Offenbach, Germany

Abstract. Learning in non-stationary environments is challenging,
because under such conditions the common assumption of independent
and identically distributed data does not hold; when concept drift is
present it necessitates continuous system updates. In recent years, sev-
eral powerful approaches have been proposed. However, these models
typically classify any input, regardless of their confidence in the classi-
fication – a strategy, which is not optimal, particularly in safety-critical
environments where alternatives to a (possibly unclear) decision exist,
such as additional tests or a short delay of the decision. Formally speak-
ing, this alternative corresponds to classification with rejection, a strat-
egy which seems particularly promising in the context of concept drift,
i.e. the occurrence of situations where the current model is wrong due
to a concept change. In this contribution, we propose to extend learn-
ing under concept drift with rejection. Specifically, we extend two recent
learning architectures for drift, the self-adjusting memory architecture
(SAM-kNN) and adaptive random forests (ARF), to incorporate a reject
option, resulting in highly competitive state-of-the-art technologies. We
evaluate their performance in learning scenarios with different types of
drift.

Keywords: Rejection · Reject option
Learning in non-stationary environments · Concept drift

1 Introduction

Machine learning (ML) increasingly permeates our daily lives in the form of
intelligent household devices, robot companions, autonomous driving, intelligent
decision support systems, fraud prevention, etc. Although ML models are getting
ever more reliable – in particular due to increasing data volumes for training –
they do not achieve 100% accuracy since they rely on statistical inference. Usu-
ally, there exist situations where ML models fail and provide invalid results.

This work was supported by Honda Research Institute Europe GmbH, Offenbach
am Main, Germany.

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 456–467, 2018.
https://doi.org/10.1007/978-3-030-01418-6_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_45&domain=pdf
http://orcid.org/0000-0003-1982-9399

Mitigating Concept Drift via Rejection 457

Because users of a model struggle to interpret its abilities and limitations cor-
rectly [1], such failures have a measurable impact on the user’s trust [2] – hence,
failures should be avoided not only in safety critical environments where failures
could be fatal, but also in everyday applications in order to improve user accep-
tance. In the case of agent models (e.g. robots), failures can often be observed
easily from the agent’s state (e.g. a robot not reaching its prescribed goal), and
the challenge is how to communicate the cause of failure [3]. In stark contrast,
failures can remain unobserved for classification models since most classifiers
do not provide an explicit notion of their domain of validity. Hence the chal-
lenge arises how to enhance classifiers with an explicit notion when to reject a
classification.

The notion of classification with a reject option explicitly takes into account
the possibility to reject a classification in unclear cases. Pioneered by Chow [4],
who derived optimal reject rules if true class probabilities are known, a num-
ber of extensions of learning with reject options have been proposed for batch
learning scenarios, such as plugin rules for class probabilities [5], efficient sur-
rogate losses [6,7], or optimal combination schemes of local rejection [8]. These
approaches deal with the classical setting of batch training based on i.i.d. data.
A minor extension is offered by so-called conformal prediction, a framework
which allows to assign probabilities to classification decisions for single inputs,
and, consequently, to reject classification based on those values [9]. Here, the
weaker condition of exchangeability is posed, opening the floor to online learn-
ing scenarios, but not yet to concept drift [10].

A number of approaches have been proposed for learning in non-stationary
environments in the presence of concept drift, whereby several recent technolo-
gies are also suited for heterogeneous types of drift [10–14]. Generally speaking,
concept drift is present whenever the underlying input distribution or class pos-
terior changes, which is the case when sensors are subject to fatigue, novel and
previously unseen data is observed over time, class concepts such as opinions
develop over time, settings are subject to seasonal changes, etc. When learning
with drift, it is almost inevitable to encounter domains of uncertain classifica-
tion – otherwise, it would not be necessary to further adapt the classification
mapping, contradicting the idea of drift. Nevertheless, most learning models for
non-stationary environments do not incorporate reject options. The only notable
exception is the Droplets algorithm [15], which assigns some inputs explicitly to
the class “reject”; size and shape of this class depend on (fixed) model meta-
parameters for training. A scalable reject threshold based on the required level
of certainty or user acceptance is not induced by this model.

In this contribution, we aim for an enhancement of models for learning with
drift by a reject option which is based on a classifier-specific certainty measure
of the classification. To the best of our knowledge, this contribution constitutes
the first attempt to extend learning with drift to include rejection in such a
way. The overall design implies that a suitable reject threshold can be cho-
sen in applications. We investigate rejection for an online perceptron learning
algorithm, demonstrating the complexity of the task. Afterwards, we propose

458 J. P. Göpfert et al.

a reject option for two techniques, the self-adjusting memory model and adap-
tive random forests, achieving convincing results. We demonstrate the benefit
of learning with rejection in a couple of benchmarks which incorporate different
types of drift.

2 Learning with a Reject Option

A given classifier provides a mapping f : Rn → {1, . . . , N} of real-valued data to
N classes. Classification with reject option extends such functionality by a special
output class �, which indicates that the classifier abstains from making a decision.
This option is beneficial whenever the probability of a misclassification is higher
than the costs for a reject. In practice, many classifiers are equipped with a
certainty measure c : Rn → R which indicates the certainty of the classification,
e.g. the (signed) distance to the decision boundary. In such cases, a reject strategy
is often based on a simple threshold θ, i.e. the classification is of the form

fθ(x) =

{
f(x) if c(x) ≥ θ,

� otherwise.
(1)

Provided c(x) is the class probability of the output class f(x), this strategy is
optimal [4]. For many popular classification methods, certainty measures c exist
which empirically lead to excellent results [8].

2.1 Classifiers

In addition to a linear model as an initial baseline, we address an ensemble
of k-NN classifiers and random forests, respectively – more complex machine
learning technologies that yield state-of-the-art results. For these algorithms,
the following certainty measures have been proposed:

Linear Classifier: One of the first models which has been enhanced with a reject
option is the classical linear classifier. For two classes (0 and 1), a linear classifier
provides the classification f(x) = H(w�x − θ) with the Heaviside function H,
an adjustable weight vector w ∈ R

n and bias θ. A typical confidence measure
is offered by c(x) = sgd(w�x − θ) with the sigmoidal sgd(t) = 1/(1 + exp(−t))
for class 1 and 1 − sgd(w�x − θ) for class 0. This measure correlates to the
distance of the data point x to the decision boundary. It has been demonstrated
by Platt [16] that this form usually yields reasonable confidence measures, where
– typically – slope and offset of the sigmoidal function are optimized based on the
given data to enable an optimum match of its range to true confidence values.

k-NN classifier: Assume a point x is given with its k nearest neighbors x1, . . . , xk

and corresponding labels y1, . . . , yk. For the simple k-NN we could rely on the
fraction of points of the same label within the k nearest neighbors [17]. How-
ever, this measure has the drawback that it provides k + 1 discrete values only.

Mitigating Concept Drift via Rejection 459

A continuous extension can be based on formal grounds such as Dempster-Shafer
theory [18], but this would require the tuning of several meta-parameters, ren-
dering this measure unsuitable for online learning. Here, we rely on weighted
k-NN classification instead:

f(x) = argmaxj

{ k∑
i=1

I(yi, j)
d(x, xi)

∣∣∣ j = 1, . . . , N

}
(2)

where d(x, xi) is the (euclidean) distance1 between x and xi, and

I(yi, j) =

{
1, yi = j,

0, yi �= j.
(3)

Delany et al. [19] investigate several certainty measures and propose an accu-
mulation of several criteria that take into account distances to closest neighbors
of the same class and different classes, respectively. We approximate this value by
an efficient surrogate function which can be directly derived from the weighted
k-NN classification rule, the normalized average distance with values in [0, 1]:

c(x) =
(N∑

j=1

k∑
i=1

I(yi, j)
d(x, xi)

)−1

·
k∑

i=1

I(yi, ŷ)
d(x, xi)

. (4)

Random forests: Random forests as introduced by Breiman [20] constitute one of
the current state-of-the-art classifiers [21], offering a classification as an ensemble
of decision trees. Typically, decision trees are grown iteratively from the training
data (or bootstrap samples thereof in the case of random forests), and every
leaf is assigned a class probability distribution in terms of the relative frequency
of the labels of the training samples assigned to this leaf. This probability can
directly be interpreted as a certainty measure, but it is subject to large variance
for single trees. This is greatly diminished when averaging over a bootstrap
sample, as present in random forests. It has been investigated experimentally by
Niculescu-Mizil and Caruana [22] that the resulting values strongly correlate to
the true underlying class probabilities, hence we will use this certainty measure
in the case of random forests. Its values lie within the range [0, 1].

2.2 Evaluation Measure

Based on the underlying class probabilities, one could obtain optimal reject
strategies, but they are not known in practical applications. Good certainty mea-
sures typically strongly correlate with said probabilities, although their precise
values differ [22]. An optimal choice of the threshold is often problem-dependent,
reflecting the desired balance of the number of rejected data points versus the
accuracy for the remaining data. As such, it is common practice to compare

1 We subsitute a small ε > 0 for d(x, xi) if d(x, xi) < ε.

460 J. P. Göpfert et al.

the efficiency of classification with a reject option by a comparison of the so-
called accuracy-reject curve: Sampling certainty thresholds θ ∈ [0, 1], we report
the accuracy of the classification method for all points that are not rejected
(i.e. accepted) using this threshold, together with the ratio of points that are
accepted [23].

3 Learning with Concept Drift and Its Extension
to Rejection

In online learning, a potentially infinite stream (. . . , (xt, yt), (xt+1, yt+1), . . .) of
training data is given, where t denotes the current time, and each sample (xt, yt)
is generated from an unknown probability distribution pt. The presence of drift
refers to the fact that pt(x, y) changes over time, i.e. at least two time points
t1 and t2 exist such that pt1(x, y) �= pt2(x, y). If the posterior class probabilities
change, pt1(y|x) �= pt2(y|x), we call this real concept drift ; if only the input
distribution changes, pt1(x) �= pt2(x), this is referred to as virtual concept drift
or covariate shift. In particular for real concept drift, a static classifier is often
suboptimal, and the goal is to evolve a classification mapping ht over time, which
adjusts to the current class posterior distribution, whereby ht+1 is inferred from
ht and the current sample (xt, yt) only. The objective is to minimize the average
misclassification over time as measured, for example, by the so-called interleaved
test-train error for a time period T

E =
T∑

t=1

I(ft(xt), yt)
T

. (5)

This setting can be extended to online learning with rejection as soon as
the classification mapping ft is accompanied by a certainty measure ct. In this
case, given a threshold θ, classification at time point t is rejected if, and only if,
ct(x) < θ. Evaluation takes place by reporting the modified interleaved test-train
error

Eθ =
∑

t≤T : ct(xt)≥θ

I(ft(xt), yt)
|{t ≤ T : ct(xt) ≥ θ}| (6)

and the ratio of classified data points

|t ≤ T : ct(xt) ≥ θ|
T

. (7)

A number of learning models have been proposed which are capable of dealing
with drift [10–14]. We address two recent models (SAM and ARF) which are
suited for heterogeneous drift and which can be naturally extended to include
a reject option. For comparison, we look at a linear classifier (perceptron) that
can adapt to drift but where useful reject strategies are problematic, as well as
two sliding windows to serve as a baseline.

Mitigating Concept Drift via Rejection 461

Online perceptron: One simple – yet popular – method, which is also avail-
able in stream mining suites such as the massive online analysis toolbox for
data streams, is online perceptron learning [24]. Essentially, this consists of an
online gradient descent of the squared error of the perceptron activation function
sgd(w�x − θ) based on given data with fixed step size. This model is naturally
restricted to linear settings, yet it yields surprisingly accurate behavior in an ini-
tial demonstration scenario as we will show in an experiment, a behavior which
has also been substantiated analytically [25]. Yet, for online settings, it is not
possible to adjust the sigmoidal rescaling of the perceptron output as proposed
by [16], hence we will directly rely on the measure c(x) for rejection as introduced
above.

SAM-kNN: The Self-Adjusting Memory (SAM) architecture [26] keeps two com-
plementary memories – short-term and long-term. The former contains the most
recent samples of a data stream, whereby the length of this window is adjusted
based on the classification performance, while the latter stores and continuously
refines a compacted representation of previous samples as long as these are con-
sistent with the short term memory. Depending on how the data stream changes,
SAM makes flexible use of its two memories and a weighted k-nearest neighbors
classifier to accurately classify even when drift is present. We extend the output
of the classifier by the certainty measure as introduced above as the basis for a
reject option.

ARF: Adaptive random forests (ARF) [14] constitute a state-of-the-art ensem-
ble method for learning with drift. Random forests grow very fast decision trees
(Hoeffding trees) online based on Poisson sampling to mimic bootstrapping
effects. ARF wraps this technology into an active drift detection loop, which
assigns suitable weights to an ensemble of trees, replaces unsuitable trees if drift
is observed, and grows trees in the background that can serve as an intelligent
initialization of such replacements when drift is expected. We can use the cer-
tainty measure as introduced for random forests above and extend it to weighted
averages over the ensemble of trees as a basis for rejection.

Sliding window: Techniques which use a classifier based on a sliding window
of the data stream can serve as a baseline. We will consider a weighted k-NN
classifier with a sliding window of fixed size (referred to as fixed window) as well
as a window whose size is adapted based on the optimum classification error
such as the short term memory in SAM (referred to as adaptive window).

4 Experiments

4.1 Linear Setting

Initially, we investigate how a perceptron’s certainty responds to concept drift
and demonstrate that it is not easily augmented with a reject option. To that

462 J. P. Göpfert et al.

Fig. 1. Accuracy and reject ratio over time according to different reject thresholds for
the perceptron and the fixed window. Thresholds are chosen such that 100%, 90% and
80% of points are accepted. Accuracy and ratio are calculated over a sliding window
that contains 10% of the dataset’s total number of samples. Between samples 37 500
to 62 500 the data-generating rectangles move through one another, making the classi-
fication more difficult.

end, we create a 2-dimensional dataset with two classes. Points are sampled uni-
formly from two rectangles (which determine the class label) that move towards,
through, and apart from one another over time. The two classes are initially lin-
early separable, then become indistinguishable, and eventually become linearly
separable again – albeit with a flipped separating hyperplane. To add noise, we
flip the class label of every 7th sample.

For comparison, the data is used to evaluate a fixed window2 as well as the
perceptron. The results are presented in Fig. 1, with different certainty thresh-
olds that correspond to 100% 90% and 80% of accepted (classified) points. It
is apparent that the simple online perceptron is surprisingly accurate for this
data set, despite its rather simple learning rule. As expected, an increasing clas-
sification difficulty is reflected in a decrease in accuracy. When the rectangles
move apart (and the classes become linearly separable again), both algorithms
recover. However, it is apparent that the perceptron hardly benefits from a reject
option, whereas the fixed window clearly does, rejecting more points the more
difficult the problem is and in such a way that the accuracy increases. Hence, it
is a nontrivial task to identify effective rejection for learning with drift.

4.2 General Setting

We evaluate the efficiency of classification with rejection on a number of bench-
mark datasets with nonlinear characteristics. Here, model meta-paramaters are

2 The fixed window serves as a straight-forward example. Results for the adaptive
window, SAM, and ARF are comparable – the largest difference in accuracy between
all four is below 2%.

Mitigating Concept Drift via Rejection 463

chosen in the same way as reported in Losing et al. [26] and Gomes et al. [14]. We
determine accuracy reject curves by dividing the range of observed certainties
into equally sized intervals and deriving the respective pareto-optimal accuracy-
reject pairs. For reporting, we focus on the practically interesting range of 100%
to 50%. We consider the benchmark datasets as described in Losing et al. [12,26],
since they cover a wide variety of different data and drift characteristics. See
Table 1 for an overview over the datasets.

Table 1. Datasets considered for our experiments. Real-world datasets are followed by
artificial datasets – other than that, they are presented in no particular order. Drift
properties are given according to Losing et al. [12].

Samples # Features # Classes Drift

Outdoor objects 4000 21 40 Virtual

Rialto bridge 82250 27 10 Virtual

Poker hand 829201 10 10 Virtual

Electricity 45312 6 2 Real

Weather 18159 8 2 Virtual

Transient chessboard 200000 2 8 Virtual

Rotating hyperplane 200000 10 2 Real

Interchanging RBF 200000 2 15 Real

Mixed drift 600000 2 15 Real

Moving RBF 200000 10 5 Real

Moving squares 200000 2 4 Real

SEA concepts 50000 3 2 Real

Effectiveness of Reject. The resulting accuracy-recject curves with respect
to different certainty thresholds for all twelve datasets and all four classifiers
are presented in Fig. 2. As reported by Losing et al. [26] and Gomes et al. [14],
it is apparent that the methods SAM and ARF are robust classifiers capable
of dealing with drift, with SAM performing consistently well across all datasets
considered, while ARF shows excellent results in most, but not all (in particu-
lar Outdoor Objects, Moving RBF, and Moving Squares). Surprisingly, also the
baselines yield acceptable results for certain datasets. We observe that rejection
increases the classifiers’ accuracy consistently for all datasets, and influence all
methods similarly: Averaged over all datasets and all four classifiers, rejecting
10% or 20% of all samples leads to an increase in accuracy by 3.19% or 5.64%,
respectively. The smallest increase is 1.06% or 1.17%, the highest increase is
5.43% or 10.07%.

At present, we have used certainty measures that are intuitive and fast to
compute in all cases. The curves indicate one possible weakness of these mea-
sures: in particular for k-NN classifiers (including SAM), the accuracy does not

464 J. P. Göpfert et al.

Fig. 2. Accuracy-reject curves for all datasets considered. Note the different vertical
axes. The nearest neighbor based classifiers classify many samples with maximal cer-
tainty, which explains why the respective curves often terminate early.

reach 100% – rather, the curves end prematurely. This is due to the fact that
k-NN assigns a certainty of 100% to a great number of points since their k-
neighborhoods are uniformly labeled. More elaborate certainty measures such as
a reject option based on absolute distances, that respects outliers, or an exten-
sion of the method to ensembles and according averaged certainties, could enable
a “subtler” assessment of certainty. Hence, we see room for further improvement
beyond the already satisfactory results.

Temporal Behavior. As expected, accuracy varies over time in the presence
of non-homogeneous drift in real-life datasets. For Outdoor Objects and Rialto
Bridge we show this together with how accuracy is affected by rejection, and
how the rejection ratio varies over time, when SAM with a reject option is
used to classify (Fig. 3). Interestingly, the sharp drop in accuracy at samples
1700 to 2200 from Outdoor Objects is mirrored in the ratio of rejected points
as a pronounced peak in rejected points. In this case, increasing the number of
rejected points allows the classifier to improve so much that no notable drop in
accuracy remains.

Mitigating Concept Drift via Rejection 465

Fig. 3. Accuracy and reject ratio over time according to different reject thresholds
for SAM, shown for the datasets Outdoor Objects and Rialto Bridge. Thresholds are
chosen such that 100%, 90% and 80% of points are accepted. Accuracy and ratio are
calculated over a sliding window that contains 10% of the respective dataset’s total
number of samples. Note the abrupt, temporary drop in accuracy for Outdoor Objects
and the corresponding increase in the number of rejected points for samples 1700 to
2200.

A similar – albeit less pronounced – behavior can be observed for Rialto
Bridge. Here the overall variation in accuracy becomes much narrower. For sam-
ples 30 000 to 40 000 the abrupt loss in accuracy is compensated by more rejected
points.

5 Discussion

We have introduced and evaluated diverse online learning classifiers with reject
options in the presence of concept drift. Across all datasets and classifiers, we
see a notable increase in accuracy when using a reject option for k-NN classifiers
and ensembles of random forests. In stark contrast, rejection as presented for the
perceptron do not seem easily extendable to the setting of concept drift; within
an initial linear setting, rejection did not show any benefits. As expected, also
for the real life non-linear data sets, no classifier achieves 100% accuracy in the
presence of drift. Interestingly, although techniques such SAM-kNN are consis-
tently good for all settings, there is not one clear winner among the classifiers
as they perform differently on various datasets. This is in line with the findings
of Losing et al. [26].

Rejecting with respect to a fixed certainty threshold does not merely increase
the accuracy overall but can specifically alleviate low accuracy that stems from
low certainty, as seen in Fig. 3. It remains to be seen how more sophisticated,
time- and drift-dependent strategies for dynamically choosing certainty thresh-
olds can improve performance even further.

Considering the particular structure of SAM, where classification depends
on a choice between long- and short-term memory, it might prove beneficial to

466 J. P. Göpfert et al.

incorporate their certainties into the decision-making process – so far, it has
depended solely on the memories’ past performances. One must carefully inves-
tigate, however, how a classifier’s certainty can be trusted, especially when the
classifier performs badly in the presence of drift. On the other hand, samples with
low certainty could indicate areas in which the model needs to be augmented.

As mentioned earlier, incorrect classification results can negatively impact a
user’s trust in a system. Because it leads to a higher accuracy, rejection alleviates
these issues, but it will further be important how to communicate to a user why
a point is rejected or – more generally – with how high a certainty a point is
classified and how that certainty is to be interpreted.

References

1. Cha, E., Dragan, A.D., Srinivasa, S.S.: Perceived robot capability. In: 24th IEEE
International Symposium on Robot and Human Interactive Communication, RO-
MAN 2015, Kobe, Japan, August 31–September 4 2015, pp. 541–548 (2015)

2. Desai, M., et al.: Impact of robot failures and feedback on real-time trust. In: HRI.
IEEE/ACM, pp. 251–258 (2013)

3. Kwon, M., Huang, S.H., Dragan, A.D.: Expressing robot incapability. In: Proceed-
ings of the 2018 ACM/IEEE International Conference on Human-Robot Interac-
tion, HRI 2018, Chicago, IL, USA, 05–08 March 2018, pp. 87–95 (2018)

4. Chow, C.: On optimum recognition error and reject tradeoff. IEEE Trans. Inf.
Theor. 16(1), 41–46 (2006). ISSN 0018–9448

5. Herbei, R., Wegkamp, M.H.: Classification with reject option. Can. J. Stat. 34(4),
709–721 (2006)

6. Bartlett, P.L., Wegkamp, M.H.: Classification with a reject option using a hinge
loss. J. Mach. Learn. Res. 9, 1823–1840 (2008). ISSN 1532–4435

7. Villmann, T., et al.: Self-adjusting reject options in prototype based classification.
In: Merényi, E., Mendenhall, M.J., O’Driscoll, P. (eds.) Advances in Self-organizing
Maps and Learning Vector Quantization. AISC, vol. 428, pp. 269–279. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-28518-4 24

8. Fischer, L., Hammer, B., Wersing, H.: Optimal local rejection for classifiers. Neu-
rocomputing 214, 445–457 (2016)

9. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World.
Springer, New York (2005). https://doi.org/10.1007/b106715. ISBN 0387001522

10. Ditzler, G.: Learning in nonstationary environments: a survey. IEEE Comput.
Intell. Mag. 10(4), 12–25 (2015). ISSN 1556–603X

11. Gomes, H.M.: A survey on ensemble learning for data stream classification. ACM
Comput. Surv. 50(2), 23:1–23:36 (2017)

12. Losing, V., Hammer, B., Wersing, H.: Tackling heterogeneous concept drift with
the Self-Adjusting Memory (SAM). Knowl. Inf. Syst. 54(1), 171–201 (2018)

13. Loeffel, P.-X., Bifet, A., Marsala, C., Detyniecki, M.: Droplet ensemble learning
on drifting data streams. In: Adams, N., Tucker, A., Weston, D. (eds.) IDA 2017.
LNCS, vol. 10584, pp. 210–222. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68765-0 18

14. Gomes, H.M., et al.: Adaptive random forests for evolving data stream classifica-
tion. Mach. Learn. 106, 1469–1495 (2017)

https://doi.org/10.1007/978-3-319-28518-4_24
https://doi.org/10.1007/b106715
https://doi.org/10.1007/978-3-319-68765-0_18
https://doi.org/10.1007/978-3-319-68765-0_18

Mitigating Concept Drift via Rejection 467

15. Loeffel, P.X., Marsala, C., Detyniecki, M.: Classification with a reject option under
concept drift: the droplets algorithm. In: 2015 IEEE International Conference on
Data Science and Advanced Analytics (DSAA), pp. 1–9, October 2015

16. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp.
61–74. MIT Press (1999)

17. Hellman, M.E.: The nearest neighbor classification rule with a reject option. IEEE
Trans. Syst. Sci. Cybern. 6(3), 179–185 (1970). ISSN 0536–1567

18. Denoeux, T.: A k-nearest neighbor classification rule based on Dempster-Shafer
theory. IEEE Trans. Syst. Man Cybern. 25(5), 804–813 (1995)

19. Delany, S.J., Cunningham, P., Doyle, D., Zamolotskikh, A.: Generating estimates
of classification confidence for a case-based spam filter. In: Muñoz-Ávila, H., Ricci,
F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 177–190. Springer, Heidelberg
(2005). https://doi.org/10.1007/11536406 16

20. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). ISSN 0885–6125
21. Fernández-Delgado, M.: Do we need hundreds of classifiers to solve real world

classification problems? J. Mach. Learn. Res. 15, 3133–3181 (2014)
22. Niculescu-Mizil, A., Caruana, R.: Predicting good probabilities with supervised

learning. In: Proceedings of the 22nd International Conference on Machine Learn-
ing, ICML 2005, pp. 625–632. ACM, Bonn (2005). ISBN 1-59593-180-5

23. Nadeem, M.S.A., Zucker., Hanczar, B.: Accuracy-rejection curves (ARCs) for com-
paring classification methods with a reject option. In: Džeroski, S., Guerts, P.,
Rousu, J. (eds.) Proceedings of the Third International Workshop on Machine
Learning in Systems Biology, Proceedings of Machine Learning Research, vol. 8,
pp. 65–81. PMLR, Ljubljana (May 2009)

24. Bifet, A.: MOA: massive online analysis. J. Mach. Learn. Res. 11, 1601–1604
(2010). ISSN 1532–4435

25. Timothy, L.H., Watkin, A.R., Biehl, M.: The statistical mechanics of learning a
rule. Rev. Mod. Phys. 65, 499–556 (1993)

26. Losing, V., Hammer, B., Wersing, H.: KNN classifier with self adjusting memory
for heterogeneous concept drift. In: 2016 IEEE 16th International Conference on
Data Mining (ICDM), pp. 291–300. IEEE, Barcelona (2016)

https://doi.org/10.1007/11536406_16

Strategies to Enhance Pattern
Recognition in Neural Networks Based

on the Insect Olfactory System

Jessica Lopez-Hazas(B), Aaron Montero, and Francisco B. Rodriguez

Grupo de Neurocomputación Biológica, Dpto. de Ingenieŕıa Informática Escuela
Politécnica Superior, Universidad Autónoma de Madrid, Madrid 28049, Spain

jessicalopezhazas@gmail.com, aaron.montero.m@gmail.com, f.rodriguez@uam.es

Abstract. Some strategies used by the insect olfactory system to enhace
its discrimination capability are an heterogeneous neural threshold dis-
tribution, gain control and sparse activity. To test the influence of these
mechanisms on the performance for a classification task, we propose
a neural network based on the insect olfactory system. In this model,
we introduce a regulation term to control de activity of neurons and
a structured connectivity between antennal lobe and mushroom body
based on recent findings in Drosophila that differs from the classi-
cal stochastic approach. Results show that the model achieves better
results for high sparseness and low connectivity between Kenyon cells
and projection neurons. For this configuration, the use of gain control
further improves performance. The structured connectivity model pro-
posed is able to achieve the same discrimination capacity without using
gain control or activiy regulation techniques, which opens up interesting
possibilities.

Keywords: Neural computation · Pattern recognition
Bio-inspired neural networks · Neural threshold · Sparse coding
Olfactory system

1 Introduction

In this paper, we are going to focus on different strategies that are used in the
olfactory system of insects for stimuli recognition and how they can be applied
to improve the performance of artificial neural networks. Insect olfactory system
is one of the most studied biological neural networks since it is less complex
than the vertebrates olfactory system, so a lot of details about its structure
and the function of different neural populations are known [7]. The insect olfac-
tory system is organized in layers as follows: olfactory receptor neurons (ORNs)
expressing different receptors capture the information of odorants and pass it to
the projection neurons (PNs) in the antennal lobe (AL). PNs encode odorant
information through oscillations and activity sequences which are then sent to
the Kenyon cells (KCs) in the mushroom body (MB). It is in the MB where
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 468–475, 2018.
https://doi.org/10.1007/978-3-030-01418-6_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_46&domain=pdf

Pattern Recognition Strategies Based on the Insect Olfactory System 469

stimuli identification and learning take place. KCs make use of sparse coding to
improve the separability of patterns, showing little activity and no spike response
for most of odorants [5,11]. Finally, the output from KCs goes to the MB output
neurons (MBONs), responsible for the final identification of odorants. To achieve
such a great discrimination capability between stimuli, some strategies that the
biological system uses and that our model includes are the following:

i. Heterogeneous threshold distribution in KCs: it has been found that an
heterogeneous neural thresholds among KCs enhances pattern classification
compared to the same model using an homogeneous distribution [8–10].

ii. Gain control: a mechanism for gain control at the AL level is crucial to pro-
vide a standard representation of the stimuli regardless of its concentration,
even when it is extremely high [14].

iii. Sparse coding in the MB: as stated before, KCs show low activity since
each one of them only responds to a little set of stimuli [11]. This sparse
activity in combination with the fan-out phase between the AL and MB
assures an internal representation of patterns that prevents the occurrence
of overlaps and, therefore, enhances pattern recognition while also assures
energetic efficiency [3].

Although insect olfactory system has been extensively studied, there is still
controversy about the value that some basic parameters of the PN-KC connec-
tivity may take and about the topology that these connections follow. One of
these parameters is the connection probability pc between PNs and KCs. For
example, in the case of locust, some authors have suggested that pc = 0.5 [6],
while others argue that it would be pc = 0.1 [11] or even lower than that [3].

Regarding connection topology, as the PN-KC connections are not learned
and cannot be reproduced across individuals, they are usually modeled using a
stochastic matrix, since this is sufficient to assure information transmission, low
energy cost [3] and is also used in artificial neural networks [13]. However, recent
findings on the olfactory system of Drosophila points toward a more structured
connectivity pattern where certain subsets of KCs receive a different number of
connections from PNs [2].

In this work, using a simple model of the olfactory system based on neural
networks and supervised learning [4,5,8,10], we aim to test the effects of the
three strategies presented above and the new connectivity proposed, checking
whether they improve the discrimination capacity of the network.

2 Methods

2.1 Model of the Insect Olfactory System

The model we proposed is based on a single hidden layer neural network and
supervised learning and includes the three mechanisms to enhance pattern dis-
crimination presented in the Sect. 1.

A graphic representation of the model and all the details are shown in Fig. 1.
Basically, the input layer of the neural network X represent the PNs, while the

470 J. Lopez-Hazas et al.

Fig. 1. (a) Structure of the biological olfactory system of insects. The ORNs capture
the information of odorants and send it to AL and from there to the MB, where KCs
use sparse coding to represent it. The MBONs are responsible for the final identification
of stimuli. (b) Computational model used to explore the strategies to improve pattern
recognition. It is a SLFN that uses supervised learning to determine the weights of the
matrix W and the neural thresholds of KCs (θ) in the hidden layer Y and MBONs (ε)
in the output layer (Z). AL is the input (X) to the network and is connected to the
KCs by a binary matrix C. No learning takes place at this layer.

hidden layer Y represents the KCs, and should show sparse activity. The output
layer, Z, represents the MBONs.

Gain control is introduced through the renormalization of patterns in the
input layer so that the activation of the neurons is uniform for all patterns
[4]. To achieve an heterogeneous neural threshold distribution in the KCs, the
learning algorithm of the network is capable of adjusting the thresholds of each
KC (θ) and MBON (ε) to the values that best fit the classification problem.
Apart from that, the weights W of the connections between KCs and MBONs
are also adjusted, since it is known that associative learning happens in this
layer.

To enable sparse coding in the KC layer, we introduce an activity regulation
term (ART) in the learning rule that allows us to 2control the level of activity
of the neurons:

ART (Y) =
1
2

(
1

NKC

NKC∑
i=1

yi − s

)2

, (1)

where the parameter NKC is the number of KCs, s ∈ [0.0, 1.0] allows to control
the level of activity in the KCs layer from no activity when s = 0 to maximum
activity when s = 1, and yi is the activation of each KC in the network.

Another mechanism to enable sparse coding is the PN-KC ratio, which has
been set to 1:50 [3,11], same as in the olfactory system of locust, to assure the
fan-out phase between these layers and allow the representation of the stimuli
without overlapping between them [3].

Given all the above, the objective function the network has to minimize in
order to resolve the classification task is the following:

E(Z, T, Y) = H(Z, T) + ART (Y), (2)

Pattern Recognition Strategies Based on the Insect Olfactory System 471

where Z is the output of the model, Y the activation of KCs, T the objective
data labels for each pattern, H(Z, T) is the cross-entropy function and ART the
activity regulation term for the KC layer. Further details on the derivation of
the learning rule for neural thresholds will be provided on later publications.

2.2 PN-KC Connectivity

To implement PN-KC connectivity, we follow the approach used in most insect
olfactory system models, using a stochastic binary matrix C where each con-
nection between a KC and a PN exists with a probability pc that can be set to
different values from pc = 0.0 to pc = 1.0 [3,5].

Conversely, taking into account the recent finding in Droshophila, we test a
different PN-KC connectivity based on what is described in [2]. KCs are divided
into different subsets depending on how many PNs they are connected to. Hence,
there is a population of one-claw KCs that are just connected to a single PN, two-
claw KCs, up to six-claw KC, the maximum observed in the biological system
[2]. So, in this model, the connection probability pc will depend entirely on the
proportions of each type of KC.

2.3 Input Patterns

To test the performance of the model in a pattern classification problem, we
use a reduced version of the well known MNIST dataset for hand-written digit
recognition [1] that consists of 940 patterns, 209 attributes and 10 different
classes. Some samples of these patterns are shown in Fig. 2 panel (c). We choose
these patters because they are presented to the network as a one dimensional
array with different activity regions similar to the complexity of the odorant
patterns the biological system encounters in nature [12].

3 Results

For simulations, we use the locust olfactory system as reference, where PN-KC
ratio is 1:50. The size of the neural network is 210 × 10451 × 10. We use 5-fold
cross validation and execute 10 simulations of each trial to compute the average
of the classification error, that we use as the measure of system performance.

3.1 Level of Sparseness and PN-KC Connection Probability

We compared the performance of the model including the ART with different
values of s to control the level of activity on KCs with the performance of
the model without ART . The PN-KC connectivity is implemented using the
stochastic matrix approach for values of pc biologically plausible, between 0.01
and 0.5. Results are shown in Fig. 2. A model including the activity regulation
term outperforms one that lacks it for most of the combinations of s and pc
values. The model achieves the best results when the sparseness level in KC layer

472 J. Lopez-Hazas et al.

Fig. 2. (a) Classification error for the handwritten digits dataset for different values
of pc and low, medium and high sparseness level. (b) Mean activation level for KCs.
High sparseness values correspond to lower activation in KCs and assures energetic
efficiency. (c) A sample of the patterns used for classification.

is high, which is consistent with what is observed in the biological system [3,11].
Also, for this sparseness level, the lowest error rates happen when the connection
probability between AL and MB neurons is low, in the interval [0.01–0.3]. The
result we obtained is within the range of values considered possible and it is also
consistent with energetic efficiency, but it is still lower than the more generally
accepted value, pc = 0.5 [3,6,11]. In the mean KC activation plot for different
values of s and pc, it can be seen that when sparseness is high, the KCs show a
level of activation between 10% and 20%. This result is also consistent with the
biological facts, since the level of activity for KCs is very low due to the sparse
coding they used, according to [11].

Therefore, for high sparseness levels and low PN-KC probability connections
the network is able to reach an optimal codification, maximizing the transference
of information and minimizing the energy costs.

3.2 Gain Control

In order to test the influence of the gain control mechanism in the performance of
the model, we carry out simulations with high sparseness level with and without
gain control for different pc values. Results are shown in Fig. 3. When the model
works without gain control, its behavior is more stable and its performance

Pattern Recognition Strategies Based on the Insect Olfactory System 473

is independent of pc value. But the minimum classification error can only be
achieved when gain control is enabled. It seems that only in the cases where pc
is very low, in the range [0.01–0.2], gain control has a positive effect, reducing
the error by 5%, while for greater values of pc, it is counterproductive. This
behavior can be explained by the nature of the patters used for classification,
as handwritten digits can be classified by the level of activity they cause in
neurons. When pc is low and a little number of connections between PNs and KCs
are available, gain control helps to maximize the transmission of information,
while in the case of bigger pc, when almost all the information is available and
transmitted, it makes the level of activity uniform and therefore it elimates
some important information for discrimination. Also, it should be noticed that
our mechanism for gain control is fairly limited, so these results should be further
tested with more realistic gain control models.

Fig. 3. Classification error for high sparseness level and different pc values with and
without gain control. Gain control only has a positive effect for low values of pc, improv-
ing the performance by 5%. When pc > 0.2, gain control worsens the performance
achieved by 5–10%, although this effect can be explained by the structure of the prob-
lem patterns.

3.3 Structured PN-KN Connectivity Model

We introduce the structured connectivity model explained in Sect. 2.2, where
KCs are divided into different sets, each of them receiving connections from a
certain number of PCs. There can be six different types of KCs in the system,
from single-claw KCs to six-claw KCs, the maximum observed in the biological
system. The proportions of each type are the same found in [2]. Results in [2]
show that the new connectivity minimizes redundancy and optimizes stimuli dis-
crimination. We wonder how this connectivity pattern could affect the behavior
of our neural network, so we extrapolate this connectivity model to the locust,
where the size of the network is bigger, by just maintaining the proportions
mentioned before. The value of pc that corresponds to this connectivity pattern
is pc = 0.0124 (Fig. 4).

474 J. Lopez-Hazas et al.

Fig. 4. Classification error using the stochastic matrix connectivity model for different
pc and using the structured connectivity model with pc = 0.0124, for locust (1:50
PN-KC ratio) and Drosophila (1:10 PN-KC ratio) configurations.

Simulations with this connectivity model do not include the gain control
mechanism, neither the activity regulation term. However, this topology achieves
a classification error similar to the model working with gain control, activity
regulation term and pc = 0.01. Results suggest that this new topology could
better sample the PN population and maximize the information transmitted to
the KCs while also providing some mechanism for gain control.

4 Conclusions

In this paper we have introduced an insect olfactory system model based on
neural networks and supervised learning that includes three strategies to improve
the pattern recognition capability of the system. These mechanisms are gain
control, sparse coding and an heterogeneous threshold distribution in KCs. Apart
from adjusting the weights of the connections between KCs and MBONs, the
model is also able to get the distribution of thresholds that best fit a certain
classification problem for KCs and MBONs. To control the level of activity in
the KC layer and allow sparse coding, we introduce a new regulation term that
allows us to choose the activity level.

We carry out simulations for different parameters of the model to study how
these mechanisms influence the performance of the system in a classification task.
We have shown that the system achieves the minimum error when the sparseness
level in the KC layer is high (activity level of 10%) and the PN-KC connection
probability low. Also, gain control has a positive impact on the performance of
the system, but only for low pc, due to the structure of the patterns used for
the classification task. However, our mechanism for gain control is not much
realistic, so further investigation must be carried out on this particular point.

We also tested a new PN-KC connectivity topology proposed in [2] with a
different structure to the classic stochastic matrix approach and found that this

Pattern Recognition Strategies Based on the Insect Olfactory System 475

connectivity can reach the minimum error without making use of gain control
or the activity regulation term. Hence, the behavior and properties that this
new connectivity may introduce could be helpful to understand the processing
of information in the olfactory system and to end controversies about the value
of certain of its parameters. The potential properties of this new connectivity
will be further explored in the future.

Acknowledgments. We thank Ramon Huerta for his useful discussions. We
acknowledge support from MINECO/FEDER TIN2014-54580-R and TIN2017-84452-R
(http://www.mineco.gob.es/).

References

1. MNIST handwritten digit database. http://yann.lecun.com/exdb/mnist/
2. Eichler, K., et al.: The complete connectome of a learning and memory centre in

an insect brain. Nature 548(7666), 175–182 (2017)
3. Garćıa-Sanchez, M., Huerta, R.: Design parameters of the fan-out phase of sensory

systems. J. Comput. Neurosci. 15(1), 5–17 (2003)
4. Huerta, R., Nowotny, T.: Fast and robust learning by reinforcement signals: explo-

rations in the insect brain. Neural Comput. 21(8), 2123–2151 (2009)
5. Huerta, R., Nowotny, T., Garćıa-Sanchez, M., Abarbanel, H.D.I., Rabinovich, M.I.:

Learning classification in the olfactory system of insects. Neural Comput. 16(8),
1601–1640 (2004)

6. Jortner, R.A., Farivar, S.S., Laurent, G.: A simple connectivity scheme for sparse
coding in an olfactory system. J. Neurosci. 27(7), 1659–1669 (2007)

7. Kaupp, U.B.: Olfactory signalling in vertebrates and insects: differences and com-
monalities. Nature Rev. Neurosci. 11(3), 188–200 (2010)

8. Montero, A., Huerta, R., Rodŕıguez, F.B.: Neuron threshold variability in an olfac-
tory model improves odorant discrimination. In: Ferrández Vicente, J.M., Álvarez
Sánchez, J.R., de la Paz López, F., Toledo Moreo, F.J. (eds.) IWINAC 2013. LNCS,
vol. 7930, pp. 16–25. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38637-4 3

9. Montero, A., Huerta, R., Rodŕıguez, F.B.: Regulation of specialists and generalists
by neural variability improves pattern recognition performance. Neurocomputing
151(Part 1), 69–77 (2015)

10. Montero, A., Huerta, R., Rodŕıguez, F.B.: Stimulus space complexity determines
the ratio of specialist and generalist neurons during pattern recognition. J. Frankl.
Inst. 355, 2951–2977 (2018)

11. Perez-Orive, J., Mazor, O., Turner, G.C., Cassenaer, S., Wilson, R.I., Laurent, G.:
Oscillations and sparsening of odor representations in the mushroom body. Science
297(5580), 359–365 (2002)

12. Rubin, B.D., Katz, L.C.: Optical imaging of odorant representations in the mam-
malian olfactory bulb. Neuron 23(3), 499–511 (1999)

13. Scardapane, S., Wang, D.: Randomness in neural networks: an overview. Wiley
Interdiscip. Rev.: Data Min. Knowl. Discov. 7(2), e1200 (2017)

14. Serrano, E., Nowotny, T., Levi, R., Smith, B.H., Huerta, R.: Gain control network
conditions in early sensory coding. Plos Comput. Biol. 9(7), e1003133 (2013)

http://www.mineco.gob.es/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/978-3-642-38637-4_3
https://doi.org/10.1007/978-3-642-38637-4_3

HyperNets and Their Application to Learning
Spatial Transformations

Alexey Potapov1,2(&), Oleg Shcherbakov1,2, Innokentii Zhdanov1,2,
Sergey Rodionov1,3, and Nikolai Skorobogatko1,3

1 SingularityNET Foundation, Amsterdam, The Netherlands
pas.aicv@gmail.com, astroseger@gmail.com

2 ITMO University, St. Petersburg, Russia
{scherbakovolegdk,avenger15}@yandex.ru

3 Novamente LLC, Rockville, USA
nicksk@mail.ru

Abstract. In this paper we propose a conceptual framework for higher-order
artificial neural networks. The idea of higher-order networks arises naturally
when a model is required to learn some group of transformations, every element
of which is well-approximated by a traditional feedforward network. Thus the
group as a whole can be represented as a hyper network. One of typical examples
of such groups is spatial transformations. We show that the proposed framework,
which we call HyperNets, is able to deal with at least two basic spatial trans-
formations of images: rotation and affine transformation. We show that Hyper-
Nets are able not only to generalize rotation and affine transformation, but also to
compensate the rotation of images bringing them into canonical forms.

Keywords: Artificial neural networks � Higher-order models
Affine transformation � Rotation compensation � Currying neural networks
HyperNets

1 Introduction

Generalization properties of different neural networks architectures have been of
interest since the invention of these type of models. Theoretical and empirical studies of
models’ generalization properties remain relevant till present [1]. In addition, this
problem has a very special place in the field of computer vision: it is crucial for a
general-purposed computer vision system to learn the invariant representations of
sensor inputs [2]. Classic feedforward discriminative architectures even for deep
models have been studied decently, and it seems like their generalization properties are
quite restricted since such models cannot directly transfer the results of previous
learning to very new domains [3]. Moreover, even whilst working in the same domain
but with great variability in data, these models still give very poor results. A very
instructive example is the inability of multilayered perceptron to effectively recognize
rotated versions of handwritten digits while being trained on canonical ones [4].
Convolutional neural networks partially address the problem of invariant features by
making assumptions of locality and shared parameters. However, these assumptions are
yet not enough to force different types of ConvNets learn to distinguish between rotated

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 476–486, 2018.
https://doi.org/10.1007/978-3-030-01418-6_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_47&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_47&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_47&domain=pdf

digits without training on rotated examples [5, 6]. Recently, new models named capsule
networks have been proposed [7], which are aimed to treat the invariance problem in a
very specific way. Capsules are intended to store additional pieces of information in a
basic neuron structure that could result in learning of non-trivial spatial relationships
between the elements of sensor input on different levels of abstraction. However,
training methods for CapsNets are still not as efficient as traditional version of gradient
descent due to intensive process of dynamic routing.

It is also interesting that generalization properties of traditional models, which have
been trained to reconstruct the original or canonical representations of modified inputs
in autoencoder style, are also weak, especially if data domain has changed [8, 9].

Nonetheless, one of the most successful techniques to address the problem of
geometric transform compensation for input images is the usage of spatial transforming
layers [10]. Usually such layer consists of three main parts: localization net, grid
generator and sampler. Such architecture allows for explicit spatial manipulation with
data within a network for a wide family of parameterized spatial transformations. It has
been shown that models with spatial transforming layers generally have increased
classification accuracy. However, the concept of ST-layer has several drawbacks: the
necessity to choose only differentiable sampling kernels (e.g., the bilinear), explicit
representation of parameterized family of transformations, dependency on grid gen-
eration and some domain specificity.

As an alternative, we present a technique, which we call hyper-neural networks or
simply HyperNets. This is a method for manipulating model parameters by another
model. Herewith, one deep neural network can represent both models. Let us consider
the HyperNets in more detail.

2 Main Idea

Consider a network that accepts an image as input and produces its transformed ver-
sion. The network with dense connections between input and output can easily learn to
apply any (but fixed) spatial transformation to an arbitrary image. E.g. it can learn to
rotate an image by 45o, or flip an image vertically, etc., but the weights of connections
will be different for each individual transformation.

Imagine we want the network to learn how to rotate an image by arbitrary angle
provided as an input without hard-coding a special (non-neural) procedure for spatially
transforming images. If we add traditional neurons accepting the parameters of trans-
formation as input in addition to image, the network will just mix the image content
with these parameters. Even making the network deeper and appending its latent code
with the transformation parameters does not help the network to learn how to transform
images independently of their content as we shall see later.

Thus, if we have an input image x ε X and transform parameters u 2 U, it is
convenient to represent transformation process as mapping X � U ! X:

x0 ¼ f ðxjuÞ; ð1Þ

HyperNets and Their Application to Learning Spatial Transformations 477

where x′ denotes the transformed image. Given a labeled training set, a traditional
model tries to learn an approximation g to the function f:

f xjuð Þ � gh x;uð Þ; ð2Þ

where h denotes adjustable parameters of the model. In such approach u is usually
treated as an additional vector of input values that could be connected to an arbitrary
layer of the model presented by a deep network (Fig. 1). As we shall see later in this
case the model will not have enough generalization properties.

Instead we can do some form of currying for the function g. As a result we obtain a
new function curry(g):

curry gð Þ ¼ hx uð Þ ¼ u 7! gh x;uð Þð Þ; ð3Þ

which should also have trainable parameters x. So now we can directly search for the
mapping h: U ! (X ! X).

Since it is easy for networks to learn how to transform images by an individual
transformation, but their trained weights depend on the parameters of this transfor-
mation, it seems quite natural to introduce control neurons, which take these parameters
as input and modulate the connection weights of the controlled network through
higher-order connections.

The core idea behind HyperNets is representation of neural networks as higher-
order functions, which implies a very special network architecture where function
hx(u) is a neural network too (Fig. 2). This means that parameters h of the network
g are described as outputs of the network hx(u): h(u) = hx(u). Thus, we try to
approximate the target function f by the following model:

f ðxjuÞ � ghx uð Þ xð Þ: ð4Þ

In case of complex models g, especially some deep ones, not all of the parameters h
could depend on transformation parameters u. Hence, we can rewrite our expression
for a higher-order model using a slightly redundant notation:

f ðxjuÞ � ghx uð Þ;h0 xð Þ; ð5Þ

where h′ denotes the parameters of the model g that are not affected by higher-order
terms, i.e. h = {hx(u), h′}. Again, having the training set D comprised by m pairs of
canonical and transformed images along with respective transformation parameters:
D ¼ fxi; x0i;uigmi¼1, the goal of the model is to learn the transformation concept hx(u)
and its properties by minimizing some error/loss function and, thus, finding optimal
values for h´ and x:

x�; h0� ¼ argminx;h0
Xm
i¼1

L x0i; zi ¼ ghx uið Þ;h0 xið Þ
� � !

; ð6Þ

478 A. Potapov et al.

where L(x, z) is the corresponding loss function between the model’s output and the
target image.

The name ‘hyper network’ comes from the analogy between the higher-order
functions represented by neural nets and hypergraphs, which could be considered as an
extension of traditional computational graph approach.

In this work we have considered relatively simple HyperNet architectures. The
interaction between parameters of the higher-order part and the ‘core’ part of the model
presented in Fig. 2 can be described as follows:

Whi�ord ¼ softmax a uð Þð Þ ð7Þ

z ¼ Whi�ordWð Þx; ð8Þ

where a is an activation of the last layer of the higher-order part of the network, W
denotes the parameters (weights) of the ‘core’ part of the model and � denotes
element-wise product between matrices.

It can be seen that the model, whilst being structurally complex, remains differ-
entiable, which allows to directly apply standard optimization techniques under various
computational graph frameworks and to simultaneously train both higher-order and
‘core’ parts of the network. It is also worth saying that transformation parameters u
could be represented in numerous ways. For example, in case of planar image rotation

Fig. 1. Regular autoencoder with control (sin and cos of desired angle)

Fig. 2. Simple higher-order model architecture

HyperNets and Their Application to Learning Spatial Transformations 479

u might be parameterized by one angle a with activation constrains for the next hidden
layer of the network or by two values representing sin(a) and cos(a). So the input to
higher-order part of the network will be the transformation parameter, and the input for
the ‘core’ part of the network will be the image. For example, if you want to train a
model to rotate an image, you may use cos and sin of an angle as parameters and the
unrotated image as an input. The rotated image will be the desired output. Thus, the
model is trained in supervised style.

3 Experiments and Results

We have performed several types of experiments using a developed HyperNet. Also we
have tried many architecture modifications, such as adding more dense layers to ‘core’
network, using convolutional layers, etc.

3.1 Rotation Experiment

The first experiment is a simple rotation generalization. Previously, we have discussed
what will be the input and output in this scenario. In this experiment we have used
simple HyperNet, deep HyperNet, deep convolutional autoencoder (AE). Besides of
different kind of models, we have tried to learn angles in two different ways: using all
angles [0, 360] during training and testing process, and discrete angles (0, 45, 90, 135
… 360°) during training, but all angles while testing (interpolation experiment). Below
we presented only results for discrete angles learning for HyperNet and all angles
learning for AE. Also, both experiments (with AE and HyperNet) included some
extrapolation part for 4 and 9 digits. For these two digits the angles were taken not from
[0, 360], but from [0, 90] range of degrees while training. The results of these
experiments are shown in Fig. 3.

In the figure above, the odd columns contain groundtruth rotated images, the even
columns contain images rotated by a simple HyperNet. During testing phase only digits
that had not been present in training set were used. Again, as an input to higher-order
part of the network sin and cos of the desired angle were used. Moreover, we have
tested our model, previously trained solely on digits, to rotate letters. The results are
shown in Fig. 4 (left). As can be seen, after adding the higher-order weights, a simple

Fig. 3. Test results of simple HyperNet trained on discrete angles. Digits 1 and 4

480 A. Potapov et al.

model with just one input and output could be trained to generalize rotation. However,
there are some artifacts present on the images, especially if you take a look at digit 1.
Hence, a simple model was unable to interpolate rotation on discrete angles learning.

A slightly deeper model with two convolutional, two dense and two deconvolu-
tional layers (higher-order weights are applied to weights between two dense layers)
could return better results, as you can see in Fig. 5. These results were obtained from
training on discrete angles and it can be seen that deep higher-order network could
already interpolate rotation. At the right part of Fig. 4 the results of testing by deep
HyperNet on letters are presented.

We have also compared reconstruction loss between HyperNet and baseline con-
volutional autoencoder (AE), which had been designed to learn the rotation transform
using information about sin and cos of desired angle added to latent code (see Fig. 7).
Ten graphs mean ten digits. Also, in Fig. 6 the results of AE rotation generalization are
presented. It is worth saying though, that AE was trained on all angles, not only
discrete. It also has to be mentioned, that HyperNet was able to extrapolate rotation
representation for 4 and 9 while regular AE with control could not do this.

Fig. 4. Test results of simple (left) and deep convolutional (right) HyperNet applied to letters.
Letters have not been used for training

Fig. 5. Test results of deep HyperNet trained on discrete angles. Digits 1 and 4

HyperNets and Their Application to Learning Spatial Transformations 481

3.2 Affine Transformation Experiment

Of course, rotation generalization is not such an interesting task. Affine transformation
generalization is more challenging. In this case, we have used six affine transformation
parameters as a higher-order input, and the canonical image as an input for the core part
of the network. The transformed image was used as the desired output. It is worth
saying though, that affine transformation parameters were limited in their range to
ensure that the digit is still present on the 28 � 28 image and is recognizable for
human. In Fig. 8 you can see the results. In this experiment we are presenting only
deep model (with convolutional layers), since simple model shows worse results
(though still decent).

As you can see, the convolutional HyperNet was able to learn almost random affine
transformation and to apply it to digits that had not been contained in the training set.
Though a simple model still can generalize affine transformation thanks to the higher-
order part network, deeper network shows much smoother results. The ability of the AE
model to learn affine transformation was also tested and the results are shown in Fig. 9.

Fig. 6. Test results of AE model trained on all angles. Digits 1 and 4

Fig. 7. Reconstruction loss comparison of HyperNet models with baseline autoencoder

482 A. Potapov et al.

The AE model shows decent results, however some blurring and artifacts are
present at these pictures. The comparison between AE and HyperNet for the affine
transformation generalization experiment is presented in Table 1.

3.3 Rotation Compensation Experiment

In previous experiments we have tried to learn a model to transform or to simply rotate
an input image using control parameters and higher-order architecture. In this last part
we were interested in compensating rotation without any knowledge of the angle. This
means that control parameters in this scenario will be not sin and cos, since this would
be an inverse problem, not so interesting and challenging. But what could be used as an
input to the HyperNet then? We have tried to use the rotated image as an input to the
core network AND as an input to the higher-order network. And, of course, the
canonical image as the desired output. The idea is that the higher-order part of network
could possibly extract parameters of the transformation from the rotated image by
itself. In this case the dynamics of the higher-order part of network can be described as
follows:

Whi�ord ¼ softmax a xð Þð Þ: ð9Þ

Fig. 8. Results of deep HyperNet on the training set (left) and test set (right)

Fig. 9. Results of AE model for the training set (left) and test set (right)

Table 1. Comparison between AE and higher-order model

Simple HyperNet Deep HyperNet Autoencoder

Reconstruction loss 0.049395 0.0138223 0.0606265

HyperNets and Their Application to Learning Spatial Transformations 483

But we had to slightly deepen the higher-order part of the network to ensure that it
could do such a thing. So, in this experiment, the higher-order part of the network
consists of two convolutional layers and one dense layer. Let us see some results in
Fig. 10. Only the results of convolutional HyperNet are shown again since it has
performed better in previous experiments.

In the figures above, the odd columns are the rotated input images and the even
columns are the canonical images, which were received from the network. Most
interesting results are 6 and 9 digits, since when rotated 180 degrees, 6 actually
becomes 9. So, the one could expect that 6 and 9 would be mistaken by the network.
However, the HyperNet was able to somehow correctly compensate rotated digits,
including 6 and 9. There are some artifacts at the images, but overall the quality is
good. Figure 12 presents the results of AE rotation compensation experiment, and
Fig. 11 shows the comparison graphs between these two models. Just to remind,
models were trained on digits 4 and 9 that had been rotated only in [0, 90] range of
degrees. That explains the difference in graphs for these two digits for the AE model.

Fig. 10. Results of rotation compensation using deep HyperNet. Test set. Digits 6, 1 and 9

Fig. 11. Comparison of HyperNet and autoencoder applied for rotation compensation

484 A. Potapov et al.

4 Conclusion

In this article we have proposed a new approach to artificial neural networks based on
generating networks’ parameters by higher-order modules that constitute other net-
works themselves. In other words, the output of the higher-order part acts as a weight
matrix for the core part of the network. It has been shown that even a simple HyperNet
with just one input layer and one output layer in its core part can generalize rotation and
affine transformation. The addition of convolution layers allows to receive smoother
results. Moreover, deep HyperNet allows to compensate rotation without any infor-
mation about the angle. In future work it is possible to use such approach to com-
pensate other types of transformations or to extrapolate such approach on generative
models.

Our code is availiable on github https://github.com/singnet/semantic-vision/tree/
master/experiments/invariance/hypernets.

References

1. On the importance of single directions for generalization. https://arxiv.org/abs/1803.06959v4.
Accessed 23 May 2018

2. Goodfellow, I., Le, Q., Saxe, A., Lee, H., Ng, A.: Measuring invariances in deep networks.
In: Proceedings of the 22nd International Conference on Neural Information Processing
Systems, NIPS 2009, Vancouver, British Columbia, Canada, pp. 646–654 (2009)

3. Tan, B., Zhang, Y., Pan, S., Yang, Q.: Distant domain transfer learning. In: AAAI, pp. 2604–
2610 (2017)

4. Yoon, Y., Lee, L.-K., Oh, S.-Y.: Semi-rotation invariant feature descriptors using Zernike
moments for MLP classifier. In: Proceedings of 2016 International Joint Conference on
Neural Networks, IJCNN 2016, pp. 3990–3994. IEEE, Vancouver (2016)

5. Malashin, R., Kadykov, A.: Investigation of the generalizing capabilities of convolutional
neural networks in forming rotation-invariant attributes. J. Opt. Technol. 82(8), 509–515
(2015)

6. Khasanova, R., Frossard, P.: Graph-based isometry invariant representation learning. In:
ICML, pp. 1847–1856 (2017)

7. Sabour, S., Frosst, N., Hinton, G.: Dynamic routing between capsules. In: Proceedings of
2017 Advances in Neural Information Processing Systems, pp. 3859–3869 (2017)

8. Matsuo, T., Fukuhara, H., Shimada, N.: Transform invariant auto-encoder. In: proceedings
of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, pp. 2359–2364 (2017)

Fig. 12. Rotation compensation results using AE model. Test set. Digits 6, 1 and 9

HyperNets and Their Application to Learning Spatial Transformations 485

https://github.com/singnet/semantic-vision/tree/master/experiments/invariance/hypernets
https://github.com/singnet/semantic-vision/tree/master/experiments/invariance/hypernets
https://arxiv.org/abs/1803.06959v4

9. Hinton, G.E., Krizhevsky, A., Wang, S.D.: Transforming auto-encoders. In: Honkela, T.,
Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 44–51.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_6

10. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer
networks. In: Proceedings of 2015 Advances in Neural Information Processing Systems,
vol. 28, pp. 2017–2025 (2015)

486 A. Potapov et al.

http://dx.doi.org/10.1007/978-3-642-21735-7_6

Catastrophic Forgetting: Still a Problem
for DNNs

B. Pfülb(B), A. Gepperth(B), S. Abdullah(B), and A. Kilian(B)

Fulda University of Applied Sciences, Leipzigerstr. 123, 36037 Fulda, Germany
{benedikt.pfuelb,alexander.gepperth,saad.abdullah,

andre.kilian}@cs.hs-fulda.de
https://www.hs-fulda.de

Abstract. We investigate the performance of DNNs when trained on
class-incremental visual problems consisting of initial training, followed
by retraining with added visual classes. Catastrophic forgetting (CF)
behavior is measured using a new evaluation procedure that aims at
an application-oriented view of incremental learning. In particular, it
imposes that model selection must be performed on the initial dataset
alone, as well as demanding that retraining control be performed only
using the retraining dataset, as initial dataset is usually too large to be
kept. Experiments are conducted on class-incremental problems derived
from MNIST, using a variety of different DNN models, some of them
recently proposed to avoid catastrophic forgetting. When comparing our
new evaluation procedure to previous approaches for assessing CF, we
find their findings are completely negated, and that none of the tested
methods can avoid CF in all experiments. This stresses the importance of
a realistic empirical measurement procedure for catastrophic forgetting,
and the need for further research in incremental learning for DNNs.

Keywords: DNN · Catastrophic forgetting · Incremental learning

1 Introduction

The context of this article is the susceptibility of DNN to an effect usually termed
“catastrophic forgetting” or “catastrophic interference” [2]. When training a
DNN incrementally, that is, first training it on a sub-task D1 and subsequently
retraining on another sub-task D2 whose statistics differ (see Fig. 1), CF implies
an abrupt and virtually complete loss of knowledge about D1 during retraining.
In various forms, knowledge of this effect dates back to very early works on
neural networks [2], of which modern DNNs are a special case. Nevertheless,
known solutions seem difficult to apply to modern DNNs trained in a purely
gradient-based fashion. Recently, several approaches have been published with
the explicit goal of resolving the CF issue for DNNs in incremental learning tasks,
illustrated in [3,5,10]. On the other hand, there are “shallow” machine learning
methods explicitly constructed to avoid CF (reviewed in, e.g., [9]), although
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 487–497, 2018.
https://doi.org/10.1007/978-3-030-01418-6_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_48&domain=pdf

488 B. Pfülb et al.

sub-task D2

0 tmax 2tmax

iterations

train on D1

test on D1

train on D2

test on D2

test on D1

sub-task D1

(a) Training scheme

0 1000 2000 3000 4000 5000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

train:D1,test:D1
train:D2,test:D2
train:D2,test:All

(b) without CF

1000 2000 3000 4000 5000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

train:D1,test:D1
train:D2,test:D2
train:D2,test:All

(c) with CF

Fig. 1. Scheme of incremental training experiments (see (a)) and representative out-
comes without and with CF (see (b) and (c)). Initial training with sub-task D1 for tmax

iterations is followed by retraining on sub-task D2 for another tmax iterations. Dur-
ing training (white background) and retraining (grey background), test performance
is measured on D1 (blue curves), D2 (green curves) and D1 ∪ D2 (red curves). The
red curves allow to determine the presence of CF by simple visual inspection: if there
is significant degradation w.r.t. the blue curves, then CF has occurred. (Color figure
online)

this ability seems to be achieved at the cost of significantly reduced learning
capacity. In this article, we test the recently proposed solutions for DNNs using
a variety of class-incremental visual problems constructed from the well-known
MNIST benchmark [6]. In particular, we propose a new experimental protocol to
measure CF which avoids commonly made [3,5,7,10] implicit assumptions that
are incompatible with incremental learning in applied scenarios.

1.1 Application Relevance of Catastrophic Forgetting

When DNNs are trained on a single (sub-)task D1 only, catastrophic forget-
ting is not an issue. When retraining is necessary with a new sub-task D2, one
often recurs to retraining the DNN with all samples from D1 and D2 together.
This heuristic works in many situations, especially when the cardinality of D1

is moderate. When D1 becomes very large, however, or many slight additions
D(1+n) are required, this strategy becomes unfeasible, and an incremental train-
ing scheme (see Fig. 1a) must be used. Thus, the issue of catastrophic forgetting
becomes critically important, which is why we wish to assess, once and for all,
where DNNs stand with respect to CF.

1.2 Approach of the Article

In all experiments, we consider class-incremental learning scenarios divided into
two training steps on disjunct sub-tasks D1 and D2, as outlined in Sect. 1 and
visualized in Fig. 1. Both training steps are conducted for a fixed number of
iterations, with the understanding that in practice retraining would have to be
stopped at some point by an appropriate criterion before forgetting of D1 is com-
plete. The occurrence of forgetting is quantified using classification performance
on all test samples from D1 ∪D2 at the time retraining is stopped (see Fig. 1 for
a visual impression). In contrast to previous works, our experiments take into
account how (class-)incremental learning works in practice:

Catastrophic Forgetting: Still a Problem for DNNs 489

Table 1. Overview over 6 DNN models used in this study. They are obtained by
combining the concept of Dropout (D) with the basic DNN models: fully-connected
(fc), convolutional (conv), LWTA and EWC.

Concept Model

fc conv LWTA EWC

With Dropout D-fc D-conv ✗ D-EWC (EWC)

Without Dropout fc conv LWTA-fc (LWTA) ✗

– D2 is not available at initial training
– D1 is not available at retraining time as it might be very large.

This training paradigm (which we term “realistic”) has profound conse-
quences, most importantly that initial model selection has to be performed using
D1 alone, which is in contrast to previous works on CF in DNNs [3,5,10], where
D1 ∪ D2 is used for model selection purposes. Another consequence is that the
decision on when to stop retraining has to be taken based on D2 alone.

In order to reproduce earlier results, we introduce another training paradigm
which we term “prescient”, where both D1 and D2 are known at all times, and
which aligns well with evaluation methods in recent works. As classifiers, we use
typical DNN models like fully-connected- (fc), convolutional- (conv), LWTA-
based- (fc-LWTA) and DNNs based on the EWC model (EWC). Most of these
can be combined with the concepts of Dropout (D, [4]). An overview of possible
combinations is given in Table 1.

For all models, hyperparameter optimization is conducted in order to ensure
that our results are not simply accidental.

1.3 Related Work on CF in DNNs

In addition to early works on CF in connectionist models [2], new approaches
specific to DNNs have recently been unveiled, some with the explicit goal of pre-
venting catastrophic forgetting [3,5,7,10]. The work presented in [3] advocates
the popular Dropout method as a means to reduce or eliminate CF, validating
their claims on tasks derived a randomly shuffled version of MNIST [6] and a
Sentiment Analysis problem. In [10], a new kind of competitive transfer func-
tion is presented which is termed LWTA (Local Winner Takes All). In a very
recent article [5], the authors advocate determining the hidden layer weights that
are most “relevant” to a DNNs performance, and punishing the change of those
weights more heavily during retraining by an additional term in the energy func-
tional. Experiments are conducted on random data, randomly shuffled MNIST
data as in [3,10], and on a task derived from Deep Q-learning in Atari Games
[8]. Even more recently, authors in [7] propose the so-called incremental moment
matching (IMM) technique which suggests an alignment of statistical properties
of the DNN between D1 and D2 which is not included here, because it inherently

490 B. Pfülb et al.

requires knowledge of D1 at re-training time to select the best regularization
parameter(s).

2 Methods

The principal dataset this investigation is based on is MNIST [6]. Despite being a
very old benchmark, and a very simple one, it is still widely used, in particular in
recent works on incremental learning in DNNs [3,5,7,10]. It is used here because
we wish to reproduce these results, and also because we care about performance
in class-incremental settings, not offline performance on the whole dataset. As
we will see, MNIST-derived problems are more than a sufficient challenge for
the tested algorithms, so it is really unnecessary to add more complex ones (but
see Sect. 4 for a more in-depth discussion of this issue).

2.1 Learning Tasks

As outlined in Sect. 1.2, incremental learning performance of a given model is
evaluated on several datasets constructed from the MNIST dataset. The model is
trained successively on two sub-tasks (D1 and D2) from the chosen dataset and
it is recorded to what extend knowledge about previous sub-tasks is retained.
The precise way the sub-tasks of all datasets are constructed from the MNIST
dataset shall be described below.

Exclusion: D5-5. These datasets are obtained by randomly choosing 5 MNIST
classes for D1, and the remaining 5 for D2. To verify that results do not depend
on a particular choice of classes, we create a total of 8 datasets where the parti-
tioning of classes is different (see Table 2).

Exclusion: D9-1. We construct these datasets in a similar way as D5-5, select-
ing 9 MNIST classes for D1 and the remaining class for D2. In order to make
sure that no artifacts are introduced, we create three datasets (D9-1a, D9-1b
and D9-1c) with different choices for D1 and D2, see Table 2.

Permutation: DP10-10. This is the dataset used to evaluate incremental
retraining in [3,5,10], so results can directly be compared. It contains two sub-
tasks, each of which is obtained by permuting each 28 × 28 image in a random
fashion that is different between, but identical within, sub-tasks. Since both sub-
tasks contain 10 MNIST classes, we denote this dataset by DP10-10, the “P”
indicating permutation, see Table 2.

2.2 Models

We use TensorFlow/Python to implement or re-create all models used in this
article. The source code for all experiments is available at https://gitlab.
informatik.hs-fulda.de/ML-Projects/CF in DNNs.

https://gitlab.informatik.hs-fulda.de/ML-Projects/CF_in_DNNs
https://gitlab.informatik.hs-fulda.de/ML-Projects/CF_in_DNNs

Catastrophic Forgetting: Still a Problem for DNNs 491

Table 2. MNIST-derived datasets (DS) used in this article. All partitions of MNIST
into D1 and D2 are non-overlapping. For the DP10-10 dataset, the classes are identical
for D1 and D2 but pixels are permuted in D2 as described in the text.

Part. DS

D5-5 D9-1 DP10-10

D5-5a D5-5b D5-5c D5-5d D5-5e D5-5f D5-5g D5-h D9-1a D9-1b D9-1c

D1 classes 0–4 0 2 4 6 8 3 4 6 8 9 0 2 5 6 7 0 1 3 4 5 0 3 4 8 9 0 5 6 7 8 0 2 3 6 8 0–8 1–9 0, 2–9 0–9

D2 classes 5–9 1 3 5 7 9 0 1 2 5 7 1 3 4 8 9 2 6 7 8 9 1 2 5 6 7 1 2 3 4 9 1 4 5 7 9 9 0 1 0–9

Fully Connected Deep Network. Here, we consider a “normal” fully-
connected (FC) feed-forward MLP with two hidden layers, a softmax (SM) read-
out layer trained using cross-entropy, and the (optional) application of Dropout
(D) and ReLU operations after each hidden layer. Its structure can thus be sum-
marized as In-FC1-D-ReLU-FC2-D-ReLU-FC3-SM. In case more hidden layers
are added, their structure is analogous.

ConvNet. A convolutional network inspired by [1] is used here, with two hidden
layers and the application of Dropout (D), max-pooling (MP) and ReLU after
each layer, as well as a softmax (SM) readout layer trained using cross-entropy.
It structure can thus be stated as In-C1-MP-D-ReLU-C2-MP-D-ReLU-FC3-SM.

EWC. The Elastic Weight Consolidation (EWC) model has been recently pro-
posed in [5] to address the issue of CF in incremental learning tasks. We use
a TensorFlow-implementation provided by the authors that we integrate into
our own experimental setup; the corresponding code is available for download
as described. The basic network structure is analogous to that of fc models.

LWTA. Deep learning with a fully-connected Locally-Winner-Takes-All
(LWTA) transfer function has been proposed in [10], where it is also suggested
that deep LWTA networks have a significant robustness when trained incremen-
tally with several tasks. We use a self-coded TensorFlow implementation of the
model proposed in [10]. Following [10], the number of LWTA blocks is always set
to 2. The basic network structure is analogous to that of fully-connected models.

Dropout. Dropout, introduced in [4] and widely used in recent research on
DNNs, is a special transfer function that sets a random subset of activities in
each layer to 0 during training. It can, in principle, be applied to any DNN and
thus can be combined with all previously listed models except EWC (already
incorporated) and LWTA (unclear whether this would be sensible as LWTA is
already a kind of transfer function).

2.3 Experimental Procedure

The procedure we employ for all experiments is essentially the one given in
Sect. 1.2, where all models listed in Sect. 2.2 and Table 1 are applied to a subset
of class-incremental learning tasks described in Sect. 2.1. For each experiment,

492 B. Pfülb et al.

characterized by a pair of model and task, we conduct a search in model param-
eter space for the best model configuration, leading to multiple runs per experi-
ment, each run corresponding to a particular set of parameters for a given model
and a given task.

Each run lasts for 2tmax iterations and is structured as shown in Fig. 1, ini-
tially training the chosen model first on sub-task D1 and subsequently on sub-
task D2, each time for tmax iterations. Classification accuracy, measured at itera-
tion t, on a test set B while training on a train set A, is denoted χ(A,B, t). For a
thorough evaluation, we record the quantities χ(D1,D1, t < tmax), χ(D2,D2, t ≥
tmax) and χ(D2,D1∪D2, t ≥ tmax). Finally, the best-suited parameterized model
must be chosen among all the runs of an experiment. We investigate two strate-
gies for doing this, corresponding to different levels of knowledge at training
and retraining time during a single run. As detailed in Sect. 1.2, these are the
strategies which we term “prescient” and “realistic”. The “prescient” evaluation
strategy (see Algorithm 1) corresponds to an a priori knowledge of sub-task D2

at initial training time, as well as to a knowledge about D1 at retraining time.
Both assumptions are difficult to reconcile with incremental training in applied
scenarios, as detailed in Sect. 1.2. We use this strategy here to compare our
results to previous works in the field [3,5,10]. In contrast, the “realistic” evalu-
ation strategy (see Algorithm 2) assumes no knowledge about future sub-tasks
(D2) and furthermore supposes that D1 is unavailable at retraining time due to
its size (see Sect. 1.2 for the reasoning). It is this strategy which we propose for
future investigations concerning incremental learning.

2.4 Hyperparameters and Model Selection

For runs from all experiments, not involving CNNs, the parameters that are
varied are: number of hidden layers L ∈ {2, 3}, layer sizes S ∈ {200, 400, 800},
learning rate during initial training εD1 ∈ {0.01, 0.001}, and learning rate du-
ring retraining εD2 ∈ {0.001, 0.0001, 0.00001}. Based on the parameter set P ⊆
L×S×εD1 ×εD2 , all models are evaluated, respectively are model-specific hyper-
parameters used or supplanted. For experiments using CNNs, we fix the topology
to a form known to achieve good performances on MNIST as an exhaustive
optimization of all relevant parameters would prove too time-consuming in this
case, and vary only the εD1 and εD2 as detailed before. For EWC experiments,
the importance parameter λ of the retraining run is fixed at 1/εD2 , this choice
is nowhere to be found in [5] but is used in the provided code, which is why we
adopt it. For LWTA experiments, the number of LWTA blocks is fixed to 2 in all
experiments, corresponding to the values used in [10]. Dropout rates, if applied,
are set to 0.2 (input layer) and 0.5 (hidden layers), consistent with the choices
made in [3]. For CNNs, only a single Dropout rate of 0.5 is applied for input and
hidden layers alike. The length tmax of training/retraining period is empirically
fixed to 2500 iterations, each iteration using a batch size of 100 (batchsize). The
Momentum optimizer provided by TensorFlow is used for performing training,
with a momentum parameter μ = 0.99.

Catastrophic Forgetting: Still a Problem for DNNs 493

2.5 Reproduction of Previous Results by Prescient Evaluation

In this experiment, we wish to determine whether it is possible to find a param-
eterization for a given DNN model and task when there is a perfect knowledge
about and availability of the initial and future sub-tasks. Applying the models
listed in Sect. 2.2 to the tasks described in Sect. 2.1, and using the experimen-
tal procedure detailed in Sect. 2.3, we obtain the results summarized in Table 3
(applying the “prescient” evaluation of Algorithm1). We can state the following
insights: first of all, we can reproduce the basic results from [3] using the fc
model on DP10-10, which avoids catastrophic forgetting (contrarily to the con-
clusions drawn in this paper: these authors consider the very modest decrease in
performance to be catastrophic forgetting). This is however very specific to this
particular task, and in fact all models except EWC exhibit blatant catastrophic
forgetting behavior particularly on the D5-5 type tasks, while performing ad-
equately if not perfectly on the D9-1 tasks. EWC performs well on these tasks
as well, so we can state that EWC is the only tested algorithm that avoids CF
for all tasks when using prescient evaluation. Another observation is that the use
of Dropout, as suggested in [3], does not seem to significantly improve matters.
The LWTA method performs a little better than fc, D-fc, conv and D-conv but
is surpassed by EWC by a very large margin.

2.6 Realistic Evaluation

This experiment imposes the much more restrictive/realistic evaluation, detailed
in Sect. 2.3 and Algorithm 2, essentially performing initial training and model
selection only on D1 and retraining only using D2. It is this or related schemes
that would have to be used in typical application scenarios, and thus represents
the principal subject of this article. The performances of all tested DNN models
on all of the tasks from Sect. 2.1 are summarized in Table 4. Plots of experimental
results over time for the D-fc and EWC models are given in Figs. 2, 3, 4 and 5.
The results show a rather bleak picture where only the EWC model achieves
significant success for the D9-1 type tasks while failing for the D5-5 tasks. All
other models do not even achieve this partial success and exhibit strong CF for
all tasks. We can therefore observe that a different choice of evaluation procedure
strongly impacts results and the conclusions which are drawn concerning CF in
DNNs. For the realistic evaluation condition, which in our view is much more
relevant than the prescient one used in nearly all of the related work on the
subject, CF occurs for all DNN models we tested, and partly even for the EWC
model. As to the question why EWC performs well for all of the D9-1 type task in
contrast to the D5-5 type tasks, one might speculate that the addition of five new
classes, as opposed to one, might exceed EWC’s capabilities of protecting the
weights most relevant to D1. Various different values of the constant λ governing
the contribution of Fisher information in EWC were tested but with very similar
results.

494 B. Pfülb et al.

3 Discussion of Results and Principal Conclusions

From our experiments, we draw the following principal conclusions:

– CF should be investigated using the appropriate evaluation paradigms that
reflect application conditions. At the very least, using future data for model
selection is inappropriate, which leads to conclusions that are radically dif-
ferent from most related experimental work, see Sect. 1.3.

– using a realistic evaluation paradigm, we find that CF is still very much a
problem for all investigated methods.

– in particular: Dropout is not effective against CF; neither is LWTA.
– the permuted MNIST task can be solved by almost any DNN model in almost

any topology. So all conclusions drawn from using this task should be revis-
ited.

– EWC seems to be partly effective but fails for all of the D5-5 tasks, indicating
that it is not the last word in this matter.

Data: model m, sub-tasks D1 & D2, parameter set P
Result: quality of best model q∗

mp

initialize q∗
mp

← −1

foreach parameters p ∈ P do
initial training of mp on D1 for tmax iterations
for t ← 0 to tmax iterations do // retraining of mp on D2

update mp on D2 using batchsize

qmp ,t ← χ(D2, D1 ∪ D2, t)
if qmp ,t > q∗

mp
then q∗

mp
← qmp ,t

return q∗
mp

Algorithm 1. The prescient evaluation strategy.

We write that EWC “seems to be partly effective”, meaning it solves some
incremental tasks well while it fails for others. So we observe that there is no
guarantee that can be obtained from a purely empirical validation approach such
as ours; yet another type of incremental learning task might be solved perfectly
or not at all. This points to the principal conceptual problem that we see when
investigating CF in DNNs: there is no theory that might offer any guarantees.
Such guarantees could be very useful in practice, the most interesting one being
how to determine a lower bound on performance loss on D1 ∪ D2, without having
access to D1, only to the network state and D2. Other guarantees could provide
upper bounds on retraining time before performance on D1 ∪ D2 degrades.

Catastrophic Forgetting: Still a Problem for DNNs 495

Table 3. Results for prescient evaluation. Please note that the performance level of
complete catastrophic forgetting (i.e., chance-level classification after retraining with
D2) depends on the dataset considered: for the D5-5 dataset it is at 0.5, whereas it is
at 0.1 for the D9-1 datasets. The rightmost column indicates the DP10-10 task which
is solved near-perfectly by all models.

Model Dataset

D5-5 D9-1 DP10-10

D5-5a D5-5b D5-5c D5-5d D5-5e D5-5f D5-5g D5-5h D9-1a D9-1b D9-1c

EWC 0.92 0.92 0.91 0.93 0.94 0.94 0.89 0.93 1.00 1.00 1.00 1.00

fc 0.69 0.63 0.58 0.65 0.61 0.58 0.61 0.69 0.87 0.87 0.86 0.97

D-fc 0.58 0.60 0.61 0.66 0.61 0.54 0.63 0.64 0.87 0.87 0.85 0.96

conv 0.51 0.50 0.50 0.50 0.50 0.50 0.51 0.49 0.89 0.89 0.87 0.95

D-conv 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.49 0.81 0.84 0.87 0.96

LWTA 0.66 0.68 0.64 0.73 0.71 0.62 0.68 0.71 0.88 0.91 0.91 0.97

Data: model m, sub-tasks D1 & D2, parameter set P
Result: quality of best model q∗

mp

initialize q∗
T ← −1

forall the parameters p ∈ P do //determine best model parameter training D1

for t ← 0 to tmax iterations do
update of mp on D1 using batchsize; qmp ,t ← χ(D1, D1, t)
if qmp ,t > q∗

T then q∗
T ← qmp ,t; m∗

p ← mp

initialize q∗
mp

← −1

forall the retraining learning rates ε ∈ εD2 do
initialize q∗

R ← −1
for t ← 0 to tmax iterations do //retraining of m∗

p on D2

update m∗
p on D2 with learning rate ε; qmp ,t ← χ(D2, D2, t)

if qmp ,t > q∗
R then q∗

R ← qmp ,t

tE ← arg mint(qmp ,t > 0.99 · q∗
R); qmp ← χ(D2, D1 ∪ D2, tE)

if qmp > q∗
mp

then q∗
mp

← qmp

return q∗
mp

Algorithm 2. The realistic evaluation strategy.

Table 4. Results for realistic evaluation. Please note that the performance level of
total catastrophic forgetting (i.e., chance-level classification after retraining with D2)
depends on the dataset: for the D5-5 dataset it is at 0.5, whereas it is at 0.1 for the
D9-1 datasets. The rightmost column indicates the DP10-10 task (“permuted MNIST”)
which is again solved near-perfectly by all models.

Model Dataset

D5-5 D9-1 DP10-10

D5-5a D5-5b D5-5c D5-5d D5-5e D5-5f D5-5g D5-5h D9-1a D9-1b D9-1c

EWC 0.48 0.56 0.62 0.52 0.58 0.58 0.55 0.53 0.82 0.91 0.97 0.99

fc 0.47 0.49 0.50 0.50 0.48 0.49 0.50 0.49 0.15 0.10 0.23 0.97

D-fc 0.47 0.50 0.50 0.50 0.49 0.49 0.50 0.49 0.52 0.10 0.16 0.96

conv 0.48 0.50 0.50 0.50 0.49 0.50 0.51 0.49 0.29 0.33 0.11 0.95

D-conv 0.48 0.50 0.50 0.50 0.45 0.50 0.50 0.49 0.24 0.22 0.14 0.96

LWTA 0.47 0.50 0.50 0.50 0.49 0.49 0.51 0.49 0.48 0.29 0.66 0.97

496 B. Pfülb et al.

Task: D9-1a Task: D9-1c

Fig. 2. Best EWC runs on D9-1 datasets in the realistic evaluation condition.

Task: D5-5a Task: D5-5h

Fig. 3. Best EWC runs on D5-5 datasets in the realistic evaluation condition.

Task: D9-1b Task: D9-1c

Fig. 4. Best D-fc runs on D9-1 datasets in the realistic evaluation condition.

Task: D5-5a Task: D5-5c

Fig. 5. Best D-fc runs on D5-5 datasets in the realistic evaluation condition.

Catastrophic Forgetting: Still a Problem for DNNs 497

4 Future Work

The issue of CF is a complex one, and correspondingly our article and our exper-
imental procedures are complex as well. There are several points where we made
rather arbitrary choices, e.g., when choosing the constant μ = 0.99 in the real-
istic evaluation Algorithm 2. The results are affected by this choice although we
verified that the trend is unchanged. Another weak point is our model selection
procedure: a much larger combinatorial set of model hyper-parameters should be
sampled, including Dropout rates, convolution filter kernels, number and size of
layers. This might conceivably allow to identify model hyperparameters avoiding
CF for some or all tested models, although we consider this unlikely. Lastly, the
use of MNIST might be criticized as being too simple: this is correct, and we are
currently doing experiments with more complex classification tasks (e.g., SVHN
and CIFAR-10). However, as our conclusion is that none of the currently pro-
posed DNN models can avoid CF, this is not very likely to change when using
an even more challenging classification task (rather the reverse, in fact).

References

1. Ciresan, D.C., Meier, U., Masci, J., Maria Gambardella, L., Schmidhuber, J.:
Flexible, high performance convolutional neural networks for image classification.
In: IJCAI Proceedings of International Joint Conference on Artificial Intelligence,
Barcelona, Spain, vol. 22, p. 1237 (2011)

2. French, R.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci.
(4) (1999)

3. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical
investigation of catastrophic forgetting in gradient-based neural networks. arXiv
preprint arXiv:1312.6211 (2013)

4. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.:
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580 (2012)

5. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc.
Natl. Acad. Sci. 114, 3521–3526 (2017). https://doi.org/10.1073/pnas.1611835114

6. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. In: Intelligent Signal Processing. IEEE Press (2001)

7. Lee, S.W., Kim, J.H., Jun, J., Ha, J.W., Zhang, B.T.: Overcoming catastrophic
forgetting by incremental moment matching. In: Advances in Neural Information
Processing Systems, pp. 4655–4665 (2017)

8. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
7540, 529–533 (2015)

9. Sigaud, O., Salaün, C., Padois, V.: On-line regression algorithms for learning
mechanical models of robots: a survey. Rob. Auton. Syst. 12, 1115–1129 (2011)

10. Srivastava, R.K., Masci, J., Kazerounian, S., Gomez, F., Schmidhuber, J.: Compete
to compute. In: Advances in Neural Information Processing Systems (2013)

http://arxiv.org/abs/1312.6211
http://arxiv.org/abs/1207.0580
https://doi.org/10.1073/pnas.1611835114

Queue-Based Resampling for Online Class
Imbalance Learning

Kleanthis Malialis(B), Christos Panayiotou, and Marios M. Polycarpou

KIOS Research and Innovation Center of Excellence,
Department of Electrical and Computer Engineering,

University of Cyprus, Nicosia, Cyprus
{malialis.kleanthis,christosp,mpolycar}@ucy.ac.cy

Abstract. Online class imbalance learning constitutes a new problem
and an emerging research topic that focusses on the challenges of online
learning under class imbalance and concept drift. Class imbalance deals
with data streams that have very skewed distributions while concept drift
deals with changes in the class imbalance status. Little work exists that
addresses these challenges and in this paper we introduce queue-based
resampling, a novel algorithm that successfully addresses the co-existence
of class imbalance and concept drift. The central idea of the proposed
resampling algorithm is to selectively include in the training set a subset
of the examples that appeared in the past. Results on two popular bench-
mark datasets demonstrate the effectiveness of queue-based resampling
over state-of-the-art methods in terms of learning speed and quality.

Keywords: Online learning · Class imbalance · Concept drift
Resampling · Neural networks · Data streams

1 Introduction

In the area of monitoring and security of critical infrastructures which include
large-scale, complex systems such as power and energy systems, water, trans-
portation and telecommunication networks, the challenge of the state being nor-
mal or healthy for a sustained period of time until an abnormal event occurs is
typically encountered [10]. Such abnormal events or faults can lead to serious
degradation in performance or, even worse, to cascading overall system failure
and breakdown. The consequences are tremendous and may have a huge impact
on everyday life and well-being. Examples include real-time prediction of haz-
ardous events in environment monitoring systems and intrusion detection in
computer networks. In critical infrastructure systems the system is at a healthy
state the majority of the time and failures are low probability events, therefore,
class imbalance is a major challenge encountered in this area.

Class imbalance occurs when at least one data class is under-represented
compared to others, thus constituting a minority class. It is a difficult problem
as the skewed distribution makes a traditional learning algorithm ineffective,
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 498–507, 2018.
https://doi.org/10.1007/978-3-030-01418-6_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_49&domain=pdf

Queue-Based Resampling for Online Class Imbalance Learning 499

specifically, its prediction power is typically low for the minority class examples
and its generalisation ability is poor [16]. The problem becomes significantly
harder when class imbalance co-exists with concept drift. There exists only a
handful of work on online class imbalance learning. Focussing on binary classifi-
cation problems, we introduce a novel algorithm, queue-based resampling, where
its central idea is to selectively include in the training set a subset of the negative
and positive examples by maintaining a separate queue for each class. Our study
examines two popular benchmark datasets under various class imbalance rates
with and without the presence of drift. Queue-based resampling outperforms
state-of-the-art methods in terms of learning speed and quality.

2 Background and Related Work

2.1 Online Learning

In online learning [1], a data generating process provides at each time step t a
sequence of examples (xt, yt) from an unknown probability distribution pt(x, y),
where xt ∈ R

d is an d-dimensional input vector belonging to input space X and
yt ∈ Y is the class label where Y = {c1, . . . , cN} and N is the number of classes.
An online classifier is built that receives a new example xt at time step t and
makes a prediction ŷt. Specifically, assume a concept h : X → Y such that ŷt =
h(xt). The classifier after some time receives the true label yt, its performance is
evaluated using a loss function J = l(yt, ŷt) and is then trained i.e. its parameters
are updated accordingly based on the loss J incurred. The example is discarded
to enable learning in high-speed data streaming applications. This process is
repeated at each time step. Depending on the application, new examples do not
necessarily arrive at regular and pre-defined intervals.

We distinguish chunk-based learning [1] from online learning where at
each time step t we receive a chunk of M > 1 examples Ct = {(xt

i, y
t
i)}Mi=1.

Both approaches build a model incrementally, however, the design of chunk-
based algorithms differs significantly and, therefore, the majority is typically
not suitable for online learning tasks [16]. This work focuses on online learning.

2.2 Class Imbalance and Concept Drift

Class imbalance [6] constitutes a major challenge in learning and occurs when
at least one data class is under-represented compared to others, thus constitut-
ing a minority class. Considering, for example, a binary classification problem,
class 1 (positive) and 0 (negative) constitutes the minority and majority class
respectively if p(y = 1) � p(y = 0). Class imbalance has been extensively stud-
ied in offline learning and techniques addressing the problem are typically split
into two categories, these are, data-level and algorithm-level techniques.

Data-level techniques consist of resampling techniques that alter the train-
ing set to deal with the skewed data distribution, specifically, oversampling
techniques “grow” the minority class while undersampling techniques “shrink”

500 K. Malialis et al.

the majority class. The simplest and most popular resampling techniques are
random oversampling (or undersampling) where data examples are randomly
added (or removed) respectively [16,17]. More sophisticated resampling tech-
niques exist, for example, the use of Tomek links discards borderline examples
while the SMOTE algorithm generates new minority class examples based on
the similarities to the original ones. Interestingly, sophisticated techniques do
not always outperform the simpler ones [16]. Furthermore, since their mecha-
nism relies on identifying relations between training data, it is difficult to be
applied in online learning tasks, although some initial effort has been recently
made [13].

Algorithm-level techniques modify the classification algorithm directly to
deal with the imbalance problem. Cost-sensitive learning is widely adopted and
assigns a different cost to each data class [17]. Alternatives are threshold-moving
[17] methods where the classifier’s threshold is modified such that it becomes
harder to misclassify minority class examples. Contrary to resampling methods
that are algorithm-agnostic, algorithm-level methods are not as widely used [16].

A challenge in online learning is that of concept drift [1] where the data
generating process is evolving over time. Formally, a drift corresponds to a change
in the joint probability p(x, y). Despite that drift can manifest itself in other
forms, this work focuses on p(y) drift (i.e. a change in the prior probability)
because such a change can lead to class imbalance. Note that the true decision
boundary remains unaffected when p(y) drift occurs, however, the classifier’s
learnt boundary may drift away from the true one.

2.3 Online Class Imbalance Learning

The majority of existing work addresses class imbalance in offline learning, while
some others require chunk-based data processing [8,16]. Little work deals with
class imbalance in online learning and this section discusses the state-of-the-art.

The authors in [14] propose the cost-sensitive online gradient descent
(CSODG) method that uses the following loss function:

J = (Iyt=0 + Iyt=1
wp

wn
) l(yt, ŷt) (1)

where Icondition is the indicator function that returns 1 if condition is satisfied
and 0 otherwise, 0 ≤ wp, wn ≤ 1 and wp + wn = 1 are the costs for posi-
tive and negative classes respectively. The authors use the perceptron classifier
and stochastic gradient descent, and apply the cost-sensitive modification to the
hinge loss function achieving excellent results. The downside of this method is
that the costs need to be pre-defined, however, the extent of the class imbalance
problem may not be known in advance. In addition, it cannot cope with con-
cept drift as the pre-defined costs remain static. In [5], the authors introduce
RLSACP which is a cost-sensitive perceptron-based classifier with an adaptive
cost strategy.

Queue-Based Resampling for Online Class Imbalance Learning 501

Fig. 1. Example of Queue2 resampling (Color figure online)

A time decayed class size metric is defined in [15] where for each class ck, its
size sk is updated at each time step t according to the following equation:

stk = θst−1
k + Iyt=ck(1 − θ) (2)

where 0 < θ < 1 is a pre-defined time decay factor that gives less emphasis on
older data. This metric is used to determine the imbalance rate at any given
time. For instance, for a binary classification problem where the positive class
constitutes the minority, the imbalance rate at any given time t is given by stp/stn.

Oversampling-based online bagging (OOB) is an ensemble method that
adjusts the learning bias from the majority to the minority class adaptively
through resampling by utilising the time decayed class size metric [15]. An under-
sampling version called UOB had also been proposed but was demonstrated to be
unstable. OOB with 50 neural networks has been shown to have superior perfor-
mance. To determine the effectiveness of resampling solely, the authors examine
the special case where there exists only a single classifier denoted by OOBsg.
Compared against the aforementioned RLSACP and others, OOBsg has been
shown to outperform the rest in the majority of the cases, thus concluding that
resampling is the main reason behind the effectiveness of the ensemble [15].

Another approach to address drift is the use of sliding windows [8]. It can be
viewed as adding a memory component to the online learner; given a window of
size W , it keeps in the memory the most recent W examples. Despite being able
to address concept drift, it is difficult to determine a priori the window size as a
larger window is better suited for a slow drift, while a smaller window is suitable
for a rapid drift. More sophisticated algorithms have been proposed, such as, a
window of adaptable size or the use of multiple windows of different size [11].
The drawback of this approach is that it cannot handle class imbalance.

3 Queue-Based Resampling

Online class imbalance learning is an emerging research topic and this work
proposes queue-based resampling, a novel algorithm that addresses this problem.
Focussing on binary classification, the central idea of the proposed resampling
algorithm is to selectively include in the training set a subset of the positive
and negative examples that appeared so far. Work closer to us is [4] where the
authors apply an analogous idea but in the context of chunk-based learning.

502 K. Malialis et al.

Algorithm 1. Queue-based Resampling
1: Input:

maximum length L of each queue
queues (qtp, q

t
n) for positive and negative examples

2: for each time step t do
3: receive example xt ∈ R

d

4: predict class ŷt ∈ {0, 1}
5: receive true label yt ∈ {0, 1}
6: let zt = (xt, yt)
7: if yt == 0 then
8: qtn = qt−1

n .append(zt)
9: else

10: qtp = qt−1
p .append(zt)

11: end if
12: let qt = qtp ∪ qtn be the training set
13: calculate cost on qt using Eq. 3
14: update classifier
15: end for

The selection of the examples is achieved by maintaining at any given time
t two separate queues of equal length L ∈ Z

+, qtn = {(xi, yi)}Li=1 and qtp =
{(xi, yi)}Li=1 that contain the negative and positive examples respectively. Let
zi = (xi, yi), for any two zi, zj ∈ qtn or (qtp) such that j > i, zj arrived more
recently in time. Queue-based resampling stores the most recent example plus
2L−1 old ones. We will refer to the proposed algorithm as QueueL. Of particular
interest is the special case Queue1 where the length of each queue is L = 1, as
it has the major advantage of requiring just a single data point from the past.

An example demonstrating how QueueL works when L = 2 is shown in Fig. 1.
The upper part shows the examples that arrive at each time step e.g. z0 and
z6 arrive at t = 0 and t = 6 respectively. Positive examples are shown in green.
The bottom part shows the contents of each queue at each time step. Focussing
on t = 5, we can see that the queue q5n contains the two most recent negative
examples i.e. z4 and z5, and the queue q5p contains the most recent positive
example i.e. z1 which is carried over since t = 1.

The union of the two queues is then taken qt = qtp ∪ qtn = {(xi, yi)}2Li=1 to
form the new training set for the classifier. The cost function is given in Eq. 3:

J =
1

|qt|
|qt|∑

i=1

l(yi, h(xi)) (3)

where |qt| ≤ 2L and (xi, yi) ∈ qt. At each time step the classifier is updated once
according to the cost J incurred i.e. a single update of the classifier’s weights is
performed. The pseudocode of our algorithm is shown in Algorithm1.

The effectiveness of queue-based resampling is attributed to a few important
characteristics. Maintaining separate queues for each class helps to address the
class imbalance problem. Including positive examples from the past in the most

Queue-Based Resampling for Online Class Imbalance Learning 503

Table 1. Compared methods

Method Class imbalance Concept drift Access to old data

Baseline No No No

Cost sensitive Yes No No

Sliding window No Yes Yes (W − 1)

OOBsg Yes Yes No

Queue1 Yes Yes Yes (1)

QueueL Yes Yes Yes (2L − 1)

recent training set can be viewed as a form of oversampling. The fact that exam-
ples are propagated and carried over a series of time steps allows the classifier to
‘remember’ old concepts. Additionally, to address the challenge of concept drift,
the classifier needs to also be able to ‘forget’ old concepts. This is achieved by
bounding the length of queues to L, therefore, the queues are essentially behav-
ing like sliding windows as well. Therefore, the proposed queue-based resampling
method can cope with both class imbalance and concept drift.

4 Experimental Setup

Our experimental study is based on two popular synthetic datasets from the
literature [2] where in both cases a classifier attempts to learn a non-linear
decision boundary. These are, the Sine and Circle datasets and are described
below.

Sine. It consists of two attributes x and y uniformly distributed in [0, 2π] and
[−1, 1] respectively. The classification function is y = sin(x). Instances below the
curve are classified as positive and above the curve as negative. Feature rescaling
has been performed so that x and y are in [0, 1].

Circle. It has two attributes x and y that are uniformly distributed in [0, 1]. The
circle function is given by (x − xc)2 + (y − yc)2 = r2c where (xc, yc) is its centre
and rc its radius. The circle with (xc, yc) = (0.4, 0.5) and rc = 0.2 is created.
Instances inside the circle are classified as positive and outside as negative.

Our baseline classifier is a neural network consisting of one hidden layer
with eight neurons. Its configuration is as follows: He [7] weight initialisation,
backpropagation and the ADAM [9] optimisation algorithms, learning rate of
0.01, LeakyReLU [12] as the activation function of the hidden neurons, sigmoid
activation for the output neuron, and the binary cross-entropy loss function.

For our study we implemented a series of state-of-the-art methods as
described in Sect. 2.3. We implemented a cost sensitive version of the baseline
which we will refer to as CS; the cost of the positive class is set to wp

wn
= 0.95

0.05 = 19
as in [14]. Furthermore, the sliding window method has been implemented with

504 K. Malialis et al.

(a) p(y = 1) = 0.5 (b) p(y = 1) = 0.01

Fig. 2. Effect of queue length on the Sine dataset

a window size of W . Moreover, the OOBsg has been implemented with the time
decay factor set to θ = 0.99 for calculating the class size at any given time.

For the proposed resampling method we will use the special case Queue1 and
another case QueueL where L > 1. Section 5.1 performs an analysis of QueueL
by examining how the queue length L affects the behaviour and performance of
queue-based resampling. For a fair comparison with the sliding window method,
we will set the window size to W = 2L i.e. both methods will have access to
the same amount of old data examples. A summary of the compared methods
is shown in Table 1 indicating which methods are suitable for addressing class
imbalance and concept drift. It also indicates whether methods require access to
old data and, if yes, it includes the maximum number in the brackets.

A popular and suitable metric for evaluating algorithms under class imbal-
ance is the geometric mean as it is not sensitive to the class distribution [16].
It is defined as the geometric mean of recall and specificity. Recall is defined as
the true positive rate (R = TP

P) and specificity is defined as the true negative
rate (S = TN

N), where TP and P is the number of true positives and positives
respectively, and similarly, TN and N for the true negatives and negatives. The
geometric mean is then calculated using G-mean =

√
R × S. To calculate the

recall and specificity online, we use the prequential evaluation using fading fac-
tors as proposed in [3] and set the fading factor to α = 0.99. In all graphs we
plot the prequential G-mean in every time step averaged over 30 runs, including
the error bars showing the standard error around the mean.

5 Experimental Results

5.1 Analysis of Queue-Based Resampling

In this section we investigate the behaviour of QueueL resampling under various
queue lengths (L ∈ [1, 10, 25, 50]) and examine how these affect its performance.
Furthermore, we consider a balanced scenario (i.e. p(y = 1) = 0.5) and a scenario
with a severe class imbalance of 1% (i.e. p(y = 1) = 0.01).

Queue-Based Resampling for Online Class Imbalance Learning 505

(a) p(y = 1) = 0.1 (b) p(y = 1) = 0.01

Fig. 3. Class imbalance on the Circle dataset

Figures 2a and b depict the behaviour of the proposed method on the bal-
anced and severely imbalanced scenario respectively for the Sine dataset. It can
be observed from Fig. 2a that the larger the queue length the better the per-
formance, specifically, the best performance is achieved when L = 50. It can be
observed from Fig. 2b that the smaller the queue length the faster the learning
speed. Queue1 dominates in the first 500 time steps, however, its end perfor-
mance is inferior to the rest. The method with L = 10 dominates for over 3000
steps. Given additional learning time the method with L = 25 achieves the best
performance. The method with L = 50 is unable to outperform the one with
L = 10 after 5000 steps, in fact, it performs similarly to Queue1.

It is important to emphasise that contrary to offline learning where the end
performance is of particular concern, in online learning both the end performance
and learning time are of high importance. For this reason, we have decided to
focus on Queue25 as it constitutes a reasonable trade-off between learning speed
and performance. As already mentioned, we will also focus on Queue1 as it has
the advantage of requiring only one data example from the past.

5.2 Comparative Study

Figure 3a depicts a comparative study of all the methods in the scenario involving
10% class imbalance for the Circle dataset. The baseline method, as expected,
does not perform well and only starts learning after about 3000 time steps.
The proposed Queue25 has the best performance at the expense of a late start.
Queue1 also outperforms the rest although towards the end other methods like
OOBsg close the gap. Similar results are obtained for the Sine dataset but are
not presented here due to space constraints.

Figure 3a shows how each method compares to each other in the 1% class
imbalance scenario. Both the proposed methods outperform the state-of-the-
art OOBsg. Despite the fact that Queue25 performs considerably better than
Queue1, it requires about 1500 time steps to surpass it. Additionally, we stress
out that Queue1 only requires access to a single old example.

506 K. Malialis et al.

(a) Sine dataset (b) Circle dataset

Fig. 4. Class imbalance and concept drift

We now examine the behaviour of all methods in the presence of both class
imbalance and drift. Figures 4a and b show the performance of all methods for the
Sine and Circle datasets respectively. Initially, class imbalance is p(y = 1) = 0.1
but at time step t = 2500 an abrupt drift occurs and this becomes p(y = 1) = 0.9.
At the time of drift we reset the prequential G-mean to zero, thus ensuring the
performance observed remains unaffected by the performance prior the drift [15].
Similar results are observed for both datasets. Queue25 outperforms the rest at
the expense of a late start. Queue1 starts learning fast, initially it outperforms
other methods but their end performance is close. OOBsg is affected more by
the drift in the Sine dataset but recovers soon. The baseline method outperforms
its cost sensitive version after the drift because the pre-defined costs of method
CS are no longer suitable in the new situation.

6 Conclusion

Online class imbalance learning constitutes a new problem and an emerging
research topic. We propose a novel algorithm, queue-based resamping, to address
this problem. Focussing on binary classification problems, the central idea behind
queue-based resampling is to selectively include in the training set a subset of
the negative and positive examples by maintaining at any given time a separate
queue for each class. It has been shown to outperform state-of-the-art methods,
particularly, in scenarios with severe class imbalance. It has also been demon-
strated to work well when abrupt concept drift occurs. Future work will examine
the behaviour of queue-based resampling in various other types of concept drift
(e.g. gradual). A challenge faced in the area of monitoring of critical infrastruc-
tures is that the true label of examples can be noisy or even not available. We
plan to address this challenge in the future.

Queue-Based Resampling for Online Class Imbalance Learning 507

Acknowledgements. This work has been supported by the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No 739551 (KIOS
CoE) and from the Republic of Cyprus through the Directorate General for European
Programmes, Coordination and Development.

References

1. Ditzler, G., Roveri, M., Alippi, C., Polikar, R.: Learning in nonstationary environ-
ments: a survey. IEEE Comput. Intell. Mag. 10(4), 12–25 (2015)

2. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with drift detection. In:
Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28645-5 29

3. Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algo-
rithms. Mach. Learn. 90(3), 317–346 (2013)

4. Gao, J., Ding, B., Fan, W., Han, J., Philip, S.Y.: Classifying data streams with
skewed class distributions and concept drifts. IEEE Internet Comput. 12(6), 37–49
(2008)

5. Ghazikhani, A., Monsefi, R., Yazdi, H.S.: Recursive least square perceptron model
for non-stationary and imbalanced data stream classification. Evol. Syst. 4(2),
119–131 (2013)

6. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data
Eng. 9, 1263–1284 (2008)

7. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on ImageNet classification. In: Proceedings of the IEEE Inter-
national Conference on Computer Vision, pp. 1026–1034 (2015)

8. Hoens, T.R., Polikar, R., Chawla, N.V.: Learning from streaming data with concept
drift and imbalance: an overview. Progress Artif. Intell. 1(1), 89–101 (2012)

9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

10. Kyriakides, E., Polycarpou, M.: Intelligent Monitoring, Control, and Security of
Critical Infrastructure Systems, vol. 565. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44160-2

11. Lazarescu, M.M., Venkatesh, S., Bui, H.H.: Using multiple windows to track con-
cept drift. Intell. Data Anal. 8(1), 29–59 (2004)

12. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. In: Proceedings of ICML, vol. 30, p. 3 (2013)

13. Mao, W., Wang, J., Wang, L.: Online sequential classification of imbalanced data
by combining extreme learning machine and improved smote algorithm. In: 2015
International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2015)

14. Wang, J., Zhao, P., Hoi, S.C.: Cost-sensitive online classification. IEEE Trans.
Knowl. Data Eng. 26(10), 2425–2438 (2014)

15. Wang, S., Minku, L.L., Yao, X.: Resampling-based ensemble methods for online
class imbalance learning. IEEE Trans. Knowl. Data Eng. 27(5), 1356–1368 (2015)

16. Wang, S., Minku, L.L., Yao, X.: A systematic study of online class imbalance
learning with concept drift. IEEE Trans. Neural Netw. Learn. Syst. (2018). https://
doi.org/10.1109/TNNLS.2017.2771290

17. Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods
addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18(1),
63–77 (2006)

https://doi.org/10.1007/978-3-540-28645-5_29
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-662-44160-2
https://doi.org/10.1007/978-3-662-44160-2
https://doi.org/10.1109/TNNLS.2017.2771290
https://doi.org/10.1109/TNNLS.2017.2771290

Learning Simplified Decision Boundaries
from Trapezoidal Data Streams

Ege Beyazit(B), Matin Hosseini(B), Anthony Maida(B), and Xindong Wu(B)

University of Louisiana at Lafayette, Lafayette, LA 70503, USA
{exb6143,mxh0212,maida,xwu}@louisiana.edu

Abstract. We present a novel adaptive feedforward neural network for
online learning from doubly-streaming data, where both the data vol-
ume and feature space grow simultaneously. Traditional online learning
and feature selection algorithms can’t handle this problem because they
assume that the feature space of the data stream remains unchanged.
We propose a Single Hidden Layer Feedforward Neural Network with
Shortcut Connections (SLFN-S) that learns if a data stream needs to
be mapped using a non-linear transformation or not, to speed up the
learning convergence. We employ a growing strategy to adjust the model
complexity to the continuously changing feature space. Finally, we use a
weight-based pruning procedure to keep the run time complexity of the
proposed model linear in the size of the input feature space, for efficient
learning from data streams. Experiments with trapezoidal data streams
on 8 UCI datasets were conducted to examine the performance of the
proposed model. We show that SLFN-S outperforms the state of the art
learning algorithm from trapezoidal data streams [16].

Keywords: Online learning · Trapezoidal data streams
Feedforward Neural Networks · Shortcut connections

1 Introduction

Online learning makes it possible to learn in applications where the complete
data is initially not available or the data is too large to fit into memory. Online
learning algorithms can learn from continuously growing data, where new pat-
terns are introduced over time. A wide range of online learning algorithms are
available, and can be grouped into first-order and second-order methods. First-
order methods such as [1] use first-order derivatives to minimize a loss func-
tion. Second-order methods such as [2] exploit the second-order information to
improve the convergence. However, second-order methods are more prone to be
stuck at local minima and tend to be computationally costly while working with
high-dimensional data. Traditional online learning algorithms assume that the
feature space of the input data remains constant, and try to fit a model of con-
stant complexity to it. However in many applications, feature spaces can grow
over time. New features can be introduced, and combinations of new and existing
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 508–517, 2018.
https://doi.org/10.1007/978-3-030-01418-6_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_50&domain=pdf

Learning Decision Boundaries from Trapezoidal Streams 509

features can form meaningful higher order concepts. For example in social net-
works, sets of attributes provided by each user can grow over time. In an infinite
vocabulary topic model [15], the number of documents and the text vocabulary
can simultaneously increase over time. In high resolution video streams, both
the number of frames and the feature space formed by the extracted features
can grow over time.

Data streams where the numbers of instances and features grow simultane-
ously are referred to as trapezoidal data streams [16]. Learning from trapezoidal
data streams is more challenging than other online learning problems, because
of their doubly-streaming nature. While learning from trapezoidal data streams,
the model should be able to:

– Learn from sequentially presented instances on a single pass,
– Have low running time and memory complexity,
– Adapt to increasing complexity of the feature space, and
– Do feature selection to bound the number of features used in the model.

Zhang et al. proposed OLSF algorithms [16] to learn a classifier from trape-
zoidal data streams by using a passive-aggressive update rule for the existing
features and a structural risk minimization principle for the newly introduced
features. Also, OLSF algorithms contain projection and truncation steps to pro-
mote sparsity and do feature selection. They do not however consider the increas-
ing complexity of the feature space, which can be caused by various feature
interactions. Additionally, OLSF algorithms are limited to learn linear decision
boundaries, which are likely to perform poorly on nonlinearly separable data.
Finally unless an additional method such as One vs. One or One vs. Rest is
employed, OLSF algorithms can only work under binary classification settings.

Fully connected neural networks consider complex unknown nonlinear map-
pings of the input features and form decision regions of arbitrary shapes to make
predictions [4]. A features value at any layer affects the values of all features at
the next layer. Therefore, feature interactions are naturally considered. There
are also a wide range of studies for online learning with neural networks [9]. Con-
structive methods such as Resource Allocating Networks (RAN) [8] can adapt
the network architecture based on the novelty of the received data in a sequential
manner, and by adding hidden layer nodes to approximate the complexity of the
underlying function. Minimal Resource Allocating Networks (M-RAN) [14] com-
bine the growth criterion of the RAN’s with a pruning strategy. Their pruning
strategy removes hidden units that consistently make little contribution, to learn
a more compact network compared to RAN. Single Hidden Layer Feedforward
Neural Networks (SLFN) [5] can form decision boundaries in arbitrary shapes
with any bounded continuous nonconstant activation function or any arbitrary
bounded activation function with unequal limits at infinities.

Encouraged by the capabilities of the neural networks mentioned above, we
propose SLFN-S, an Adaptive Single Hidden Layer Feedforward Neural Network
with Shortcut Connections. Our proposed model provides growing and pruning
capabilities to learn from trapezoidal data streams. The model learns if a linear
mapping is enough to correctly classify the current instance, to speed up the

510 E. Beyazit et al.

learning convergence. Unlike the existing neural network based models, SLFN-S
is able to learn simplified linear and nonlinear decision boundaries to converge
on a single pass, and adapt itself to the increasing complexity of the trapezoidal
data streams.

2 Methodology

We consider the classification problem on trapezoidal data streams where (xt, yt)
is the input training data, class label pair received at time t. xt ∈ R

dt is a dt
dimensional vector where dt ≤ dt+1. Let the numbers of input and hidden layer
nodes of the network at time t be dit and dht respectively. Note that dit, dht and
dot represent the sizes of the feature spaces that the network operates in for the
input, hidden and output layers. When the network receives an input (xt, yt),
if dt = dit, the feedforward pass calculates a mixture of linear and nonlinear
mapping for the input and makes a prediction ŷt. If dt > dit, then dt − dit new
nodes for the input and hidden layers are allocated and (dt − dit) · (dit + dht) fully
connected weights are initialized. Note that after this operation dt is equal to
dit, therefore the network can make a prediction and update its weights. Finally,
the network is pruned to bound the number of connections. Steps for training
the proposed model are given in Algorithm 1.

2.1 Network Architecture

We propose a single hidden layer feedforward neural network with shortcut con-
nections shown in Fig. 1. x1

t to xD
t represent the set of features provided by the

instance xt. The input layer is connected to the hidden layer and the mixing
layer with weights Win and Widentity respectively. In an unpruned network, the
input and the hidden layers are fully connected. The hidden layer uses ReLu
activation and is also connected to the mixing layer with Widentity. The mixing
layer receives the output values from the input and hidden layers, then passes
the element-wise summation of its two inputs to the next layer. The mixing layer
is fully connected to the output layer with weights Wo, which acts as a linear
classifier. The output layer uses Softmax activation. The prediction ŷt of the
network for the instance xt can be expressed as:

ŷt = σ(Wo(g(Winxt) + xt)) (1)

Note that if the ideal mapping of the input xt is H(xt), the network tries to
approximate this mapping by learning the residual H(xt) − xt = g(Winxt) in
the hidden layer.

As the loss function, we use the Kullback-Leibler divergence between the
prediction ŷt and the true label yt. We regularize the loss function using the
norm of the network weights. The loss for the prediction-true label pair (ŷt, yt)
is calculated by:

Lt = −
∑

d∈do
t

ŷd
t log

yd
t

ŷd
t

+ λ(‖Win‖2F + ‖Wo‖2F), (2)

Learning Decision Boundaries from Trapezoidal Streams 511

Algorithm 1. Network training.
Input:

ε: Learning rate
φ: Pruning strength parameter
λ: Regularization parameter

1 for t = 1,... T do

2 Receive instance xt ∈ R
dt .

3 Receive label yt.
4 if t==1 then
5 Initialize network with dt input and hidden layer nodes.
6 end

7 Let di
t be the input feature space of the network.

8 if di
t < dt then

9 Allocate dt − di
t input layer nodes.

10 Allocate dt − di
t hidden layer nodes.

11 Randomly initialize new (dt − di
t) · (di

t + dh
t) weights to fully connect

new and existing nodes.
12 end
13 Predict the class label ŷt = σ(Wo(g(Winxt) + xt))

14 Calculate loss Lt = − ∑
d∈dot

ŷd
t log

yd
t

ŷd
t

+ λ(‖Win‖2
F + ‖Wo‖2

F).

15 Do a single epoch back propagation and weight update using Lt and ε.
16 Prune the network to keep the largest φdt weights.

17 end

where dot is the number of the output neurons and λ is the parameter that
controls the regularization strength and yd

t is the dth element of the vector y.

2.2 Shortcut Connections

Shortcut connections have been used in neural networks for various reasons. [10]
uses shortcut connections to model linear dependencies and separate the learning
of linear and non-linear parts of the mapping. [13] uses shortcut connections
to decompose the network into biased and centered subnets, and train them
simultaneously. [11] uses shortcut connections to center the input, hidden layer
activations and error signals to improve the learning speed. [12] address vanishing
and exploding gradients with shortcut connections. Finally, [3] uses shortcut
connections to ensure that deeper layers do not make worse mappings than their
shallower counterparts.

While learning from data streams, because there is no bound to the number
of instances received, the learner can only do a single pass over each instance.
Therefore, the model complexity should be low enough to converge in a single
pass, and high enough to extract useful patterns of various complexity from the
data. For a classification problem, these constraints can be associated with the
complexity of the decision boundary. We use shortcut connections to condition
the network to learn linear decision boundaries, unless a nonlinear mapping is

512 E. Beyazit et al.

Fig. 1. The network architecture.

necessary. At each feedforward pass, the mixing layer outputs the summation
of input xt and the nonlinear mapping g(Winxt). Then, the output layer uses
this summation to make a linear classification. If a linear decision boundary is
enough for the instance xt, output of the hidden layer g(Winxt) will be equal
to zero. As a result, the input itself will be passed to the linear output layer for
prediction. Else, a mixture of the input and its nonlinear mapping will be used.
This mechanism helps the network to use simpler decision boundaries by forcing
the hidden layer to learn a residual mapping on top of the input features, instead
of learning a completely new mapping.

2.3 Growing and Pruning

While learning from data streams, the data volume continuously grows with-
out an upper bound. Therefore, the learning process must be fast and memory
efficient. Also because the learning is incremental, the actual complexity of the
decision boundary is unknown. A network with too few trainable parameters
will not be able to capture the underlying function from which data is being
generated. On the other hand, a network with too many trainable parameters
will overfit [6]. While learning from trapezoidal data streams the task is more
challenging, because the feature space and the data volume grow simultaneously.
As the feature space grows, interactions of existing and new features generate
new higher order features that can be useful for classification. Therefore, the
interaction of new and existing features need to be considered. Also, the new
features introduced in the data stream can be irrelevant or redundant. If the

Learning Decision Boundaries from Trapezoidal Streams 513

network keeps growing without any feature selection mechanism, it will most
likely overfit and have a poor generalization ability. Moreover, the running time
complexity of the model will be high.

To address these issues, we introduce growing and pruning mechanisms to
the proposed model. When a training instance xt with a higher dimension dt
arrives, the network allocates dt−dit input and hidden layer nodes and randomly
initializes (dt − dit) · (dit + dht) weights in a fully connected manner. Allocation
of the new input nodes ensures that the network can use the new features and
consider their combinations with the existing features. Moreover, the allocation
of the new hidden layer nodes increases the learning capacity of the model.
Therefore, it helps the network to adjust itself to the increasing classification
complexity by the growing feature space of trapezoidal data streams.

The network is trained using Kullback-Leibler divergence loss with weight
penalty, shown in Eq. 2. This forces the network to learn small weights for less
important connections. After each growing and weight update step, the network
is pruned to keep only the largest O(dt) connections. The number of connections
to be preserved is calculated by φdt, where 0 ≤ φ ≤ 1 is a parameter that
controls the pruning strength. This aggressive pruning strategy ensures that the
number of trainable parameters in the network is linearly bounded by the size
of the input feature space.

3 Experiments and Results

We empirically evaluate the performance of the proposed method SLFN-S on
trapezoidal data streams. We first compare the accuracy of SLFN-S with a sin-
gle hidden layer neural network without shortcut connections, which will be
referred to as SLFN, to show that the shortcut connections help to simplify the
decision boundary and improve the convergence. Note that SLFN has the same
growing and pruning capabilities as SLFN-S for the sake of fairness. Then, we
compare the accuracy of SLFN-S with the state of the art learning algorithm
for trapezoidal data streams OLSF [16]. We use 8 UCI datasets from [16] and
simulate trapezoidal data streams by splitting each dataset into 10 chunks such
that the number of features included by each chunk increases. For example, the
instances in the first chunk have the first 10% of features, instances in the sec-
ond chunk have the first 20% of features and so on. The numbers of instances,
features and the parameter setting used for each dataset are listed in Table 1.
We use 20-fold cross validation on random permutations of the datasets and
measure the average error rate. Parameters are chosen with cross validation. We
use ADAM [7] to update the network weights.

Figure 2 shows the mean number of incorrect predictions made by SLFN-
S, SLFN and OLSF over 20 folds for each dataset, with standard error. Several
observations can be drawn. First, SLFN-S has lower error rates than SLFN in all
8 UCI datasets, because SLFN needs more iterations over the data to converge.
This is because SLFN-S tends to learn simpler decision boundaries and use non-
linear mappings only when needed. Second, SLFN-S significantly outperforms

514 E. Beyazit et al.

Table 1. Number of samples, features and parameters used for each UCI dataset.

Dataset #Samples #Features ε φ λ

wbc 699 10 0.75 1 0.2

wpbc 198 34 0.85 0.8 0.1

wdbc 569 31 0.05 1 0.01

german 1,000 24 0.05 1 0.1

ionosphere 351 35 0.15 1 0.05

svmguide3 1,234 21 0.1 1 0.1

magic04 19,020 10 0.02 1 0.1

a8a 32,561 123 0.05 0.5 0.1

Fig. 2. Mean number of incorrect predictions for SLFN, SLFN-S and OLSF algorithms.

SLFN in 6 of the 8 UCI datasets. For WDBC and WPBC, SLFN-S has fewer
errors than SLFN but the difference is not significant. WPBC is nonlinearly
separable, which can also be observed from the performance difference between
the linear OLSF and nonlinear neural network based models. Therefore, simpli-
fication of the decision boundary made by SLFN-S did not significantly improve
the convergence of SLFN. On the other hand WDBC is highly linearly separa-

Learning Decision Boundaries from Trapezoidal Streams 515

Fig. 3. Change of error rates of SLFN-S and OLSF algorithms in trapezoidal data
streams.

516 E. Beyazit et al.

ble, therefore does not require learning of nonlinear mappings. This can also be
observed in the Fig. 3, where SLFN-S and OLSF show similar trends. As a result
both SLFN and SLFN-S achieve similar accuracy. These results verify that the
shortcut connections improve the convergence by allowing the network to learn
simpler decision boundaries. Figure 3 shows the changing error rate of OLSF

and SLFN-S with respect to the instances received. We observe that SLFN-S
converges faster and has higher accuracy than the OLSF algorithm in all of the
8 UCI datasets. This is because OLSF considers input features independently
and does not take feature combinations into account. On the other hand, SLFN-
S explores new useful feature combinations and prunes the weights that do not
have significant contribution. Moreover, SLFN-S can learn non-linear decision
boundaries when it is needed. The experiment results show that our proposed
method SLFN-S significantly outperforms the state of the art OLSF algorithms.
The running time of the both SLFN-S and OLSF algorithms scale linearly with
respect to the number of input features.

4 Conclusion

This paper proposed a Single Hidden Layer Neural Network with Shortcut Con-
nections (SLFN-S) and showed that the proposed method significantly outper-
forms the state of the art OLSF . SLFN-S provides a growing mechanism to adapt
itself to the increasing complexity of the trapezoidal data streams. Moreover, the
proposed model uses a pruning mechanism to ensure that the complexity of the
network linearly scales with respect to the size of the input feature space. We
compared the performance of the proposed model with SLFN without any short-
cut connection, and the state of the art learning algorithm for trapezoidal data
streams OLSF [16]. We showed that the shortcut connections help the network
to learn simpler decision boundaries and converge faster. We also showed that
the proposed method significantly outperforms OLSF . Note that unlike OLSF ,
SLFN-S does not have an active feature selection mechanism. OLSF uses one
weight for each input feature. At each iteration, it projects its weights and trun-
cates a portion of the smallest weights. Therefore, it stops using the features
that are associated with the truncated weights. On the other hand, SLFN-S uses
multiple weights per feature. A feature is removed only if all weights associated
with that feature are pruned. Therefore, OLSF is capable of learning sparser
solutions than SLFN-S.

Future work includes conducting extensive experiments on larger datasets.
Another future direction is to add a feature selection policy, and trainable weights
for the shortcut connections to learn the ratios of mixtures for linear and non-
linear mappings.

Acknowledgments. This research is supported by the US National Science Founda-
tion (NSF) under grants 1652107 and 1763620. The authors would like to thank Dr.
Amirhossein Tavanaei for constructive criticism of the manuscript.

Learning Decision Boundaries from Trapezoidal Streams 517

References

1. Blondel, M., Kubo, Y., Naonori, U.: Online passive-aggressive algorithms for non-
negative matrix factorization and completion. In: Artificial Intelligence and Statis-
tics, pp. 96–104 (2014)

2. Crammer, K., Kulesza, A., Dredze, M.: Adaptive regularization of weight vectors.
Mach. Learn. 91(2), 155–187 (2013)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

4. Huang, G.B.: Learning capability and storage capacity of two-hidden-layer feed-
forward networks. IEEE Trans. Neural Netw. 14(2), 274–281 (2003)

5. Huang, G.B., Chen, Y.Q., Babri, H.A.: Classification ability of single hidden layer
feedforward neural networks. IEEE Trans. Neural Netw. 11(3), 799–801 (2000)

6. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Real-time learning capability of neural net-
works. IEEE Trans. Neural Netw. 17(4), 863–878 (2006)

7. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

8. Lee, K.M., Street, W.N.: An adaptive resource-allocating network for automated
detection, segmentation, and classification of breast cancer nuclei topic area: image
processing and recognition. IEEE Trans. Neural Netw. 14(3), 680–687 (2003)

9. Liang, N.Y., Huang, G.B., Saratchandran, P., Sundararajan, N.: A fast and accu-
rate online sequential learning algorithm for feedforward networks. IEEE Trans.
Neural Netw. 17(6), 1411–1423 (2006)

10. Raiko, T., Valpola, H., LeCun, Y.: Deep learning made easier by linear transforma-
tions in perceptrons. In: Artificial Intelligence and Statistics, pp. 924–932 (2012)

11. Schraudolph, N.N.: Centering neural network gradient factors. In: Montavon, G.,
Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol.
7700, pp. 205–223. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-35289-8 14

12. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)
13. Vatanen, T., Raiko, T., Valpola, H., LeCun, Y.: Pushing stochastic gradient

towards second-order methods – backpropagation learning with transformations
in nonlinearities. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP
2013. LNCS, vol. 8226, pp. 442–449. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-42054-2 55

14. Yingwei, L., Sundararajan, N., Saratchandran, P.: A sequential learning scheme
for function approximation using minimal radial basis function neural networks.
Neural Comput. 9(2), 461–478 (1997)

15. Zhai, K., Boyd-Graber, J.: Online latent dirichlet allocation with infinite vocabu-
lary. In: International Conference on Machine Learning, pp. 561–569 (2013)

16. Zhang, Q., Zhang, P., Long, G., Ding, W., Zhang, C., Wu, X.: Online learning
from trapezoidal data streams. IEEE Trans. Knowl. Data Eng. 28(10), 2709–2723
(2016)

http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-642-35289-8_14
https://doi.org/10.1007/978-3-642-35289-8_14
https://doi.org/10.1007/978-3-642-42054-2_55
https://doi.org/10.1007/978-3-642-42054-2_55

Improving Active Learning by Avoiding
Ambiguous Samples

Christian Limberg1,2(B), Heiko Wersing2, and Helge Ritter1

1 CoR-Lab, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
{climberg,helge}@techfak.uni-bielefeld.de
2 HONDA Research Institute Europe GmbH,

Carl-Legien-Straße 30, 63073 Offenbach, Germany
heiko.wersing@honda-ri.de

Abstract. If label information in a classification task is expensive, it can
be beneficial to use active learning to get the most informative samples
to label by a human. However, there can be samples which are mean-
ingless to the human or recorded wrongly. If these samples are near the
classifier’s decision boundary, they are queried repeatedly for labeling.
This is inefficient for training because the human can not label these
samples correctly and this may lower human acceptance. We introduce
an approach to compensate the problem of ambiguous samples by exclud-
ing clustered samples from labeling. We compare this approach to other
state-of-the-art methods. We further show that we can improve the accu-
racy in active learning and reduce the number of ambiguous samples
queried while training.

Keywords: Active learning · Ambiguous samples · Certainty
Rejection · Clustering

1 Motivation

User-adaptable learning systems, who are post-trained by the user have the
advantage, that they can adjust to new circumstances or improve towards a
user-specific environment. In a classification system the samples can be trained
incrementally and labeled by the user. Active learning [10] is an efficient training
technique, where the samples which are predicted to deliver the highest improve-
ment for the classifier are chosen for labeling by a human.

Whenever the user is involved, the system has to make sure that interaction
and training is efficient. A user often feels bored with labeling tasks, therefore the
learning system should limit the number of actions and they should be solvable
for the human to not annoy him and instead make him feel comfortable and
meaningful in his role as interaction partner. To know the time when the learning
system needs advice, it is necessary to predict the competence of the learning
system, which we demonstrated in our recent contribution [6] with respect to a
classifier’s accuracy in pool-based incremental active learning. However, on the
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 518–527, 2018.
https://doi.org/10.1007/978-3-030-01418-6_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_51&domain=pdf

Improving Active Learning by Avoiding Ambiguous Samples 519

other side the human teacher can also have limited competence to fulfill his task
in an oracle role.

In most active learning approaches the oracle is expected to have perfect
domain knowledge [11]. But in many real world applications a perfect oracle is
not realistic because there can be samples resulting from noisy recordings like a
dirty camera or bad light conditions. Also a specific oracle might not know the
labels for specific samples because it can not identify them.

Our goal in this contribution is, that the learning system should adapt to the
human weaknesses and adapt its strategy of interacting as a good cooperation
partner. Related to active learning that means, rather than forcing the human
to give uncertain answers, we want to give him the opportunity to reject the
samples he is uncertain about.

There are diverse approaches in the literature for handling uncertainty in
labeling. Much research was done on active learning with noisy labels or with
labels from multiple oracles [15]. However in our task setting the robot is intended
to have access to only one oracle. Käding et al. [5] proposed an approach for their
Expected Model Output Change (EMOC) model that adds uncertain samples
in one error class. However, their method only works with EMOC and is directly
integrated into the classifier. A similar approach was done by Fang et al. [3].
They train a classifier that should distinguish certain and uncertain objects.
However, in their evaluation they have clustered the data in three clusters and
define two of them as ambiguous, which is too simplistic and does not model
a real world task. The problem with classifier-based solutions for finding and
rejecting ambiguous samples is that they, according to our experiments, can not
generalize well in highly complex scenarios like the one we are facing. In our
application scenario, a service robot acts in a garden environment [7], mows
the lawn and records the garden and occurring objects by a camera. However,
because occurring objects are diverse, there is no clear concept between recog-
nizable and ambiguous samples in the feature space, making it hard to train i.e.
a secondary classifier to separate them, as is shown in the experiment section.

We show that a more local method is better able to adapt to this distributed
ambiguous samples and therefore we introduce Density-Based Querying Exclu-
sion (DBQE), a lightweight clustering-based approach which finds ambiguous
clusters and excludes them from querying in active learning. Our approach does
not inhibit exploration of unknown classes, and can be stacked up to any exist-
ing active learning model and every querying technique. We evaluate it using a
challenging outdoor data set (Fig. 1).

2 Active Learning

In pool-based active learning there is a labeled set L and an unlabeled set U .
The active training of a classifier C starts with an empty or small L. The learner
C can choose which samples from U should be labeled by a so-called oracle
(which is often a human) and added to L. This is called querying and there
are a variety of approaches to find the best samples to query [11]. An often

520 C. Limberg et al.

used querying technique is uncertainty sampling [1] which queries the samples
with the least certainty for labeling. Other strategies select samples based on
the expected model output change [5], or they consider a committee of different
classifiers [12] for choosing the samples to be queried. C is then trained in an
incremental fashion or again from scratch on L.

Fig. 1. Images from the outdoor object recognition benchmark [7,8]: The upper row
images are labeled as recognizable and the bottom row as ambiguous. Objects like the
basketball or the leaves are recognizable from every angle. The car is recorded in its
canonical view, opposed to the blue duck which is ambiguous from this perspective.
There are also views of different objects which are hardly distinguishable, like an apple
(bottom center) and a tomato (bottom right).

3 Density-Based Querying Exclusion

We introduce Density-Based Querying Exclusion (DBQE) which clusters
ambiguous samples and prevents them from querying by excluding them from
U . Our assumption is that ambiguous samples are located in clusters which
can occur in a variety of places in the feature space. Density-based clustering
approaches showed to be versatile and deliver good performance while at the
same time are robust with handling outliers [2]. Another advantage is that the
number of clusters does not have to be known in advance. This is important in
particular because in our case we want to find only one cluster at a time, while
there can be any number of clusters in the data set.

The training procedure of an active learning classifier using DBQE is illus-
trated in Algorithm 1.

Improving Active Learning by Avoiding Ambiguous Samples 521

Algorithm 1. Active learning with Density-Based Querying Exclusion (DBQE)
Require: maxPts � do clustering on maxPts points nearby xe

Require: minPts � minimum number of neighbors to be a core sample
Require: ε � distance range describing a sample’s neighborhood
1: U ← load data() � unlabeled data
2: L ← {} � labeled Set is empty
3: C ← initialize classifier() � initialize active classifier
4: while not C.is trained() do
5: s ← C.query next sample(U) � querying using uncertainty sampling
6: l ← ask for label(s) � ask oracle for supervision
7: if l.is ambiguous() then � oracle labeled s as ambiguous
8: c ← DBQE(s, minPts, maxPts, ε) � DBQE clustering is applied
9: U ← U \ c � found cluster c is excluded from U

10: else � s is not ambiguous and oracle labeled it
11: C.train(s, l) � classifier C is trained with new sample s and label l
12: end if
13: end while
14:
15: function DBQE(xe, minPts, maxPts, ε)
16: v ← {} � visited samples
17: c ← {xe} � samples considered to be in cluster
18: t ← {xe} � samples to be processed
19: R ← get samples nearby(U , xe, maxPts) � get maxPts nearest samples to xe

20: for a ∈ t do
21: if not a ∈ v then � if a was not visited before
22: v ← v ∪ a � mark a as visited
23: n ← region query(a, ε) � find neighborhood points
24: if n.size() > minPts then � if a is a core sample
25: c ← c ∪ a � add a to cluster set c
26: t ← t ∪ n � add n to t
27: end if
28: end if
29: t ← t \ a � remove a from queue t
30: end for
31: return c � return ambiguous cluster c
32: end function
33:
34: function region query(s, ε) � returns samples from R within range ε to s
35: n ← {}
36: for i ∈ R do
37: if |i − s| < ε then � sample i is within ε range
38: n ← n ∪ i � i is added to set n
39: end if
40: end for
41: return n � samples in neighborhood are returned
42: end function

522 C. Limberg et al.

The active learning is applied as usual: First the query strategy selects a
sample and the oracle is asked for a label. If it can provide it, the classifier is
trained, otherwise our DBQE approach is applied which does a region growing
to find the cluster containing the queried ambiguous sample, which we call xe.
In the clustering function we select a subset of samples R ⊆ U which are the
nearest samples to xe for speed improvements and to limit the maximum number
of excluded samples, denoting maxPts as the number of points in R. The region
growing is applied similar to DBSCAN [2], also illustrated in Fig. 2. DBSCAN
iteratively applies this region growing until the whole data set is clustered. There
are two parameters involved: ε is a distance range describing an arbitrary sam-
ple’s neighborhood points. The other parameter to choose is minPts which is the
minimum number of samples in a sample’s neighborhood for the sample to be a
so-called core sample, otherwise it is an outlier. The main idea is to expand a
cluster c around the ambiguous sample xe. The cluster samples in c are excluded
from U .

If there is no cluster containing xe (so xe itself is an outlier) DBQE is only
excluding xe from U .

Fig. 2. Illustration of DBQE: the points represent samples from the unlabeled subset
R ⊆ U with the number of samples maxPts = 14. Blue points (circles) are samples not
visited, visited points in v are displayed orange (half circles) and points determined as
part of the ambiguous cluster c are in red (peaked circles), outliers in gray (pacman
shape). The progress of the region growing is displayed with the minimum neighbor-
hood size minPts = 3. The oracle defines xe as ambiguous and in the first step xe is
determined as a core sample. The cluster is expanded, finding the second core sample
in step 2. In step 3, an outlier is found, which is not included into the cluster. The final
clustering result is displayed on the right. (Color figure online)

4 Evaluation

We evaluated our method together with some baseline methods on our outdoor
data set [7] because it provides a real application benchmark of high difficulty
[6–8]. The data set is an image data set consisting of 50 object classes. The
objects are laying on the lawn and were recorded by a mobile robot in a way

Improving Active Learning by Avoiding Ambiguous Samples 523

that the robot approaches the object and makes ten consecutive pictures each
approach. In total each object has ten approaches with ten images each, sum-
ming up a total of 5000 images. Some objects can be hard to distinguish due to
unfavorable viewing angle. Also there are some objects that look rather similar
like an apple, onion, tomato, orange and ball or e.g. several rubber ducks. A
feature representation of each image is extracted with the VGG16 deep convo-
lutional net [13] trained on images from the imagenet competition. We removed
the last softmax layer and using the outputs of the penultimate layer as a 4096
dimensional feature vector. There can be approaches or partial approaches of
an object, from which the object images can be ambiguous for a human. We
annotated this ambiguity property for our data set (compare to Fig. 1). In total
we annotated 24% of the images as ambiguous, a selection of recognizable and
ambiguous images can be seen in Fig. 1. For evaluation a 50/50 train-test split
was done. The data was split by approaches, so that the images of a single
approach are either completely in the train or in the test set. We repeated the
experiment 15 times to average our results. As a classifier we chose Generalized
Learning Vector Quantization (GLVQ). GLVQ has proved to be an accurate
classifier in incremental learning [8] and is also suitable for active learning with
uncertainty sampling [6].

DBQE needs the parameters minPts and ε to be set to a suitable value. To
have a better idea how the data is clustered, a look at unsupervised statistics
related to the distances to neighboring samples can help. We achieved good
results with many parameter combinations but we also applied a grid search
where we defined ranges of minPts and ε values and tested all combinations of
those. There we found out ε = 35, minPts = 3 and maxPts = 20 give best
results for our evaluation on the outdoor data set. For training and evaluating
an active learning classifier we developed the framework ALeFra1 in context of
this paper. By using it any offline and incremental classifier can be converted to
an active classifier. There are also basic querying techniques implemented and
the user can visualize the progress of the training with a few lines of code. There
is a visualization of the feature space which uses a dimensional reduction like
t-SNE [9] or MDS [14] and if the data consists of images, they are visualized in
a collage which is created after each batch while training.

We investigate three approaches and compare them to simple baselines:

– Classifier: The problem can be represented as a binary classification task,
predicting whether samples are recognizable or not [3]. The classifier is trained
with all yet queried recognizable and ambiguous samples. We evaluated the
classifiers GLVQ, kNN, logistic regression and SVM, where the kNN outper-
formed the others. This may occur because a local model like kNN can better
adapt to the ambiguous samples, who may be diverse in feature space. Also
we have observed, that if using classifier’s confidence information of predicted
samples can improve performance and exploring new classes in U . Therefore
we make use of a certainty value of the kNN-classifier, which uses distance
information of the winning and loosing classes defined in [6]. Only samples

1 https://github.com/limchr/ALeFra.

https://github.com/limchr/ALeFra

524 C. Limberg et al.

who are classified as ambiguous with a certainty value greater than a prede-
fined threshold are avoided in querying. We tuned this threshold to the best
performance for our evaluation on the outdoor data set.

– Rejection: The problem can be represented as a rejection task, where some
samples are rejected from querying. Therefore we implemented a local rejec-
tion approach [4] for the GLVQ-classifier. Here every prototype has a rejection
threshold which is set to zero at beginning. If an ambiguous sample is queried,
the winning prototype’s threshold is adjusted to d∗α, where d is the certainty
of the ambiguous sample and α is a parameter that can be tuned. Only those
samples are considered for querying, for which the distance d to their winning
prototype is higher than the threshold of that particular prototype.

– Clustering: The problem can be represented as a clustering task. DBQE is
using density-based clustering to represent ambiguous samples. We also tried
to apply silhouette analysis, but density-based clustering results in higher
accuracy in finding the ambiguous clusters and additionally it is very fast to
expand a cluster and it can also detect outliers.

Fig. 3. Evaluation on the outdoor data set: test-accuracies (y-axis) of all approaches
vs. number of queried samples (x-axis).

We also implemented the following two baseline strategies for comparison:

– Mark: If an ambiguous sample is queried, it is marked as ambiguous and is
not considered in future queryings. This baseline strategy can be seen as a
naive approach for handling ambiguous samples.

– Prediction: If an ambiguous sample is queried, the classifier predicts its
label and uses this for training. With this baseline we want to determine if
the classifier itself is able to classify the samples that the human rejected as
ambiguous.

Improving Active Learning by Avoiding Ambiguous Samples 525

Figure 3 shows the test-accuracies of the strategies for active training. DBQE
and classifier are the two strategies with the highest accuracy where DBQE is
better in the middle stage of the training. Reject is slightly better than mark,
where at the end of training, both are converging to DBQE and classifier. Predic-
tion is significantly worse than the other approaches, indicating that the classifier
is not accurate at predicting those labels that the human can not provide.

Fig. 4. Number of queried ambiguous samples during training. Each bin of the his-
tograms represents the number of ambiguous samples queried, pooled in bins of 16
queryings giving a total of 50 bins. The number of ambiguous samples is displayed
on the y-axis and the number of queries on the x-axis. Please note that the baseline
strategy prediction is not represented here because it is using ambiguous samples for
training.

DBQE is slightly better than classifier in terms of accuracy while training.
However, another important objective was to minimize human frustration and
to make him feel comfortable in his role. Therefore we visualized the number
of ambiguous queried samples while training. In Fig. 4 it can be seen that sig-
nificantly fewer samples are queried using DBQE. After 400 trained samples,
ambiguous samples are queried only occasionally. The querying of ambiguous
samples using classifier only drops slowly and especially in the earlier stage of
training is significantly higher than DBQE. Mark is querying the most ambigu-
ous samples compared to DBQE and classifier. To better visualize the total num-
ber of ambiguous queried samples, we plotted the cumulative sum of ambiguous
queried samples in Fig. 5. DBQE is capable of querying approximately three
times less ambiguous samples than classifier and five times less than reject and
mark.

526 C. Limberg et al.

Fig. 5. Cumulative sum of queried ambiguous samples during training.

5 Conclusion

We showed that it is possible to efficiently exclude ambiguous samples from
active learning. In our challenging outdoor object recognition setting, where
ambiguous samples were distributed over the whole feature space, DBQE is able
to improve the accuracy in active learning and further reduces the amount of
meaningless queries significantly. We implemented and evaluated a variety of
other approaches in depth and compared them to DBQE in a realistic setting.

We think that DBQE can be used to model human capabilities and signif-
icantly improve robot acceptance as a cooperation partner. To prove this as a
next step we want to integrate DBQE in a robotic application and investigate a
larger number of benchmarks.

References

1. Constantinopoulos, C., Likas, A.: Active learning with the probabilistic RBF clas-
sifier. In: International Conference on Artificial Neural Networks (ICANN), pp.
357–366 (2006)

2. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD 1996),
pp. 226–231 (1996)

3. Fang, M., Zhu, X.: I don’t know the label: active learning with blind knowledge. In:
Proceedings of the 21st International Conference on Pattern Recognition (ICPR),
pp. 2238–2241 (2012)

4. Fischer, L., Hammer, B., Wersing, H.: Optimal local rejection for classifiers. Neu-
rocomputing 214, 445–457 (2016)

Improving Active Learning by Avoiding Ambiguous Samples 527

5. Käding, C., Freytag, A., Rodner, E., Bodesheim, P., Denzler, J.: Active learning
and discovery of object categories in the presence of unnameable instances. In:
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4343–4352
(2015)

6. Limberg, C., Wersing, H., Ritter, H.: Efficient accuracy estimation for instance-
based incremental active learning. In: European Symposium on Artificial Neural
Networks (ESANN), pp. 171–176 (2018)

7. Losing, V., Hammer, B., Wersing, H.: Interactive online learning for obstacle clas-
sification on a mobile robot. In: International Joint Conference on Neural Networks
(IJCNN), pp. 1–8 (2015)

8. Losing, V., Hammer, B., Wersing, H.: Incremental on-line learning: a review and
comparison of state of the art algorithms. Neurocomputing 275, 1261–1274 (2018)

9. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn.
Res. 9, 2579–2605 (2008)

10. Ramirez-Loaiza, M.E., Sharma, M., Kumar, G., Bilgic, M.: Active learning: an
empirical study of common baselines. Data Min. Knowl. Discov. 31(2), 287–313
(2017)

11. Settles, B., Craven, M.: An analysis of active learning strategies for sequence label-
ing tasks. In: Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1070–1079 (2008)

12. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Conference on
Computational Learning Theory (COLT), pp. 287–294 (1992)

13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. CoRR abs/1409.1556 (2014)

14. Strickert, M., Teichmann, S., Sreenivasulu, N., Seiffert, U.: High-throughput multi-
dimensional scaling (HiT-MDS) for cDNA-array expression data. In: Duch, W.,
Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp.
625–633. Springer, Heidelberg (2005). https://doi.org/10.1007/11550822 97

15. Zhang, J., Wu, X., Sheng, V.S.: Learning from crowdsourced labeled data: a survey.
Artif. Intell. Rev. 46(4), 543–576 (2016)

https://doi.org/10.1007/11550822_97

Solar Power Forecasting Using Dynamic
Meta-Learning Ensemble of Neural Networks

Zheng Wang and Irena Koprinska(&)

School of Information Technologies, University of Sydney, Sydney, Australia
{zheng.wang,irena.koprinska}@sydney.edu.au

Abstract. We consider the task of predicting the solar power output for the
next day from previous solar power data. We propose EN-meta, a meta-learning
ensemble of neural networks where the meta-learners are trained to predict the
errors of the ensemble members for the new day, and these errors are used to
dynamically weight the contribution of the ensemble members in the final
prediction. We evaluate the performance of EN-meta on Australian solar data for
two years and compare its accuracy with state-of-the-art single models, classical
ensemble methods and EN-meta versions without the meta-learning component.
The results showed that EN-meta was the most accurate method and thus
highlight the potential benefit of using meta-learning for solar power
forecasting.

Keywords: Solar power � Dynamic ensembles � Neural networks
Meta-learning

1 Introduction

Solar energy is a clean and renewable source of electricity. Its use is rapidly growing
due to the improved efficiency and reliability of PhotoVoltaic (PV) solar panels and
their reduced cost. However, the generated solar power is highly variable as it depends
on the solar irradiance and other meteorological factors, which makes its large-scale
integration in the power grid more difficult. This motivates the need for accurate
prediction of the produced solar power, in order to ensure reliable electricity supply.

In this paper we consider the task of predicting the PV power output for the next
day at half-hourly intervals using only previous PV data. The other commonly used
data source is weather information, however reliable weather measurements and
forecasts are not always available for the PV site. Recent studies [1, 2] investigating the
use of previous PV data only have shown promising results and in this paper we also
consider univariate prediction. Specifically, given a time series of PV power outputs up
to the day d: ½P1; . . .;Pd �; where Pi is a vector of half-hourly power outputs for day i,
our goal is to forecast Pdþ 1; the half-hourly power output for day d + 1.

Different approaches for PV power forecasting have been proposed, e.g. using
statistical methods such as linear regression and autoregressive moving average [1], or
machine learning methods such as Neural Networks (NN) [1, 3, 4], Support Vector
Regression [5] and k-Nearest Neighbor (kNN) based methods [1, 3, 6]. Ensembles

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 528–537, 2018.
https://doi.org/10.1007/978-3-030-01418-6_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_52&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_52&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_52&domain=pdf

combining the predictions of several models have also been investigated for solar
power and other time series forecasting tasks and shown to be very competitive [7–9].

In [8] we developed an ensemble of NNs for PV power forecasting that tracks the
error of the ensemble members on previous data and uses this error to determine the
weights of the ensemble members for the prediction for the new day. In this paper,
motivated by [9], we investigate a different approach that uses meta-learning to predict
the error of the ensemble members for the new day and calculate their weights based on
their predicted error, rather than on their errors on previous days. Thus, the idea is to
adapt the ensemble to the characteristics of the new day by selecting and combining the
most appropriate ensemble members, the ones with the most suitable expertise, esti-
mated based on their predicted error. In summary, the contributions of this paper are:

1. We propose EN-meta, a new dynamic ensemble combining NNs. It uses meta-
learners to predict the error of each ensemble member for the new example, and
based on it to determine the contribution of the ensemble member in the final
prediction.

2. We investigate four strategies for determining the weights of the ensemble members
based on their predicted errors and consider two different types of meta-learners.

3. We conduct an evaluation using Australian PV data for two years and compare the
performance of EN-meta with a single NN, SVR, kNN and persistence baseline,
classic ensembles (bagging, boosting and random forest) and two EN-meta versions
without the meta-learning component. The results demonstrate the effectiveness of
EN-meta and the potential of meta-learning methods for solar power forecasting.

2 Data and Experimental Setup

Data. We used PV power data for two years, from 1 January 2015 to 31 December
2016, for 10 h during the daylight period: from 7am to 5 pm. The data comes from a
rooftop PV plant located at the University of Queensland in Brisbane, Australia, and is
available from http://www.uq.edu.au/solarenergy/.

The original PV power data was recorded at 1-min intervals. As our task is to
predict the PV power at 30-min intervals, the raw 1-min data was aggregated to 30-min
data by averaging the values in the 30-min intervals. The data was also normalized to
[0, 1]. The small number of missing values (0.02%) were replaced before the aggre-
gation using a nearest neighbor method as in [8]. Hence, our dataset contains 14,620
values in total (= (365 + 366) days � 20 values).

Data Sets. The PV data was split into three subsets: (1) training - 70% of the 2015
data, used for model training; (2) validation - the remaining 30% of the 2015 data, used
for parameter selection and (3) testing - the 2016 data, used to evaluate the accuracy.

Evaluation Measures. We used two performance measures: Mean Absolute Error
(MAE) and Root Mean Squared Error (RMSE):

Solar Power Forecasting Using Dynamic Meta-Learning Ensemble of NNs 529

http://www.uq.edu.au/solarenergy/

MAE =
1

N � n

Xn

i¼1
Pi � P̂i
�� ��;RMSE =

ffiPn
i¼1 Pi � P̂i

� �2
N � n

s

where Pi and P̂i are the vectors of actual and predicted half-hourly PV power outputs
for day i, N is the number of days in the testing set and n is the number of predicted
power outputs for a day (n = 20).

3 Dynamic Meta-Learning Ensemble

There are three main steps in creating the dynamic meta-learning ensemble EN-meta as
shown in Fig. 1: (i) training ensemble members, (ii) training meta-learners and
(iii) calculating the weights of the ensemble members for the prediction of the new
example.

We train the ensemble members to predict the PV power for the next day and their
corresponding meta-learners (one for each ensemble member) to predict the error of
this prediction. Thus, each meta-learner learns to predict how accurate the prediction of
the ensemble member will be for the new day based on the characteristics of the day.
The predicted errors are converted into weights (higher weights for the more accurate
ensemble members and lower for the less accurate) and the final prediction is given by
the weighted average of the individual predictions.

3.1 Training Ensemble Members

Figure 2 illustrates the training of the ensemble members. The ensemble consists of
S NNs. Effective ensembles include diverse ensemble members [10]. We generate
diversity using two strategies - random example sampling and random feature sam-
pling, using the method from [8] which was shown to perform well.

Historical
PV power

data
P1 ,…, Pd

…

NN1

NNs

Ensemble members

Subset 1

…

Subset S
Random selection of
training examples and
feature sets

…

ML1

MLs

Meta-learners

Train meta-learners to predict error
of ensemble members for day d+1

Meta-predictions – error of
predictions for day d+1:

, ,…,]

Prediced PV values for day
d+1 , ,…,]

Weighs: [w1,w2,…,ws]

Train ensemble
members to predict Pd

wjFinal prediction:

Training sets

Fig. 1. Structure of EN-meta

530 Z. Wang and I. Koprinska

Random Example Sampling: We create S bootstrap samples, one for each NN, using
random sampling with replacement and a pre-defined example sampling rate Rs. Each
sample contains only Rs% of the d examples for the first year, which is the whole data
used for training and validation. These examples are then randomly divided into
training set (70%, used for training of the NN) and validation set (30%, used for
selecting the NN parameters). Thus, the training set for a single NN will contain a
smaller number of examples than the original training set and will have the same
number of features. The best Rs was selected by experimenting with different values
and evaluating the performance on the validation set (Rs best = 25%).

Random Feature Sampling: The S training sets from the previous step are filtered by
retaining only some of their features and discarding the rest. This is done by using
feature sampling with replacement with a pre-defined sampling rate Rf. We split the
S training sets into three parts and applied Rf1 = 25%, Rf2 = 50% and Rf3 = 75% for
each third.

A single ensemble member is a NN with f input neurons (f < 20), corresponding to
the sampled features (PV power of the previous day), and 20 outputs, corresponding to all
20 PV values of the next day. It had one hidden layer where the number of neurons was set
to the average of the input and output neurons, and was trained using the Levenberg-
Marquardt version of backpropagation algorithm. We combined S = 30 NNs.

3.2 Training Meta-Learners

Every ensemble member NNi has an associated meta-learner MLi, which is trained to
predict the error of NNi for the new day. Thus, MLi, takes as an input the PV data for
day d and predicts the forecasting error of NNi for day d + 1. This error is then
converted into a weight for NNi and used in the weighted average vote combining the
predictions of all ensemble members.

The motivation behind using dynamic ensembles is that the different ensemble
members have different areas of expertise, with their performance changing as the time
series evolves over time. We can learn to predict the error of an ensemble member for
the next day based on its prior performance. Then we can use these predicted errors to

Training sets

NN1Historical
PV power

data
P1 ,…, Pd

Random example
sampling
Sampling rate: Rs%

Subset 1…

Subset S NNs

…
Rs, Rf1

Rs, Rf3

Rs

Rs

Random feature
sampling
Sampling rate: Rf1%,
Rf2%, Rf3%

…

Ensemble members

Fig. 2. Training ensemble members

Solar Power Forecasting Using Dynamic Meta-Learning Ensemble of NNs 531

weight the contributions of the ensemble members in the final prediction, so that
ensemble members that are predicted to be more accurate are given higher weights. In
this way we match the expertise of the ensemble members with the characteristics of
the new day and adapt the ensemble to the changes in the time series.

We implemented and compared two sets of meta-learners: NN and kNN. Both sets
contain S meta-learners, one for each ensemble member. Each meta-learner was trained
to predict the MAE of its corresponding ensemble member for the next day.

NN Meta-Learners. To train a NN meta-learner MLi for ensemble member NNi, we
firstly need to create the training data for it, and in particular to obtain the target output.
Using the trained ensemble member NNi, we obtain its prediction for all examples from
the training set; the input is Pd; the PV power vector of the previous day d but con-
taining only the f sampled features, and the output is Pdþ 1, the PV power vector for the
next day d + 1 containing all 20 values. We then calculate MAEd+1, the error for day
d + 1. A training example for MLi will have the form: [Pd , MAEd+1], where Pd is the
input vector (containing the same f features as NNi) and MAEd+1 is the target output.
Thus, the NN meta-learner has f input and 1 output neurons. We again used 1 hidden
layer and the same rule for the number of hidden neurons as for the ensemble members.

kNN Meta-Learners. In contrast to the NN meta-learners, there is no need to pre-train
the kNN meta-learners as the computation is delayed till the arrival of the new day.
Specifically, to build a kNN meta-learner for ensemble member NNi for the new day
d + 1, the PV data of the previous day d is collected and processed by selecting the
same subset of features f as for NNi. Then, the training set is searched to find the k most
similar days to day d in terms of the f features. The errors (MAE) of the NNi for the
days immediately following the neighbors are calculated and averaged to calculate
MAEd+1, the predicted error of ensemble member NNi for day d + 1. To select the
value of k, we experimented with k from 5 to 15, evaluating the performance on the
validation set; the best k was 10 and it was used in this study.

3.3 Weight Calculation and Combination Methods

The predicted errors of the corresponding meta-learners for each ensemble member
need to be converted into weights for the ensemble members. We investigated two
strategies for calculating the weights: linear and nonlinear.

Linear. The weight of ensemble member NNi for predicting day d + 1 is calculated
as:

wdþ 1
i ¼ 1� enormiPS

j¼1 1� enormj

� �

where enormi is the predicted error for NNi for day d + 1 by its corresponding meta-
learner MLi, normalised between 0 and 1, and j is over all S ensemble members.

532 Z. Wang and I. Koprinska

It is necessary to use 1� enormi and not enormi as lower errors should be associated
with higher weights and vice versa. The denominator ensures that the weights of all
ensemble members sum to 1.

Non-linear. The weight of ensemble member NNi for predicting day d + 1 is calcu-
lated as a softmax function of the negative of its predicted error ei for day d + 1:

wdþ 1
i ¼ exp �eið ÞPS

j¼1 exp �ej
� �

where ei is the predicted error for NNi by its corresponding meta-learner MLi, j is over
all S ensemble members and exp denotes the exponential function.

Ensemble Member Combination. The final prediction of EN-meta is calculated by
the weighted average of the predictions of the individual ensemble members:
P̂dþ 1 ¼ Ps

j¼1 P̂
dþ 1
j � wdþ 1

j .
In addition to combining the predictions of all ensemble members, we also con-

sidered combining only the M best ensemble members, based on their predicted error.
To select the best M, we experimented with M = 1/3, 1/2 and 2/3 of all ensemble
members (30 in our study), evaluating the performance on the validation set.

Hence, there are four strategies for combining the individual predictions – linear vs
non-linear weight calculation and combining all vs only the best M ensemble members.

4 Methods Used for Comparison

We compared EN-meta with three groups of methods: (i) single methods: NN, SVR,
k-NN and a persistence model; (ii) classical ensembles: bagging, boosting and random
forest; and (iii) static and dynamic versions of EN-meta without meta-learners.

4.1 Single Models

NN. An NN with one hidden layer of m nodes, where m was the average of the input
and output nodes. It takes as an input the 20 half-hourly PV power data of the previous
day d and predicts the 20 half-hourly PV data for day d + 1.

SVR. The SVR model is similar to the NN model, except that we train 20 SVRs, each
predicting one of the 20 half-hourly value for the next day d + 1. All SVRs take as an
input the 20 half-hourly PV values of the previous day d.

kNN. To forecast the PV power data of day d + 1, kNN firstly finds the k nearest
neighbors of day d - the days from the training set with the most similar PV power
using the Euclidean distance. To compute the predicted PV power output for day d + 1,
it then finds the days immediately following the neighbors and averages their PV
power.

Persistence (P). As a baseline, we developed a persistence model which uses the PV
power output of day d as the forecast for day d + 1.

Solar Power Forecasting Using Dynamic Meta-Learning Ensemble of NNs 533

4.2 Classical Ensembles

We also implemented the regression tree based ensembles Bagging (Bagg), Boosting
(Boost) and Random Forest (RF). For consistency with the proposed ensemble, the
number of trees in Bagg, Boost and RF was set to 30. As regression trees cannot predict
all 20 values for the next day simultaneously, a separate ensemble is created for each
half-hourly value, as in the SVR model. Thus, we create 20 ensembles of each type.

4.3 Static and Dynamic Ensembles Without Meta-Learners

To assess the contribution of the meta-learning component, we also compare EN-meta
with two versions of this ensemble without meta-learning: static and dynamic.

The static ensemble is EN-meta without the meta-learning component and using the
average of the individual predictions to form the final prediction. We refer to this
ensemble as EN-static.

The dynamic ensemble is an extension of EN-static; it uses weighed average for
combining the individual predictions. The weighs of the ensemble members are cal-
culated based on their previous performance (error) in the last D days. We used the
total MAE error, over the previous 7 days. The errors of the ensemble members are
converted into weights using the same four methods as in the EN-meta ensemble.

We evaluated the different versions using validation set testing; the best result were
achieved for the version using a linear transformation and combining the best
M ensemble members with M = 15; we refer to this ensemble as EN-dynamic.

5 Results and Discussion

5.1 Performance of EN-Meta

Table 1 shows the accuracy results of EN-meta for the two different types of meta-
learners and four weight calculation methods. The graph in Fig. 3 presents the MAE
results in sorted order for visual comparison. We also conducted a pair-wise com-
parison for statistical significance of the differences in accuracy using the Wilcoxon
rank-sum test with p � 0.05. The results can be summarized as follows:

• Overall performance: The most accurate version of EN-meta is kNN-bestM-lin,
which uses kNN meta-leaners, combines the predictions of only the best
M ensemble members and uses linear transformation to convert the predicted errors
into weights. It is followed by kNN-bestM-softmax, which differs only in the
weight calculation function –softmax instead of linear, and then by NN-bestM-
softmax.

• The pair-wise differences in accuracy between these three best models are not
statistically significant but all other differences between the best model (kNN-
bestM-lin) and the other models are statistically significant.

• All vs best M ensemble members: The EN-meta versions combining only the pre-
dictions of the bestM ensemble members are more accurate than their corresponding

534 Z. Wang and I. Koprinska

versions which combine the predictions of all ensemble members and these differ-
ences are statistically significant.

• Linear vs softmax weight calculation: The EN-meta versions using linear weight
calculations outperform their corresponding versions using the softmax weight
calculation in 3/4 cases but the differences are not statistically significant.

• NN vs kNN meta-learners: The EN-meta versions using kNN meta-learners are
more accurate than their corresponding versions using NN meta-learners in all 4
cases but these differences are not statistically significant.

Based on these results we selected the best version (EN-meta-kNN-bestM-lin) for
further investigation. We will refer to it as EN-meta.

5.2 Comparison with Other Methods

Table 2 compares the accuracy of EN-meta with the single models, classical ensembles
and the two EN versions without meta-learners (static and dynamic). Figure 4 graph-
ically presents the MAE results in sorted order for visual comparison. The main results
can be summarized as follows:

• The proposed EN-meta is the most accurate method. It considerable outperforms all
other methods and all differences are statistically significant (Wilcoxon sun-rank
test, p � 0.05).

• The next best performing methods are EN-dynamic and EN-static, the EN-meta
versions without meta-learners. This shows that the use of meta-learners was
beneficial.

• EN-dynamic is more accurate than EN-static and the difference is statistically
significant. This shows the advantage of tracking the error of the ensemble members

Table 1. Accuracy of EN-meta versions

EN-meta MAE
[kW]

RMSE
[kW]

with NN meta-learners

NN-lin 88.40 115.35
NN-softmax 89.63 116.13
NN-bestM-lin 87.75 115.55
NN-bestM-
softmax

87.68 115.29

with kNN meta-learners
kNN-lin 88.10 114.89
kNN-softmax 89.61 116.11
kNN-bestM-lin 86.77 114.57
kNN-bestM-
softmax

87.34 115.00

85
86
87
88
89
90

M
A

E
 [k

W
]

Meta-learner and weight
calculation method

Fig. 3. MAE comparison

Solar Power Forecasting Using Dynamic Meta-Learning Ensemble of NNs 535

on recent data and correspondingly weighting their contribution in the weighed
vote.

• By comparing the two dynamic ensembles, EN-meta and EN-dynamic, we can see
that the use of meta-learners and the more proactive approach of EN-meta for
assessing the ensemble members - based on predicted error for the new day rather
than error on previous days, gives better results.

• Bagg is the most accurate classical ensemble, followed by RF and Boost. All
classical ensemble models outperform the single models, except for Boost which
performed slightly worse than the single NN.

• From the single prediction models, NN is the best, followed by SVR, P and kNN.
All forecasting models except kNN outperform the baseline P model.

6 Conclusion

We considered the task of forecasting the PV power output for the next day at half-
hourly intervals from previous PV power data. We proposed EN-meta - a meta-learning
ensemble of NNs. The key idea is to pair each ensemble member with a meta-learner
and train the meta-learner to predict the error for the next day of its corresponding
ensemble member. The errors are then converted into weights and the final prediction is
formed using weighed average of the individual predictions. EN-meta is a dynamic
ensemble as the combination of predictions is adapted to the characteristics of the new
day based on the expected error.

We investigated four strategies for converting the predicted error into weights and
two types of meta-learners (kNN and NN). We also compared the performance of EN-
meta with three state-of-the-art ensembles (bagging, boosting and random forest), four

Table 2. Accuracy of all models

Method MAE
[kW]

RMSE
[kW]

EN-meta 86.77 114.57
Single models
NN 116.64 154.16
SVR 121.58 158.63
kNN 127.64 166.15
Persistence 124.80 184.29
Classic ensembles
Bagg 109.87 146.40
Boost 118.08 158.80
RF 110.29 146.25
EN-meta without meta learners
EN-static 102.50 134.25
EN-dynamic 100.46 130.61

0

40

80

120

M
A

E
 [

kW
]

Method

Fig. 4. Comparison of all models (MAE)

536 Z. Wang and I. Koprinska

single models (NN, SVM, kNN and persistence) and two versions of EN-meta without
meta-learners. The evaluation was conducted using Australian data for two years. Our
results showed that EN-meta was the most accurate model, considerably and statisti-
cally significantly outperforming all other methods. The kNN meta-learners were
slightly more accurate than the NN meta-learners, and the most effective strategy was
combining only the best M ensemble members and using linear transformation to
calculate the weights. The use of meta-learners to directly predict the error for the new
day, instead of estimating it based on the error for the previous days, was beneficial.

Hence, we conclude that dynamic meta-learning ensembles are promising methods
for solar power forecasting.

References

1. Pedro, H.T.C., Coimbra, C.F.M.: Assessment of forecasting techniques for solar power
production with no exogenous inputs. Sol. Energy 86, 2017–2028 (2012)

2. Rana, M., Koprinska, I., Agelidis, V.: Univariate and multivariate methods for very short-
term solar photovoltaic power forecasting. Energy Convers. Manag. 121, 380–390 (2016)

3. Chu, Y., Urquhart, B., Gohari, S.M.I., Pedro, H.T.C., Kleissl, J., Coimbra, C.F.M.: Short-
term reforecasting of power output from a 48 MWe solar PV plant. Sol. Energy 112, 68–77
(2015)

4. Chen, C., Duan, S., Cai, T., Liu, B.: Online 24-h solar power forecasting based on weather
type classification using artificial neural networks. Sol. Energy 85, 2856–2870 (2011)

5. Rana, M., Koprinska, I., Agelidis, V.G.: 2D-interval forecasts for solar power production.
Sol. Energy 122, 191–203 (2015)

6. Wang, Z., Koprinska, I.: Solar power prediction with data source weighted nearest
neighbours. In: International Joint Conference on Neural Networks (IJCNN) (2017)

7. Oliveira, M., Torgo, L.: Ensembles for time series forecasting. In: Sixth Asian Conference
on Machine Learning, pp. 360–370 (2015)

8. Wang, Z., Koprinska, I., Troncoso, A., Martinez-Alvarez, F.: Static and dynamic ensembles
of neural networks for solar power forecasting. In: International Joint Conference on Neural
Networks (IJCNN) (2018)

9. Cerqueira, V., Torgo, L., Pinto, F., Soares, C.: Arbitrated ensemble for time series
forecasting. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.)
ECML PKDD 2017. LNCS (LNAI), vol. 10535, pp. 478–494. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71246-8_29

10. Kuncheva, L.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, Hoboken
(2014)

Solar Power Forecasting Using Dynamic Meta-Learning Ensemble of NNs 537

http://dx.doi.org/10.1007/978-3-319-71246-8_29

Using Bag-of-Little Bootstraps
for Efficient Ensemble Learning

Pablo de Viña and Gonzalo Mart́ınez-Muñoz(B)

Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
pablo.vinna@estudiante.uam.es, gonzalo.martinez@uam.es

Abstract. The technique bag-of-little bootstrap provides statistical
estimates equivalent to the ones of bootstrap in a tiny fraction of the
time required by bootstrap. In this work, we propose to combine bag-of-
little bootstrap into an ensemble of classifiers composed of random trees.
We show that using this bootstrapping procedure, instead of standard
bootstrap samples, as the ones used in random forest, can dramatically
reduce the training time of ensembles of classifiers. In addition, the exper-
iments carried out illustrate that, for a wide range of training times, the
proposed ensemble method achieves a generalization error smaller than
that achieved by random forest.

1 Introduction

One of the most successful paradigms of machine intelligence is ensemble learn-
ing [3,5,7]. Ensembles build a set of diverse predictors by applying different
randommization and/or optimization techniques. One of the first optimization
based ensembles is adaboost [8]. In adaboost, the base predictors of the ensemble
are trained sequentially. To train each single model, adaboost modifies the train-
ing set in order to increase the importance of the examples incorrectly classified
by the previous models. This can be seen as an optimization problem solved by
gradient descent in functional space [13]. On the other hand, diversity in the
base classifiers could be generated by introducing some randomization into the
generation process of the base classifiers. The randomization can be applied at
different levels (e.g. into the training dataset, into the learning algorithm, etc.).
Randomization is especially effective when unstable base learning are used. For
instance, random forest uses random trees as the base learners of the ensemble.
Such trees are unstable by construction as the splits of the tree are computed
from a reduced random subset of the input attributes [3]. In addition, random
forest trains each base classifier on a random bootstrap sample, where a boot-
strap sample consists in extracting n instances at random with replacement from
the original training data of size n.

The bootstrap technique was first proposed as a statistical technique to assess
the quality of estimates [6] and was later applied to the generation of classifiers in
ensemble learning [2]. An important drawback of this technique, however, is its
high computational complexity. There are several alternatives to bootstrap that
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 538–545, 2018.
https://doi.org/10.1007/978-3-030-01418-6_53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_53&domain=pdf

Using Bag-of-Little Bootstraps for Efficient Ensemble Learning 539

are computational more efficient, such as subsampling (i.e. small samples without
replacement) or m-out-n bootstrap (with m < n). In fact, several theoretical
and empirical studies have shown that the accuracy of bagging can increase
significantly when smaller samples are used [9,12,14]. Notwithstanding, in [10]
it is shown that m-out-of-n and subsampling require statistical corrections when
used as a technique to assess the quality of estimates. In [10], and in a previous
study of the same authors [11], bag-of-little bootstrap (BLB) is proposed as
an alternative to bootstrap, which is computationally more efficient and that
has the same statistical properties (consistency and correctness) of bootstrap.
The study provides a theoretical analysis of the method and several experiments
in synthetic and real data that show the good statistical properties of BLB.
However, no real application to classification or regression is performed.

In this article we analyze the use of bag-of-little bootstrap as a mean to
accelerate the construction of random forest ensembles. The generalization per-
formance of this modified version of random forest is compared to standard
random forest. The experiments carried out show that the proposed ensemble
clearly outperforms standard random forest achieving, for a wide range of allowed
training time budgets, a lower generalization error. In the actual context of large
datasets, this benefit can be a fundamental advantage to be able to produce a
classification model in reasonable time.

The article is organized as following: Sect. 2 describes bag-of-little bootstrap
technique and its combination with random forest; Sect. 3 shows a experimental
comparison of random forest using standard bootstrap and bag-of-little boot-
straps; Finally, in Sect. 4, the conclusions of the present study are presented.

2 Proposed Method

The method bag-of-little bootstrap (BLB) [11], samples the data in two steps.
First, a small number of instances is sampled without replacement from the orig-
inal dataset. The size of this small sample is set to b = nγ , with γ ∈ [0.5, 1] and
where n is the size of the dataset. A number of s small samples are extracted
from the original dataset. We will call these samples primary samples, Dprimary.
Then, r secondary samples of size n are extracted with replacement from each
of the primary samples, Dprimary. Finally, from each of the secondary samples,
an estimate of the desired quantity is obtained. It is important to note that the
secondary samples can contain at most b instances, which is the size of Dprimary.
Hence, instead of actually sampling from Dprimary, it is sufficient to weight the
instances using a vector containing the number of times each instance is sam-
pled. This vector of counts can be obtained by drawing n-trials from a uniform
multinomial distribution of b elements. Note that the value of b is expected to
be much smaller than n (b << n). This is the key implementation feature that
allows bag-of-little bootstrap to achieve computational efficient estimates. The
focus of [11] is on the statistical properties of BLB and not as a tool to create
ensembles of classifiers.

In this article, we propose to use bag-of-little bootstrap in combination with
random trees. The procedure is shown in Algorithm 1. The algorithm has as input

540 P. de Viña and G. Mart́ınez-Muñoz

the training dataset, Dtrain, composed of n instances, and three parameters: the
size of the primary samples, b, the number of primary samples, s, and the number
of secondary samples, r. The secondary samples are weighted with a vector of
counts drawn from a n-trial uniform multinomial distribution of size b. Finally,
this weighted dataset is used to train a random tree classifier.

Algorithm 1. BLB-RF
Data:

Dtrain = {(xi, yi)}n
i=1

b = nγ size of the primary samples
s, number of primary iterations
r, number of secondary iterations

Result: {hi}s×r
i=1

1 for i ← 1 to s do
2 Dprimary = sample without replacement(Dtrain,b)
3 for j ← 1 to r do
4 counts = uniform multinomial(n,b)
5 h(i−1)r+j = train random tree(Dprimary,counts)

6 end

7 end

3 Experiments

Several experiments have been carried out in order to analyze the validity of the
technique bag-of-little-bootstraps (BLB) applied to ensembles of classifiers. To
this end, BLB was implemented as the random sampling mechanism to build
an ensemble composed of random trees, i.e. the decision tree algorithm used in
random forest. The efficiency of the proposed ensemble, in the following BLB-
RF, is compared with standard random forest (RF) under several experimental
conditions. The base classifier used in both ensembles is random trees, which
is a modified CART tree [4] in which no pruning is applied and in which at
each node a random subset of attributes is selected to find the best split. The
default parameter value was used for the number of attributes to be selected at
each node (i.e. sqrt(#attribs)) for both random forest and BLB-RF. The two
algorithms were trained using two fairly large datasets in order to assess the
lower computational complexity of BLB-RF with respect to RF. The datasets
used are: Magic04 [1], that has 19020 instances and ten numeric attributes, and
Waveform [4], a synthetic dataset with 21 numeric attributes. Waveform was
used in the experiments since it is possible to generate as many instances as
needed. Two dataset sizes were considered in the experiments with Waveform:
20, 000 and 1, 000, 000 instances.

In a first batch of experiments, the performance of BLB-RF was analyzed for
mid-sized datasets (n ≈ 20000 instances) for different values of: s, the number
of subsamples taken from the original training set; γ, that determines the size of

Using Bag-of-Little Bootstraps for Efficient Ensemble Learning 541

the samples as nγ ; and, r, the number of secondary bootstrap samples extracted
from the s primary random samples. The range of values used in this experiments
are: s ∈ [1, 20], γ = {0.5, 0.6, 0.7, 0.8, 0.9, 0.95} and r ∈ [1, 40] for Magic04. For
Waveform with 20000 instances the same values for gamma were used but s
and r were expanded to s ∈ [1, 25] and r ∈ [1, 60]. The size of random forest
with standard bootstrap sampling is set to 500 trees. Ten times 10-fold cross-
validation was used as the validation procedure. The reported values are averages
over the 100 train-test realizations. In addition, for each realization and given
value of γ, a single execution of BLB-RF is carried out using the maximum value
of s and r. Once this ensemble is trained, results for intermediate values of s and
r can be readily obtained by discarding the corresponding decision trees. The
reason for this experimental design decision is twofold. First, to reduce the total
computational burden of the experiments and second, and more importantly, to
reduce the variability of the results that would be obtained with independent
executions.

Figure 1 shows the average results for some representative values of γ for
Magic04 (left column) and Waveform (right column). Each plot in the figure
shows, for the given γ value, the average error of the ensembles with respect to
the average CPU time needed to train each single ensemble, in log scale. Each
point in the plots represents a complete ensemble for a pair of s and r values. To
facilitate the interpretation of the plots, executions sharing the same value of s
but different values of r are linked with solid lines. For instance, the first point of
the yellow line (s = 5) corresponds to an ensemble with s = 5 primary samples
each of which is used r = 1 time to generate secondary bootstrap samples. This
corresponds to an ensemble of 5 trees. The second point on the same line is the
ensemble trained using s = 5 and r = 2, which has 10 trees, and so on. As another
example, for Magic04, the last point of all BLB curves corresponds to r = 40,
which means that the larger ensembles for each curve are of size 1 × 40 = 40 for
the red line, 200 for the yellow, 400 for the blue and 20×40 = 800 for the purple
line. In the case of Waveform, in which we used an expanded grid up to r = 60,
the purple curve gets to 25 × 60 = 1500 decision trees.

From Fig. 1 several interesting aspects of BLB-RF can be identified. First,
for small values of γ (plots in the first row), BLB-RF is able to output a decision
at a fraction of the time needed by random forest. The first random forest tree
is build after almost 1 s for both Magic04 and Waveform datasets. BLB-RF
is able to obtain the first tree is less than 0.002 s and in consequence is able to
produce a first classification over 500 times faster than random forest. In fact, for
Magic04 the ensemble with smax and rmax (composed of 20 × 40 = 800 trees)
is trained in approximately the same time as the first tree of random forest. In
addition, this ensemble obtains a classification error significantly better than the
one obtained by the first tree of random forest. In Waveform, the training time
to build BLB-RF with s = 25 and r = 60 is roughly the same as the time needed
to build two trees of random forest with a noticeable difference in generalization
performance. BLB-RF with s = 25 and r = 60 achieves an average generalization
error of ≈15%, and two random trees of random forest achieves ≈25%.

542 P. de Viña and G. Mart́ınez-Muñoz

γ = 0.5

 0.1

 0.15

 0.2

 0.25

 0.3

 0.001 0.01 0.1 1 10 100 1000

E
rr

or

t(s)

S=1
S=5

S=10
S=20

RF

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.001 0.01 0.1 1 10 100 1000

E
rr

or

t(s)

S=1
S=5

S=10
S=25

RF

γ = 0.8

 0.1

 0.15

 0.2

 0.25

 0.01 0.1 1 10 100 1000

E
rr

or

t(s)

S=1
S=5

S=10
S=20

RF

 0.1

 0.15

 0.2

 0.25

 0.3

 0.01 0.1 1 10 100 1000

E
rr

or

t(s)

S=1
S=5

S=10
S=25

RF

γ = 0.95

 0.1

 0.15

 0.2

 0.1 1 10 100 1000

E
rr

or

t(s)

S=1
S=5

S=10
S=20

RF

 0.1

 0.15

 0.2

 0.25

 0.3

 0.1 1 10 100 1000

E
rr

or

t(s)

S=1
S=5

S=10
S=25

RF

Fig. 1. Results for Magic04 (left column) and Waveform (right column) for different
values of γ

As the value of γ increases, the curves corresponding to BLB-RF tend to be
closer to the curve of random forest. As it can be observed from the figures of
Magic04 and Waveform, in general the performance of BLB-RF is better than
that of random forest except in Magic04 for γ = 0.95 in some configurations of s
and r. For these last cases, the generalization error of BLB-RF is slightly worse
than random forest for the same computational time.

Using Bag-of-Little Bootstraps for Efficient Ensemble Learning 543

In order better visualize this aspect, we have computed the best and worst
performance in terms of the generalization error with respect to the computa-
tional time of the executions. That is, for a given computational budget, t, the
best and worst results are extracted from all the combinations of s, γ and r
that could be trained in less than or equal to t seconds. The result is plotted in
Fig. 2. From this plot it is clear that for both analyzed dataset, the performance
of BLB-RF is generally better than random forest for all possible time budgets.

mrofevaW40cigaM

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.001 0.01 0.1 1 10 100 1000

E
rr

or

t(s)

bests
worsts

RF

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.001 0.01 0.1 1 10 100 1000

E
rr

or

t(s)

bests
worsts

RF

Fig. 2. Best and worst generalization error for all configurations of BLB-RF with
respect to the computational time budget for Magic04 (left) and Waveform of 20000
instances (right)

To validate the performance of BLB-RF in a larger dataset, we have con-
ducted a second experiment on the Waveform dataset generating 106 instances.
For this experiment one 10-fold cross-validation was used to validate the perfor-
mance of the algorithms. Hence, the training times are based on training datasets
composed of 900000 instances. For computational limitations, the size of random
forest is reduced to 50 random trees. Similarly the range of parameter values for
BLB-RF is reduced to s =∈ [1, 10] and r ∈ [1, 20]. The values for γ are kept the
same, that is {0.5, 0.6, 0.7, 0.9, 0.95}. The results for this experiment are shown
in Fig. 3. Similarly to Fig. 2, this figure shows the average generalization error
of the best and worst configurations of BLB-RF with respect to the training
computational budget, t. Random forest is also plotted.

From Fig. 3, we can observe that the performance of BLB-RF in significantly
better than the one of random forest for all possible time budgets. The differ-
ences between both methods have clearly increased with respect to the use of
the smaller Waveform set (see right plot on Fig. 2). BLB-RF produces the first
classification result in less than 0.05 s while random forest needs ≈500 s, which
is over 10000 times slower. In fact, in this setting, BLB-RF is able to achieve
a generalization error lower than the one of random forest before the first tree
of random forest is trained. BLB-RF achieves the final error of random forest
(14.3) after 20 s and random forest needs over 24, 000 s.

544 P. de Viña and G. Mart́ınez-Muñoz

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.01 0.1 1 10 100 1000 10000 100000

E
rr

or

t(s)

bests
worst

RF

Fig. 3. Best and worst generalization error for all configurations of BLB-RF for a given
computational time budget for waveform with 106 total instances

4 Conclusions

In this article we propose the use of the technique of bag-of-little bootstraps
together with an ensemble of random trees. This technique produces statistical
estimates equivalent to bootstrap using a fraction of the time. The techniques
proceeds in two steps. First, small random samples from the data are extracted
without replacement. From each of these small samples, r bootstrap samples
with replacement are generated with the size of the original dataset. For this
second sampling, the instances are weighted using a vector of counts drawn from
a uniform multinomial distribution. Finally, a random tree is trained on each of
the weighted samples to compose the ensemble.

We have shown that the proposed ensemble is computationally much more
effective than random forest. On the one hand, we have shown that for relatively
large datasets, the proposed method is able to train an ensemble in a time that
is orders of magnitude smaller that the time required to build the first tree of
random forest. On the other hand, for a large range of given time budgets, the
proposed ensemble is able to achieve a generalization error lower than that of
random forest.

Acknowledgments. The research has been supported by the Spanish Ministry of
Economy, Industry, and Competitiveness project TIN2016-76406-P, and Comunidad
de Madrid, project CASI-CAM-CM (S2013/ICE-2845).

References

1. Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.
ics.uci.edu/ml

2. Breiman, L.: Bagging predictors. Mach. Learn. 26, 123–140 (1996)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Using Bag-of-Little Bootstraps for Efficient Ensemble Learning 545

3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
4. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-

sion Trees. Chapman & Hall, New York (1984)
5. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings

of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2016, pp. 785–794. ACM, New York (2016)

6. Efron, B.: Bootstrap methods: another look at the jackknife. Ann. Stat. 7(1), 1–26
(1979)

7. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds
of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15,
3133–3181 (2014)

8. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

9. Hall, P., Samworth, R.J.: Properties of bagged nearest neighbour classifiers. J. Roy.
Stat. Soc. Ser. B 67(3), 363–379 (2005)

10. Kleiner, A., Talwalkar, A., Sarkar, P., Jordan, M.: A scalable bootstrap for massive
data. J. Roy. Stat. Soc. Ser. B 76, 795–816 (2014)

11. Kleiner A., Talwalkar A., Sarkar, P., Jordan, M.: The big data bootstrap. In: ICML
(2012)

12. Mart́ınez-Muñoz, G., Suárez, A.: Out-of-bag estimation of the optimal sample size
in bagging. Pattern Recognit. 43(1), 143–152 (2010)

13. Mason, L., Baxter, J., Bartlett, P., Frean, M.: Boosting algorithms as gradient
descent. In: Advances in Neural Information Processing Systems, vol. 12, pp. 512–
518. MIT Press (2000)

14. Zaman, F., Hirose, H.: Effect of subsampling rate on subbagging and related ensem-
bles of stable classifiers. In: Chaudhury, S., Mitra, S., Murthy, C.A., Sastry, P.S.,
Pal, S.K. (eds.) PReMI 2009. LNCS, vol. 5909, pp. 44–49. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-11164-8 8

https://doi.org/10.1007/978-3-642-11164-8_8

Learning Preferences for Large Scale
Multi-label Problems

Ivano Lauriola1,2(B), Mirko Polato1, Alberto Lavelli2, Fabio Rinaldi2,3,
and Fabio Aiolli1

1 Department of Mathematics, University of Padova,
Via Trieste, 63, 35121 Padova, Italy
ivano.lauriola@phd.unipd.it

2 Fondazione Bruno Kessler, Via Sommarive, 18, 38123 Trento, Italy
3 Institute of Computational Linguistics, University of Zurich,

Andreasstrasse 15, 8050 Zurich, Switzerland

Abstract. Despite that the majority of machine learning approaches
aim to solve binary classification problems, several real-world applica-
tions require specialized algorithms able to handle many different classes,
as in the case of single-label multi-class and multi-label classification
problems. The Label Ranking framework is a generalization of the above
mentioned settings, which aims to map instances from the input space
to a total order over the set of possible labels. However, generally these
algorithms are more complex than binary ones, and their application on
large-scale datasets could be untractable.

The main contribution of this work is the proposal of a novel general
on-line preference-based label ranking framework. The proposed frame-
work is able to solve binary, multi-class, multi-label and ranking prob-
lems. A comparison with other baselines has been performed, showing
effectiveness and efficiency in a real-world large-scale multi-label task.

Keywords: Preference Learning Machine · Multi-class · Multi-label
Big data · Large-scale

1 Introduction

Nowadays, the majority of Machine Learning techniques are able to solve binary
classification problems, where the algorithms try to determine if a pattern
belongs to either a positive (+1) or a negative (−1) class. Despite that the
binary classification setting is the most known, studied and used, there are sev-
eral problems and real-world applications in which this approach is not suitable,
as is the case of multi-class and multi-label models.

In the literature several mechanisms exist to extend the binary classifica-
tion setting. The simplest approach is based on decomposition methods, such as
the one-against-one and one-against-all [8] approaches. Basically, these methods
decompose the original multi-class problem in several binary tasks. Then, these

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 546–555, 2018.
https://doi.org/10.1007/978-3-030-01418-6_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_54&domain=pdf

Learning Preferences for Large Scale Multi-label Problems 547

binary problems are solved using binary classifiers and predictions are combined
with a voting procedure. More complex approaches try to model a single multi-
class/multi-label problem, as in the case of the Label Ranking framework based
on preferences [15], which aims to learn a total order on the set of possible labels.
However, these methods usually suffer from scalability issues with respect to the
number of classes, making the original problem untractable when this number
is large. Besides, due to the constant growth of the available data, a challeng-
ing goal of these algorithms is to solve these problems efficiently in terms of
computational cost, and required resources.

Inspired by these motivations, this paper presents an extension of the Pref-
erence Learning Machine (PLM) [2], a general label ranking framework to learn
preferences in binary, multi-class and multi-label setting. The proposed exten-
sion mainly includes an efficient and scalable learning procedure, based on the
Voted Perceptron algorithm [7], and online learning capability.

The proposed approach has been compared with Neural Networks on a
real-world multi-label application. The multi-label task consists of a large-scale
semantic indexing of PubMed documents, based on the Medical Subject Head-
ings (MeSH) thesaurus.

2 Notation and Background

In the (single-label) multi-class classification problem, the unique label associ-
ated to each pattern x from the input space X ⊆ R

d, is selected from a prede-
fined set of labels Ω = {ω1, . . . , ωm}, where m is the number of possible labels
m = |Ω|. A common example of multi-class problem is the digit recognition,
where the goal is to find the true digit corresponding to a handwritten input [9].

Let us now consider the problem of associating keywords from a given set
Ω to a textual document [3]. Differently from the previous case, the number of
associated labels (keywords) can be more than 1, and each document might have
a different number of keywords. Hence, the task is to learn a mapping from a
document to a set of labels. These kinds of problems are referred to multi-label
classification problems.

It is easy to see that the single-label multi-class problem is a generalization of
the binary setting, where m = 2 and, in turn, the multi-label is a generalization
of the single-label multi-class problem.

In all of these settings, the label set y ∈ Y ⊆ {+1,−1}m associated to each
pattern x ∈ X can be coded as a binary m-dimensional vector, where each
element yi is active (+1) if and only if the label ωi is assigned to the pattern x.

Based on this code, training examples can be kept into two matrices. Let
X ∈ R

l×d be the training matrix, where d-dimensional vectors are arranged in l
rows, and let Y ∈ {+1,−1}l×m be the corresponding label matrix, where rows
contain the code of the training patterns. The notation xi is also used to identify
the i-th pattern.

Besides the concept of multi-label classification, the more general multi-label
ranking has been introduced [4]. The multi-label ranking approach aims to pre-
dict the ranking of all labels instead of predicting only the set of relevant ones.

548 I. Lauriola et al.

2.1 Related Work

Motivated by the increasing number of new applications, such as automatic
annotations of video, images and textual documents, the problem of learning
from multi-label data is affecting a large part of the modern research. Recently,
several different approaches have been developed aiming to solve multi-label
problems [6,12,14]. It is possible to divide these methods into two categories
[13]: adaption methods and problem transformation methods.

Adaption methods extend specific machine learning algorithms to handle
multi-label data, as in the case of Neural Networks which use an extended back-
propagation algorithm with dedicated error functions (see [11] for a detailed
explanation).

Problem transformation methods, instead, are those algorithms which map
the multi-label classification problem into one or more binary tasks. The most
known problem transformation approach is the one-against-all decomposition
method [8]. This method generates an ensemble of m = |Ω| binary classifiers.
The i-th classifier is trained with all the examples of the i-th class as positive
labels, and all the other examples as negative labels. When models are trained,
there are m decision functions. In a ranking multi-label setting, these decision
functions define the score for each label. Furthermore, in a single-label multi-class
problem the predicted label is the one which achieves the highest score.

See [1,15,16] for detailed surveys of multi-label problems.

3 Working with Preferences

Several algorithms able to solve Label Ranking problems exist in the literature.
Some of them are based on the concept of preferences, which define an ordering
relation on labels and examples. Methods based on preferences try to find a
ranking hypothesis fΘ : X × Ω → R with parameters Θ, which assigns for each
label ωi ∈ Ω a score to a fixed pattern x ∈ X , fΘ(x, ωi).

These algorithms can be restricted to two particular cases: learning instance
preference and learning label preference [5].

In the instance preference scenario, a preference relations is defined as a
bipartite graph g = (N,A), where N ⊆ X ×Ω is the set of nodes and A ⊆ N ×N
is the set of arcs.

A node n = (xi, ωj) ∈ N is a pair composed by an example and a label, and
it is a positive node iff the label ωj is positive for the example xi, otherwise n
is a negative node.

An arc a = (ns, ne) ∈ A connects a starting (positive) node ns = (xi, ωj) to
its ending (negative) node ne = (xk, ωq). The direction of the arc indicates that
the starting node must be preferred over the ending node.

The margin of an arc a = (ns, ne) is the difference between the application
of the ranking function fΘ on the starting and ending nodes,

ρA(a,Θ) = fΘ(ns) − fΘ(ne) = fΘ(xi, ωj) − fΘ(xk, ωq).

Learning Preferences for Large Scale Multi-label Problems 549

An arc a = (ns, ne) is consistent with the hypothesis fΘ iff the assigned score to
the node ns is greater than the score assigned to the node ne, fΘ(ns) > fΘ(ne),
thus the margin ρA(a,Θ) > 0. The margin of a graph g = (N,A) is the minimum
margin of its arcs ρG(g,Θ) = mina∈A ρA(a,Θ). Then, a graph is consistent with
the hypothesis fΘ iff its arcs are consistent, ρG(g,Θ) > 0.

In the instance preference task instead, preferences are defined by considering
a single example at a time. In this scenario, an arc a ∈ A considers nodes with
the same example, a = (ns, ne), with ns = (xi, ωj) and ne = (xi, ωq)

It is easy to see that the label preference scenario tries to separate simultane-
ously the whole set of examples with their positive nodes and the set of negative
nodes. Thus, it is suitable for solving classification tasks. In the instance prefer-
ence approach instead the algorithms try to optimize the inner ordering for each
example.

Some examples of instance preference graphs for a 2-label classification prob-
lem are shown in Fig. 1, where for each example: (a) there is only one fully con-
nected graph which connects all positive labels to all negative ones; (b) for each
example there are two graphs which connect each positive label to all of the
negatives; (c) there is a graph for each pair of labels, the first positive and the
second negative. The architecture of these graphs is a hyperparameter selected a
priori. Note that for each graph structure, the number of total arcs is the same.

Fig. 1. Examples of preferences for 2-label classification. pi are the positive labels and
nj the negative ones.

The last ingredient of a preference algorithm is a loss function L which penal-
izes the non-consistent preferences. A label ranking algorithm based on prefer-
ences tries to find the hypothesis f̂ from the hypothesis space F which minimizes
L. Loss functions considered in this work are based on the margin of graphs:

f̂ = arg min
fΘ∈F

∑

g∈V
L(ρG(g,Θ))

where V is the set of preference graphs.

3.1 Preference Learning Machine

The Preference Learning Machine (PLM) [2] belongs to the label preference
setting. It is a general kernelized framework for solving multi-class and label
ranking problems, by learning a function to map each example to a total order
on the set of possible labels.

550 I. Lauriola et al.

The PLM framework consists of a multivariate embedding h : X → R
s

parametrized by a set of s vectors Wk ∈ R
d, k ∈ {1, . . . , s} arranged in the

matrix W ∈ R
s×d. Thus, h(x) = [h1(x), . . . , hs(x)] = [〈W1,x〉, . . . , 〈Ws,x〉].

Furthermore, let M ∈ R
m×s be the matrix containing the s-dimensional code

for each label ωi ∈ Ω.
The scoring function for a given example x and a given label ωr can be

computed as the dot product between the embedding and the code vector of ωr,
that is

f(x, ωr) = 〈h(x),Mr〉 =
s∑

k=1

Mrk〈Wk,x〉.

The original PLM [2] considers a fixed m-dimensional orthogonal coding M ,
defined as the m × m identity matrix. Authors also formulated the problem of
learning the embedding W as a kernelized optimization problem.

4 The Proposed Extension

In the proposed setting, preferences consist of graphs with two nodes connected
by a single arc. The first node is represented by an example with one of its
positive labels, whereas the latter node is an (potentially different) example
with one of its negative labels.

The main extension concerns the possibility of learning the Coding matrix
M , making the algorithm more expressive with respect to the original one. Two
version of the algorithm are proposed in this work, which are the EC-PLM
(Embedding-Coding PLM) and the EP-PLM (Embedding-PCA PLM).

The EC-PLM uses a pair of Voted Perceptron [7] algorithm to efficiently learn
both, the Embedding W and the coding M . Broadly speaking, the EC-PLM
performs an alternate optimization procedure to learn its parameters. During
each epoch, the algorithm fixes the Coding and optimizes the Embedding by
means of a Voted Perceptron. Then, it fixes the Embedding while optimizes the
Coding by using the same procedure. After each optimization, the Embedding
W and the Coding M are rescaled with their Frobenius norm, W ← W∑

ij Wij
,

M ← M∑
ij Mij

.
The training set used to learn the Embedding is composed by preferences.

Let a be the arc of a preference graph which connect the starting node (xi, ωj)
with the ending node (xk, ωq). The preference uses the same representation of the
PLM, which consists of a s×d dimensional vector z =

(
Mωj

⊗ xi

)−(
Mωq

⊗ xk

)
,

where ⊗ denotes the kron product between vectors and Mωj
, Mωq

are the codes
of ωj and ωq. The dimensionality s of codes is a hyperparameter.

When the latter perceptron learns the coding matrix, preferences are defined
as z = (ys ⊗ 〈W ,xi〉) − (ye ⊗ 〈W ,xj〉), where yj is a 0 m-dimensional vector
with an 1 at the j-th element. However, the algorithm requires an initialized
code matrix at the first epoch, to learn the first embedding. The initial coding
M contains random values.

Learning Preferences for Large Scale Multi-label Problems 551

Furthermore, a faster version of the PLM has been considered, dubbed EP-
PLM, in which the coding M is computed by means of a Principal Component
Analysis (PCA) procedure. Thus, the algorithm requires a single Voted Percep-
tron procedure.

Let KT be the linear kernel between labels KT = Y Y �, which counts the
number of common examples for each pair of labels. The kernel matrix is then
decomposed as UΛU�, where U is the matrix contains the eigenvectors, and
Λ the diagonal matrix containing the eigenvalues. The Coding M is defined as
UsΛs , where Us is the matrix contains the s eigenvectors associated to the top
s eigenvalues. Note that the complexity of this approach mainly depends on the
number of labels, and it can be applied on very large scale datasets.

The pseudo-code of the EC-PLM algorithm is shown in the Algorithm 1.

Algorithm 1. The Embedding-Coding Preference Learning Machine
Input:

s: the dimensionality of codes
t: the number of epochs
X : the training matrix
Y : the label matrix

Output:
W : the embedding function
M : the coding function

1 W (0) ← {0}s×d

2 M (0) ← random m × s code matrix
3 for i ∈ 1 . . . t do

4 W (i) ← V oted Perceptron(M (i−1))

5 M (i) ← V oted Perceptron(W (i))

6 end

7 return W (t),M (t)

Due to the characteristics of the Voted Perceptron algorithm and its capa-
bility to work with one preference at a time, the EC-PLM can be easily used to
work with on-line streams of examples and preferences.

On the other hand, the EP-PLM is able to learn the coding with millions of
examples efficiently. Furthermore, on each epoch it uses a single Voted Percep-
tron to learn the Embedding. The complete procedure is very fast, especially if
the input examples use a sparse representation.

5 Experimental Assessment

In order to empirically evaluate the proposed method, it has been tested on
a complex multi-label task, which consists of a large-scale online biomedical
semantic indexing of PubMed documents based on the Medical Subject Head-
ings (MeSH) [10]. The MeSH thesaurus is a controlled vocabulary produced

552 I. Lauriola et al.

by the National Library of Medicine (NLM), used for indexing and cataloging
the biomedical literature in MEDLINE, that is the NLM bibliographic database
containing 24 million journal articles.

The MeSH vocabulary consists of a hierarchy of tags. This work focused on
the bottom layer of this hierarchy, which includes 28 333 descriptors or heading
tags, that represent main topics or concepts in the biomedical literature.

In this setting, heading tags represent the set of all possible classes or labels,
and the task is to find for each example a total order in this set.

5.1 Baselines

The proposed methods have been compared against a Multiple Layer Perceptron
(MLP) which represents the same architecture used in the PLM. Let us consider
a fully connected MLP with a d-dimensional input layer, which maps the input
into a hidden s-dimensional layer by means of a dense d × s linear connection.
Then, the hidden layer maps information on a m = |Ω| dimensional output layer
by using a dense s×c linear connection. With this perspective, it is easy to show
that the two mappings between layers correspond to the Embedding W and
Coding M used in the PLM setting.

However, although the PLM can be mapped into a MLP and vice versa, the
learning mechanisms used are quite different. The MLP uses a back-propagation
procedure whereas the PLM tries to optimize each input preference.

Other baselines have been initially considered. These are the Support Vector
Machine (SVM) with one-against-all multi-class strategy, and the original PLM.
Anyhow, due to the dimensionality of the considered problem and the complexity
of these methods, only the MLP has been used.

5.2 Empirical Evaluation

A wide experimental setting has been used to compare the two versions of the
algorithm, in terms of AUC score, computational cost and required resources.

At first, 20 000 abstracts have been randomly selected from the PubMed
repository with their respective MeSH tags. Abstracts have been tokenized by
considering spaces and punctuation, and stop-words have been removed. The
stop-list is the one defined by the scikit-learn library. The global dictionary has
been computed by considering only unigrams.

Then, the resulting dictionary has been reduced, by considering only the
100 000 most frequent terms. Finally, the Bag-Of-Words (BOW) feature vector
has been computed on each input document. A test set has been preprocessed
using the same pipeline, and it also includes 20 000 abstracts. To compute the
coding matrix M used in the EP-PLM version, a PCA over 10 million of PubMed
documents has been used. The dimension s of codes has been fixed to 50. On each
epoch, the Voted Perceptron procedure optimizes 2000 preferences randomly
selected. Finally, the training subsampling covers 17071 different MeSH tags.

In order to understand properly the behavior and the empirical convergence
of the two algorithms, a preliminary analysis has been performed, showing the

Learning Preferences for Large Scale Multi-label Problems 553

micro and macro AUC measures while increasing the number of training epochs.
Results are shown in the Fig. 2.

It is self-evident from the picture that the EP-PLM outperforms empirically
the EC-PLM, even if it uses a fixed code matrix instead of learning dynamically
it from data. Probably, this improvement is due to the fact that the EP-PLM
uses 10 million of examples to learn the coding instead of 20 000 as is the case of
EC-PLM. In terms of computational cost, the EC-PLM requires on average 132 s
to complete a single epoch, whereas the EP-PLM required 95 min to compute
the PCA, and 19 s per epoch. The experiments were carried out on an Intel(R)
Xeon(R) CPU E5-2650 v3 @ 2.30 GHz.

EC-PLM EP-PLM

0 500 1,000 1,500 2,000

0.7

0.8

0.9

1

epochs

Macro AUC

0 500 1,000 1,500 2,000

0.7

0.8

0.9

1

epochs

Micro AUC

Fig. 2. Empirical convergence of the proposed algorithm.

Subsequently, the combination of several EC/EP-PLM models have been ana-
lyzed exploiting a bagging procedure, aiming to facilitate the application of these
algorithms on large-scale problems. 10 different datasets have been extracted
from the PubMed repository following the procedure mentioned at the beginning
of this section, each with 20 000 training examples. Figure 3 shows the empirical
effectiveness of the algorithm while increasing the number of models in the case
of EC-PLM and EP-PLM. Not surprisingly, the bagging procedure has a strong
impact on the EC-PLM setting, in which each model uses only 20 000 examples
for both the Embedding and the Coding. The EP-PLM also increases the AUC
scores while the number of models increases.

Finally, a comparison against the Multiple Layer Perceptron has been per-
formed. Figure 4 shows Micro and Macro AUC scores of the EC-PLM and
EP-PLM against the MLP with linear and sigmoid activation functions, while
increasing the dimension s ∈ {25, 50, 100, 200} of the codes and the hidden layer.
This experiment shows that the proposed methodologies outperform a MLP with
the same inner structure of the PLM. Moreover, the value of s affects significantly
the EC/EP-PLM and the linear MLP in particular.

554 I. Lauriola et al.

EC-PLM EP-PLM

2 4 6 8 10

0.95

0.96

0.97

0.98

models

Macro AUC

2 4 6 8 10

0.95

0.96

0.97

0.98

models

Micro AUC

Fig. 3. Micro and Macro AUC scores while increasing the number of combined models.

EC-PLM EP-PLM MLP (linear) MLP (sigmoid)

50 100 150 200

0.85

0.9

0.95

s

Macro AUC

50 100 150 200

0.8

0.85

0.9

0.95

s

Micro AUC

Fig. 4. Micro and Macro AUC scores of EC/EP-PLM and the MLP while increasing
the dimension s of the middle space.

6 Conclusion

We have proposed a general framework for on-line preference-based label ranking
that can be applied to binary, multi-class, multi-label and ranking problems.
Two different versions of the algorithm have been discussed and analyzed. The
first focuses on the efficiency whereas the latter is an effective on-line learner. A
comparison with some baselines has shown its effectiveness and efficiency in a
real-world large-scale multi-label task.

Learning Preferences for Large Scale Multi-label Problems 555

References

1. Aiolli, F.: Large margin multiclass learning: models and algorithms. Ph.D. thesis,
Department of Computer Science, University of Pisa (2004)

2. Aiolli, F., Sperduti, A.: Learning preferences for multiclass problems. In: Advances
in Neural Information Processing Systems, pp. 17–24 (2005)

3. Allan, J.: Topic Detection and Tracking: Event-Based Information Organization,
vol. 12. Springer, Heidelberg (2012)

4. Brinker, K., Fürnkranz, J., Hüllermeier, E.: A unified model for multilabel classi-
fication and ranking. In: Proceedings of the 2006 conference on ECAI 2006: 17th
European Conference on Artificial Intelligence, 29 August - 1 September 2006, Riva
del Garda, Italy, pp. 489–493. IOS Press (2006)

5. Chu, W., Ghahramani, Z.: Preference learning with gaussian processes. In: Pro-
ceedings of the 22nd International Conference On Machine learning, pp. 137–144.
ACM (2005)

6. Dembczynski, K., Cheng, W., Hüllermeier, E.: Bayes optimal multilabel classifica-
tion via probabilistic classifier chains. In: ICML, vol. 10, pp. 279–286 (2010)

7. Freund, Y., Schapire, R.E.: Large margin classification using the perceptron algo-
rithm. Mach. Learn. 37(3), 277–296 (1999)

8. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector
machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)

9. Meier, U., Ciresan, D.C., Gambardella, L.M., Schmidhuber, J.: Better digit recog-
nition with a committee of simple neural nets. In: 2011 International Conference
on Document Analysis and Recognition (ICDAR), pp. 1250–1254. IEEE (2011)

10. Nentidis, A., Bougiatiotis, K., Krithara, A., Paliouras, G., Kakadiaris, I.: Results of
the fifth edition of the BioASQ challenge. In: BioNLP 2017, pp. 48–57. Association
for Computational Linguistics, Vancouver, August 2017

11. Ou, G., Murphey, Y.L.: Multi-class pattern classification using neural networks.
Pattern Recognit. 40(1), 4–18 (2007)

12. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label
classification. Mach. Learn. 85(3), 333 (2011)

13. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data
Warehous. Min. 3(3), 1–13 (2006)

14. Tsoumakas, G., Vlahavas, I.: Random k -labelsets: an ensemble method for mul-
tilabel classification. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S.,
Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–
417. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74958-5 38

15. Vembu, S., Gärtner, T.: Label ranking algorithms: a survey. In: Fürnkranz, J.,
Hüllermeier, E. (eds.) Preference Learning, pp. 45–64. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14125-6 3

16. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans.
Knowl. Data Eng. 26(8), 1819–1837 (2014)

https://doi.org/10.1007/978-3-540-74958-5_38
https://doi.org/10.1007/978-3-642-14125-6_3

Affinity Propagation Based Closed-Form
Semi-supervised Metric Learning

Framework

Ujjal Kr Dutta(B) and C. Chandra Sekhar

Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai, India

ukd@cse.iitm.ac.in

Abstract. Recent state-of-the-art deep metric learning approaches
require large number of labeled examples for their success. They can-
not directly exploit unlabeled data. When labeled data is scarce, it is
very essential to be able to make use of additionally available unlabeled
data to learn a distance metric in a semi-supervised manner. Despite
the presence of a few traditional, non-deep semi-supervised metric learn-
ing approaches, they mostly rely on the min-max principle to encode the
pairwise constraints, although there are a number of other ways as offered
by traditional weakly-supervised metric learning approaches. Moreover,
there is no flow of information from the available pairwise constraints to
the unlabeled data, which could be beneficial. This paper proposes to
learn a new metric by constraining it to be close to a prior metric while
propagating the affinities among pairwise constraints to the unlabeled
data via a closed-form solution. The choice of a different prior metric
thus enables encoding of the pairwise constraints by following formula-
tions other than the min-max principle.

Keywords: Mahalanobis distance · Affinity propagation
Metric learning · Image retrieval · Person re-identification
Graph-based learning · Semi-supervised learning · Classification
Fine-grained visual categorization

1 Introduction

Distance Metric Learning (DML) aims at learning the distance between a pair of
examples with the objective of bringing similar examples together while pushing
away dissimilar examples. Deep neural networks have demonstrated remarkable
success in machine learning tasks such as classification, clustering, verification
and retrieval. DML is a pivotal step in such tasks. As such, deep DML has
gained much popularity lately. Popular deep DML approaches [8,18,20,22,25]
aim at learning distance metrics in an end-to-end fashion with a pretrained
network, such as GoogLeNet [23]. Their success depends on a number of fac-
tors: (i) Availability of large number of labeled examples, (ii) Formulation of an
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 556–565, 2018.
https://doi.org/10.1007/978-3-030-01418-6_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_55&domain=pdf

Affinity Propagation Based Semi-supervised Metric Learning 557

appropriate loss function (which mainly involves the last layer) and (iii) Mining
informative constraints. [20–22] discuss a few mining strategies. However, the
ability to learn from unlabeled data has not been exploited by the deep DML
approaches. Recently, [15] employed a random walk process to mine constraints
for deep DML by considering the manifold similarity in an unsupervised manner.
But the random walk process therein cannot exploit already available pairwise
similarity/ dissimilarity constraints and hence cannot be directly extended to a
Semi-Supervised DML (SS-DML) setting. Another important observation is that
apart from a few approaches like [18,25], very few alternative loss functions have
been explored in deep DML. On the other hand, conventional DML approaches
like [6,11,16,28] offer a plethora of ways to formulate a DML loss function. In
fact, the recent work in [9] represented the last layer as a Symmetric Positive
Definite (SPD) matrix following a conventional metric learning approach. This
SPD matrix is jointly learned with a PCA projection matrix following a Rieman-
nian optimization framework, along with the parameters of the network. These
factors motivate us to revisit traditional SS-DML approaches utilizing different
criteria to formulate the DML loss function. Once such a parametric matrix is
found, it can be easily incorporated within a deep framework as in [9].

Traditional DML is referred to as the problem of learning a Mahalanobis-like
distance: dA(x,y) = (x − y)TAAT (x − y) = (x − y)TM(x − y) = dM(x,y)
for a pair of examples represented as feature vectors x,y ∈ R

d (which may have
been obtained using a convolutional neural network). Here, AT : Rd → R

l is a
linear mapping such that M = AAT and M � 0, is a symmetric Positive Semi-
Definite (PSD) parametric matrix to be learned. Equivalently we can learn A.
Any SS-DML approach can be formulated as the following general optimization
problem:

min
M�0

f1(M,S,D) + f2(M,X) (1)

S and D are the sets of must-link (similarity) and cannot-link (dissimilarity)
constraints respectively. They provide prior side-information (weak-supervision).
f1 is a function of the weak-supervision, and f2 is a function of the given
dataset X which also includes the unlabeled data XU . A majority of the SS-
DML approaches like [2,14,17,27] use the unlabeled data by expressing f2 as
the Laplacian regularizer [13], which aims at preserving the topology of the data
via a graph constructed using the neighborhood relationships among the exam-
ples. However, an important observation is that in most of these approaches,
f1 is always a variation of the min-max principle: minimizing (maximizing) the
distances between the data points with must-link (cannot-link) constraints. By
considering different criteria to choose f1, we can achieve our goal of formulating
an alternative DML loss function as discussed above.

This paper addresses the problem of formulating SS-DML approaches by
expressing f1 in terms of prior metrics learned using different criteria, apart
from the min-max principle. Another important aspect with the existing SS-
DML approaches like [2,14,27] is that the Laplacian regularizer is computed
using an affinity matrix based on neighborhood relationships among the data
alone, without considering the pairwise constraints, which could provide further

558 U. Kr Dutta and C. Chandra Sekhar

information. This paper attempts to overcome these limitations. The major con-
tributions of this paper are as follows: (i) To make use of the pairwise constraints
in the Laplacian regularizer as well, we follow the affinity propagation principle
[17] and propose a general, topology-preserving SS-DML framework; (ii) The
framework enables a closed-form solution to learn a new metric by constraining
it to be close to a prior metric in a simple way; (iii) Different choices for the
prior metric have been discussed to facilitate the formulation of new SS-DML
approaches by expressing f1 with alternatives to the min-max principle.

2 Proposed Semi-supervised DML Framework

Let X = [x1 ... xN] ∈ R
d×N denote the matrix containing N examples of a

dataset X as its columns. Let the two sets of pairwise constraints be: S =
{(xi,xj): xi and xj are similar} and D = {(xi,xj): xi and xj are dissimilar}.
Let yi = ATxi. The goal is to find M ∈ R

d×d (or A ∈ R
d×l), M � 0 using

the information provided in S and D, such that dM(xi,xj) = dA(xi,xj) =
‖yi − yj‖22. Our proposed framework can be expressed as:

min
M�0

‖M − M0‖2
F + βtr(MXLXT) (2)

where β > 0 is a trade-off parameter and ‖Q‖2F =
∑

ij Q2
ij = tr(QQT) is the

squared Frobenius norm of a matrix Q. The first term in (2) can be any function
f1(M,S,D) of the weak-supervision. The main advantage of using this expression
is that it enables us to arrive at a closed-form solution to the SS-DML problem.
The goal is to learn the required metric M ∈ R

d×d in such a way that it is
close to a prior metric M0 (defined apriori or precomputed using S and D).
One may argue to set f1 using log-determinant divergence as: f1(M,S,D) =
Dld(M,M0) = tr(MM−1

0) − log
∣
∣MM−1

0

∣
∣ − d. Although it leads to a convex

formulation, the solution is non-trivial, and would require a method like Bregman
projection [6]. Furthermore, the computation of M−1 required in computing the
gradient of Dld(M,M0) is hard. Another reason is that while in theory the log-
det term ensures that the optimum is within the PSD cone S

d
+, the intermediate

iterates are not necessarily confined to the cone in practice [1].
The second term in (2) represents the Laplacian regularizer for represent-

ing the manifold structure of the data by a graph [13] constructed using the
relationships among the data in an Euclidean space, and is defined as:

tr(MXLXT) = tr(ATXLXTA) =
1

2

N∑

i,j=1

‖yi − yj‖2
2Wij (3)

where L = D − W is the graph Laplacian and D is a diagonal matrix with
Dii =

∑N
j=1 Wij , denoting the degree of a node in the neighborhood graph.

The affinity/weight Wij represents a measure of similarity between two nodes
i and j in the graph representing examples xi and xj respectively. One may
use the heat kernel [13] to set Wij = e−‖xi−xj‖2

2/t, if xi ∈ Nj or xj ∈ Ni , and

Affinity Propagation Based Semi-supervised Metric Learning 559

Wij = 0 otherwise. Here t is a scale parameter and Ni is the set of k nearest
neighbors of xi, computed using pairwise Euclidean distances for constructing
the graph. However, such an assignment of affinity does not make use of the
pairwise constraints in S and D, which can provide further information about the
proximity of unlabeled examples (an example not associated with any pairwise
constraint). It is desirable to have a mechanism for flow of information from
the sets S and D to an unlabeled example. For this purpose, an adaptation
of the Affinity Propagation (AP) procedure [17] is considered. Define an initial
affinity matrix W 0 ∈ R

N×N . Assign W 0
ij = +1 if i �= j and either (xi,xj) ∈ S

or (xj ,xi) ∈ S or both. Assign W 0
ij = −1 if i �= j and either (xi,xj) ∈ D or

(xj ,xi) ∈ D or both. Note that the symmetry in affinities is intuitive, and useful
in practice as well. Assign W 0

ii = +1, and W 0
ij = 0 for (xi,xj) /∈ S and (xi,xj) /∈

D. Define a neighborhood indicator matrix P ∈ R
N×N as follows: Assign Pij =

1/k if xj ∈ Ni, and Pij = 0 otherwise. k is the number of nearest neighbors under
consideration. Note that P is asymmetric. Now, the goal is to propagate the
affinities from entries corresponding to the sets S and D, to the 0-entries of W 0

using the neighborhood structure information provided by the matrix P . It can
be achieved by following a Markov random walk as: W t+1 = (1−α)W 0+αPW t,
where α is a trade-off parameter. As 0 < α < 1 and eigenvalues of P are in [-1,1],
the limit W ∗ = limt→∞W t exists [17], and can be expressed as:

W ∗ = (1 − α)(I − αP)−1W 0 (4)

The matrix I −αP is usually sparse in practice. (4) can also be solved as a linear
system using the conjugate gradient method. For large scale computations, the k-
NN graph can be efficiently approximated by the method in [7], which is orders
of magnitudes faster without any effect on performance. The final symmetric
affinity matrix is obtained as follows: Wij = (W ∗

ij + W ∗
ji)/2, and used in (3).

Directly optimizing (2) in terms of M requires maintaining the PSD con-
straint, which involves computationally expensive projection onto the PSD cone
S
d
+ after every gradient step. Therefore, we consider the following optimization

problem:

min
A

‖A − A0‖2
F + βtr(ATXLXTA) (5)

where M0 = A0AT
0 . Though we drop the convexity in (5), recent studies [3,4]

show that non-convex problems like this indeed work very well in practice and
facilitate scalability. The advantage of using the formulation in (5) is two-fold:
(1) It eliminates the need for maintaining the PSD constraint, as the final matrix
M = AAT will be PSD by virtue of construction. (2) It can be solved using a
simple closed-form solution. Setting the gradient of the objective function in (5)
to zero, leads to the following closed-form solution for A:

A = [Id + βXLXT]−1A0 (6)

560 U. Kr Dutta and C. Chandra Sekhar

where Id is the d×d identity matrix. We refer to this proposed general framework
as Affinity Propagation based Semi-Supervised Metric Learning (APSSML).

3 Choices for the Prior Metric

Based on the choice of the prior metric, we can define a family of related SS-DML
approaches:

(i) Log-likelihood ratio based prior metric: The prior metric M0 is
computed based on a statistical inference perspective obtained using the Keep It
Simple and Straightforward MEtric (KISSME) learning approach [16]. It consid-
ers the space of pairwise differences and computes a log-likelihood ratio between
two multivariate Gaussians to learn the metric. The SS-DML approach using this
prior metric is called as Affinity Propagation and Log-Likelihood Ratio (APLLR)
based SS-DML. The motivation behind choosing the prior metric following [16]
is its effectiveness and simplicity while being orders of magnitudes faster than
other DML approaches.

(ii) Identity matrix as prior metric: A naive way of defining M0 is to set
it to the identity matrix Id, which avoids the need to compute a prior metric using
a learning method. This can be done in applications where time is a constraint.
The resulting approach is called as Affinity Propagation and IDentity matrix
(APID) based SS-DML. Despite its naiveness, the APID approach performs
decently as observed later.

(iii) Information-theoretic prior metric: The prior metric can also be
obtained from the Information-Theoretic Metric Learning (ITML) [6] approach
that aims at minimizing the Kullback-Leibler (KL) divergence between an initial
Gaussian distribution and the distribution parameterized by the learned met-
ric. The resulting approach is called as Affinity Propagation and Information-
Theoretic (APIT) SS-DML.

4 Experimental Studies

The proposed approaches APLLR, APID and APIT are compared with the fol-
lowing baselines: the recently proposed state-of-the-art Geometric Mean Met-
ric Learning (GMML) [28], two SS-DML approaches: Laplacian Regularized
Metric Learning (LRML) [14] and SEmi-supervised metRic leArning Paradigm
with Hyper-sparsity (SERAPH) [19]. SERAPH follows entropy regularization
instead of preserving the topological structure. Hyperparameters of the base-
line approaches have been tuned to yield the best performance. For the pro-
posed approaches, number of neighbors for computing the graph Laplacian is set
between 6 to 20. α is mostly kept as 0.5 or 0.6, as the performance is mostly
insensitive to its value. However, we do set it to 0.9 or 0.1 occasionally. All other
parameters related to the APSSML framework are empirically tuned in the range{
10−7, ..., 102

}
.

Using both hand-crafted as well as deep features, experiments have been con-
ducted on a variety of machine learning tasks: (i) Classification on benchmark
UCI datasets (iris, wine, balance, diabetes and breast cancer), (ii) Handwritten

Affinity Propagation Based Semi-supervised Metric Learning 561

digit recognition on the USPS dataset, (iii) Fine-grained visual categorization
on the Caltech-UCSD Birds-200-2011 dataset (CUB) [24], (iv) Person
re-identification on the VIPeR dataset [10], and (v) Image retrieval on the
NUS-WIDE dataset [5]. The UCI datasets are split into 70%-15%-15% ratio
for training-validation-testing with data normalization. Only 10% of the train-
ing data is considered as labeled for both UCI and USPS datasets. For the CUB
dataset, the ResNet [12] features given in [26] have been used. The train-val
classes as given in [26] have been used for learning the parametric matrix. Only
30% of the data from each of 150 training classes is considered as labeled. Per-
formance on the test-seen data has been reported here. The approaches under
consideration have been compared using the classification accuracy based on
1-NN classifier (in %) for the UCI, USPS and CUB datasets.

For the VIPeR dataset, the experimental protocol followed and features used
are the same as in [16], while revealing (dis)similarity information of only 20%
random pairs. The matching rate at rank 1 (in %) is used as the performance
measure. A subset of 11 concepts have been chosen from the NUS-WIDE dataset
and represented by the normalized CM55 features [5]. The data has been orga-
nized in 10 different disjoint folds, such that for each fold a subset of 2200
images is selected in such a way that each concept has 200 relevant images and
200 irrelevant images from each of the other 10 concepts. Out of this subset 10%
examples have been chosen to generate the pair-wise constraints. Testing is done
on a subset of the dataset with 500 images for each concept that have not been
seen during training. Mean Average Precision (AP) across all concepts based on
top 10 retrieved images (in %) is used as the performance measure.

Iris Wine Bal Diab BCan USPS CUB VIPeR NUS
Dataset

0

10

20

30

40

50

60

70

80

90

100

P
er

fo
rm

an
ce

 m
ea

su
re

 (
in

 %
)

GMML
LRML
SERAPH
APLLR
APID
APIT

Fig. 1. Performance measures (in %, higher the better) obtained using distance metrics
learned by different approaches across different tasks.

562 U. Kr Dutta and C. Chandra Sekhar

Table 1. Average ranks (lower the better) along with standard deviation of the com-
pared approaches across all the tasks as shown in Fig. 1

Baseline approaches Proposed semi-supervised approaches

State-of-the-art Semi-supervised approaches

GMML LRML SERAPH APLLR APID APIT

Avg. Rank± std 2.33± 1.58 4.44± 1.42 4.77± 1.20 3.22± 2.27 3.77± 1.30 2.44± 1.01

The appropriate performance measures (as discussed) for all the studied
tasks, obtained using distance metrics learned by different approaches have been
collectively shown in Fig. 1. The average ranks along with the standard devi-
ation of the compared approaches, based on their performance across all the
tasks/datasets have been shown in Table 1. As seen in Table 1, the proposed SS-
DML approaches APLLR, APID and APIT outperform the baseline SS-DML
approaches LRML and SERAPH. This highlights the importance of considering
an alternative formulation to encode the weak-supervision by following criteria
other than the min-max principle alone. The proposed approaches also perform
competitive to the state-of-the-art GMML approach.

In fact, the proposed APLLR obtains the best performance in the following
datasets: iris, balance, diabetes and CUB. However, the APLLR approach is
less stable as well. This is because of the underlying prior metric obtained using
KISSME approach. It is not surprising because despite its success, KISSME
requires careful preprocessing and denoising. The invertibility of the scatter
matrix of the similar pairs involved in KISSME also plays a crucial role, which
is obviously dataset dependent. On the other hand, the APIT approach is much
stable and consistent. This can be attributed to the regularizer present in the
ITML approach. It is noteworthy that despite its naiveness, APID does perform
well. This shows that propagating information from pairwise constraints to the
unlabeled data does help, though not significantly in some cases. We believe
that thresholding out smaller values in the affinity matrix, or considering only
the top affinities for each element may help reduce noise and improve further per-
formance. It should be noted that the choice of the prior metric plays a pivotal
role.

In order to specifically study the relative improvement obtained by the affin-
ity propagation alone, the performances of the proposed approaches APLLR,
APID and APIT have also been compared with the prior metrics obtained by the
following approaches: KISSME, EUC (Identity matrix as the prior metric) and
ITML respectively. The comparative performance of the proposed approaches
with their prior metrics can be seen in Fig. 2(a), (c) and (e). In most of the
cases, the proposed approaches gain an improvement over the prior metrics,
again highlighting the importance of propagating the information from pairwise
constraints to the unlabeled data. However, for the image retrieval task in NUS-
WIDE dataset we observed otherwise. The proposed approaches were performing
inferior to the prior metrics. Hence, we studied the comparative performance of
the proposed approaches and the prior metrics on individual concepts of the
NUS-WIDE dataset. Performances (AP, in %) in five of the eleven concepts are

Affinity Propagation Based Semi-supervised Metric Learning 563

0 10 20 30 40 50 60 70 80 90 100
Performance measure (in %)

Iris

Wine

Bal

Diab

BCan

USPS

CUB

VIPeR

NUS
D

a
ta

s
e
t

(a) APID vs prior metric of EUC

EUC
APID

0 5 10 15 20 25 30 35
Performance measure (in %)

Animal

Clouds

Ocean

Sky

Sunset

C
o

n
c
e
p

t

(b) APID vs prior metric of EUC

EUC
APID

0 10 20 30 40 50 60 70 80 90 100
Performance measure (in %)

Iris

Wine

Bal

Diab

BCan

USPS

CUB

VIPeR

NUS

D
a
ta

s
e
t

(c) APIT vs prior metric of ITML

ITML
APIT

0 5 10 15 20 25 30 35
Performance measure (in %)

Animal

Clouds

Ocean

Sky

Sunset

C
o

n
c
e
p

t

(d) APIT vs prior metric of ITML

ITML
APIT

0 10 20 30 40 50 60 70 80 90 100
Performance measure (in %)

Iris

Wine

Bal

Diab

BCan

USPS

CUB

VIPeR

NUS

D
a
ta

s
e
t

(e) APLLR vs prior metric of KISSME

KISSME
APLLR

0 5 10 15 20 25 30
Performance measure (in %)

Animal

Clouds

Ocean

Sky

Sunset

C
o

n
c
e
p

t

(f) APLLR vs prior metric of KISSME

KISSME
APLLR

Fig. 2. Comparison of performance measures (in %, higher the better) obtained for the
proposed approaches with that of the prior metrics.

shown in Fig. 2(b), (d) and (f). It has been observed that although the proposed
approaches performed better for 4 concepts (sky, ocean, clouds and animal),
except APLLR the remaining performed inferior on the sunset concept. Even
for the remaining concepts (buildings, grass, lake, person, plants and reflection)
we did not observe any improvement. We suspect that adding unlabeled data for
these concepts was not beneficial. In such cases it is advisable to simply apply an
approach like ITML or GMML. It may have happened due to the multi-concept
nature of the dataset and the incapability of the SS-DML approaches to unravel
the manifold structure of data of some of the concepts, thus lowering the average
performance in the NUS-WIDE dataset.

It should be noted that, as an alternative to the two-stage nature of APSSML
framework, jointly learning the prior metric M0 and the current metric M using
an Alternating Optimization scheme could be looked at as a future work.

5 Conclusions

A general affinity propagation based topology-preserving semi-supervised DML
framework has been proposed. By constraining the metric to learn to be closer to

564 U. Kr Dutta and C. Chandra Sekhar

a prior metric with respect to the squared Frobenius norm, a closed-form solution
for the framework has been derived. Different choices for the prior metric have
been discussed, resulting in new semi-supervised DML approaches which have
shown competitive performance.

References

1. Atzmon, Y., Shalit, U., Chechik, G.: Learning sparse metrics, one feature at a time.
J. Mach. Learn. Res. (JMLR) 1, 1–48 (2015)

2. Baghshah, M.S., Shouraki, S.B.: Semi-supervised metric learning using pairwise
constraints. In: Proceedings of International Joint Conference on Artificial Intelli-
gence (IJCAI), pp. 1217–1222 (2009)

3. Bhojanapalli, S., Boumal, N., Jain, P., Netrapalli, P.: Smoothed analysis for low-
rank solutions to semidefinite programs in quadratic penalty form. arXiv preprint
arXiv:1803.00186 (2018)

4. Bhojanapalli, S., Kyrillidis, A., Sanghavi, S.: Dropping convexity for faster semi-
definite optimization. In: Proceedings of Conference on Learning Theory (COLT),
pp. 530–582 (2016)

5. Chua, T.S., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-
world web image database from national university of Singapore. In: Proceedings
of ACM International Conference on Image and Video Retrieval (CIVR), p. 48
(2009)

6. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic met-
ric learning. In: Proceedings of International Conference on Machine Learning
(ICML), pp. 209–216 (2007)

7. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for
generic similarity measures. In: Proceedings of International Conference on World
Wide Web (WWW), pp. 577–586. ACM (2011)

8. Duan, Y., Zheng, W., Lin, X., Lu, J., Zhou, J.: Deep adversarial metric learning.
In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2780–2789 (2018)

9. Faraki, M., Harandi, M.T., Porikli, F.: Large-scale metric learning: a voyage from
shallow to deep. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 4339–4346 (2018)

10. Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition, reac-
quisition, and tracking. In: IEEE International Workshop on Performance Evalu-
ation for Tracking and Surveillance (PETS), vol. 3 (2007)

11. Harandi, M., Salzmann, M., Hartley, R.: Joint dimensionality reduction and metric
learning: a geometric take. In: Proceedings of International Conference on Machine
Learning (ICML) (2017)

12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778 (2016)

13. He, X., Niyogi, P.: Locality preserving projections. In: Proceedings of Neural Infor-
mation Processing Systems (NIPS), pp. 153–160 (2003)

14. Hoi, S.C., Liu, W., Chang, S.F.: Semi-supervised distance metric learning for col-
laborative image retrieval and clustering. ACM Trans. Multimed. Comput. Com-
mun. Appl. 6(3), 18 (2010)

15. Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Mining on manifolds: metric learn-
ing without labels. In: Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2018)

http://arxiv.org/abs/1803.00186

Affinity Propagation Based Semi-supervised Metric Learning 565

16. Koestinger, M., Hirzer, M., Wohlhart, P., Roth, P.M., Bischof, H.: Large scale
metric learning from equivalence constraints. In: Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 2288–2295 (2012)

17. Liu, W., Ma, S., Tao, D., Liu, J., Liu, P.: Semi-supervised sparse metric learn-
ing using alternating linearization optimization. In: Proc. of ACM International
Conference on Special Interest Group on Knowledge Discovery and Data Mining
(SIGKDD), pp. 1139–1148 (2010)

18. Movshovitz-Attias, Y., Toshev, A., Leung, T.K., Ioffe, S., Singh, S.: No fuss dis-
tance metric learning using proxies. In: Proceedings of IEEE International Confer-
ence on Computer Vision (ICCV) (2017)

19. Niu, G., Dai, B., Yamada, M., Sugiyama, M.: Information-theoretic semi-
supervised metric learning via entropy regularization. Neural Comput. 26(8), 1717–
1762 (2014)

20. Oh Song, H., Xiang, Y., Jegelka, S., Savarese, S.: Deep metric learning via lifted
structured feature embedding. In: Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4004–4012 (2016)

21. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face
recognition and clustering. In: Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 815–823 (2015)

22. Sohn, K.: Improved deep metric learning with multi-class n-pair loss objective.
In: Proceedings of Neural Information Processing Systems (NIPS), pp. 1857–1865
(2016)

23. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

24. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD
Birds-200-2011 Dataset. Technical report (2011)

25. Wang, J., Zhou, F., Wen, S., Liu, X., Lin, Y.: Deep metric learning with angular
loss. In: Proceedings of IEEE International Conference on Computer Vision (ICCV)
(2017)

26. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning-a comprehensive
evaluation of the good, the bad and the ugly. arXiv preprint arXiv:1707.00600
(2017)

27. Ying, S., Wen, Z., Shi, J., Peng, Y., Peng, J., Qiao, H.: Manifold preserving: an
intrinsic approach for semisupervised distance metric learning. IEEE Trans. Neural
Netw. Learn. Syst. (2017)

28. Zadeh, P., Hosseini, R., Sra, S.: Geometric mean metric learning. In: Proceedings
of International Conference on Machine Learning (ICML), pp. 2464–2471 (2016)

http://arxiv.org/abs/1707.00600

Online Approximation of Prediction
Intervals Using Artificial Neural Networks

Myrianthi Hadjicharalambous(B), Marios M. Polycarpou,
and Christos G. Panayiotou

KIOS Research and Innovation Center of Excellence,
Department of Electrical and Computer Engineering,

University of Cyprus, Nicosia, Cyprus
{hadjicharalambous.myrianthi,mpolycar,christosp}@ucy.ac.cy

Abstract. Prediction intervals offer a means of assessing the uncer-
tainty of artificial neural networks’ point predictions. In this work, we
propose a hybrid approach for constructing prediction intervals, com-
bining the Bootstrap method with a direct approximation of lower and
upper error bounds. The main objective is to construct high-quality pre-
diction intervals – combining high coverage probability for future obser-
vations with small and thus informative interval widths – even when
sparse data is available. The approach is extended to adaptive approx-
imation, whereby an online learning scheme is proposed to iteratively
update prediction intervals based on recent measurements, requiring
a reduced computational cost compared to offline approximation. Our
results suggest the potential of the hybrid approach to construct high-
coverage prediction intervals, in batch and online approximation, even
when data quantity and density are limited. Furthermore, they highlight
the need for cautious use and evaluation of the training data to be used
for estimating prediction intervals.

Keywords: Prediction intervals · Lower and upper error bounds
Online learning · Adaptive approximation

1 Introduction

The use of Artificial Neural Networks (ANN) in approximating unknown func-
tions has attracted significant research interest over the last decades [1,2], moti-
vated by the universal approximator properties of ANN [2]. However, in practical
scenarios where the function to be approximated is unknown, ANN’s accuracy
relies on the quality and quantity of the available measurements. Noise-corrupted
measurements, multi-valued targets along with data uncertainty stemming from
variabilities of the physical system, significantly impact ANN’s point predictions.
The reliability of point predictions is further deteriorated in online approxima-
tion scenarios, whereby the training data might be sparse – especially at initial
training stages – or might not representatively cover the entire region of interest.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 566–576, 2018.
https://doi.org/10.1007/978-3-030-01418-6_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_56&domain=pdf

Online Approximation of Prediction Intervals 567

Such issues will likely force the ANN to extrapolate, limiting its generalisation
ability along with the practical utility of point predictions. As an alternative
to point predictions, Prediction Intervals (PIs) have been proposed [3–5] which
provide lower and upper bounds for a future observation, with a prescribed
probability. From a practical point of view, PIs could be preferable to point pre-
dictions as they provide an indication of the reliability of the ANN as well as
enable practitioners to consider best- and worst-case scenarios. For example, PIs
could be particularly useful in control engineering and fault detection applica-
tions [6], where uncertainty bounds could help distinguish the healthy operation
of the system from faulty behaviour.

A range of methods have been proposed in the literature for constructing PIs
and assessing the reliability of ANN. Amongst them, the delta technique [3], the
mean variance estimation method and Bootstrap approaches [4] have been used
extensively to evaluate PIs on real and synthetic problems. These traditional
approaches first generate the point predictions and subsequently compute the
PIs following assumptions on error or data distributions, which might be invalid
in real world applications. Additionally, as the resulting PIs are not constructed
to optimise PI quality, they might suffer from low coverage of the training/test
set or might result in wide, over-conservative error bounds.

An alternative approach (Lower Upper Bound Estimation (LUBE)) has been
proposed by Khosravi et al., focusing on directly estimating high-quality PIs,
while avoiding restrictive assumptions on error distributions [5]. Instead of quan-
tifying the error of point predictions, LUBE uses ANN to directly approxi-
mate lower and upper error bounds, by optimising model coefficients to achieve
maximum coverage of available measurements, with the minimum PI width
[5,7]. Although LUBE has demonstrated significant potential against traditional
approaches in terms of accuracy, interval width and computational cost [8,9], it
is less reliable when limited or non-uniformly distributed training data are avail-
able [10]. In fact, Bootstrap and delta methods produce wider PIs in regions
with sparse data, signifying the larger level of uncertainty in ANN approxima-
tion; capturing model uncertainty is an important feature of PIs [9,11], lacking
in the LUBE approach which mainly accounts for noise variance.

In this work, we propose a combination of the Bootstrap and LUBE meth-
ods, which exploits good characteristics from both techniques. The proposed
Bootstrap-LUBE Method (BLM) enhances the reliability of the LUBE approach
when data is sparse or limited, by augmenting the training set with pseudo-
measurements stemming from Bootstrap replications. The pseudo-measurements
will present larger variability in regions with sparse data, forcing BLM to pro-
duce a wider local PI and thus capture the larger uncertainty in approximation.
Following LUBE, BLM constructs PIs by optimising their coverage and width,
while at the same time avoiding any assumptions on data/error distributions.

Another important contribution of this work is to extend the proposed hybrid
approach to adaptively approximate the PIs during the online operation of the
system. In cases where data becomes continuously available in a sequential way,
use of the either LUBE or BLM on the entire current dataset would become

568 M. Hadjicharalambous et al.

infeasible as it would incur a continuously increasing computational cost. At the
same time, offline estimation of PIs based on past data would likely be unsuitable
as it would be unable to accommodate dynamic changes in data patterns. We
propose an online learning scheme for estimating PIs, in which the lower and
upper bounds are iteratively updated to also account for recent measurements.
At each iteration only recent data are used in PI-optimisation, thus significantly
reducing the computational cost and further enhancing the efficiency of BLM.

2 Methods

Throughout this section, we assume that we want to construct a PI for the
approximation of an unknown function f(x), x ∈ D, where the region of interest
D is a compact subset of R. Available measurements are denoted by (xi, Yi), i =
1, · · · , N , which are assumed to be corrupted by noise ε (Yi = f(xi)+εi). A PI of a
predetermined confidence level (1−a) for a future observation YN+1 consists of a
lower L(xN+1) and upper bound U(xN+1), denoting that the future observation
will lie within the interval with a probability 1 − a:

P (YN+1 ∈ [L(xN+1), U(xN+1)]) = 1 − a. (1)

For the Bootstrap method, let us assume that we want to approximate the
unknown function f(x) with f̂(x;w, c,σ), using a Radial Basis Function (RBF)
network:

f̂(x;w, c,σ) =
H∑

h=1

whφh(x; ch, σh), φh(x; ch, σh) = exp(
−(x − ch)2

σ2
h

). (2)

Here H denotes the number of ANN neurons (H = 20 for the tests consid-
ered) and wh are weighting coefficients scaling the RBF φh. The centres ch are
evenly distributed over the region of interest and the widths σh are evaluated
using a nearest-neighbour heuristic, leading to a linear-in-parameter approxima-
tor f̂(x;w). The weight vector w can then be estimated by minimising the error
function

∑N
i=1[Yi − f̂(xi;w)]2 using least squares estimation.

2.1 Prediction Interval Estimation Methods

Bootstrap Residual Method. Bootstrap methods rely on multiple pseudo-
replications of the training set to approximate unbiased estimates of prediction
errors. Here we concentrate on the Bootstrap residual method, whereby model
residuals are randomly resampled with replacement. The Bootstrap residual
method algorithm described in [4] can be summarised as follows:

– Get an initial estimate ŵ from available measurements, compute residuals
ri = Yi − f̂(xi; ŵ) and then compute variance-corrected residuals si [4].

– Generate B samples of size N drawn with replacement from residuals
s1, · · · , sN , denoted by sb1, · · · , sbN for the bth sample. For the bth replication:

Online Approximation of Prediction Intervals 569

Fig. 1. Function approximations f̂b at 50 Bootstrap replications (grey shaded lines).
The variability among approximations from different replications is significantly larger
in regions where measurements used for training (red circles) are limited. (Color figure
online)

• Generate bth replication’s “measurements” Y b
i = f̂(xi; ŵ) + sbi .

• Estimate wb by minimising the error
∑N

i=1[Y
b
i − f̂(xi;w)]2 and calculate

the Bootstrap approximation f̂ b(x;wb).
• Calculate the current estimate for the approximation error εbN+1.

– Construct PI using percentiles of the error εN+1.

LUBE Method. LUBE’s cornerstone is the direct approximation of PIs
using ANNs. Instead of the unknown function f(x), LUBE approximates the
lower L(x) and upper U(x) bounds using RBFs: L̂(x;wL) =

∑H
h=1 wL

hφh(x),
Û(x;wU) =

∑H
h=1 wU

h φh(x). The main goal is to produce high-quality PIs, where
quality is assessed using two indices: (a) PI Coverage Probability (PICP) and
(b) Normalised Mean Prediction Interval Width (NMPIW). In particular, PICP
is given by:

PICP (wL ,wU) =
1
N

N∑

i=1

Ci, (3)

with Ci = 1 if Yi ∈ [L̂(xi;wL), Û(xi;wU)] and Ci = 0 otherwise. Similarly,
for R denoting the range of observations, NMPIW is given by:

NMPIW (wL ,wU) =
1
N

N∑

i=1

[Û(xi;wU) − L̂(xi;wL)]/R. (4)

From a practical point of view it is useful to have narrow PIs (small NMPIW)
which offer high coverage of the measurements (large PICP), leading to the
following optimisation problem [5,7]:

Minimise NMPIW (wL ,wU) (5)

1 − PICP (wL ,wU) (6)

Subject to NMPIW (wL ,wU) > 0, (7)

1 − PICP (wL ,wU) ≤ a, (8)

570 M. Hadjicharalambous et al.

where a is the desired confidence level (a = 0.05 for the tests considered). Due to
the complexity of the mutli-objective optimisation problem, weights wL and wU

are estimated using a Non-Dominated Genetic Algorithm II (NSGA-II) [7,12].
Among solutions with PICP≥ 1 − a, the solution producing the narrowest PI is
selected.

Bootstrap-LUBE Method (BLM). BLM is aiming at combining good char-
acteristics from the Bootstrap and LUBE methods. The main objective of BLM
is to directly estimate PIs by optimising their quality (similar to LUBE), while
at the same time accounting for model uncertainty (similar to Bootstrap).

In fact, Bootstrap produces wider bounds in regions with sparse data, cap-
turing the larger model uncertainty while the LUBE approach which mainly
accounts for noise variance lacks this feature (Figs. 1, 2 and 3). Looking closer
into Bootstrap (Fig. 1), there is significant variability between the Bootstrap
approximations f̂ b from different replications in regions with sparse data, most
likely due to extrapolation. In such regions the error at each replication will be
large leading to large regional error variance and wide regional error bounds.

The main idea of BLM is to enrich the N available measurements with
pseudo-measurements originating from the Bootstrap approximations (f̂ b), to
force BLM to account for data density. We first define an auxiliary set of points
(x∗

j , j = 1, · · · , Naux) evenly distributed in the region of interest. We then com-
pute the Bootstrap approximation of each replication for all of the x∗ points
(f̂ b(x∗

j), b = 1, · · · , B, j = 1, · · · , Naux) which will lead to B · Naux pseudo-
measurements (light blue dots in Figs. 2 and 3). The multi-objective optimisation
problem of LUBE is now augmented to finding wL and wU which:

Minimise NMPIW (wL ,wU) + NMPIWpseudo(wL ,wU) (9)

1 − PICP (wL ,wU) (10)

Subject to NMPIW (wL ,wU) > 0, (11)

1 − PICP (wL ,wU) ≤ a, (12)

1 − PICPpseudo(wL ,wU) ≤ 0.01, (13)

where PICP and NMPIW are computed over the N actual measurements, and
PICPpseudo and NMPIWpseudo are computed on the pseudo-measurements. With
the BLM formulation the PIs will be forced to be wider in regions with sparse
data (where pseudo-measurements will present substantial variations), indicating
larger model uncertainty. At the same time, regions with dense data will not be
affected, as the variation in pseudo-measurements will be small (the Bootstrap
approximation in those regions is similar throughout replications (Fig. 1)).

2.2 Online Estimation of Prediction Intervals

During the online operation of a system where data becomes available in a
sequential manner, use of either LUBE or BLM on the entire current dataset

Online Approximation of Prediction Intervals 571

would become infeasible. To this end, we propose an online approximation
scheme which takes into account past and current data, in a computationally
efficient way. Based on a weighted sliding window learning scheme, the lower and
upper bounds are iteratively updated at specific time instances.

In particular, the lower and upper bounds’ weights (condensed into vector
w) are first trained on the Ni initial measurements, leading to estimate wi .
Assuming a continual and uniform in time inflow of measurements, the bounds
are updated at the first sliding window when Ni+Nw measurements are available
(Nw ≤ Ni):

w(Ni + Nw) = wi
Ni

Ni + Nw
+ ww

Nw

Ni + Nw
. (14)

Here ww denote the weights of the lower and upper bounds estimated with
multi-objective optimisation based only on the most recent Nw measurements of
the current window. The contribution of the recent measurements in the current
weights’ evaluation is determined by the ratio of measurements in the current
window (Nw) to the total number of available measurements (Ni+Nw). Similarly,
for the kth window, the weights will be iteratively updated to account for past
and current measurements with equal contributions:

w(Ni + kNw) = w(Ni + (k − 1)Nw)
Ni + (k − 1)Nw

Ni + kNw
+ ww

Nw

Ni + kNw
. (15)

For each window only Nw measurements are used in the optimisation, signif-
icantly reducing the computational cost of the optimisation problem. Note that
when BLM is used, the weights are estimated using the measurements of the
current window as well as the auxiliary Bootstrap-based measurements.

3 Results and Discussion

3.1 Comparison of Prediction Interval Estimation Methods

The methods for constructing PIs described in Sect. 2.1 are tested and compared
on synthetic tests. Of interest in this work is the quality of the PIs when non-
uniformly distributed or sparse data are available. Accordingly, as we are investi-
gating extreme scenarios, the training data are generated from random uniformly
distributed data under specific restrictions. In particular, we are replicating two
scenarios: (a) the training data do not representatively cover the entire domain,
but only regions of it (Fig. 2), (b) very few training data are available over the
entire domain (Fig. 3). For both scenarios the test data are uniformly covering
the entire domain, to enable reliable assessment of PI accuracy.

Two functions to be approximated are considered (f1(x) = 0.5 sin(1.5πx +
π/2)+2, f2(x) = 5 sin(πx+π/2)+exp(x)). Training and test data are generated
based on these functions and white Gaussian noise of 10% of the mean function
value is added. For both functions we consider the two training scenarios, leading
to the following tests: Test1: PI for regional data generated from f1, Test2:
PI for regional data generated from f2, Test3: PI for sparse data generated

572 M. Hadjicharalambous et al.

from f1, Test4: PI for sparse data generated from f2. For Test1 and Test2, we
consider 100 training points, while 15 training points are considered for Test3
and Test4. Every test is repeated 10 times with different randomly generated
training data, to enable a more reliable comparison of the methods. Table 1
presents PI quality indices for all methods, averaged over the 10 replications
of each test. Representative PIs are demonstrated in Fig. 2 for scenario (a) and
Fig. 3 for scenario (b).

Fig. 2. PIs constructed using the Bootstrap (left column), LUBE (middle column) and
BLM (right column) approaches. Data limited to certain regions of the domain following
scenario (a), originate from f1 (Test1, top row) and f2 (Test2, bottom row). Light blue
dots indicate Bootstrap pseudo-measurements used by BLM. PICP and NMPIW are
evaluated on the test dataset, uniformly covering the entire domain. (Color figure
online)

Across the tests considered BLM clearly outperforms LUBE method in terms
of coverage, with an average increase of 15–30% in PICP. By considering Boot-
strap pseudo-measurements, BLM is able to produce larger bounds in regions
with fewer data, providing an indication of the uncertainty in the estimation.
Additionally, due to BLM’s optimisation of PI quality, BLM produces a better
coverage compared to Bootstrap in the majority of tests. Increased PICP comes
at the cost of wider PIs, nevertheless, the fundamental requirement for a PI to
reliably include future observations is clearly prioritised over narrow – yet invalid
– PIs.

Finally, it is worth noting that BLM is performed on a larger number of
training measurements compared to LUBE, without significantly impacting the
computational cost. The increased cost in computing PICP and NMPIW over
the pseudo-measurements is not substantial (note that B and Naux do not need

Online Approximation of Prediction Intervals 573

Fig. 3. PIs constructed using the Bootstrap (left column), LUBE (middle column) and
BLM (right column) approaches. Sparse data originate from f1 (Test3, top row) and f2
(Test4, bottom row) following scenario (b). Light blue dots indicate Bootstrap pseudo-
measurements used by BLM. PICP and NMPIW are evaluated on the test dataset,
uniformly covering the entire domain. (Color figure online)

to be very large to enable BLM to account for data density), while the dimensions
of the parameters (wL and wU) to be estimated remain the same.

Table 1. Average characteristics of the PIs constructed for four synthetic tests, using
the Bootstrap, LUBE and BLM approaches. PICP and NMPIW are evaluated on the
test dataset, uniformly covering the entire domain.

Tests Bootstrap LUBE BLM

PICP(%) NMPIW(%) PICP(%) NMPIW(%) PICP(%) NMPIW(%)

Test1 83.23 43.54 74.33 37.68 89.75 57.63

Test2 65.06 20.74 62.47 18.61 91.76 41.00

Test3 65.27 33.56 66.67 29.72 94.68 62.68

Test4 65.72 10.77 64.97 9.23 90.30 24.93

3.2 Online Estimation of Prediction Intervals with LUBE and BLM

The proposed online learning scheme (Eq. 15) is compared against batch (offline)
estimation using both the LUBE and BLM approaches. Initially, LUBE is used
with Ni = 100 initial training points and Nw = 10, subsequently with Ni = 1000
and Nw = 100 and finally BLM is used with Ni = 100 and Nw = 10. In all tests
k = 10 sliding windows are considered, and each of the three cases is repeated

574 M. Hadjicharalambous et al.

Fig. 4. PIs constructed using batch (top row) and online (bottom row) estimation.
Online PI estimation is tested using LUBE on Ni = 100 and Nw = 10 training points
(left column), using LUBE on Ni = 1000 and Nw = 100 training points (middle
column) and using BLM on Ni = 100 and Nw = 10 training points (right column).

Table 2. Average characteristics of the PIs constructed using the LUBE and BLM
methods, based on batch or online approximation.

LUBE (Nw = 10) LUBE (Nw = 100) BLM (Nw = 10)

Estimation PICP(%) NMPIW(%) PICP(%) NMPIW(%) PICP(%) NMPIW(%)

Batch 94.95 54.80 94.84 42.64 92.50 46.60

Online 76.14 64.41 95.95 43.94 89.57 43.93

10 times. For batch approximation all Ni + kNw training points are used for
PI optimisation. Representative results are presented in Fig. 4 and average PI
indices in Table 2.

When LUBE is used with only Nw = 10 training points, online results are
suboptimal compared to batch approximation. This is due to the fact that
LUBE’s accuracy suffers when only sparse data is available (as demonstrated
in Fig. 3 and Table 1). This issue can be alleviated by increasing the number of
training points (Nw = 100), in which case online estimation with LUBE is able
to provide very similar PIs to batch estimation, and in a much more efficient way.
Alternatively, BLM is able to provide very similar PIs through online and batch
estimation without increasing the number of training points as it is designed to
provide reliable bounds even when trained on sparse data.

It is worth noting that the proposed learning scheme can easily be adjusted
to accommodate the needs of the specific application. For example, the relative
contribution of the current sliding window could be increased in cases where
recent measurements are considered more critical than past measurements.

Online Approximation of Prediction Intervals 575

4 Conclusions

Combining Bootstrap with LUBE method enables BLM to present improved
characteristics in terms of coverage, compared to both Bootstrap and LUBE
approaches. In particular, BLM can provide high-coverage PIs even when lim-
ited data are available, clearly outperforming the LUBE approach. The results
highlight the fact that even commonly used methods such as Bootstrap might
provide unreliable PIs when the bounds are based on limited or sparse data, an
issue that should be carefully considered by ANN practitioners. Finally, extend-
ing BLM to online approximation constitutes a significant improvement, as it
enables the efficient and reliable construction of PIs even when approximating
dynamically changing processes.

Acknowledgements. This work has been supported by the European Union’s Hori-
zon 2020 Research and Innovation Programme under grant agreement No 739551
(KIOS CoE) and from the Republic of Cyprus through the Directorate General for
European Programmes, Coordination and Development.

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

2. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, 2nd edn. Springer, New York (2009). https://
doi.org/10.1007/978-0-387-84858-7

3. Hwang, J.T.G., Ding, A.A.: Prediction intervals for artificial neural networks. J.
Am. Stat. Assoc. 92, 748–757 (1997)

4. Davidson, A.C., Hinkley, D.V.: Bootstrap Methods and Their Application. Cam-
bridge University Press, Cambridge (2013)

5. Khosravi, A., Nahavandi, S., Creighton, D., Atiya, A.F.: Lower upper bound esti-
mation method for construction of neural network-based prediction intervals. IEEE
Trans. Neural Netw. 22, 337–346 (2011)

6. Reppa, V., Polycarpou, M.M., Panayiotou, C.G.: Adaptive approximation for mul-
tiple sensor fault detection and isolation of nonlinear uncertain systems. IEEE
Trans. Neural Netw. Learn. Syst. 25, 137–153 (2014)

7. Zhang, C., Wei, H., Xie, L., Shen, Y., Zhang, K.: Direct interval forecasting of wind
speed using radial basis function neural networks in a multi-objective optimization
framework. Neurocomputing 205, 53–63 (2016)

8. Ye, L., Zhou, J., Gupta, H.V., Zhang, H., Zeng, X., Chen, L.: Efficient estimation
of flood forecast prediction intervals via single and multi-objective versions of the
LUBE method. Hydrol Process. 30, 2703–2716 (2016)

9. Pearce, T., Zaki, M., Brintrup, A., Neely, A.: High-quality prediction intervals
for deep learning: a distribution-free, ensembled approach. In: 35th International
Conference on Machine Learning. arXiv:1802.07167v3 (2018)

10. Khosravi, A., Nahavandi, S., Creighton, D.: Prediction intervals for short-term
wind farm power generation forecasts. IEEE Trans. Sustain. Energy 4, 602–610
(2013)

https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
http://arxiv.org/abs/1802.07167v3

576 M. Hadjicharalambous et al.

11. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. In: 31st Conference on Neural Infor-
mation Processing Systems (2017)

12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

Classification

Estimation of Microphysical Parameters
of Atmospheric Pollution Using Machine

Learning

C. Llerena1(&), D. Müller2, R. Adams3, N. Davey1,2,3, and Y. Sun1,2,3

1 Polytechnic School, University of Alcalá, Alcalá de Henares, Spain
cosme.llerag@gmail.com

2 School of Physics, Astronomy and Mathematics,
University of Hertfordshire, Hertfordshire, UK

{d.mueller,n.davey,y.2.sun}@herts.ac.uk
3 Centre for Computer Science and Informatics Research,
University of Hertfordshire, Hertfordshire AL10 9AB, UK

r.g.adams@herts.ac.uk

Abstract. The estimation of microphysical parameters of pollution (effective
radius and complex refractive index) from optical aerosol parameters entails a
complex problem. In previous work based on machine learning techniques,
Artificial Neural Networks have been used to solve this problem. In this paper,
the use of a classification and regression solution based on the k-Nearest
Neighbor algorithm is proposed. Results show that this contribution achieves
better results in terms of accuracy than the previous work.

Keywords: LIDAR � Particle extinction coefficient � Particle backscatter
Effective radius � Complex refractive index � K-Nearest Neighbor

1 Introduction

One of the main important factors that drive climate change is particulate pollution [1].
To understand atmospheric temperatures changes that cause climate change, it is
necessary to study and characterize the optical, chemical and microphysical properties
of these particles in the atmosphere. Some technologies like radiometers or Light
Detection and Ranging (LIDAR) make possible the observation of aerosols. LIDAR
has become a key tool for the characterization of atmospheric pollution in the atmo-
sphere. LIDAR is the only remote sensing technique used in research on atmospheric
pollution that allows for vertically-resolved observations of particulate pollution, for
example, [2]. Using LIDAR, optical aerosol parameters can be extracted [3] but more
information about particles is required to understand the impact of pollution on climate
change.

Microphysical particle parameters are also of key interest to determine pollution
effects. In [4–8], inversion algorithms are used to estimate microphysical information
(particle size or complex refractive index) from optical data. Their estimation is a very
complex task because many factors such as ambient atmospheric humidity, the

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 579–588, 2018.
https://doi.org/10.1007/978-3-030-01418-6_57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_57&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_57&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_57&domain=pdf

condensation of gases on existing particles or the mixing of particles of different
chemical properties modify the values of the optical data [9]. Due to these difficulties,
inversion algorithms are very complex and require an extensive mathematical back-
ground as we are dealing with ill-posed inverse problems [10].

Therefore, less complex solutions must be proposed as we need techniques that
(a) allow for fast data processing in view of current and up-coming LIDAR space
missions; (b) offer autonomous data retrieval in view of serious lack of experts in this
research field; and (c) provide us with ways of exploiting the information content of
these highly complex data sets in an optimum way. Using synthetic optical data,
authors in [9] have developed a computational model using Artificial Neural Networks
(ANNs) [11] to estimate the effective radius of particles (reff) and the complex refractive
index from combinations of extinction (a) and backscatter (b) coefficients. Specifically,
these authors use values of a and b at different wavelengths (k = 355, 532 and
1064 nm). These wavelengths are currently used by most of the LIDAR system in the
world for the investigation of particulate pollution in the atmosphere. Most notably and
in view of advantages not further detailed in this contribution, there has been a push for
emitting all three wavelengths simultaneously in the past 20 years. Five combinations
of a and b were tested, resulting in finding the most suitable one which uses the values
of a at k = 355 and 532 nm (a355 and a532) and the values of b at k = 355, 532 and
1064 nm (b355, b532 and b1064). For technical reasons the measurement of a at
1064 nm has become possible just recently. The quality of these data, however, still
needs to be improved before tests with this extended set of b + a data can be carried
out. Moreover, ANNs were evaluated for three different size ranges of effective radii,
that is, particles with reff between 10–100 nm, 110−250 nm and 260−500 nm,
respectively. This separation was performed by hand due to two reasons: (a) to limit the
computation time and (b) to separate particles according to their nature. Without going
into further details particles in these three different size ranges have different effect on
climate change and human health.

The aim of this work is to investigate whether we can develop a computational
method based on ML techniques which can first classify particles in to the three cate-
gories, then, can estimate particle properties within each category, or not. In addition, we
look for a model with less computational cost than the one proposed in [9].

2 Data Description

The dataset is the synthetic one used in [9], which was generated using a Mie scattering
algorithm [12]. It contains 1,665,343 particles. According to the three ranges of reff,
there are 330,480 particles with a radius between 10 nm and 100 nm, 503,155 samples
with a radius between 110 nm and 250 nm and 831,708 particles with a radius between
260 nm and 500 nm.

The following information for each particle size distribution can be found:

– Extinction and backscatter coefficients at different wavelengths (355, 532 and
1064 nm). As in [9], the best combination of a and b will be used (a355, a532, b355,
b532 and b1064).

580 C. Llerena et al.

– Mode width, from 1.4 to 2.5 in step of 0.1. The mode width is the geometrical
standard deviation of the theoretical model that describes in an approximate manner
the shape (number concentration versus particle size) of naturally occurring
atmospheric size distributions. This shape, referred to as logarithmic-normal can be
described as a Gauss distribution if particle radius is plotted on a logarithmic scale.
More details can be found in e.g. [13]. The total number of particles in the atmo-
sphere can be modeled by a sum of sets (distributions) according to the radius.
Particle size distributions in the atmosphere can be described by 5–6 different
modes. Each mode has its own mean radius (or alternatively we can also use mode
radius) which is the value where the size distribution reaches its maximum value)
and the mode width. In the present case we simplified our simulations in the sense
that we did not use combinations of these modes in order to cover the vast size
range of particles from a few nanometers to several tens of micrometers. In this first
set of studies we mimicked these naturally-occurring multimodal size distributions
by the use of single-mode logarithmic-normal (log-normal) distributions which not
only cover the relevant particle radius range but result in sufficiently realistic optical
properties as well. Furthermore, effective radius is a commonly used number in
climate modeling. It reduced the complexity of size distribution information from
mean radius and mode width (in each mode) to a single number. Alternatively
effective radius can also be used for each individual mode. Optical properties of
particle size distributions described in terms of effective radius are sufficiently close
to optical properties of the underlying size distribution when used in modeling.

– Mean radius (nm), from 10 nm to 500 nm in step size of 10.
– Real (from 1.2 to 2 in step size of 0.025) and imaginary part (from 0 to −0.1 in step

size of 9.99�10−6) of the complex refractive index. This index indicates the atten-
uation suffered by light when passing through a particle.

Figure 1 shows how a and b vary with respect to k for a mode width equal to 1.4.
Looking at this figure, the reader can note that a has quite similar values at the different
wavelengths, while b decreases as the wavelength increases. It must be said that similar
behavior is observed in the rest of the mode widths (from 1.5 to 2.5). It can be seen that
the backscatter coefficient increases as the effective radius increases. Those variations
are larger for higher mode widths. Similar observations can be found in the variations
of a.

Furthermore, the variation of a and b across the particle effective radius in different
width modes are also investigated. Figures 2 and 3 show the variation of b in two
different width modes, 2.0 and 2.5, namely. It can be seen that the backscatter coef-
ficient increases as the effective radius increases. These variations are larger when the
value of the mode width is higher. Similar observations can also be found in the
variations of a.

To determine which ML techniques can be applied to the classification and esti-
mation stages, first Principal Component Analysis (PCA) has been applied. Figure 4
shows a PCA plot of the original synthetic data. It can be seen that the class of 110–
250 nm overlaps with the class of 10−100 nm and the class of 260−500 nm, but the
class of 10−100 nm and the class of 260−500 nm do not overlap between them.

Estimation of Microphysical Parameters of Atmospheric Pollution 581

According to Fig. 4, k-NN [14] can be considered as a solution because the three
classes are not strongly overlapped. In addition, Extreme Learning Machine
(ELM) [15] has been chosen to be a potential solution since this deep learning solution

Fig. 1. Variation of a and b in mode width 1.4 at the different values of k.

Fig. 2. Variation of b with respect to effective radius in mode width equal to 2.0.

582 C. Llerena et al.

uses a similar ANNs architecture to the one used in [9] and it can have a lower
computational cost.

3 Retrieval of Microphysical Parameters

The estimation of microphysical parameters using ANNs was addressed in [9]. Due to
the computational cost and the nature of particles, this estimation was performed in
three different ranges of particle sizes separately. Taking this into account, we propose
two solutions in this paper. The first one is a single regression solution, which uses an
ML technique to estimate microphysical parameters for all the particles together. This
technique must outperform ANNs in terms of accuracy. The second one includes two
steps: (1) a classification that will separate particles into the three classes and then (2) a
regression that will estimate microphysical parameters.

3.1 Single Regression Solution

In work [9], a Multi-Layer Perceptron (MLP) with one hidden layer was used to
estimate microphysical parameters. Specifically, different configurations of MLPs
(training algorithms, number of neurons in the hidden layer, activation functions) were
tested. They concluded that the most suitable MLP contains five neurons in the hidden
layer and uses the Levenberg Marquardt training algorithm. In this sense, we have
implemented the same MLP to be compared with ELM and k-NN both in terms of
accuracy and computational cost.

Fig. 3. Variation of b with respect to effective radius in mode width equal to 2.5.

Estimation of Microphysical Parameters of Atmospheric Pollution 583

3.2 Combined Solution

Figure 5 shows a flow diagram of this combined solution. It can be seen that five-
feature vectors are classified into three classes according to reff first. Then one single
regression estimation model is trained within each class. In both classification and
estimation stages, the suitability of using ELM and K-NN will be evaluated. The
detailed solution is given as follows:

1. The whole dataset has been split into training (75%) and test (25%) sets.
2. Training a classification model using the training set.
3. The test set has been split into the three classes.
4. Within each class, a regression model is trained.
5. Finally, the regression models in step 4 were used to estimate microphysical

parameters on the test set.

Fig. 4. PCA2 versus PCA1.

Fig. 5. Scheme of the full solution combining classification and regression estimation.

584 C. Llerena et al.

4 Experiments

In this section the results of both solutions are provided. To evaluate the classification
solution, precision, recall and F1-score [16] are calculated for each class since the three
classes are imbalanced. To test the suitability of each microphysical parameter esti-
mation solution, the Root Mean Square Error (RMSE) has been used. The computa-
tional cost of each technique is evaluated with CPU time.

4.1 Single Regression Solution

In Table 1, ELM and k-NN are compared with the MLP configuration in the previous
work, when all the particles are analyzed together. For the MLP, the whole dataset has
been split into training (65%), validation (15%) (where the validation set is used to
control overfitting) and test (25%) sets while for k-NN and ELM, the dataset has been
split into training (75%) and test (25%). Note that the results for the different classes are
also extracted from the total results and shown in the table.

Due to the space limit, only the results for the best configuration of each method are
presented in the table. For instance, the methodology based on k-NN has been tested
for different number of neighbours (1, 3, 4, 5, 7, 11, 15, 19, 29 and 39), resulting in
k = 1 being the best choice. In the case of ELM, different activation functions (sig-
moid, sine or hard limit) and number of neurons in the hidden layer (N = 2, 3, 4, 5, 7,
10, 20, 30, 50, 75, 100, 150, 200 and 300) have been tested. Sigmoid function and
N = 300 achieve the best results.

Looking at Table 1, it is clear that k-NN produces the best results (the lowest values
of RMSE) for all the parameters and across all class of particles.

Another aspect to be considered is the computational cost associated with each
solution. In some applications, study of the atmospheric pollution must be in real-time
and so, it is important to have fast algorithms. Bearing this in mind, Table 2 shows the
mean values of CPU times of each solution for training and test. These experiments

Table 1. RMSE obtained by MLP [9], ELM and k-NN based solutions when reff, real and
imaginary part of the complex index are estimated.

Param. Method Whole data 10–100 nm 110–250 nm 260–500 nm

reff MLP [9] 43.40 14.51 37.97 53.03
kNN (k = 1) 31.18 6.17 27.80 38.24
ELM (N = 300) 44.37 15.29 39.82 53.74

Real part MLP [9] 0.15 0.19 0.14 0.14
kNN (k = 1) 0.08 0.13 0.07 0.07
ELM (N = 300) 0.19 0.23 0.17 0.18

Imag. part MLP [9] 0.18 0.25 0.16 0.15
kNN (k = 1) 0.08 0.10 0.09 0.06
ELM (N = 300) 0.26 0.29 0.27 0.26

Estimation of Microphysical Parameters of Atmospheric Pollution 585

have been carried out on a computer with a 2.8 GHz Intel Core i7 processor and 8 Gb
RAM.

It is clear that the solution based on k-NNs is less expensive in terms of CPU time
when training. In test, the MLP needs less time but it is less accurate obtaining
parameters. In the case of ELM, larger values of CPU time are required and it achieves
worst RMSE values. For these reasons, larger number of neurons have not been studied
with ELM.

4.2 Combined Solution

As it is shown in Fig. 5, the combined solution allows us to split particles into the three
classes (10–100 nm, 110–250 nm, 260–500 nm) before estimating parameters. At the
classification stage, MLP, k-NN and ELM based classifiers have been studied with k-
NN giving the highest accuracy (96.09%) when k = 3. Since classes are unbalanced,
precision, recall and F1-scores are also provided for each class in Table 3.

Very good results are achieved, the worst being for class 2, what makes sense, since
it overlaps with the rest of the classes (Fig. 5).

Once particles in the test set have been separated using k-NN, the estimation
models must be applied. Obtained RMSE scores are presented in Table 4.

It can be seen from this table, the combined solution based on k-NN achieves the
best results for all the classes and microphysical parameters. If we compare these
results with those in Table 1, we can see that in general the combined method performs
better or similar to the single regression solution when the classification stage has been
applied previously. Moreover, it shows ELM performs much better after classification
is done first, that is, it performs better within each class. As for the computational cost,
similar conclusions as those from Table 2 can be made.

Table 2. Mean values of CPU time (s) associated with MLP [9], ELM and k-NN based
solutions.

MLP [9] k-NN ELM

Training 753.86 7.25 181.79
Test 0.44 3.00 5.29

Table 3. Precision, recall and F1-scores obtained by the solution based on k-NNs (k = 3) for
each particle class.

Class Precision (%) Recall (%) F1-score

Class 1 (10–100 nm) 98.76 97.69 0.98
Class 2 (110–250 nm) 93.63 93.43 0.94
Class 3 (260–500 nm) 96.52 97.07 0.97

586 C. Llerena et al.

5 Discussion and Conclusions

Estimating microphysical parameters from optical data can be done using ML tech-
niques. [9] is a very interesting paper and from it, two objectives have been met in our
work. Firstly, we provide a solution that produces lower RMSE and computational cost
when estimating microphysical parameters. Secondly, a new combined solution, which
produces high accuracy at the classification stage, has been implemented.

References

1. Stocker, T.F., et al.: Climate change 2013: the physical science basis. Intergovernmental
panel on climate change, working group I contribution to the IPCC fifth assessment report
(AR5), Cambridge, UK and New York, NY, USA, p. 1535 (2013)

2. Ansmann, A., Müller, D.: Lidar and atmospheric aerosol particles. In: Weitkamp, C. (ed.)
Lidar, pp. 105–141. Springer, New York (2005). https://doi.org/10.1007/0-387-25101-4_4

3. Ansmann, A., Riebesell, M., Weitkamp, C.: Measurement of atmospheric aerosol extinction
profiles with a Raman lidar. Opt. Lett. 15, 746–748 (1990)

4. Veselovskii, I., Kolgotin, A., Griaznov, V., Müller, D., Wandinger, U., Whiteman, N.D.:
Inversion with regularization for the retrieval of tropospheric aerosol parameters from
multiwavelength lidar sounding. Appl. Opt. 41(18), 3685–3699 (2002)

5. Müller, D., Wandinger, U., Ansmann, A.: Microphysical particle parameters from extinction
and backscatter lidar data by inversion with regularization: simulation. Appl. Opt. 38, 2358–
2368 (1999)

6. Böckmann, C., Mironova, I., Müller, D., Schneidenbach, L., Nessler, R.: Microphysical
aerosol parameters from multiwavelength lidar. J. Opt. Soc. Am. A 22, 518–528 (2005)

7. Kolgotin, A., Müller, D.: Theory of inversion with two-dimensional regularization: profiles
of microphysical particle properties derived from multiwavelength lidar measurements.
Appl. Opt. 47, 4472–4490 (2008)

8. Müller, D., Kolgotin, A., Mattis, I., Petzold, A., Stohl, A.: Vertical profiles of microphysical
particle properties derived from inversion with two-dimensional regularization of multi-
wavelength Raman lidar data: experiment. Appl. Opt. 50, 2069–2079 (2011)

Table 4. RMSE obtained by MLP [9], ELM and k-NN based solutions when reff, real and
imaginary part of the complex index are estimated for combined solution.

Param. Method 10–100 nm 110–250 nm 260–500 nm

reff MLP [9] 10.56 30.29 51.17
kNN (k = 1) 5.86 27.83 37.82
ELM (N = 300) 11.01 32.38 50.79

Real Part MLP [9] 0.22 0.16 0.17
kNN (k = 1) 0.09 0.07 0.07
ELM (N = 300) 0.21 0.15 0.17

Imag. Part MLP [9] 0.27 0.27 0.15
kNN (k = 1) 0.06 0.08 0.07
ELM (N = 300) 0.24 0.25 0.23

Estimation of Microphysical Parameters of Atmospheric Pollution 587

http://dx.doi.org/10.1007/0-387-25101-4_4

9. Mamun, M.M., Müller, D.: Retrieval of Intensive aerosol microphysical parameters from
multiwavelength Raman/HSRL lidar: feasibility study with artificial neural networks. Neural
Netw. Atmos. Meas. Tech. Discuss. 7 (2016)

10. Hadamard, J.: Bull. Univ. Princeton 13, 49 (1902)
11. Schalkoff, R.J.: Artificial Neural Networks, vol. 1. McGraw-Hill, New York (1997)
12. Bohren, C., Huffman, D.: Absorption and Scattering of Light by Small Particles. Wiley,

Hoboken (1998). Wiley science paperback series
13. Hinds, C.W.: Aerosol Technology: Properties, Behavior, and Measurement of Airborne

Particles, 2nd edn., p. 504, January 1999. ISBN 978-0-471-19410-1
14. Peterson, L.E.: K-nearest neighbor. Scholarpedia 4(2), 1883 (2009)
15. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications.

Neurocomputing 70(1–3), 489–501 (2006)
16. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and F-score, with

implication for evaluation. In: Losada, David E., Fernández-Luna, Juan M. (eds.) ECIR
2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005). https://doi.org/10.1007/
978-3-540-31865-1_25

588 C. Llerena et al.

http://dx.doi.org/10.1007/978-3-540-31865-1_25
http://dx.doi.org/10.1007/978-3-540-31865-1_25

Communication Style - An Analysis
from the Perspective of Automated Learning

Adriana Mihaela Coroiu(&), Alina Delia Călin, and Maria Nuțu

Department of Computer Science, Faculty of Mathematics and Computer
Science, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania

{adrianac,alinacalin,maria.nutu}@cs.ubbcluj.ro

Abstract. This paper is intended to bring added value in the interdisciplinary
domains of computer science and psychology, more precisely and in particular,
automated learning and applied psychology. We present automated learning
techniques for classification of new instances, new observations of a patient,
taking into account the particularities of the attributes describing each of these
observations. Specifically, information collected by applying a questionnaire for
communication style (non-assertive style, manipulative style, aggressive style
and assertive style) was analyzed.
Through these experiments, we have tried to determine which of the classi-

fication models are best suited to be applied in specific situations and, given the
type of attributes that make up the instances of the dataset, what kind of pre-
processing methods can be applied to get the most qualitative results using the
selected classification models: Decision Tree Based Model, Support Vector
Machine, Random Forest, Classification based on instances (k-NN), and
Logistic Regression. Standard metrics were used to evaluate the performance of
each of the analyzed classification patterns: accuracy, sensitivity, precision, and
specificity.

Keywords: Multi-classification model � Prediction � Communication style

1 Introduction

The use of the techniques offered by the Artificial Intelligence field becomes a
necessity every day. One of the reasons that support this need may be that intelligent
techniques can bring added value, even help in people’s work. Lately, the number of
areas of applicability of these techniques has increased.

Classification is an automated learning technique, particularly supervised learning
that requires labeled training data to generate rules. This is a two-stage process [14].
The first stage is the learning stage in which the training set is analyzed and new
classification rules are generated, and the second step is the classification itself, in
which the testing set is split into appropriate classes based on the rules established in
the previous step.

Within this classification process, the classes are defined based on the attribute
values of the instances in the datasets. In view of these considerations, the classification

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 589–597, 2018.
https://doi.org/10.1007/978-3-030-01418-6_58

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_58&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_58&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_58&domain=pdf

process can be of several types: binary classification, multi-class classification, multi-
label classification and multi-task classification [3, 14].

In this article, we will consider studying the multiple classification (or multi-
classification). Multi-classification assumes that each instance belongs to only one
labeled class of a total of n labeled classes (with n > 2).

The classification models analyzed in our experiments are: Decision Tree Based
Modeling Model, Support Vector Machine (SVM) based classification model, Random
forest classification based on a Random forest, Classification based on instances (k-
NN), the logistic regression classification model.

Measures that quantify the performance of each of the analyzed classification
patterns are some of the standard metrics to evaluate the quality of a model: accuracy,
precision, sensitivity, and specificity.

The analyzed data set is a set of data in the phycology domain, consisting of 220
instances and 63 mixed attributes. The set contains information on how people com-
municate. The target variable of this dataset is the communication style appropriate to
each of the individuals analyzed, based on the given responses.

2 State of the Art

Moving beyond the initial focus of psychology of studying and explaining human
behaviors, many researchers emphasize the need to advance further into predicting
future behaviors. In this regard machine learning can be a very accurate tool, proving
these concepts and helping answer important research questions from psychology [18].

In what concerns communication styles, it is of a great social impact to predict
accurately its impact in diverse socio-economic fields. For example, charity fundraising
is influenced by the interaction of both helper and receiver, especially if the receiver is
considered agreeable [19].

A research study examining the feasibility of using machine learning for predicting
psychological wellbeing indices [20] has obtained promising results using Support
Vector Regression (0.76), Generalized Regression Neural Network (0.80), and k
Nearest Neighbor Regression (0.70), but poor results with Multi-layer Perceptron,
Given the impact of stress on human behavior, Pandey et al. [22] use machine learning
to predict stress based on heart rate and age using Logistic Regression, Support Vector
Machine (SVM), VF -15 and Naïve Bayes, with results up to 68% for SVM.

3 Methods and Experiments

All experiments follow next stages:
Stage 1: Data preparation;
Stage 2: Training the classification model;
Stage 3: Evaluating the classification model.

590 A. M. Coroiu et al.

3.1 Dataset Descriptions

A. Psychological Perspective Over Dataset Characteristics
The data analyzed in this experiment were obtained by applying the Questionnaire for
the Communication Style (QCS) analysis [16] to a group of 220 people. The group is
homogeneous, from the perspective of age and the living environment, all the persons
questioned belonging to the urban environment.
The questionnaire for communication style analysis consists of a set of 60 questions,
whose answers can be yes/no (or true/false) [16].

The participants of this study were informed and they agreed to the fact of using, in
research purposes, the results of the presented questionnaire.

Each of the 60 questions is part of a category of communication style as follows: 1,
7, 15, 16, 17, 25, 26, 35, 36, 37, 50, 51, 52, 59, 60 for the non-assertive style; in the
category of aggressive style we have the questions 4, 6, 10, 11, 20, 21, 28, 29, 30, 39,
40, 48, 49, 55, 56 and in the category of manipulative style are questions 3, 5, 9, 12, 13,
19, 22, 31, 32, 41, 42, 46, 47, 54, 57, and finally in the assertive style category we have
the following questions: 2, 8, 14, 18, 23, 24, 27, 33, 34, 38, 43, 44, 45, 53, 58.

As a result, this questionnaire highlights four different styles of communication:
non-assertive style, manipulating style, aggressive style and assertive style.

Besides the answers that make up the questionnaire, the people involved also
quantified their stress level, referring to three possible degrees: low, medium, high.

This stress-related information attempts to highlight whether there is a link between
the level of stress and the style of communication of a particular person. The applied
questionnaire was proposed by Marcus [21].

B. Computer science perspective over dataset characteristics
Taking into consideration all of the above informative aspects, translating them into a
form conducive to computer-based analysis, we have:

• We have a set of data that contains 220 instances (observations) with the following
characteristics: a discrete attribute of the nominal type (gender of the person), a
numerical attribute (age), a discrete type of ordinal type (the level of stress) and the
60 binary attributes (true/false) corresponding to the questionnaire.

• Each of the 220 instances of the dataset belongs to one of the four possible classes
(non-assertive style class, manipulator style class, aggressive style class, and
assertive style class).

• Consequently, we have a mixed data set divided into four existing classes.

With all this information, our goal in this research is first and foremost to determine
whether there is a link between the attribute level of stress and the style of commu-
nication of a particular person, and secondly to determine in a way more precisely the
classification of a new data instance. The 4 classes corresponding to the four styles of
communication (non-assertive style, manipulative style, aggressive style and assertive
style) lead to the idea of multi-classification.

Communication Style - An Analysis from the Perspective of Automated Learning 591

4 Classification Methods Used

The purpose is to determine a classification model that finds the relationship between
the attribute associated with the class, in our case the communication style, and the
other existing attributes. This constructed model must be able to determine subse-
quently the class to which a new instance belongs.

The used models in our experiments are:

• Decision tree-based classification model (DT) [5]
• Support Vector Machine based classification model (SVM) [9, 10]
• Random forest classification model (RF) [12]
• The instance-based classification model (kNN) [4, 8]
• The Bayesian-based classification model (NB) [7, 13]
• The logistic regression classification model (mLR) reproduces the relationship

between a set of independent variables xi (categorical, continuous) and a dependent
variable (nominal, binary) Y.

The multinomial logistic regression model (also known as multinomial logistic
regression - or discrete choice model) is a generalization of the logistic model,
accepting that the dependent variable Y has more than two values. Assuming that the
variable Y has as possible values the elements of the unordered set {1, …, g}. The
multinomial logistic model assumes that the probability of Y to be equal to s in the
observation i depends on the values of the variables xi1, …, xip by [6, 11]:

P Yi ¼ sð Þ ¼ egisPg
t¼1 e

git
ð1Þ

5 Data Preprocessing

The dataset analyzed in this article contains mixed types of data, therefore we have
considered some preprocessing operations, detailed below.

First, for the age attribute, we considered the preprocessing operation called stan-
dardization to eliminate the influence of different scales relative to the other attributes.

Second, it was important to consider how to calculate distances (for
dissimilarity/similarity measures), considering that we had different types of attributes,
as follows:

• For nominal attributes, the distance between the values of an attribute is considered
0 if the values are equal and 1 if they are different. There are no other relationships
between attribute values and there are no intermediate distances between 0 and 1.

• For ordinal attributes, we may consider equally distributed values between 0 and 1.
For example, in the case of the three stress levels {Low, Medium, High}, we used
the transformation: Low = 0, Medium = 0.5, and High = 1. Therefore, the calcu-
lation of the distances is the absolute value of the difference between these
numerical values, such as: d (Low, High) = 1, d (Low, Medium) = d (Medium,
High) = 0.5.

592 A. M. Coroiu et al.

• For numerical attributes, the distance is the absolute value of the difference
between the normalized values of the attributes.

In the case of some missing attributes, we’ve replaced those attributes with the
average of the existing attributes, and in terms of attribute hierarchy, we did not apply
any prioritization methods for these experiments.

Another preprocessing step, the method of dividing the data into subsets, was done
taking into account cross-validation, a method which involves the division of the data
k times (k–1 sub-sets for training and 1 sub-set for validation). In this context, the size
of a sub-set is equal to the size of the set divided by k and the performance is given by
the average of the k executions [15].

6 Evaluation of the Classification Models

The quality of a classifier from the perspective of the correct identification of a class is
measured using information in the confusion matrix containing [1, 4]:

• The number of data correctly classified as belonging to the interest class: True
positive cases (TP)

• The number of data correctly classified as not belonging to the class of interest:
True negative cases (TN)

• The number of data incorrectly classified as belonging to the interest class: False
positive cases (FP)

• The number of data incorrectly classified as not belonging to the interest class: False
negative cases (FN)

6.1 Metrics Used for Evaluation

The metrics that measure the quality of the evaluation used in this article are described
blow.

Classification accuracy is determined by the ratio of the number of correctly
classified instances to the total number of classified instances [2].

Accuracy ¼ TPþ TN
TPþ TNþFPþFN

ð2Þ

The sensitivity metric is given by the ratio between the number of correctly clas-
sified data as belonging to the class of interest and the sum of the number of data
correctly classified as belonging to the interest class and the number of data incorrectly
classified as not belonging to the class of interest.

Sensitivity ¼ TP
TPþFN

ð3Þ

The metric of specificity is given by the ratio of the number of data correctly
classified as not belonging to the interest class and the sum of the number of correctly

Communication Style - An Analysis from the Perspective of Automated Learning 593

classified data as not belonging to the interest class and the number of data incorrectly
classified as belonging to the class of interest.

Specificity ¼ TN
TNþFP

ð4Þ

The precision metric is given by the ratio between the number of data correctly
classified as belonging to the class of interest and the sum of the number of data
correctly classified as belonging to the interest class and the number of data incorrectly
classified as belonging to the class of interest [17]:

Precision ¼ TP
TPþFP

ð5Þ

6.2 Results and Discussion

The value of the accuracy metric for each of the classification models analyzed in our
experiments are shown in Fig. 1.

Both the Random Forest and Support Vector based algorithms are non-parametric
models (their complexity increases as the number of instances used for training
increases) [15]. That being said, the training of a non-parametric model is costlier, from
a computational perspective, compared to a generalized linear model (k-NN, Naive-
Bayes, in our case). However, the added benefit of the two non-parametric models used
is the fact that they allow working with several classes immediately.

A disadvantage of the algorithm based on the Support Vectors is that the results are
sometimes more difficult to interpret, but in our case the evaluation metric is the
accuracy, which helps us overcome this shortcoming.

Fig. 1. Accuracy values for the analysed models

594 A. M. Coroiu et al.

In contrast, Decision Trees allow an interpretation of the results in a much simpler
and faster way, and it is additionally a fact that it is one of the classification models that
behave best when it comes to ordinal and/or mixed attributes, as in the dataset analyzed
in our experiments.

The Logistic Regression (multinomial logistic regression in our case) is another
well-known and used classification model. In order to better outline the results, we also
used it, but the accuracy obtained was not as good as the other classification models
used: a value of 0.88. One of the reasons that led to such a result is that the attributes of
the instances should be linearly separable, which was not true in our case. This
shortcoming is, however, overcome in the case of the Support Vector based classifi-
cation, which yielded an accuracy of 0.95.

The different values obtained for each of the analyzed classification models fall
within the standard ranges accepted in the research literature. They also come to
confirm what determines our accuracy metric; namely that for the type of data analyzed
by us (mixed) with such dimensions, the best classification models are Random Forest
and Support Vector Machine.

The value of the other metrics whose value was calculated is highlighted in
Table 1:

7 Conclusions and Future Directions

In this paper, we approached an interdisciplinary topic between psychology and
computer science, more particular applied cognitive psychology and machine learning.

We investigated the behavior of 6 learning classification models for a data set
gathered based on QCS. We applied these models for a training data set and then we
used the results achieved within testing data set in order to select the best of the
learning models. Once we have established model with the best accuracy value, we can
apply this model to new instances of data, to a new item unclassified yet.

This work provides us a baseline to other future constructions related to this
domain. We treated here the classification task, an approach useful to psychology area,
and as far as we know, an innovative one in analysis of communication style from
machine learning perspective.

As new development directions, we propose to apply other classification methods
that increase the value of accuracy metrics, to be more robust in relation to the data type
(regardless of preprocessing methods applied) and obviously, increase the sample size
of people questioned for a better generalization of results.

Table 1. Results achieved

Metrics\classifier
models

Naive
Bayes

k-NN Logistic
regression

Decision
tree

SVM Random
forest

Sensitivity 0.75 0.73 0.77 0.78 0.74 0.77
Specificity 0.68 0.72 0.62 0.63 0.62 0.63
Precision 0.81 0.79 0.81 0.78 0.82 0.81

Communication Style - An Analysis from the Perspective of Automated Learning 595

References

1. Amiri, A., Rafe, V.: Hybrid algorithm for detecting diabetes. Int. Res. J. Appl. Basic Sci. 8
(12), 2347–2353 (2014)

2. Bansal, A., Agarwal, R., Sharma, R.: Determining diabetes using iris recognition system. Int.
J. Diabetes Dev. Countries 35(4), 432–438 (2015)

3. Ding, S., Zhao, H., Zhang, Y., Xu, X., Nie, R.: Extreme learning machine: algorithm, theory
and applications. Artif. Intell. Rev. 44(1), 103–115 (2015)

4. Dwivedi, A.K.: Performance evaluation of different machine learning techniques for
prediction of heart disease. Neural Comput. Appl. 29, 1–9 (2016)

5. Dwivedi A.K., Chouhan, U.: On support vector machine ensembles for classification of
recombination breakpoint regions in Saccharomyces cerevisiae. Int. J. Comput. Appl. 108
(13) (2014)

6. Dwivedi, A.K., Chouhan, U.: Genome-scale classification of recombinant and non-
recombinant HIV-1 sequences using artificial neural network ensembles. Curr. Sci. 111
(5), 853 (2016)

7. Farran, B., Channanath, A.M., Behbehani, K., Thanaraj, T.A.: Predictive models to assess
risk of type 2 diabetes, hypertension and comorbidity: machine-learning algorithms and
validation using national health data from Kuwait—a cohort study. BMJ Open 3(5), e002457
(2013)

8. Gadodiya, S., Chandak, M.B.: Combined approach for improving accuracy of prototype
selection for k-NN classifier. Compusoft 3(5), 808 (2014)

9. Goswami, S.K., et al.: Antioxidant potential and ability of phloroglucinol to decrease
formation of advanced glycation. Sex Med. 4(2), e104–e112 (2016)

10. Goswami, S.K., Vishwanath, M., Gangadarappa, S.K., Razdan, R., Inamdar, M.N.: Efficacy
of ellagic acid and sildenafil in diabetes-induced sexual dysfunction. Pharmacogn. Mag. 10
(39), 581 (2014)

11. Hajmeer, M., Basheer, I.: Comparison of logistic regression and neural network-based
classifiers for bacterial growth. Food Microbiol. 20(1), 43–55 (2003)

12. Heydari, M., Teimouri, M., Heshmati, Z., Alavinia, S.M.: Comparison of various
classification algorithms in the diagnosis of type 2 diabetes in Iran. Int. J. Diabet. Dev.
Countries 36, 1–7 (2015)

13. Maldonado, H., Leija, L., Vera, A.: Selecting a computational classifier to develop a clinical
decision support system (CDSS). In: 2015 12th International Conference on Electrical
Engineering, Computing Science and Automatic Control (CCE), pp. 1–3. IEEE (2015)

14. Nikam, S.S.: A comparative study of classification techniques in data mining algorithms.
Orient. J. Comput. Sci. Technol. 8(1), 13–19 (2015)

15. Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., Chica-Rivas, M.: Machine
learning predictive models for mineral prospectivity: an evaluation of neural networks,
random forest, regression trees and support vector machines. Ore Geol. Rev. 71, 804–818
(2015)

16. Ailincăi, A., Cleminte, A., Cluci, A., et al.: Analysis of the working style of supervisors
(Analiza stilului de lucru al supervizorului). Seminary Sandu, A. Group supervision in social
services (Supervizare de grup în asistenţa social) (2010)

17. Vapnik, V.N., Vapnik, V.: Statistical Learning Theory, vol. 2. Wiley, New York (1998)
18. Yarkoni, T., Westfall, J.: Choosing prediction over explanation in psychology: lessons from

machine learning. Perspect. Psychol. Sci. 12(6), 1100–1122 (2017)

596 A. M. Coroiu et al.

19. Yarkoni, T., Ashar, Y.K., Wager, T.D.: Interactions between donor agreeableness and
recipient characteristics in predicting charitable donation and positive social evaluation.
PeerJ 3, e1089 (2015). https://doi.org/10.7717/peerj.1089

20. Park, J., Kim, K., Kwon, O.: Comparison of machine learning algorithms to predict
psychological wellness indices for ubiquitous healthcare system design. In: Innovative
Design and Manufacturing (ICIDM), pp. 263–269 (2014). https://doi.org/10.1109/idam.
2014.6912705

21. Marcus, S.: Empathy and the Teacher-Student Relationship (Empatia și relația profesor-
elev). Academia R.S.R. Publishing House, Bucharest (1987)

22. Pandey, P.S.: Machine learning and IoT for prediction and detection of stress. In:
Computational Science and Its Applications (ICCSA), pp. 1–5. IEEE (2017). https://doi.org/
10.1109/iccsa.2017. 8000018

Communication Style - An Analysis from the Perspective of Automated Learning 597

http://dx.doi.org/10.7717/peerj.1089
http://dx.doi.org/10.1109/idam.2014.6912705
http://dx.doi.org/10.1109/idam.2014.6912705
http://dx.doi.org/10.1109/iccsa.2017
http://dx.doi.org/10.1109/iccsa.2017

Directional Data Analysis for Shape
Classification

Adrián Muñoz(B) and Alberto Suárez

Computer Science Department, Universidad Autónoma de Madrid,
C. Francisco Tomás y Valiente 11, 28049 Madrid, Spain

adrian.munnozp@estudiante.uam.es, alberto.suarez@uam.es

http://www.eps.uam.es/~gaa

Abstract. In this work we address the problem of learning from images
to perform grouping and classification of shapes. The key idea is to
encode the instances available for learning in the form of directional
data. In two dimensions, the figure to be categorized is characterized
by the distribution of the directions of the normal unit vectors along the
contour of the object. This directional characterization is used to extract
characteristics based on metrics defined in the space of circular distribu-
tions. These characteristics can then be used to categorize the encoded
shapes. The usefulness of the representation proposed is illustrated in
the problem of clustering and classification of otolith shapes.

Keywords: Directional data · Shape representation
Shape clustering · Shape classification

1 Introduction

Automatic induction from complex data that are characterized by functions,
graphs, distributions or shapes is one of the important open problems in Machine
Learning. In this work we address the task of grouping or classifying objects
according to their shapes. A system that automatically discriminates among
shapes is useful in numerous domains of application, such as archeology, pale-
ontology, biology, geology, or medicine [10,12,15]. Shape can be defined as an
equivalence class that is invariant under a family of transformations, such as
translations, scaling, rotations, and small deformations [8].

One of the difficulties of this task is to provide an appropriate characteriza-
tion of shape that is tractable yet preserves sufficient amounts of information to
allow grouping and discrimination. Previous approaches to this problem are rep-
resentations based on landmarks [11], medial representations [16,20], and others
such as probability density functions [14]. In this work we will adopt a functional
approach [17] and characterize the shape by the distribution of the normal vec-
tors to the curve (in 2 dimensions) or surface (in 3 dimensions) that delimits

The authors acknowledge financial support from the Spanish Ministry of Economy,
Industry and Competitiveness, project TIN2016-76406-P.

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 598–607, 2018.
https://doi.org/10.1007/978-3-030-01418-6_59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_59&domain=pdf

Directional Data Analysis for Shape Classification 599

the figure [7]. Alternative functional encodings have been considered in recent
investigations [1,13]. These representations are based on encoding shape the dis-
tribution of distances between points within [1] or at the boundary of the object
[13]. The focus of this work is on two-dimensional (planar) representations of
objects. Nevertheless, the method proposed can be readily extended to higher
dimensions using the tools of directional statistics [11]. To encode the distribu-
tion of the directions of the normal vectors in two dimensions it is sufficient to
store the angles of such vectors at each location on the boundary. These values
can be viewed as samples from a random variable defined in [−π, π]. This ran-
dom variable is characterized by a probability distribution function defined on
the circle. Examples of such probability density estimates are depicted in Fig. 1.
To build an empirical estimates of these distributions we consider a set of N
points sampled at regular intervals along the contour of the figure. At each of
these points we compute the direction of the normal to the contour and store the
corresponding angles {θn}N

n=1. An empirical estimate of the probability density
is given by the histogram of the data using Nbins equally spaced bins in [−π, π].
The histogram is scaled so that the area under it is one. Alternatively, a kernel
estimator is used to provide a smooth approximation of the density

fKDE(θ; ν) =
1
N

N∑

n=1

K(θ − θn; ν), (1)

where K(θ; ν) is a periodic normalized kernel (i.e. its integral in θ ∈ [−π, π] is 1),
whose characteristic width is h = 1/ν. In this work, the von Mises kernel is used

K(θ; ν) =
1

2πI0(ν)
eν cos(θ), (2)

where I0 is the modified Bessel function of the first kind of order 0. For higher
dimensions the von Mises-Fisher distribution can be used [4]. The quality of
the kernel density estimate depends strongly on the value of this parameter
[2,3,5,18]: On the one hand, if the kernel is too narrow, the density estimate
will lack stability and exhibit large variance. If, on the other hand, the width is
too large, relevant features of the probability density will be smoothed out. In the
experimental evaluation performed, h = 2π

64 provides a good compromise between
stability and smoothness. Correspondingly, for the histogram density estimate,

(a) Square (b) Circular sector

Fig. 1. Empirical probability density for the directional variables in simple figures.

600 A. Muñoz and A. Suárez

Fig. 2. Characterization of planar geometrical figures (top row) using a scaled his-
togram (middle row) and kernel density (bottom row) empirical estimates of the prob-
ability density of the direction of the normal vectors along the contour of the figure.

Nbins = 64 bins have been used. Figure 2 displays examples of these estimates
for simple geometrical figures. Once the object representations have been char-
acterized by the corresponding probability density estimates, their shapes can be
compared using different metrics. To define these metrics, the discretized version
of the probability densities f(θ) and g(θ) in the circle (θ ∈ [−π, π]), at the sam-
pling points {θn}N

n=1 are considered; namely, f = {fn}N
n=1, and g = {gn}N

n=1,
with fn ≡ f(θn) and gn ≡ g(θn), respectively. In terms of these discretized ver-
sions of the densities, the metrics in Table 1 have been considered. Let F and G
be two figures, characterized by f and g, respectively. The relative orientations
of F and G could be different. Therefore, a distance between these figures can
be defined as the minimum value of the metric between a rotation of the first
density and the second density

D̂ (F,G) = min
n=1,2,...,N

D
(
f [n],g

)
(3)

where D is one of the metrics considered and f [n] = {fn, fn+1, . . . , fN ,
f1, . . . , fn−1} is a rotation of the density f . The distance function given by
Eq. (3) requires the evaluation of the specified metric for all N sampling points,
which is a costly computation. A more effective way to account for rotations is
to measure distances with respect to C, the uniform circular distribution in two
dimensions (or the uniform distribution on a sphere in 3 dimensions):

D̃ (F,G) = |D (F,C) − D (G,C)| . (4)

Directional Data Analysis for Shape Classification 601

As will be illustrated in the section on empirical evaluation this measure retains
sufficient information to provide a reasonably good characterization of shape at
a reduced computational cost.

Table 1. Distance functions between the discretized distributions f = {fn}N
n=1, and

g = {gn}N
n=1.

Distance Expression

Manhattan L1(f ,g) =
∑N

n=1 |fn − gn|
Euclidean L2(f ,g) =

√∑N
n=1 |fn − gn|2

Total variation L∞(f ,g) = maxn=1,2,...,N |fn − gn|
χ2 χ2(f ,g) =

∑N
n=1

|fn−gn|2
fn+gn

Hellinger H(f ,g) = 1√
2

√∑N
n=1

(√
fn − √

gn
)2

Earth Mover’s EMD(f ,g) = inf E [|θ − θ′|]
where the infimum is taken over all possible joint distributions θ
and θ′, random variables whose marginals are f and g, respectively

2 Clustering and Classification of Otoliths

In this section we consider the categorization of otoliths for grouping and identi-
fication of fish species. Otoliths are concretions of calcium carbonate and other
inorganic salts that are formed by aggregation on a protein matrix in the inner
ear of vertebrates [6]. The dataset studied consists of 240 high-contrast images
of otoliths for three different families of fish: labridae (125 images), soleidae (70
images), and scombridae (45 images). The images are centered and oriented so
the to the frontal part of the otolith appears to the right of the image. This set
has been retrieved from the AFORO database (http://www.icm.csic.es/aforo/),
which is a an extensive open online repository of data for different fish species.
Otoliths in labridae family are cuneiform, oval, bullet-shaped, or rectangular.
They present a cleavage in the frontal zone, which, in general, is more promi-
nent than in the other fish families. Soleidae otoliths are mainly discoidal and
elliptic. Their shapes are in general more regular and smooth than in other two
families. Finally, otoliths of the scombridae family have serrate contours and gen-
erally are more elongated [19]. Examples of these otoliths are displayed in Fig. 3.
Labridae and soleidae otoliths present higher shape variability than scombridae
otoliths, which are typically more regular. In each of the images, the contour of
the otolith is retrieved using the marching squares algorithm [9] and later rec-
tified so that all figures have the same number of vertices. In the experiments,
a number of 64 vertices is considered. This quantization of the contour reduces
the variability in the representation and allows to preserve a sufficient amount
of detail for an accurate characterization of the shape of the object. The figure

http://www.icm.csic.es/aforo/

602 A. Muñoz and A. Suárez

is then characterized by sampling a total of Nsample = 1000 points at regu-
larly spaced intervals along the contour. For each of these sampling points the
direction of the normal unitary vector is computed to obtain a sample of the
directional variable. For planar figures, it can be represented as the angle that
specifies the direction of this normal vector. The probability density of these
direction values is then approximated using either a scaled histogram with 64
bins or a KDE estimate that utilizes von Mises kernels of width h = 2π

64 . In both
cases, the probability density estimates are discretized at N = 64 points located
at the center of the histogram bins. From the probability density estimates, two
different characterizations will be used. In a first characterization, the figures
are aligned at the maximum of the corresponding density estimates. The vector
of attributes in this aligned representation consists in the N = 64 values of the
corresponding histogram or KDE. A second characterization (labeled distances)
is by a vector composed of the 6 distances between the corresponding density
estimation and the uniform distribution, according to Eq. (4). Both unsuper-
vised (clustering) and supervised (classification) learning tasks are considered.
In a first set of experiments, the K-means algorithm is used to group the otoliths
into K = 3 clusters. The results of this unsupervised learning task are displayed
in Table 2. Several conclusions can be drawn from these results. The first one
is that the clusters identified when the characterization based on distances to
the uniform circular distribution are rather impure. The results are significantly
better when the representation based on alignment is used, especially when the
kernel density estimates (KDE) are employed. The reason why alignment is use-
ful in these data is because otoliths typically have an oblong shape, with clearly
defined axis. In a second set of experiments various k-nearest neighbors (k-NN)
models are used to predict the shape of the figure based on different characteri-
zations proposed. First rotationally invariant distance between shapes given by
Eq. (3) is employed in the nearest-neighbors algorithm. The distances are com-
puted using one of the six different metrics described in the previous section.
The number of neighbors is determined using 3-fold cross-validation within the
training data. The range of values explored is k = 3, 5, . . . , 13. In most cases
the values selected are either k = 3 or k = 5. The results are not particularly
sensitive to the choice of this parameter. The generalization error is estimated
using 10-fold cross-validation over the complete data set. The results of these
experiments are summarized in Table 3. In all cases, the predictions are very
accurate for all metrics, specially when the smoother kernel density estimation
is used. However, because of the minimization step required in computing the
distances Eq. (3), the computational cost of this algorithm is high.

In a last set of experiments, as a solution with reduced computational cost,
the aligned and distances representations are employed. For the distances rep-
resentation, neighboring instances are identified using the Euclidean distance of
the corresponding vector of attributes. Aligned version will be used to approxi-
mate rotationally invariant metrics aligning discretizations according to its max-
imum value. The generalization error and the optimal number of neighbors are
selected by cross validation as in previous experiment. The confusion matri-
ces and cross-validation error estimates for these experiments are displayed in

Directional Data Analysis for Shape Classification 603

Fig. 3. Examples of labridae, soleidae, and scombridae otoliths. The frontal part of the
otolith, which corresponds to the head of the fish, appears on the right of the image.

Fig. 4. In the top row of this figure the contours of otoliths of different fish families
are shown: labridae (left), soleidae (middle), and scombridae (right). The histogram
and kernel density estimates of the directional variables for these figures are displayed
in the middle and bottom rows, respectively.

Table 4 for aligned representation and in Table 5. As in the clustering experi-
ment, the accuracy is better when aligned representations are used. The best
overall accuracy is obtained when kernel density estimates are used, also when
instances are characterized by distances representation. As in the previous exper-
iments, the scombridae and soleidae otoliths are well separated. It is apparent
from Fig. 4, that the shapes of soleidae and scombridae otoliths are markedly
different from each other. As a result, the discrimination between items from

604 A. Muñoz and A. Suárez

Table 2. Number of otoliths from the labridae (lab), soleidae (sol), and scombridae
(sco) assigned to each of the 3 clusters identified using K-means. The results on the
left-hand side correspond to the 6-dimensional distances representations. The results
obtained when the 64-dimensional aligned representations are used are displayed on the
right-hand side. The error indicates the proportion of incorrectly grouped instances.

Distances Aligned

Histogram KDE Histogram KDE

C1 C2 C3 C1 C2 C3 C1 C2 C3 C1 C2 C3

lab 86 20 19 93 11 21 113 7 5 113 6 6

sol 7 63 0 4 66 0 3 67 0 0 70 0

sco 6 0 39 4 0 41 4 0 41 3 0 42

Err 0.22 0.17 0.08 0.06

Table 3. 10-fold cross-validation estimates of the confusion matrices for otolith clas-
sification. The instances, which are characterized by either the histogram or a kernel
estimate (KDE) of the probability density function of the normal vectors along the
contour of the figure, are categorized as labridae (lab), soleidae (sol), and scombridae
(sco) using k-NN with rotationally invariant metrics. The error indicates the propor-
tion of incorrectly grouped instances.

Histogram KDE Histogram KDE

lab sol sco lab sol sco lab sol sco lab sol sco

lab L1 119 0 6 123 0 2 EMD 120 1 4 124 0 1

sol 2 68 0 0 70 0 3 67 0 0 70 0

sco 8 0 37 5 0 40 7 0 38 4 0 41

Err 0.05 ± 0.04 0.05 ± 0.04 0.11 ± 0.06 0.10 ± 0.06

lab L2 121 0 4 124 0 1 H 119 0 6 123 1 1

sol 3 67 0 0 70 0 2 68 0 0 70 0

sco 9 0 36 5 0 40 7 0 38 5 0 40

Err 0.05 ± 0.04 0.04 ± 0.04 0.06 ± 0.05 0.06 ± 0.05

lab L∞ 119 0 6 123 0 2 χ2 118 1 6 121 2 2

sol 2 68 0 0 70 0 2 68 0 0 70 0

sco 6 0 39 5 0 40 7 0 38 6 0 39

Err 0.05 ± 0.04 0.05 ± 0.04 0.06 ± 0.04 0.06 ± 0.04

these classes is fairly easy. If fact, they are well separated in all the represen-
tations considered. This is not the case for the labridae otoliths. Some otoliths
from this class present elongated shapes, which are more characteristic of scom-
bridae. Others present a circular, more regular shapes, and can be mistaken for
instances from the soleidae class.

Directional Data Analysis for Shape Classification 605

Table 4. 10-fold cross-validation estimates of the confusion matrices for otolith classi-
fication. The instances, which are characterized by aligned representations of either the
histogram or a kernel estimate (KDE) of the probability density function of the normal
vectors along the contour of the figure, are categorized as labridae (lab), soleidae (sol),
and scombridae (sco) using K-NN. The error indicates the proportion of incorrectly
grouped instances.

Histogram KDE Histogram KDE

lab sol sco lab sol sco lab sol sco lab sol sco

lab L1 116 7 2 121 4 0 EMD 113 10 2 122 3 0

sol 7 62 1 2 68 0 9 61 0 3 67 0

sco 7 0 38 8 0 37 6 0 39 8 0 37

Err 0.10 ± 0.04 0.06 ± 0.05 0.11 ± 0.06 0.06 ± 0.03

lab L2 117 6 2 122 3 0 H 116 6 3 120 5 0

sol 10 59 1 4 66 0 10 60 0 2 68 0

sco 10 0 35 7 0 38 9 0 36 7 0 38

Err 0.12 ± 0.06 0.06 ± 0.04 0.12 ± 0.06 0.06 ± 0.07

lab L∞ 116 7 2 121 3 1 χ2 114 8 3 120 5 0

sol 8 62 0 3 67 0 10 59 1 3 67 0

sco 11 0 34 7 0 38 10 0 35 8 0 37

Err 0.12 ± 0.05 0.06 ± 0.05 0.13 ± 0.06 0.07 ± 0.04

Table 5. Confusion matrices and 10-fold cross-validation errors for the classification
of labridae (lab), soleidae (sol), and scombridae (sco) otoliths using a characterization
based on distances to the uniform circular distribution (distances). The error indicates
the proportion of incorrectly grouped instances.

Histogram KDE

lab sol sco lab sol sco

lab 98 5 22 110 7 8

sol 18 52 0 10 60 0

sco 11 0 34 15 0 30

Err 0.27 ± 0.06 0.15 ± 0.06

3 Conclusions

In this work we propose a characterization of shapes of objects based on direc-
tional data. The ultimate goal is to categorize these objects according to their
shapes. Intuitively, shape can be defined as the geometrical property shared
by different objects that is invariant to a loosely-defined family of transforma-
tions, which includes translations, scaling, rotations, and small deformations.
In our method, shape is encoded by the distribution of unit vectors along the
normal direction at the boundaries of the object. In this manner, information

606 A. Muñoz and A. Suárez

on scale and absolute distances is eliminated while preserving directional infor-
mation, which is expected to encode shape. This representation is obtained by
first locating these boundaries with standard image processing algorithms. Then,
normal unit vectors are computed at a set of points located on this boundary.
These vectors can be seen as realizations of a directional random variable. This
random variable can be characterized by its distribution. In two dimensions, the
boundary is a curve, so the distribution of normal vectors is defined on the circle.
Empirical estimates of the probability density function can be computed using
a scaled histogram, or a smoother kernel density estimation using, for instance,
von Mises kernels. In this work both options are explored. For three-dimensional
representations, the boundary of the object is a surface. The distribution of
three-dimensional unit normal vectors are defined on a sphere. In this case von
Mises-Fisher kernels can be used [4]. Since the representation is functional (and
therefore, infinite dimensional), further reductions of information are needed so
that it can be used in practice. In particular, for two-dimensional data, the
probability densities are discretized at regularly N = 64 spaced points along the
circle. Since shape should be invariant with respect to rotations, computationally
expensive shape-alignment operations are needed when this representations are
used for clustering or classification. A further dimensionality reduction, which
is rotationally invariant, can be made using as features the distances of the dis-
cretized densities and the uniform circular distribution. The usefulness of these
representations for clustering and classification of images of objects according
to their shapes is illustrated with otolith data. Techniques based on exhaustive
minimization, while being computationally costly, are very accurate and provide
the best overall results, especially when kernel estimates of the density of direc-
tional variables are used. From these experiments we conclude that distances
representation provides a significant reduction on the computational cost while
reducing the quality of the results. The aligned representation provides a good
balance between performance and computational cost. This empirical investiga-
tion illustrates the effectiveness of the directional data representation proposed
to encode shapes.

References

1. Berrendero, J.R., Cuevas, A., Pateiro-Lpez, B.: Shape classification based on inter-
point distance distributions. J. Multivariate Anal. 146, 237–247 (2016). Special
Issue on Statistical Models and Methods for High or Infinite Dimensional Spaces

2. Chaubey, Y.P.: Smooth kernel estimation of a circular density function: a con-
nection to orthogonal polynomials on the unit circle. J. Probab. Stat. 2018, 4 p.
(2018). https://doi.org/10.1155/2018/5372803. Article ID 5372803

3. Di Marzio, M., Panzera, A., Taylor, C.: A note on density estimation for circular
data (2012)

4. Fisher, R.: Dispersion on a sphere. Proc. Roy. Soc. Lond. Ser. A: Math. Phys. Sci.
217(1130), 295–305 (1953)

5. Garćıa-Portugués, E.: Exact risk improvement of bandwidth selectors for kernel
density estimation with directional data. Electron. J. Statist. 7, 1655–1685 (2013).
https://doi.org/10.1214/13-EJS821

https://doi.org/10.1155/2018/5372803
https://doi.org/10.1214/13-EJS821

Directional Data Analysis for Shape Classification 607

6. Giménez, J., Manjabacas, A., Tuset, V.M., Lombarte, A.: Relationships between
otolith and fish size from Mediterranean and Northeastern Atlantic species to be
used in predator-prey studies. J. Fish Biol. 89(4), 2195–2202 (2016)

7. Grogan, M., Dahyot, R.: Shape registration with directional data. Pattern Recogn.
79, 452–466 (2018)

8. Kendall, D.G.: A survey of the statistical theory of shape. Statist. Sci. 4(2), 87–99
(1989). https://doi.org/10.1214/ss/1177012582

9. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface con-
struction algorithm. Comput. Graph. 21(4), 163–169 (1987)

10. MacLeod, N.: Geometric morphometrics and geological shape-classification sys-
tems. Earth-Sci. Rev. 59(1), 27–47 (2002)

11. Mardia, K.V., Jupp, P.: Directional Statistics. Wiley Series in Probability and
Statistics. Wiley, New York (2009)

12. Gavrielides, M.A., Kallergi, M., Clarke, L.P.: Automatic shape analysis and classi-
fication of mammographic calcifications (1997). https://doi.org/10.1117/12.274175

13. Montero-Manso, P., Vilar, J.: Shape classification through functional data
reparametrization and distribution-based comparison (2017)

14. Moyou, M., Ihou, K.E., Peter, A.M.: LBO-Shape densities: a unified framework for
2D and 3D shape classification on the hypersphere of wavelet densities. Comput.
Vis. Image Underst. 152, 142–154 (2016)

15. Mu, T., Nandi, A.K., Rangayyan, R.M.: Classification of breast masses using
selected shape, edge-sharpness, and texture features with linear and kernel-based
classifiers. J. Digit. Imaging 21(2), 153–169 (2008)

16. Pizer, S.M., Thall, A.L., Chen, D.T.: M-Reps: a new object representation for
graphics. Technical report, ACM Transactions on Graphics (2000)

17. Ramsay, J., Silverman, B.: Functional data analysis (1997)
18. Taylor, C.C.: Automatic bandwidth selection for circular density estimation. Com-

put. Stat. Data Anal. 52(7), 3493–3500 (2008)
19. Tuset, V., Lombarte, A., Assis, C.: Otolith atlas for the Western Mediterranean,

North and Central Eastern Atlantic. Scientia Marina 72(Suppl. 1), 7–198 (2008)
20. Yushkevich, P., Pizer, S.M., Joshi, S., Marron, J.S.: Intuitive, localized analysis of

shape variability. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082,
pp. 402–408. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45729-
1 41

https://doi.org/10.1214/ss/1177012582
https://doi.org/10.1117/12.274175
https://doi.org/10.1007/3-540-45729-1_41
https://doi.org/10.1007/3-540-45729-1_41

Semantic Space Transformations for
Cross-Lingual Document Classification

Jǐŕı Mart́ınek1, Ladislav Lenc2, and Pavel Král1,2(B)

1 Department of Computer Science and Engineering, Faculty of Applied Sciences,
University of West Bohemia, Plzeň, Czech Republic

{jimar,pkral}@kiv.zcu.cz
2 NTIS - New Technologies for the Information Society, Faculty of Applied Sciences,

University of West Bohemia, Plzeň, Czech Republic
llenc@kiv.zcu.cz

Abstract. Cross-lingual document representation can be done by train-
ing monolingual semantic spaces and then to use bilingual dictionaries
with some transform method to project word vectors into a unified space.
The main goal of this paper consists in evaluation of three promising
transform methods on cross-lingual document classification task. We also
propose, evaluate and compare two cross-lingual document classification
approaches. We use popular convolutional neural network (CNN) and
compare its performance with a standard maximum entropy classifier.
The proposed methods are evaluated on four languages, namely English,
German, Spanish and Italian from the Reuters corpus. We demonstrate
that the results of all transformation methods are close to each other,
however the orthogonal transformation gives generally slightly better
results when CNN with trained embeddings is used. The experimental
results also show that convolutional network achieves better results than
maximum entropy classifier. We further show that the proposed methods
are competitive with the state of the art.

1 Introduction

The performance of many Natural Language Processing (NLP) systems is
strongly dependent on the size and quality of annotated resources. Unfortunately,
there is a lack of annotated data for particular languages/tasks and manual anno-
tation of new corpora is a very expensive and time consuming task. Moreover,
the linguistic experts from the target domain are often required. These issues
can be solved by the usage of cross-lingual text representation methods. The
classifiers are trained on resource-rich languages and the cross-linguality allows
using the models with data in other languages with no available training data.

The text document representations are often created using multi-dimensional
word vectors, often so called word embeddings (Levy and Goldberg [10]). One
way of creating cross-lingual representations is to use transformed semantic
spaces. Such approaches take a monolingual, independently trained, semantic
space and project it into a unified space using some transformation method.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 608–616, 2018.
https://doi.org/10.1007/978-3-030-01418-6_60

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_60&domain=pdf

Semantic Space Transformations for Cross-Lingual Document Classification 609

Several such transformation methods have been proposed. However, to the
best of our knowledge, a comparative study of the role of different transforma-
tion methods/classifiers for the document classification across several languages
is missing. Therefore, the main contribution of this paper consists in the thor-
ough study of the impact of three promising transform methods, namely Least
Squares Transformation (LST), Orthogonal Transformation (OT) and Canoni-
cal Correlation Analysis (CCA), for cross-lingual document classification. More
information about linear transformations to build cross-lingual semantic spaces
can be found in [2,3]. In this context, we propose, evaluate and compare two
cross-lingual document classification approaches. The first one uses directly the
transformed embeddings in different languages while the second one realizes a
simple word translation by choosing the closest word using cosine similarity of
the embedding vectors.

For classification, we use popular convolutional neural network (CNN) and
compare its performance with a standard maximum entropy classifier. The pro-
posed methods are evaluated on four languages, namely English, German, Span-
ish and Italian from the Reuters corpus.

2 Literature Review

Recent work in cross-lingual text representation field is usually based on word-
level alignments. Klementiev et al. [7] train simultaneously two language models
based on neural networks. The proposed method uses a regularization which
ensures that pairs of frequently aligned words have similar word embeddings.
Therefore, this approach needs parallel corpora to obtain the word-level align-
ment. Zou et al. [13] propose an alternative approach based on another neural
network language models using different regularization.

Kočiský et al. [8] propose a bilingual word representation approach based
on a probabilistic model. This method simultaneously learns alignments and
distributed representations for bilingual data. Contrary to the prior work, which
is based on parallel corpora or hard alignment, this method marginalizes out the
alignments, thus captures a larger bilingual semantic context.

Chandar et al. [4] investigate an efficient approach based on autoencoders
that uses word representations coherent between two languages. This method is
able to obtain high-quality text representations by learning to reconstruct the
bag-of-words of aligned sentences without any word alignments.

Coulmance et al. [5] introduce an efficient method for bilingual word repre-
sentations called Trans-gram. This approach extends popular skip-gram model
to multi-lingual scenario. This model jointly learns and aligns word embeddings
for several languages, using only monolingual data and a small set of sentence-
aligned documents.

610 J. Mart́ınek et al.

3 Cross-Lingual Document Classification

3.1 Document Representation

We use three document representations in our experiments. The first one is the
Bag-of-Words (BoW). The second approach called averaged embeddings utilizes
word embeddings. It averages the word vectors for all words occurring in the
document. Its length corresponds to the embeddings dimensionality. The last
method uses the sequence of words in the document and transforms it to the
2D representation suitable for the CNN. The words are one-hot encoded and are
translated using a look-up table by the corresponding embeddings. Further we
describe the three ways how we achieve the cross-linguality in our classification
methods.

Machine Translation. Machine translation (MT) is used as a strong base-
line for comparison with the two other methods. The documents are translated
using Google API. The translation is then used in the same way as if classifying
documents in one language.

Transformed Embeddings. This approach relies on the transformed word
embeddings. The representations of the training documents are created from
the original word embeddings in the language, which was used for the training
of the model. The documents in the testing dataset are then represented by
the embeddings transformed to the language of the model. This method will be
hereafter called transformed (emb)eddings.

Embedding Translation. This method is also based on the transformed
embeddings. However, the embeddings are used for per-word translation of the
documents instead of using it directly. It utilizes the non-transformed embedding
in the target language and the transformed one from source to target language
for similarity search. The most similar word in the target language is found for
each word in the source language by cosine similarity. This method is in the
following text referred as (emb)edding translation approach.

3.2 Classification Models

Maximum Entropy. The first classifier is the Maximum Entropy (ME) model
Berger et al. [1]. It takes for each document an input with a fixed number of
features, represented as a feature vector F , and outputs the probability distribu-
tion P (Y = y|F) where y ∈ C (set of all possible document classes). This model
is popular in the natural language processing field, because it usually gives good
classification scores.

Semantic Space Transformations for Cross-Lingual Document Classification 611

Convolutional Neural Network. The second classifier is a popular Convolu-
tional Neural Network (CNN). It also outputs normalized scores interpreted as a
probability distribution P (Y = y|F) over all possible labels. The network we use
was proposed by Lenc and Král [9] and it was successfully used for multi-label
classification of Czech documents. The architecture of the network is inspired by
Kim [6]. The main difference from Kim’s network is that this net uses different
number and size of convolutional kernels.

We perform a basic preprocessing which detects all numbers and replaces
them by one “NUMERIC” token. Then the document length is adjusted to
a fixed value. Longer documents are shortened while shorter ones are padded
so that they have fixed length L. A vocabulary of the most frequent words
is prepared from the training data. The words are then represented by their
indexes in the vocabulary. The words that are not in the vocabulary are assigned
to a reserved index (“OOV”) and the “PADDING” token has also a reserved
index.

The input of the network is a vector of word indexes of the length L where
L is the number of words used for document representation. The second layer
is an embedding layer which represents each input word as a vector of a given
length. The document is thus represented as a matrix with L rows and E columns
where E is the embeddings dimensionality. The embedding layer can be initial-
ized either randomly and trained during the network training process or use the
pre-trained word embeddings as its weights. The third layer is the convolutional
one. N convolutional kernels of the size K × 1 are used which means that a 1D
convolution over one position in the embedding vector over K input words is
performed. The following layer performs max pooling over the length L−K + 1
resulting in N 1 × E vectors. This layer is followed by a dropout layer Srivas-
tava et al. [12] for regularization. The output of this layer is then flattened and
connected with a fully connected layer with D neurons. After another dropout
layer follows the output layer with C neurons which corresponds to the number
of the document categories. The architecture of the network is depicted in Fig. 1.

4 Experiments

4.1 Reuters Corpus Volume I

We use four languages, namely English (en), German (de), Spanish (es) and
Italian (it) from Reuters Corpus Volume I (RCV1-v2) Lewis et al. [11] with
similar setup as used by Klementiev et al. [7]. The documents are classified into
four following categories: Corporate/industrial – CCAT, Economics – ECAT,
Government/social – GCAT and Markets – MCAT.

As the other studies we use the standard accuracy metric in our experiments.
The confidence interval is ±0.3% at the confidence level of 0.95.

4.2 Baseline Approaches Results

Our first baseline method is a majority class (MC) classifier which determines
the distribution of categories in the training dataset and chooses the most fre-

612 J. Mart́ınek et al.

Fig. 1. Convolutional neural network architecture.

quent class. In testing phase, all test documents are classified into this most
frequent class. The accuracy of this classifier is depicted in third column of
Table 1. These results show that the corpus is unbalanced and that there are
significant differences among different languages.

The second baseline is the machine translation (MT) approach. The results
with the ME classifier are reported in Table 1, while the accuracy of the CNN is
shown in Table 2 (column MT). Classification accuracies of this approach are very
high and show that the translation results have a strong impact on document
classification.

4.3 Proposed Approaches Results

The embedding translation approach needs repeatedly searching the target
semantic space which is computationally demanding. In order to reduce the
computational burden we set the vocabulary size |V | = 20, 000. The vocabulary
is constructed from the most frequent words in the training set. To increase
efficiency of searching, we created vocabulary mapping dictionary between each
pair of languages. There is a mapping onto target language vocabulary for each
word in the source language. This dictionary is the centerpiece of the embed-
ding translation. If the source word is not present in the vocabulary, the out
of vocabulary token (“OOV”) is used. Each proposed method is experimentally
validated on two classification models.

Maximum Entropy Results. The last six columns in Table 1 show the
results of the maximum entropy classifier with transformed (emb)eddings and
(emb)edding translation methods. Three linear transformations are used.

Semantic Space Transformations for Cross-Lingual Document Classification 613

Table 1. ME classifier results. Columns 3 and 4 represent the majority class (MC)
and machine translation (MT) baselines. The rest of the table shows results for the
proposed methods with different embedding transformations.

Languages Baselines [%] Proposed approaches [%]

MC MT Transformed emb Emb translation

Train Test LST CCA OT LST CCA OT

en de 30.4 91.9 54.4 62.0 52.2 75.6 75.8 76.3

en es 14.7 81.5 52.9 39.0 49.9 57.2 48.8 49.8

en it 36.0 71.2 48.4 42.2 56.0 58.1 51.0 51.5

de en 23.9 76.7 59.9 60.4 57.4 66.6 69.0 70.2

de es 8.76 81.1 35.9 32.5 29.4 73.2 58.5 63.8

de it 9.50 67.0 58.7 57.5 57.0 47.2 47.7 46.4

es en 23.3 74.3 47.8 53.2 45.4 67.3 70.5 69.6

es de 22.6 85.7 51.7 43.8 47.6 74.5 70.1 70.3

es it 36.4 67.9 22.8 19.8 29.7 71.2 72.0 72.1

it en 23.3 69.7 68.5 69.8 63.8 56.8 55.6 50.2

it de 22.6 86.9 48.7 45.1 52.6 76.6 77.4 76.8

it es 67.7 80.8 61.4 49.4 59.5 75.3 75.2 70.5

This table shows that the grammatically close languages (same family) give
usually better results than the other ones. More concrete, en ↔ de and es ↔ it
have generally better results than for instance en ↔ es (it) or de → es (it).

The results further show, that the three transformation are comparable in
many cases. However, LST gives the best results in several other cases (e.g.
en → es (it) or de → es (it)) and OT gives the significantly worst results for
some cases (e.g. it → en). Based on this experiment we can propose generally
to use LST with ME classifier and static word embeddings.

CNN Results. In all our experiments we use the vocabulary size |V | = 20, 000.
The document length L is set to 100 tokens and the embedding length E is 300
in all cases. We use N = 40 convolutional kernels of size 16 × 1 (K = 16). The
dropout probability is set to 0.2. The size of the first fully connected layer is 256.
The output layer has 4 neurons (C = 4) while we are classifying into 4 classes.
All layers except the output one use relu activation function. The output layer
uses the softmax activation function.

The direct usage of embedding vector is depicted in the leftmost columns
of the Proposed Approaches part of Table 2. The results of this method are the
worsts one among the other proposed approaches, however it is the simplest one.

The last six columns emb translation in Table 2 show the results of CNN on
the (emb)edding translation method. In Table 2 there are two sets of results. The
first one is the set of results, when embedding layer was excluded from learning
(stat), while in the second case the embeddings layer are further fine-tuned by

614 J. Mart́ınek et al.

Table 2. CNN results. Columns 3 and 4 represent the MT baseline. The rest of the table
presents result of the proposed methods with different embedding transformations.
Term stat means the static word embeddings while the term rnd means the using of
randomly initialized embeddings with a subsequent training.

Languages Baselines [%] Proposed approaches [%]

MT Transformed emb Emb translation (stat) Emb translation (rnd)

Train Test rnd stat LST CCA OT LST CCA OT LST CCA OT

en de 89.7 86.5 62.2 64.4 56.0 78.9 79.1 81.3 80.4 80.4 82.7

en es 85.7 69.8 24.4 26.7 23.6 82.0 77.0 76.9 81.9 75.7 72.9

en it 74.7 65.8 27.7 26.9 18.0 68.1 70.2 68.6 71.1 70.5 68.3

de en 61.3 59.4 66.4 64.8 58.4 69.3 70.0 70.2 72.3 75.6 75.6

de es 64.7 55.7 65.0 57.6 55.2 51.0 55.3 54.5 81.4 79.3 80.7

de it 47.8 48.8 39.1 50.9 58.4 44.8 48.6 49.2 68.7 71.1 71.2

es en 60.7 67.6 49.2 41.1 41.5 51.9 54.9 55.0 59.0 63.1 63.0

es de 76.8 81.8 42.9 54.1 58.0 58.5 72.2 81.5 54.7 69.2 82.0

es it 62.4 61.9 20.2 35.5 37.5 68.0 70.9 71.5 73.0 76.2 76.7

it en 69.1 65.7 42.5 44.8 46.4 41.4 41.8 41.1 54.8 54.7 51.3

it de 85.4 81.5 37.0 38.3 44.5 59.6 72.7 74.1 63.0 76.0 60.8

it es 80.1 73.8 68.5 68.8 68.1 61.3 61.3 62.1 78.6 78.6 78.7

a training (rnd). In the table we can observe, that the embedding training has
a positive impact for classification. Moreover, the impact of the transformation
differ from the previous case (see Table 1). We can suggest to use OT as the best
transformation method when CNN with trained embeddings are used.

4.4 Comparison with the State of the Art

In this experiment, we compare the results of our best approach with the state
of the art (see Table 3). These results show that the state-of-the-art methods
slightly outperform the proposed approaches, however we must emphasize that
our main goal consists in the comparison of several different methods. Moreover,
the proposed approaches are very simple.

Table 3. Comparison with the state of the art.

Method en → de [%] de → en [%]

Klementiev et al. [7] 77.6 71.1

Kočiský et al. [8] 83.1 76.0

Chandar et al. [4] 91.8 74.2

Coulmance et al. [5] 91.1 78.7

Best proposed configuration 82.7 75.6

Semantic Space Transformations for Cross-Lingual Document Classification 615

5 Conclusions

This paper presented a thorough study of the impact of three promising trans-
form methods, namely least squares transformation, orthogonal transformation
and canonical correlation analysis, for cross-lingual document classification. In
this context, we proposed and evaluated two cross-lingual document classification
approaches. The first one uses directly the transformed embeddings in different
languages without any modification while the second one realizes the simple word
translation choosing the closest word using cosine similarity of the embeddings.
We compared the performance of standard maximum entropy classifier with our
architecture of convolutional neural network for this task.

We evaluated the proposed approaches on four languages including English,
German, Spanish and Italian from Reuters corpus. We have shown that the
results of all transformation methods are close to each other, however the
orthogonal transformation gives generally slightly better results when CNN with
trained embeddings is used. We have also demonstrated that convolutional neu-
ral network achieves significantly better results than maximum entropy classifier.
We have further presented that the proposed methods are competitive with the
state of the art.

Acknowledgements. This work has been partly supported by the project LO1506 of
the Czech Ministry of Education, Youth and Sports and by Grant No. SGS-2016-018
Data and Software Engineering for Advanced Applications.

References

1. Berger, A.L., Pietra, V.J.D., Pietra, S.A.D.: A maximum entropy approach to
natural language processing. Comput. Linguist. 22(1), 39–71 (1996)

2. Brychcin, T.: Linear transformations for cross-lingual semantic textual similarity.
CoRR abs/1807.04172 (2018). http://arxiv.org/abs/1807.04172

3. Brychcin, T., Taylor, S.E., Svoboda, L.: Cross-lingual word analogies using linear
transformations between semantic spaces. CoRR abs/1807.04175 (2018). http://
arxiv.org/abs/1807.04175

4. Sarath Chandar, A.P., et al.: An autoencoder approach to learning bilingual word
representations. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D.,
Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27,
pp. 1853–1861. Curran Associates, Inc. (2014)

5. Coulmance, J., Marty, J.M., Wenzek, G., Benhalloum, A.: Trans-gram, fast cross-
lingual word-embeddings. arXiv preprint arXiv:1601.02502 (2016)

6. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint
arXiv:1408.5882 (2014)

7. Klementiev, A., Titov, I., Bhattarai, B.: Inducing crosslingual distributed repre-
sentations of words. In: Proceedings of COLING 2012, pp. 1459–1474 (2012)

8. Kočiský, T., Hermann, K.M., Blunsom, P.: Learning bilingual word representations
by marginalizing alignments. In: Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), vol. 2, pp.
224–229 (2014)

http://arxiv.org/abs/1807.04172
http://arxiv.org/abs/1807.04175
http://arxiv.org/abs/1807.04175
http://arxiv.org/abs/1601.02502
http://arxiv.org/abs/1408.5882

616 J. Mart́ınek et al.

9. Lenc, L., Král, P.: Deep neural networks for czech multi-label document classifica-
tion. In: Gelbukh, A. (ed.) CICLing 2016. LNCS, vol. 9624, pp. 460–471. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-75487-1 36

10. Levy, O., Goldberg, Y.: Dependency-based word embeddings. In: Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), vol. 2, pp. 302–308 (2014)

11. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: Rcv1: A new benchmark collection for
text categorization research. J. Mach. Learn. Res. 5(Apr), 361–397 (2004)

12. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

13. Zou, W.Y., Socher, R., Cer, D., Manning, C.D.: Bilingual word embeddings for
phrase-based machine translation. In: Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing, pp. 1393–1398 (2013)

https://doi.org/10.1007/978-3-319-75487-1_36

Automatic Treatment of Bird Audios
by Means of String Compression Applied

to Sound Clustering in Xeno-Canto
Database

Guillermo Sarasa1(B), Ana Granados2, and Francisco B. Rodriguez1

1 Grupo de Neurocomputación Biológica, Escuela Politécnica Superior,
Universidad Autónoma de Madrid, Madrid, Spain

guillermo.sarasa@predoc.uam.es, f.rodriguez@uam.es
2 CES Felipe II, Universidad Complutense de Madrid, Aranjuez, Madrid, Spain

ana.granados@ajz.ucm.es

http://arantxa.ii.uam.es/~gnb/

Abstract. Compression distances can be a very useful tool in automatic
object clustering because of their parameter-free nature. However, when
they are used to compare very different-sized objects with a high per-
centage of noise, their behaviour might be unpredictable. In order to
address this drawback, we have develop an automatic object segmenta-
tion methodology prior to the string-compression-based object cluster-
ing. Our experimental results using the xeno-canto database show that
this methodology can be successfully applied to automatic bird species
identification from their sounds. These results show that applying our
methodology significantly improves the clustering performance of bird
sounds compared to the performance obtained without applying our
automatic object segmentation methodology.

Keywords: Data mining · Normalized compression distance
Clustering · Dendrogram · Bird sound classification
Silhouette coefficient · Similarity · Object segmentation

1 Introduction

Automatic bird species classification from their sounds may be extremely use-
ful in fields such as ecology, behavioral biology or conservation biology, among
others. However, from a technical point of view, it can be a challenging task to
perform due to aspects such as the high variety of existing species, song simi-
larities between distinct species or background noises. The xeno-canto dataset
[13] is a collection of bird sound recordings from birds all over the word that
is available online. This data set has been used in several studies on bird songs
classification in the literature [1,11,12]. In order to improve the classification per-
formance, these works usually carry out an extensive previous analysis, which in
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 617–625, 2018.
https://doi.org/10.1007/978-3-030-01418-6_61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_61&domain=pdf

618 G. Sarasa et al.

most cases comprises, at least, previous treatment of the samples (background
noise), feature extraction (analysis and identification of the song components)
and parameter selection (discrimination process). This strong dependence on
parameter selection may not be the most appropriate for such a heterogeneous
data set. Some examples of this heterogeneity are the variability in the dura-
tion of the data samples, the background noise, or even other bird songs that
occasionally appear in audio recordings.

Compression distances can be a very convenient tool in the automatic
bird song species identification because of their parameter-free nature, broad
applicability and leading efficacy in many domains. Among others, audio [15],
images [5,6], documents [7,8] or computer security [2] represent examples of the
transversal application of this methodology. In a preliminary study, we utilized
one of the most successfully applied compression distances, the Normalized Com-
pression Distance (NCD) to bird song classification [15]. We showed that NCD
can be applied as an alternative approach to identify bird species from audio
samples. This work, however, does not address an issue that compression dis-
tances have when they are applied to compare two very different-sized objects.
This problem resides in the fact that two objects can be considered to be signif-
icantly different by the NCD even though they are similar [3,9]. Although this
might not be a problem in scenarios where there are significant differences in
the size of the objects to be compared, it does not apply to this database. In
this case, the high heterogeneity in the duration and noise of the data samples
demands additional considerations.

Another issue that was not addressed either in [15] and typically appears
in the xeno-canto data base, occurs in audios where the relevant information is
surrounded by big amounts of noise. This is the case of some audios where the
majority of the sample is composed of background noise such as microphone arti-
facts, human voices or even other bird species. Although compression distances
have a high noise tolerance, they are based on size reduction relations between
pairs of objects. This makes them robust against objects where the information
is mixed with the noise, but very weak against data samples where the noise size
overcomes the relevant-information size.

In this work, we address these issues reassembling each audio file from a selec-
tion of their fragments. Our aim was to segment the bird song recordings, ana-
lyze their NCD matrix and select only the fragments with relevant-information.
Next, we use the “relevant” fragments to assemble new audios without noise
and, thereby, to achieve a more accurate representation of their distances. The
results presented in this paper show that applying our methodology significantly
improves the clustering performance of bird sounds compared to the performance
obtained without applying our automatic object segmentation methodology.

2 Normalized Compression Distance

The Normalized Compression Distance (NCD) is a metric that provides a mea-
sure of similarity between two objects based on the use of compression algo-
rithms. The fundamental idea behind the NCD is that given two objects x and

Treatment of Object Size and Noise for Clustering in Xeno-Canto Database 619

y, when a compression algorithm encodes the concatenated xy, it searches for the
information shared by x and y to reduces the redundancy of the whole sequence.
This concept was studied by [3,10]. The NCD between two objects x and y is
defined as:

NCD(x, y) =
max{C(xy) − C(x), C(yx) − C(y)}

max{C(x), C(y)} , (1)

where C is a compression algorithm and C(x) and C(xy) are the size of the
C-compressed versions of x and the concatenation of x and y, respectively. Since
compression algorithms can be applied to all types of digital data, the NCD
has been applied in many areas (see Sect. 1). However, the application of the
NCD involves some difficulties that depend on the context. The size differences
between objects, the symbolization of the information or a high percentage of
noise, are some examples of these difficulties. The first problem could be under-
stand simply by looking at the Eq. 1. Initially, the NCD is based on the assump-
tion that every object x, is reducible by a compressor. A typical case where this
does not occur is when one or both objects have already been compressed. In
the same fashion, if two similar and reducible objects x and y are not reduced
proportionally by a compressor the NCD will be near 1.

2.1 Object Size Problem

If we consider the case where one of the objects is extremely big, and the other
one is significantly small, the NCD between these objects will be closer to 1,
regardless of the information contained in them. In Fig. 1, one can see that the
resolution of the NCD domain decreasses as the size difference increases. For
instance, around 20 KB the average NCD is 0.998 while for 1 MB it increases
to 0.9995. This means that the NCD metric loses resolution as the object size
heterogeneity increases.

Fig. 1. Average NCD and variance, for different subsets of samples of the same bird
species. Each subset is taken from a unique set limiting the size of the samples by an
upper bound. In other words, for a Maximum size of 50 KB the objects’ size used to
measure the average NCD will be between 0 and 50KB. Hence, while the maximum
size increases, the NCD gets closer to 1. This is a problem because an NCD near to 1
implies dissimilarity. Simultaneously the variance falls near to 0. This, together with
the average, reduces the resolution of the NCD domain, and thereby, the identification
capabilities of this method.

620 G. Sarasa et al.

As we mentioned in the introduction, another issue related with this database
appears when the bird song appears in a small percentage of the audio sample.
Following the Eq. 1, one can observe that as long as the compression algorithm
correctly identifies the information between the objects x and y, the size of
C(xy) should be smaller than the size of max{C(x), C(y)}. For our case, one
will assume that only when x and y belong to the same bird species, the NCD
will be low. However, the noise can also be used to reduce the size of C(xy). As
an example, two audios can have the same background noise (other bird songs,
microphone artifacts, crickets, etc.) and belong to different species.

O
ri
gi
na

l
bi
rd

so
ng

s
(b
ef
or
e
ou

r
m
et
ho

d)

C.Redshank_

1.000

1.000

C.Redshank_

0.999

1.000

C.Redshank_
1.000

C.Redshank_

1.000

C.Redshank_

1.000

1.000

C.Redshank_

1.000

1.000

G.H.Owl
1.000

1.000
C.Redshank_

1.000
1.000

G.H.Owl

1.000

G.H.Owl

1.000

1.000

G.H.Owl
1.000

C.Redshank_

1.000

G.H.Owl

1.000

1.000

C.Redshank_1.000

G.H.Owl1.000

G.H.Owl

0.999

0.999
G.H.Owl

C.Redshank_

1.000

G.H.Owl

G.H.Owl

C.Redshank_

1.000

G.H.Owl

1.000

C.Redshank_

C.Redshank_

G.H.Owl

G.H.Owl

C.Redshank_

G.H.Owl

G.H.Owl

0.952

0.951

C.Redshank

0.950

0.950

G.H.Owl

0.950

0.951

G.H.Owl 0.951

C.Redshank

0.951

0.951

C.Redshank

0.952

0.953

G.H.Owl

0.939

0.950

G.H.Owl

0.943

0.952

C.Redshank

0.940

0.943

C.Redshank 0.951

C.Redshank

0.952

G.H.Owl

0.948

C.Redshank

C.Redshank

G.H.Owl

0.940

0.940

C.Redshank

0.940

0.941

G.H.Owl

C.Redshank

0.943

C.Redshank

C.Redshank

0.951

G.H.Owl

0.950

G.H.Owl

0.947

C.Redshank

G.H.Owl

C.Redshank

G.H.Owl

G.H.Owl

G.H.Owl

(after
our

m
ethod)

R
eassem

bled
bird

songs

Fig. 2. Hierarchical clustering of different NCD matrix of the Great Horned Owl and
the Common Redshank (the blue nodes correspond to the Common Redshank). The
left panel shows the dendrogram obtained from the original samples (pre-processed to
the same format), while the right panel shows the dendrogram obtained when applying
our segmentation methodology, described in Sect. 3. The sizes of the objects of the
left dendrogram are different, while in the right one each object has the same size.
The Silhouette Coefficients for both panels are 0.081 and 0.291, respectively. It has to
be pointed out that, the right dendrogram corresponds to the highest point of Fig. 3.
(Color figure online)

Hence, for these cases the NCD will not be enough to identify each species due
to the loss of resolution. In Fig. 2, we can observe how the great heterogeneity in
the size of the objects affects the final clustering with an example of a subset of
audio samples. The left panel shows the dendrogram obtained from the original
objects, while the right panel shows the dendrogram obtained when applying
our segmentation methodology approach.

3 Materials and Methods

We have used the audio data from the online database xeno-canto [13], which
has a great heterogeneity among its audio files. This increases the difficulty of
the problem but also makes it very interesting from the point of view of a free
parameter identification technique. The clustering process has been performed
by a MQTC based hierarchical clustering algorithm from Complearn software [4].

Treatment of Object Size and Noise for Clustering in Xeno-Canto Database 621

As described in Sect. 2, the size variety and significant percentage of noise
(compared to the relevant information) in objects could harm the identification
process considerably. For these reasons, we propose a simple methodology to use
the NCD, as a parameter free technique, among sets of audio samples with big
heterogeneity without further considerations.

In our previous work [15], we successfully identified different bird song sam-
ples between pairs of species, in similar-sized objects. In this case, we address
the problem of size differences between objects and their noise, as an amplified
version of the problem presented in [15]. In this fashion, our hypothesis is that
finding the relevant segments among the audio samples is equivalent to solve the
loss of resolution, metioned in Sect. 2.1.

In order to determine the relevant information of the audio samples, we have
performed a segmentation process. Initially, we have parsed each sample to a
standard format (for more details see Sect. 4) removing any metadata in the
process. Next, we have split each audio sample into fragments of 1.2 s long (as
a first approach) and we have measured the NCD between each pair of them.
At this point, we have got a row of distances between each fragment and all
the other fragments, which could be seen as a description of the information
contained on a fragment.

Once the audios have been segmented into fragments, we have examined
the NCD distribution (between each fragment and the rest of fragments) in
order to sort and select the most relevant fragments. One fragment could include
bird songs of one out of two species, or noise. Hence, one could assume that
among the fragment distances with all the other fragments, those that belong to
the fragments of the same class should be nearer than the ones that belong to
other class. According to this assumption, we examined the NCD distribution
for each fragment with all the other fragments, searching for a (at least) bimodal
distribution. In this manner, one mode should belong to those fragments similar
to the one used as reference (same bird species), while the other(s) mode(s) will
correspond to the distances of the less similar fragments (noise, other specie,
etc.).

The study of the distances’ distribution of each fragment revealed that some
fragments follow our previous assumption (multimodality) better than others.
In this work, we have used this fact to score the relevant information of each
fragment, and discriminate the fragments by their noise. Hence, we have assumed
that the fragments with a bigger distance between their modes will contain a
better quality than the fragments with smaller distance between their modes
(in terms of species discrimination). Next, we have taken the distances between
each pair of modes, for each fragment, and sort the fragments according to it.
Finally, we have reconstructed the original audios taking the n best fragments
of each audio sample (according to their modes distances).

From a technical point of view, we have made use of the zlib compression
algorithm to calculate the NCD. This algorithm, together with the software
to calculate the dendrogram, is provided by CompLearn Toolkit [4]. The audio
samples have been processed with ffmpeg and lame linux packages, and optimized

622 G. Sarasa et al.

using GNU Parallel [16]. In Fig. 2, we show the dendrograms produced by the
clustering of the original objects and the clustering obtained with our method
from the fragments of the initial objects. In this figure, one can see that our
method improves the clustering quality from a slight separability (SC = 0.081)
to an almost classified clustering (SC = 0.291). It is important to point out that
the low clustering reported by the first case is due to the big size variety among
the audio samples.

4 Experimental Results

For our experiments, we have taken two different species: The Great Horned Owl
and the Common Redshank, from the xeno-canto database. Taking into account
that our purpose in this work is to deal with the variety of size and noise, we have
limited the audio samples to specific types of bird songs for each experiment.

Fig. 3. Silhouette Coefficient for different objects’ configurations over the number of
fragments contained in each object. Each object was reconstructed from a subset of its
fragments sorted by their distribution modes distance. The black dot corresponds to
the configuration of the riZght dendrogram of Fig. 2. The dashed black line corresponds
to SC value of the left dendrogram depicted in Fig. 2 before applying our method.

For each experiment, we have used the audios labeled as “song” (in xeno-
canto), with no other type of bird call involved in the audio (for the selected
species, the background bird songs can differ). The number of files has been
reduced to only 14 per species. We have selected the audios randomly and equally
balanced between species. In terms of format, we have used the .mp3 raw format,
removing the metadata and normalizing the audio properties from each one of
them. The configuration used for each audio was: sampling rate and frequency
56 kbps and 22.05 KHz, respectively, and 8 bit width at a constant bit rate. It
is important to point out that we have calculated the Silhouette Coefficient [14]
for each experiment, in order to easily measure the separability of the clusters
through their clustering quality.

As described in Sect. 2.1, we have re-assembled each object from its frag-
ments according to their modes distance. Also, for each experiment, the number
of fragments selected (X axis of Fig. 3) has been the same for each object (repeat-
ing them if necessary) in order to reduce the problems introduced by the size
differences.

Treatment of Object Size and Noise for Clustering in Xeno-Canto Database 623

In our experiments, we have obtained good results compared with the SC
obtained from the original objects. Looking closely to the Fig. 3, it can be
observed that this method achieves an improvement over the base SC using 2–4
fragments per object. The SC, however, tends to fall for bigger configurations
(more fragments per object) with some noise for the final configurations.

Finally, in order to test the capabilities of our method for a more hetero-
geneous set of objects, we have performed an experiment over a bigger subset
of audio samples. In this case, we have used 80 audio samples of the same two
species, using 6 fragments to reassemble each object. The results obtained from
this experiment (Fig. 4) show the impact of our method, improving the SC from
0.08 to 0.22.

Fig. 4. Hierarchical clustering from the distances matrix of 80 audio samples, and
their fragmented version, respectively. The blue nodes correspond to Common Red-
shank species, while the black ones belong to the Great Horned Owl species. The left
dendrogram is computed from the original distance matrix. The right dendrogram is
obtained from the re-assemble of the audios from the fragments of the original objects.
In this case, the best 2 fragments were selected from each object (according to their
statistical mode distance). The Silhouette Coefficient for these dendrogram are 0.08
and 0.22 respectively. (Color figure online)

5 Conclusions

In this work, we have proposed a novel method to use the normalize compression
distance in datasets with a great size heterogeneity and high percentage of noise
inside objects. We have tested this methodology to improve the identification of
bird species in the xeno-canto database. Throughout this study, we have used an
automatic segmentation selection methodology to extract the relevant informa-
tion and prevent the loss of resolution, maintaining the parameter free nature of
the NCD.

Our hypothesis in this work is that finding the relevant intervals inside the
audio samples and reassembling them in new equal-sized objects, is equivalent
to solve the loss of resolution caused by the high percentage of noise and variety
of object sizes. Hence, we have aimed to locate the best fragments (according

624 G. Sarasa et al.

to their clustering) by segmenting each object into fragments. First, we have
measured the quality of each fragment using the distance between the modes
of its NCD distribution. Then, we have selected the n best fragments in order
to reassemble the audio. Finally, we have measured the NCD between these
reassembled objects as a more accurate representation of the distances of the
original audios.

The results presented in this paper show that applying our methodology has
significantly improved clustering performance when compared to the results of
the clustering without our methodology. As an example, Figs. 2 and 4 show the
clustering differences between the clustering of the unprocessed and reassem-
bled objects, respectively. With this approach, reasonable results of separability
among species can be achieved without preprocessing the data. In the same
manner, the proposed method performs a successful blind analysis without any
consideration in the size or noise of the samples.

As future work, we intend to test this new methodology over different data
formats, such as wav, flac, etc. and as a complement to existing classification
methods. In addition, we intend to explore different compression algorithms,
birds species and audio databases, in order to test the capabilities of our method-
ology.

Acknowledgment. This work was funded by Spanish project of MINECO/FEDER
TIN2014-54580-R and TIN2017-84452-R, (http://www.mineco.gob.es/).

References

1. Albornoz, E.M., Vignolo, L.D., Sarquis, J.A., Leon, E.: Automatic classification
of Furnariidae species from the Paranaense Littoral region using speech-related
features and machine learning. Ecol. Inform. 38, 39–49 (2017)

2. Borbely, R.S.: On normalized compression distance and large malware Towards a
useful definition of normalized compression distance for the classification of large
files. J. Comput. Virol. Hacking Tech. 12(4), 235–242 (2016)

3. Cilibrasi, R., Vitanyi, P.M.B.: Clustering by compression. IEEE Trans. Inf. Theory
51(4), 1523–1545 (2005)

4. Cilibrasi, R., Cruz, A.L., de Rooij, S., Keijzer, M.: CompLearn Home. CompLearn
Toolkit. http://www.complearn.org/

5. Cohen, A., Bjornsson, C., Temple, S., Banker, G., Roysam, B.: Automatic sum-
marization of changes in biological image sequences using algorithmic information
theory. IEEE Trans. Pattern Anal. Mach. Intell. 31(8), 1386–1403 (2009)

6. Cui, S., Datcu, M.: A comparison of Bag-of-Words method and normalized com-
pression distance for satellite image retrieval. In: 2015 IEEE International Geo-
science and Remote Sensing Symposium (IGARSS), pp. 4392–4395, July 2015

7. Granados, A., Cebrian, M., Camacho, D., de Borja Rodriguez, F.: Reducing the
loss of information through annealing text distortion. IEEE Trans. Knowl. Data
Eng. 23(7), 1090–1102 (2011)

8. Granados, A., Koroutchev, K., de Borja Rodriguez, F.: Discovering data set nature
through algorithmic clustering based on string compression. IEEE Trans. Knowl.
Data Eng. 27(3), 699–711 (2015)

http://www.mineco.gob.es/
http://www.complearn.org/

Treatment of Object Size and Noise for Clustering in Xeno-Canto Database 625

9. Granados, A., Martnez, R., Camacho, D., de Borja Rodriguez, F.: Improving NCD
accuracy by combining document segmentation and document distortion. Knowl.
Inf. Syst. 41(1), 223–245 (2014)

10. Li, M., Chen, X., Li, X., Ma, B., Vitanyi, P.: The similarity metric. IEEE Trans.
Inf. Theory 50(12), 3250–3264 (2004)

11. Livezey, K.: An approach to identifying bird songs: a key to more than 300 songs in
the pipeline road area, Soberana National Park, Panama. Open Ornithol. J. 9(1),
70–112 (2016)

12. Marini, A., Turatti, A.J., Britto, A.S., Koerich, A.L.: Visual and acoustic iden-
tification of bird species. In: 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 2309–2313, April 2015

13. Planqué, B., Vellinga, W.-P.: Xeno-Canto: sharing bird sounds from around the
world. http://www.xeno-canto.org/

14. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

15. Sarasa, G., Granados, A., Rodriguez, F.B.: An approach of algorithmic clustering
based on string compression to identify bird songs species in Xeno-Canto database.
In: 2017 3rd International Conference on Frontiers of Signal Processing (ICFSP),
pp. 101–104, September 2017

16. Tange, O.: GNU parallel - the command-line power tool. USENIX Mag. 36(1),
42–47 (2011). http://www.gnu.org/s/parallel

http://www.xeno-canto.org/
http://www.gnu.org/s/parallel

FROD: Fast and Robust Distance-Based
Outlier Detection with Active-Inliers-Patterns

in Data Streams

Zongren Li, Yijie Wang(&), Guohong Zhao, Li Cheng,
and Xingkong Ma

National Laboratory for Parallel and Distributed Processing,
College of Computer, National University of Defense Technology,

Changsha, Hunan 410073, People’s Republic of China
{lizongren16,wangyijie,guohongzhao,licheng,

maxingkong}@nudt.edu.cn

Abstract. The detection of distance-based outliers from streaming data is crit-
ical for modern applications ranging from telecommunications to cybersecurity.
However, existing works mainly concentrate on improving the responding speed,
none of these proposals can perform well in streams with varying data distri-
bution. In this paper, we propose a Fast and Robust Outlier Detection method
(FROD in short) to solve this dilemma and achieve the promotion in both
detection performance and processing throughput. Specifically, to adapt the
changing distribution in data streams, we employ the Active-Inliers-Pattern
which dynamically selects reserved objects for further outlier analysis. Moreover,
an effective micro-cluster-based data storing structure is proposed to improve the
detection efficiency, which is supported by our theoretical analysis on the
complexity bounds. Moreover, we present a potential background updating
optimization approach to hide the updating time. Experiments performed on real-
world and synthetic datasets verify our theoretical study and demonstrate that our
algorithm is not only faster than state-of-the-art methods, but also achieve a better
detection performance when the outlier rate fluctuates.

Keywords: Outlier detection � Cybersecurity � Data streams
Distance-based outliers

1 Introduction

Detection of outliers in data streams [1] is an essential task in several cybersecurity
applications. An object is considered as an outlier if it significantly deviates from the
typical case. There are many definitions of the outlier [4]. One of the most widely used
is based on distance [6]. The definition is provided as follows where an important
concept neighbor is introduced first:

Definition 1 (Neighbor). Given a distance threshold RðR[0Þ, a data point o is a
neighbor of data point o0 if the distance between o and o0 is not greater than R. A data
point is not considered a neighbor of itself.

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 626–636, 2018.
https://doi.org/10.1007/978-3-030-01418-6_62

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_62&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_62&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_62&domain=pdf

Definition 2 (Distance-based Outlier). Given a dataset D, a count threshold k(k > 0),
a data object oi will be regarded as a distance-based outlier, if oi has less than k
neighbors in D. In general when R is fixed, k will change with the size of D to get better
performance.

According to the definition of outliers, we can easily find distance-based outliers in
static datasets. However, when it comes to the data stream scenario because the dataset
size is potentially unbounded, this process is performed over a fixed amount of real-
time data instead to ensure computational efficiency. The most common approach is
based on a sliding-window, which always maintains W most recent objects. When new
objects arrive, the window slides to incorporate S new objects in the stream. As a result,
the oldest S data points will be discarded from the current window.

There are two goals for detecting distance-based outlier in data streams, (i) the
accuracy of the data determination, (ii) and the responding speed of labeling the data
objects. Unfortunately, these two goals are contradictory most of the times. For a data
stream whose distribution changes dynamically, the window needs to be set large
enough to resist the influence brought by the dynamic change of the data. However, if
the window is set too large, the responding time will be greatly increased, so it will fail
to satisfy the real-time performance.

As mentioned before, the current distance-based outliers detection methods in data
streams are based on sliding-window. These methods assume that the data distribution
in the current window is similar to the global distribution, so they regard the outliers in
current window as global outliers. Hence, they are prone to misjudgments in scenarios
when the data distribution significantly changes such as a large-scale outbreak of
outliers. For example, the DDoS attack is accomplished by making massive accesses in
a short time to flood the targeted machine.

Figure 1 shows an example of what happens in a real network. Assume that on the
given data set D, the distance-based outlier detection can exert good performance while
the proportion of abnormal data in D is q. When the outliers arrive in a burst manner
(For example, v outliers occur continuously), the classic methods based on the sliding-
window need to maintain a window of size v

q to ensure good performance, which will
increase the responding time dramatically.

In the model of the sliding window, the temporal cost is mainly focused on the
updating of the model (the structure of the window) [8] in each sliding. On the original
model without any optimization, the time complexity of each sliding is OðW2Þ (W refers
to the size of the window). At present, many methods have been proposed to solve the

Fig. 1. The working scheme of the algorithms based on sliding-window

FROD: Fast and Robust Distance-Based Outlier Detection 627

problem. They adopt various methods to reduce the time complexity required for this
step, such as using duplicate calculation information to simplify operations [2, 9],
designing special storage structures [3, 7], etc.

We summarize the time complexity of some representative algorithm when the
window slides each time and provide a side-by-side comparison in Table 1.

Although these algorithms increase the responding speed, they still do not solve the
problem of dynamically adapting the data distribution in essence.

To solve the problems above fundamentally, in this paper, we developed a novel
method to adapt to the dynamic changes of data distribution, aiming at the elimination
of the limitations of previously proposed algorithms. Our primary concerns are the
reliability to cope with outliers outbreaks and the promotion of efficiency and accuracy
of detection. In summary, the major contributions of this work are as follows:

1. We proposed a Fast and Robust Outlier Detection (FROD) algorithm based on the
Active-Inliers-Pattern that can adapt to the dynamic changes of data distribution
without storing a lot of data (large window), which considerably improves the
responding speed under the premise of detection accuracy assurance.

2. We adopt an effective structure based on micro-clusters for the proposed algorithm
to maintain the Active-Inliers-Pattern. And corresponding updating strategies are
given, which has been proved to have a better performance on real and synthetic
datasets compared to the state-of-the-art techniques.

3. We present theoretical bounds for its superiority and a possible optimization
approach is given.

The remaining of this paper is organized as follows. We present our methods in
Sect. 2, whereas Sect. 3 contains the performance evaluation results based on real-life
and synthetic data sets. Finally, Sect. 4 concludes the work and briefly discusses future
work in the area.

2 Methods

Figure 2 shows the framework of FROD: when objects in the data streams arrive
continuously, they are first stored in a Buffer. Once the trigger condition is satisfied,
outlier detection will be performed in Buffer with the Active-Inliers-Pattern. Active-

Table 1. The temporal cost of some representative algorithms.

Algorithm Time complexity

Exact-storm [2] OðWlogkÞ
AbstractC [9] OðW2�

SÞ
DUE [7] OðW=logWÞ
Thresh LEAP [3] OðW2logS�

SÞT
MCOD [7] O 1� cð ÞWlog 1� cð ÞWþ kWlogkð Þ

628 Z. Li et al.

Inliers-Pattern consists of selected inliers, which are maintained by a micro-cluster-
based structure and these inliers dynamically updated by the detection results.

In this section, the algorithm FROD is described in detail. We start by introducing
the Active-Inliers-Pattern which is used to detect outliers. Then an efficient structure
based on micro-clusters is proposed to maintain the Active-Inliers-Pattern. After that,
we depict complete workflow of FROD and provide an optimization approach to
accelerate. Moreover, we theoretically prove that FROD is more effective than other
detection methods in data streams.

2.1 AIP for Outlier Detection

We employ the Active-Inliers-Pattern (AIP), which is similar to the window in methods
based on the sliding-window, storing only selected inliers instead. And then we create a
Buffer at fixed size S(S�(size of) AIP). Each newly incoming data will be stored in the
Buffer if the Buffer has not been filled yet.

When the Buffer is full, we mark each object stored in the Buffer as inlier or outlier
according to whether it has more than k neighbors in the AIP (this process is efficiently

Fig. 2. The framework of FROD

Fig. 3. The working scheme of FROD

FROD: Fast and Robust Distance-Based Outlier Detection 629

implemented, shown in Sect. 2.3). And an UpdateList is preserved to keep all the
objects newly marked as inliers. Meanwhile, objects considered to be outliers are
directly removed.

After traversing all the objects in the Buffer, we calculate the number of inliers in
the UpdateList and replace the corresponding number of oldest points stored in the AIP
with the objects in the “UpdateList”. Correspondingly, the storing structure based on
micro-clusters is also adjusted accordingly. The pseudocode is given in Algorithm 1.

As mentioned before, traditional methods based on the sliding-window are difficult
to adapt to dynamic changes in data streams. As shown in Fig. 1, when outliers occur
on a large scale, the window can only be set large enough to prevent misjudging local
outliers as global outliers. However, when large-scale outliers erupt in the AIP model,
shown in Fig. 3, the outliers are first separated into Buffers with the size of S. Since
only the data judged as inliers can be saved, the AIP will not be “contaminated” by
outliers. Therefore, a fixed size AIP can robustly cope with the outliers outbreak
scenario, and judge the data label quickly and accurately. This also applies to other
scenarios where data distribution changes.

2.2 Micro-cluster-Based Storing Structure

In the algorithm proposed above, wemaintain a structure basedmicro-clusters to store the
data in the AIP to help the model update more promptly, and we design a corresponding
effective algorithm to evaluate range queries for each new object to all other active inliers.

For each micro-cluster MCi in AIP, We set the radius to R=2, which means that any
object belonging to MCi is in a range of R=2 from the center of MCi, and the minimum
size of a micro-cluster is kþ 1. So each object oi belonging to MCi is definitely an
inlier, because the maximum distance of any two objects in the MCi cannot exceed R.
Also, the size of theMCi is at least kþ 1, it means that oi has at least k neighbors within
distance R. In general, an object may have neighbors that belong to other micro-
clusters.

630 Z. Li et al.

In the example of Fig. 4, We show the distribution of some points in AIP. There are
four micro-clusters and some isolated data points. For the objects of each kind of them,
a different symbol has been used.

Objects that do not belong to any micro-cluster are stored in a structure called a
Singular Queue (SQ), which are depicted with the “star” symbol. Besides, for each
point in SQ (e.g., p1), we keep a list containing the identifiers of the micro-clusters,
whose centers are less than 3R=2 far away from this point. As shown in Fig. 4, p1 can
only find its neighbors in these micro-clusters, which can be easily proved. Conse-
quently, when we calculate the number of p1’s neighbors, we only need to detect
among members of these micro-clusters, which can accelerate considerably.

When the micro-clusters are thought of as spheres with radius R=2, they can be
some overlap (e.g., MC1, MC4), although an object can only belong to a single micro-
cluster at one time. For these points in the overlapping area, we have set up a unique
Sharing-Point mechanism so that they can be dynamically adjusted. For example,
when p2 is eliminated, the members inMC3 are less than 5, but we will not disperse this
MC1 in a hurry like other algorithms usually do. We set it as an incomplete micro-
clusters instead. After all old points are eliminated, we check if these incomplete micro-
clusters can “share” points from other micro-clusters to become normal micro-clusters.
The pseudocode of these operations is given in Algorithm 2.

2.3 Workflow of FROD

The primary rationale behind our approach is to drastically reduce the number of
micro-clusters that need to be reorganized when the AIP is updated and the complexity
in finding neighbors for each data point when performing outlier detection. The
detailed steps of the FROD algorithm are as follows:

Step 1: When the data arrives consecutively, we first determine whether an AIP
already exists. If not, the initialization operation is performed. Else, proceed to the
next step.

Fig. 4. The distribution of some points in AIP with k = 5.

FROD: Fast and Robust Distance-Based Outlier Detection 631

Step 2: The newly arrived data will be added to Buffer, and outlier detection is
performed on the data in Buffer:
(2a) For each object p in Buffer, find the nearest micro-cluster MCi from p and
calculate the distance from p to MCi, and if the distance is less than R=2, put p into
UpdateList. Else, find neighbor of p in SQ;
(2b-i) If p has no less than k neighbors in SQ, put p into UpdateList. Otherwise, we
find micro-clusters whose center point is less than 3R=2 far away from p and look
for neighbors in these micro-clusters;
(2b-ii) If p has more than k neighbors in total, put p into UpdateList. Otherwise, p is
added to OutlierList, and the Buffer will be cleared.
Step 3: AIP is updated with the UpdateList generated from the previous step:
(3a) Calculate the length l of UpdateList, and find the l oldest points in AIP, then
remove them from AIP, if the removed point once belonged to a micro-cluster,
decrement the number of members of this micro-cluster by one. Similarly, the
points in UpdateList are added to the AIP. If these newly added points belong to a
certain micro-cluster, the number of members in the micro-cluster is increased by
one.
(3b) If there are incomplete micro-clusters in the AIP, for each incomplete micro-
cluster, we check if it can share some neighbors from its neighbor-clusters to make
itself a normal cluster. And reconstruct the micro-cluster in AIP based on the result.
(3c) If there are still incomplete micro-clusters, these clusters will be dismantled,
and their points will be added to the SQ.
Step 4: Report the outliers with OutliersList, then re-execute the step 2. And if
outliers thrown by the algorithm is manually determined as inliers [5], these points
will still be added to the UpdateList to prevent the occurrence of inliers that have
never appeared.

2.4 Optimization and Analysis

In this section, we present an approach to optimize our algorithm, and then we analyze
the temporal cost of the FROD, by comparing FROD with other popular outliers
detection algorithm to illustrate its superiority.

Optimization. Since normal data is similar in FROD, we needn’t update the AIP each
time the Buffer cleared. Instead, the AIP update process (refer to step 3) can be exe-
cuted in the background. When outlier detection is performed, we check whether the
update module generates a new AIP first. If so, the new AIP will be used for detection,
and the Update module will be triggered again with the newly generated UpdateList.
Otherwise, the original AIP is kept for detection.

Analysis. Let 0� c� 1 denote the fraction of the window stored in micro-clusters then
the number of data points in SQ is ð1� cÞW , and the number of micro-clusters is
approximately equal to log ðcWk Þ. Because the model update module can be executed in
the background, the temporal cost is mainly concentrated on step 2 with a time
complexity of OðSðlog cW

k

� �þð1� cÞ2WÞÞ, and the value of c is proved to be very

632 Z. Li et al.

large (close to 1) in practical experiments, so it can be approximated as OðSlogðw=kÞÞ,
which outperforms other popular algorithms.

Compared with the MCOD method proposed in [6], which is also based on the
concept of micro-cluster, FROD can not only adapt to the dynamic change of data
distribution in the data streams but also improve the response speed significantly.

In the phase of outlier detection, the time complexity of MCOD is Oð 1� cð ÞW log
1� cð ÞWð Þþ kWlogkÞ, which is much larger than FROD. Furthermore, FROD has set

up an efficient sharing point mechanism that allows a micro-cluster can be incomplete
temporarily. It helps the AIP update quickly and efficiently. However, the MCOD is to
eliminate those clusters whose number of members is less than k while eliminating the
points, which will exceedingly increase the number of operations required for updating,
especially when S is large.

3 Experiments

3.1 Experimental Methodology

To evaluate the performance of the proposed algorithms, we compare FROD with four
typical distance-based outlier detection methods in both responding time and detection
accuracy. These methods are referred to as MCOD [7], Abstract-C [9], LUE [7],
ExactStorm [2]. Our experiments were conducted on a macOSSierra machine with a
2.2 GHz processor and 15 GB Java heap space.

Datasets. We chose the following datasets for our evaluation. FC (Forest Cover) is
available from the UCI KDD Archive, which is also used in [2], containing 581,012
records with 55 attributes. TAO is available at Tropical Atmosphere Ocean project,
containing 575,648 records with 3 attributes. STOCK is available at UPenn Wharton
Research Data Services, which is also used in [3] containing 1,048,575 transaction
records with 1 attribute, Gauss is synthetically generated by mixing three Gaussian
distributions and a random noise distribution, it contains 1 million records with 1
attribute.

Default Parameter Settings. There are four parameters to be determined: the size of
the sliding-window or Active-Inliers-Pattern: W , the size of slide or Buffer: S, the
distance threshold R, and the neighbor count threshold k.

W is the key parameters in influencing the responding speed which determine the
volume of data streams, and we set it as 1k as default. For fairness of measurement, we
set S to 5% of W , for all datasets. In general, when R is fixed, k should change with W
to ensure that the data distribution in current window is approximately equivalent it in
global. For all datasets, we maintain the outlier rate as 1%. In our experiment, we
maintain the entire outlier rate as 1% for all datasets, and the default value of R is set to
525 for FC, 1.9 for TAO, 0.45 for Stock, and 0.028 for Gauss according to [8]. Based
on this, the default value of k is set to W=200 for all datasets to ensure the accuracy.

FROD: Fast and Robust Distance-Based Outlier Detection 633

3.2 Results

Responding Time. In this part, we measure the responding time of data labeling. To
present the results clearly, we compare the sum of responding time for every 100k
objects with varying W in the range [1 – 2k].

As shown in Fig. 5, when W increases, the CPU time for each algorithm increases
as well, yet our best solution FROD consistently utilizes the least CPU time and
exhibits the slowest increase in CPU consumption for all database. It’s about 4 to 6
times faster in FC. Meanwhile, FROD can up to 1 − 2 orders of magnitude faster than
the state-of-the-art in TAO and Stock.

Moreover, we can notice that MCOD which is also based on micro-cluster structure
also shows good performance in most cases. However, when W is larger than 5k in the
FC, the responding time grows rapidly, this is mainly because when W increases in FC,
more and more outliers which do not participate in any micro-cluster will be added to
the window, and many additional reorganizations will be performed. Both of them will
greatly increase the processing speed, while FROD can exclude outliers from AIP and
update AIP efficiently with the “Sharing-Point” mechanism.

Accuracy. In this section, we analyze the robustness of the methods in facing the
dynamic changes of data distribution, we first label all the data according to their
distribution in the entire Gauss data set and then calculate the frequency of outliers
occurrences in units of 1K. We have selected a piece of data with abnormal fluctuations
to compare the performance of each algorithm under different data distributions. We
use F1-score [10] to measure the accuracy of outlier detection.

As shown in Fig. 6, FROD maintains a high detection performance when the
distribution of data in the stream fluctuates. In contrast, although other algorithms can
perform well when the outlier rate fluctuates little, the accuracy of these methods will
degrade significantly in the presence of outlier outbreaks because the windows they
maintained are contaminated by the flocking outliers. So they may misjudge outliers
and inliers, while the FROD that only retains normal points does not have this problem.

Fig. 5. The comparative results of different algorithms running on three datasets

634 Z. Li et al.

4 Conclusion

Outlier detection for extracting abnormal phenomena from dynamic streaming data is a
crucial yet difficult task. In this paper, we study the problem of continuous outlier
detection over data streams by using an Active-Inliers-Pattern. We employ the Active-
Inliers-Pattern to adapt the distribution changing in data streams to ensure the accuracy
and improve the responding speed by setting an effective structure based on the micro-
cluster for objects storing. Besides, our experimental evaluation with both real and
synthetic datasets shows that our approach can perform well even when the distribution
of data is dynamically changing, and it is also faster than the state-of-the-art methods.

For future work, a meaningful direction is to design a distributed algorithm to
implement the model update phase of FROD, aiming at the significant improvement of
efficiency under the premise of detection accuracy assurance.

Acknowledgement. The authors would like to thank the anonymous reviewers for their valu-
able comments. This work was supported by the National Key Research and Development
Program (Grant No. 2016YFB1000101), the National Natural Science Foundation of China
(Grant No. 61379052), the Natural Science Foundation for Distinguished Young Scholars of
Hunan Province (Grant No. 14JJ1026), Specialized Research Fund for the Doctoral Program of
Higher Education (Grant No.20124307110015).

References

1. Aggarwal, C.C.: Outlier Analysis. Data Mining, pp. 237–263. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-14142-8_8

2. Angiulli, F., Fassetti, F.: Detecting distance-based outliers in streams of data. In: Proceedings
of the Sixteenth ACM Conference on Information and Knowledge Management, pp. 811–
820. ACM (2007)

3. Cao, L., Yang, D., Wang, Q., Yu, Y., Wang, J., Rundensteiner, E.A.: Scalable distance-
based outlier detection over high-volume data streams. In: Data Engineering (ICDE), IEEE
30th International Conference on 2014. pp. 76–87. IEEE (2014)

Fig. 6. The comparative results of different algorithms running on three datasets

FROD: Fast and Robust Distance-Based Outlier Detection 635

http://dx.doi.org/10.1007/978-3-319-14142-8_8

4. Huang, H., Kasiviswanathan, S.P.: Streaming anomaly detection using randomized matrix
sketching. Proc. VLDB Endowment 9(3), 192–203 (2015)

5. Kalyan, V., Ignacio, A., Alfredo, C.: AI2: training a big data machine to defend. In: IEEE
International Conference on Big Data Security, New York (2016)

6. Knox, E.M.: Algorithms for mining distance based outliers in large datasets. In: Proceedings
of the International Conference on Very Large Data Bases, pp. 392–403. Citeseer (1998)

7. Kontaki, M., Gounaris, A., Papadopoulos, A.N., Tsichlas, K., Manolopoulos, Y.:
Continuous monitoring of distance-based outliers over data streams. In: Data Engineering
(ICDE), IEEE 27th International Conference on 2011. pp. 135–146. IEEE (2011)

8. Tran, L., Fan, L., Shahabi, C.: Distance-based outlier detection in data streams. Proc. VLDB
Endowment 9(12), 1089–1100 (2016)

9. Yang, D., Rundensteiner, E.A., Ward, M.O.: Neighbor-based pattern detection for windows
over streaming data. In: Proceedings of the 12th International Conference on Extending
Database Technology: Advances in Database Technology, pp. 529–540. ACM (2009)

10. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Proceedings of the
22nd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 42–49. ACM (1999)

636 Z. Li et al.

Unified Framework for Joint Attribute
Classification and Person Re-identification

Chenxin Sun1, Na Jiang1, Lei Zhang1, Yuehua Wang2, Wei Wu1,
and Zhong Zhou1(&)

1 State Key Laboratory of Virtual Reality Technology and Systems,
Beihang University, Beijing, China

zz@buaa.edu.cn
2 Department of Computer Science,

Texas A&M University – Commerce, Texas, USA

Abstract. Person re-identification (re-id) is an essential task in video surveil-
lance. Existing approaches mainly concentrate on extracting useful appearance
features from deep convolutional neural networks. However, they don’t utilize
or only partially utilize semantic information such as attributes or person ori-
entation. In this paper, we propose a novel deep neural network framework that
greatly improves the accuracy of person re-id and also that of attribute classi-
fication. The proposed framework includes two branches, the identity one and
the attribute one. The identity branch employs the refined triplet loss and
exploits local cues from different regions of the pedestrian body. The attribute
branch has an effective attribute predictor containing hierarchical attribute loss
functions. After training the identification and attribute classifications, pedes-
trian representations are derived which contains hierarchical attribute informa-
tion. The experimental results on DukeMTMC-reID and Matket-1501 datasets
validate the effectiveness of the proposed framework in both person re-id and
attribute classification. For person re-id, the Rank-1 accuracy is improved by
7.99% and 2.76%, and the mAP is improved by 14.72% and 5.45% on
DukeMTMC-reID and Market-1501 datasets respectively. Specifically, it yields
90.95% in accuracy of attribute classification on DukeMTMC-reID, which
outperforms the state-of-the-art attribute classification methods by 3.42%.

Keywords: Deep learning � Person re-identification � Attribute classification

1 Introduction

Person re-identification (re-id) aims at retrieving persons from non-overlapping cam-
eras or different timetamps. Recently, person re-id has been drawing increasing
attention from both academia and industry in that it has broad applications in
surveillance systems for efficiently preventing and tracking crimes. However, the
effects caused by factors like viewpoint variations, occlusion and illumination condi-
tion differences potentially make the person re-id an extremely challenging task.

As deep learning arises in the recent years, deep convolutional neural networks
have been widely used in person re-id and yielded promising performance [1, 2].
However, when being applied to real scenarios, these methods tend to be less effective

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 637–647, 2018.
https://doi.org/10.1007/978-3-030-01418-6_63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_63&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_63&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_63&domain=pdf

due to the lack of detailed cues. In [3], person re-id model is proposed to utilize
different parts of the image therefore it can extract regional features containing local-
ized information. The feature maps of different regions of a person appear quite dif-
ferent, which makes the body region alignment of great importance for person re-id. In
our re-id framework, we use accurate keypoint locations of a person through keypoint
detection to extract desired body regions.

Another common used solution is to exploit person attributes with consideration
that the attribute information may contain some domain cues which are identified as the
powerful complementary information in the person re-id task [4–7]. Theoretically,
attributes often represent a high level feature of a pedestrian which could be easily
missed by approaches based on appearance features. As shown in Fig. 1, people with
similar appearance can be easily distinguished by attribute information, which moti-
vated us to study this problem. To solve it, we integrate attribute information into the
CNN model for re-id task using our framework.

The main contributions of this paper are as: (1) A deep neural network incorpo-
rating body parts and pose information is proposed. (2) A hierarchical loss guided
structure is used to extract meaningful attribute features and consequently to combine
the attribute representation with the appearance representation for better re-id.
(3) Experiment results on DukeMTMC-reID and Market-1501 datasets demonstrate the
effectiveness of the proposed framework. We outperform the state-of-the-art re-id
methods in terms of mAP and Rank-1.

Fig. 1. Examples of pedestrians in similar appearance with different attribute labels. The
attribute labels (e.g., bag vs. handbag, long sleeves vs. short sleeves, etc.) are denoted as
discriminative information to distinguish the pedestrians.

638 C. Sun et al.

2 Related Work

Person re-identification is first introduced and studied by Zajdel et al. [8] in 2005. It is
assumed that every individual is associated with unique hidden labels. They design a
dynamic Bayesian network to encode the statistical relationships between the features
and the labels of the same identity. Typical traditional person re-identification methods
use color or hand-crafted features as feature descriptors. Liao et al. [9] design the Local
Maximal Occurrence Representation together with a XQDA metric learning approach
for person re-id.

Convolutional Neural Networks have first been used for person re-id by [2, 10]. [2]
splits the input person images into three horizontal strips processed by several con-
volutional layers independently. Meanwhile, there are approaches [10, 11] which solve
re-id problem from the aspect of directly minimizing the feature distance between
image pairs or triplets. The Siamese model proposed by Li et al. [10] takes two images
as input, directly ending with a same person /different person classification through a
deep neural network. Cheng et al. [11] extend this idea and design a similar framework,
which processes three images at a time and introduces the triplet loss for metric
learning. There are also methods which extract more efficient person features from a
tree-structured competitive neural network [3] or different levels of neural network
representations [1].

Visual semantic attributes have been investigated in the studies [4–7, 12]. Zhang
et al. [4] compute the appearance distances and the attribute distances from two sep-
arate models and fuse these two distances together to get the final ranking list. To train
unified neural networks, a few methods [5–7] use identification and attribute classifi-
cation loss at the same time to encourage the neural networks to capture both identi-
fication and attribute information. However, the information extracted from different
domains are difficult to integrate using loss aiming to solve distinct problems. Su et al.
[12] propose a weekly supervised multi-type attribute learning algorithm which only
uses a limited number of labeled attribute data. In their work, Su et al. employ a three-
stage fine-tune strategy to train the model either on attribute datasets or other datasets
only labeled with person IDs. The work closest to this paper is [6], in which a com-
bination of re-id and attribute classification losses is used to learn overall representa-
tions for person re-id.

3 Proposed Approach

We propose a novel deep neural network framework that jointly learns person re-
identification and attribute classification, as shown in Fig. 2. Our approach includes an
identity branch based on DenseNet-121 and an attribute branch based on ResNet-50 to
learn identity and attribute classification respectively. In Fig. 2, the upper part of the
framework is the identity branch while the lower part is the attribute branch. At
inference time, given as input a person image, we combine identity feature vectors and
attribute feature vectors extracted from identity and attribute branch respectively to get
the final re-id feature vectors. We then rank the gallery images according to their
feature distances to the final representations of the retrieving images. In the following

Unified Framework for Joint Attribute Classification and Person Re-identification 639

part, we first describe the detail of identity learning framework in Sect. 3.1 and then the
attribute classification structure in Sect. 3.2.

3.1 Identity Learning Framework

To mitigate occlusions and reduce misalignments, several person re-id studies combine
global features with local features which are extracted from certain body parts. Com-
pared with fixed mandatory horizontal strips, accurate body part segmentation can yield
more representative local features and greatly eliminate the influence of background.
Inspired by such observation, we use the PAFs model [13] to localize fourteen accurate
body keypoints and pool three ROI (Region-of-Interest) areas, head, UpperBody and
LowerBody, from the feature maps according to the locations of the keypoints. In each
forward process, four feature vectors, extracted from the main full image branch and
three body part branches, are concatenated to one identity vector which is used for
model training, represented by colored rectangle in Fig. 3. Three images on the yellow
shadow produce the Triplet loss while three images on the green shadow produce the
Orientation loss. Then these two losses are added together to get the identity loss.

In the training process, we introduce a new orientation-based triplet loss based on
the traditional triplet loss [14] in the proposed identity learning model. Concretely, The
traditional triplet loss is trained on triplets xai ; x

p
i ; x

n
i

� �
, where xai and xpi denote two

different images of the same person i, while xni is the third image of a different person.
The purpose of triplet loss is to train the network to pull xai closer to xpi and push away
xni , as formulated as following:

Losstriplet ¼ max d f xai
� �

; f xpið Þ� �� d f xai
� �

; f xni
� �� �þ a; 0

� � ð1Þ

where f xð Þ is the feature of the image x, and d x; yð Þ represents the distance between x
and y. a represents the margin between positive pairs and negative pairs.

Fig. 2. Overview of our approach. Inputs are quintuples described in Sect. 3.1.

640 C. Sun et al.

In our identity learning framework, we argue that we further improve the perfor-
mance of triplet loss with the pose information. Smaller feature distances between
positive samples with the same orientation can be achieved according to the following
loss:

Lossorientation ¼ max d f xai
� �

; f xpsið Þ� �� d f xai
� �

; f xpdi
� �� �

þ b; 0
� �

ð2Þ

where xpsi represents the positive sample having the same orientation with anchor

sample xai , while xpdi represents the positive sample having the different orientation. b
represents the margin between the same orientation pairs and different orientation pairs.
Other symbols in Eq. (2) are the same as the symbols in Eq. (1).

As for the accurate orientation of the images, we use the orientation classification
results from the attribute classifier.

The overall loss function for identity learning is formulated as:

Lossidentity ¼ Losstriplet þx � Lossorientation ð3Þ

where x is a weight balancing the two losses of different purposes.

3.2 Attribute Classification

Attributes classifiers are designed to effectively predict the attribute labels and provide
meaningful feature vectors to the identity branch for offering complementary infor-
mation. We dynamically tune training strategies for differentiated phases.

Phase 1. Person attribute classification is formulated as a multitask problem, which
requires optimizing all attribute predictors. Suppose we have N training images Ii,
(i ¼ 1; . . .;N) labeled with M attributes Labelij, (j = 1, …, M). We need to learn M

Fig. 3. Identity learning network. Inputs of the convolutional neural network are quintuples
including the original image, the positive example, the negative example and two positive
examples with same /different orientation, represented by Anchors; P;N; Ps; Pd respectively.
(Color figure online)

Unified Framework for Joint Attribute Classification and Person Re-identification 641

predictors uj Iið Þ to minimize the difference between the expected output of predictors
and the labels, and it can be formulated as follows:

XN

i¼1

XM

j¼1
Loss uj Iið Þ � Labelij

� � ð4Þ

where Loss (�) in Eq. (4) is the loss function that calculates the difference between the
output of each predictor and label; in our experiment, we choose the square loss as loss
function.

In the process of training, we observe some attributes have different convergence
rates and training difficulties and some attributes like “backpack” and “upwhite” appear
more frequently than others. To capture such facts, we follow the approach [14]
weighting the attributes in the loss function:

XN

i¼1

XM

j¼1
kj � Loss rj Iið Þ � Labelij

� � ð5Þ

where kj is the scalar value to weight the importance of attribute j to overall loss
function.

Instead of manually tuning the hyper-parameter kj using methods like cross vali-
dation, we propose an adaptive method to update kj every k iterations during training.
In each batch, we separate the training images into two parts: the training part and the
auxiliary part, all of which are passed through the neural network. We get two kinds of
loss vectors from the output of the neural network. But only the loss vector obtained
from the training part is used to update the neural network, while the loss vector
obtained from the auxiliary part is stored in a data structure Loss �½ � used to update the
weight vector k. We formulate the weight update algorithm in Eqs. (6) and (7).

k ¼ Loss n�k:n½ � � Loss n�2k:n�k½ �
� 	

norm� Loss n�k:n½ �
� 	

norm

h i
norm

ð6Þ

v*
h i

norm
¼ v* � vmin

vmax � vmin
ð7Þ

where k is a M-dim vector, � stands for dot product, Loss �½ � is a data structure storing the
auxiliary loss vectors, n is the number of losses stored in Loss �½ �, Loss b:a½ � stands for an
average loss whose every element is the mean value of the corresponding elements
from Lossa to Lossb, �½ �norm is the normalization function in Eq. (7), vmin and vmax refer

to the minimum and the maximum values in vector v* respectively, and k is set to 12
with experiential experience in our experiment.

In Eq. (6), the Loss n�k:n½ � � Loss n�2k:n�k½ �
� 	

norm factor encourages weights of certain
attributes to be larger ones whose current losses change drastically compared to pre-
vious losses, while the Loss n�k:n½ �

� 	
norm factor encourages weights of the other kind of

attributes to be larger which have not converged. To this end, we keep training our
attribute classification network using the weighted loss until convergence, as shown in

642 C. Sun et al.

Fig. 4(a). When we train the attribute classification network with our identity learning
network, we use an adaptive strategy to assist the re-id task discussed in Phase 2.

Phase 2. It is noted that attributes in datasets are generally classified into two groups
according to whether they can be assigned to certain image regions. The attributes like
the color of upper clothes, backpack, and the color of lower clothes, rely on small
regions of images rather than the whole images. Based on this observation we design a
multi-branch framework for efficient attribute classification which predicts region based
attributes respectively, as shown in Fig. 4(b). We initialize the weights of our deep
neural network gained by Phase 1 and use the locations of ROI regions in Sect. 3.1 to
pool three regions from the first pooling layer.

Besides, according to the influence of attribute labels on the person re-id task, we
choose several attribute labels to train the overall framework using Eq. (4), discarding
the prediction layer trained in Phase 1. The selective attribute loss from the main branch
together with three losses from region based branches constitute our hierarchical loss.

4 Experiments

4.1 Implementation Details

In our experiments, we choose DenseNet [15] model as our identity branch and ResNet
[16] as the attribute classification branch. For the identity branch, it includes a back-
bone network and three body part subnetworks. They share the weights from the first
convolutional layer to the first dense block. We add an ROI pooling layer behind the
first dense block to pool three areas from the shared feature maps according to the
output of PAFs keypoint estimator. The backbone network and three subnetworks all
have four dense blocks with different growth rates. For the attribute branch, the

Fig. 4. A figure caption is always placed below the illustration. Short captions are centered,
while long ones are justified. The macro button chooses the correct format automatically.

Unified Framework for Joint Attribute Classification and Person Re-identification 643

network is designed similarly like the identity branch except that the attribute branch
uses proposed hierarchical loss as the objective function.

In the training phase, we firstly use Lossidentity in Eq. (3) to train the identity branch
and loss in Eq. (5) to train the attribute branch separately until they converge. Sec-
ondly, we fix the layers before the pooling1 layer in our attribute branch and copy the
layers after the pooling1 layer to from 3 region based subnetworks. Using proposed
hierarchical loss in Phase 2, we train the region based subnetworks and the main
attribute branch until convergence. Finally, we concatenate the feature vector extracted
from the identity branch and the feature vector obtained from the main part of our
attribute branch to get a final re-id feature vector as shown in Fig. 2. Then we calculate
the classification loss using this final re-id feature vector, and finetune the whole
framework using classification loss and hierarchical loss until convergence.

In the testing phase, we extract a 3048-D feature vectors from the final fused layer.
This feature vector has not only identity discriminability but also attribute information.
We use this 3048-D feature for person re-id.

4.2 Performance on Attribute Classification

To evaluate the effect of the attribute domain learning, we conduct the attribute clas-
sification on DukeMTMC-reID [17] and Market-1501 [18] datasets. In such a way, the
identity and attribute labels are obtained for the designed framework.

In Tables 1 and 2, we compare the attribute recognition accuracy of the proposed
method with two state-of-the-art ones, Baseline and APR [5]. Baseline denotes the
attribute branch trained by loss in Eq. 4 and Ours represents the attribute classifier
finetuned by weighted attribute loss in Eq. 5. As shown in the tables, we have achieved
competitive results in these two datasets and the proposed framework significantly
outperforms the baseline. It is worth noting that the results in [14] are also very
competitive with the mean average accuracy of 87.53% and 88.49% on the

Table 1. Attribute recognition accuracy on DukeMTMC-reID

Methods Gender Hat Boots Top Backpack Handbag Bag Shoes Upcolor Downcolor Mean

SVM [20] 77.03 82.24 82.45 87.64 69.59 93.60 83.01 90.05 70.94 68.48 80.50

APR [10] 82.61 86.94 86.15 88.04 77.28 93.75 82.51 90.19 72.29 41.48 80.12

Baseline 83.12 81.09 80.52 89.91 76.05 90.06 81.08 81.92 75.54 70.55 80.98

Ours 88.94 82.97 80.13 93.60 87.02 89.60 91.60 83.65 93.94 91.84 90.95

Table 2. Attribute recognition accuracy on market-1501

Methods Gender Age Hair Up Down Clothes Backpack Handbag Bag Hat Upcolor Downcolor Mean

APR [10] 86.45 87.08 83.65 93.66 93.32 91.46 82.79 88.98 75.07 97.13 73.40 69.91 85.33

Baseline 81.08 85.39 70.49 87.47 84.59 81.51 86.22 85.18 67.30 92.10 71.57 71.05 80.33

Ours 88.94 84.76 78.26 93.53 92.11 84.79 85.46 88.40 67.28 97.06 87.50 87.21 86.98

644 C. Sun et al.

DukeMTMC-reID and Market-1501 datasets. Our framework achieves 90.95% accu-
racy on DukeMTMC-reID, outperforming all state-of-the-art methods by 3.42%.

4.3 Performance on Person Re-Identification

In this section, we evaluate the performance of our method on the DukeMTMC-reID
and Market-1501 datasets.

Table 3 shows the performances of the proposed method comparing to that of
several state-of-the-art methods. Baseline represents our identity network without the
triplet loss, Baseline + Triplet represents identity network with the original triplet in
Eq. 1, Baseline + Improved Triplet represents identity network with proposed triplet
loss in Eq. (3) and Ours represents the results of our overall framework in Fig. 2. As
shown in Table 3, the Rank-1 accuracy is improved by 7.99% and 2.76%, while the
mAP is improved by 14.72% and 5.45% on DukeMTMC-reID and Market-1501
datasets respectively in our overall framework. This result shows the effectiveness of
proposed attribute information transferring. With the use of triplet loss and proposed
attribute supplementary information, we can observe significant improvement in the
final results.

5 Conclusion

In this paper, we have presented a deep convolutional neural framework employing
hierarchical attribute information for person re-identification. With the joint learning of
the identity and attribute supervision from the same dataset, we invoke information
transferring from the attribute domain to the identity domain which is used as sup-
plementary information. According to the evaluation results, the proposed framework
shows highly accurate attribute and person re-id comparing to the state-of-the-art
methods in the field on two datasets.

Table 3. Comparison with the state-of-the-art approaches.

DukeMTMC-reID Rank-1 mAP Market-1501 Rank-1 mAP

LOMO + XQDA [9] 30.8 17.0 LOMO + XQDA [9] 43.80 47.78
GAN [17] 67.68 47.13 GAN [17] 79.33 55.95
Loss Embedding [19] 68.90 49.30 Loss Embedding [19] 79.51 59.87
APR [6] 70.69 51.88 ACRN [7] 83.61 62.60
ACRN [7] 72.58 51.96 APR [6] 84.29 64.67
Baseline 67.58 47.46 Baseline 72.50 45.23
Baseline + Triplet 72.33 51.72 Baseline + Triplet 81.32 61.50
Baseline + Improved Triplet 75.72 56.20 Baseline + Improved Triplet 85.88 67.28
Ours 80.57 66.68 Ours 87.05 70.12

Unified Framework for Joint Attribute Classification and Person Re-identification 645

Acknowledgment. This work is supported by the Natural Science Foundation of China under
Grant No. 61572061, 61472020, 61502020, and the China Postdoctoral Science Foundation
under Grant No. 2013M540039.

References

1. Meng, X., Leng, B., Song, G.: A Multi-level Weighted Representation for Person Re-
identification. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds.) ICANN 2017.
LNCS, vol. 10614, pp. 80–88. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68612-7_10

2. Yi, D., Lei, Z., Liao, S., Li, S. Z.: Deep metric learning for person re-identification. In:
Pattern Recognition (ICPR), 22nd International Conference on 2014, pp. 34–39. IEEE
(2014)

3. Zhao, H., et al.: Spindle net: person re-identification with human body region guided feature
decomposition and fusion. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1077–1085 (2017)

4. Zhang, X., Pala, F., Bhanu, B.: Attributes co-occurrence pattern mining for video-based
person re-identification. In: Advanced Video and Signal Based Surveillance (AVSS), (2017)
14th IEEE International Conference on 2017, pp. 1–6. IEEE (2017)

5. Matsukawa, T., Suzuki, E.: Person re-identification using CNN features learned from
combination of attributes. In: Pattern Recognition (ICPR), 23rd International Conference on
2016 , pp. 2428–2433. IEEE (2016)

6. Lin, Y., Zheng, L., Zheng, Z., Wu, Y., Yang, Y.: Improving person re-identification by
attribute and identity learning. arXiv preprint arXiv:1703.07220 (2017)

7. Schumann, A., Stiefelhagen, R.: Person re-identification by deep learning attribute-
complementary information. In: Computer Vision and Pattern Recognition Work-shops
(CVPRW), IEEE Conference on 2017, pp. 1435–1443. IEEE (2017)

8. Zajdel, W., Zivkovic, Z., Krose, B.: Keeping track of humans: have I seen this person
before? In: Proceedings of the 2005 IEEE International Conference on 2005 Robotics and
Automation, ICRA 2005, pp. 2081–2086. IEEE (2005)

9. Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occurrence
representation and metric learning. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2197–2206 (2015)

10. Li, W., Zhao, R., Xiao, T., Wang, X.: Deepreid: deep filter pairing neural network for person
re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 152–159 (2014)

11. Cheng, D., Gong, Y., Zhou, S., Wang, J., Zheng, N.: Person re-identification by multi-
channel parts-based CNN with improved triplet loss function. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1335–1344 (2016)

12. Su, C., Zhang, S., Xing, J., Gao, W., Tian, Q.: Multi-type attributes driven multi-camera
person re-identification. Pattern Recogn. 75, 77–89 (2018)

13. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using
part affinity fields. In: CVPR, vol.1, p. 7 (2017)

14. He, K., Wang, Z., Fu, Y., Feng, R., Jiang, Y.G., Xue, X.: Adaptively weighted multi-task
deep network for person attribute classification. In: Proceedings of the 2017 ACM on
Multimedia Conference, pp. 1636–1644. ACM (2017)

646 C. Sun et al.

http://dx.doi.org/10.1007/978-3-319-68612-7_10
http://dx.doi.org/10.1007/978-3-319-68612-7_10
http://arxiv.org/abs/1703.07220

15. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional
networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, vol. 1, p. 3 (2017)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–
778 (2016)

17. Zheng, Z., Zheng, L., Yang, Y.: A discriminatively learned CNN embedding for person re-
identification. ACM Trans. Multimedia Comput., Commun. Appl. (TOMM) 14(1), 13
(2017)

18. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification:
a benchmark. In: Proceedings of the IEEE International Conference on Computer Vision,
pp. 1116–1124 (2015)

19. Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by GAN improve the person
re-identification baseline in vitro. arXiv preprint arXiv:1701.077173 (2017)

20. Kurnianggoro, L., Jo, K.H.: Identification of pedestrian attributes using deep network. In:
IECON 2017 - Conference of the IEEE Industrial Electronics Society, pp. 8503–8507. IEEE
(2017)

Unified Framework for Joint Attribute Classification and Person Re-identification 647

http://arxiv.org/abs/1701.077173

Associative Graph Data Structures Used for
Acceleration of K Nearest Neighbor Classifiers

Adrian Horzyk(&) and Krzysztof Gołdon

AGH University of Science and Technology, Krakow, Poland
horzyk@agh.edu.pl, krzysztofgoldon@gmail.com

Abstract. This paper introduces a new associative approach for significant
acceleration of k Nearest Neighbor classifiers (kNN). The kNN classifier is a
lazy method, i.e. it does not create a computational model, so it is inefficient
during classification using big training data sets because it requires going
through all training patterns when classifying each sample. In this paper, we
propose to use Associative Graph Data Structures (AGDS) as an efficient model
for storing training patterns and their relations, allowing for fast access to nearest
neighbors during classification made by kNNs. Hence, the AGDS significantly
accelerates the classification made by kNNs, especially for large and huge
training datasets. In this paper, we introduce an Associative Acceleration
Algorithm and demonstrate how it works on this associative structure sub-
stantially reducing the number of checked patterns and quickly selecting k
nearest neighbors for kNNs. The presented approach was compared to classic
kNN approaches successfully.

Keywords: Classification � K nearest neighbors � Associative acceleration
Brain-inspired associative approach � Associative Graph Data Structures

1 Introduction

Today, in computer science, we need to face computational difficulties of Big Data
[4, 18], and create new efficient models operating on Big Data producing intelligent
systems for various uses [14]. The big problem of Big Data processing is not only
about computational methods but also about the data structures which we use for
representing data because they significantly influence the effectiveness of algorithms
implemented to big amounts of data. Data stored in traditional data structures (usually
tables and relational databases) is easy to read and interpret for humans. Such structures
do not represent many important relations [7] that must be searched in many nested
loops spoiling computational complexity and efficiency of data access [9]. We try to
overcome a part of these inefficiencies using biologically inspired associative mecha-
nisms [6, 7, 13]. We focus on a very popular k Nearest Neighbor classifier that is easy
to use and supply users with satisfactory results without a big effort or time invested in
designing and training more advanced computational intelligence models [4, 17].

K Nearest Neighbors (kNN) were already widely studied, extended and described
in many papers, e.g. [1, 2, 5, 11, 16], where fuzzy-logic, genetic algorithms, rough sets,

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 648–658, 2018.
https://doi.org/10.1007/978-3-030-01418-6_64

http://orcid.org/0000-0001-9001-4198
http://orcid.org/0000-0003-4540-1812
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_64&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_64&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_64&domain=pdf

various trees and other approaches were used to improve the efficiency of kNNs. An
interesting approach presented in [20] is using a weighted voting method for kNN. In
this approach, the neighbor which is closer to test object is weighted more heavily.
Similar solution based on weighted voting approach was also shown in [21].

This paper describes Associative Graph Data Structures (AGDS) [6, 7], and a
specially developed algorithm operating on these structures that allows finding k
nearest neighbors very quickly, i.e. without looking through all training patterns, but
checking only a limited subset of them using special features of the AGDS structures.
They allow us to move to close or similar objects in constant time, so we can also
compute the distance of the limited subset of close training patterns very quickly
pointing out k nearest neighbors. This paper shows advantages of AGDS structures and
their use for acceleration of kNN classifiers. The AGDS structures remove the
inconvenience of classic tabular structures typically used by kNN classifiers [4]. The
main contribution is the presentation of an Associative Acceleration Algorithm for
kNN classifiers using AGDS structures and comparisons of its speed to the classic
approaches.

2 Associative Graph Data Structures

Associative Graph Data Structures (AGDS) first introduced by Horzyk in [6] and
accelerated by the use of AVB+trees in [7] were inspired by the associative processes
that take place in real brains [12]. They are defined as graphs of nodes representing
aggregated, counted, and sorted attribute values represented by value nodes and objects
defined by the values and represented by object nodes. Value nodes represent unique
attribute values and are connected to the object nodes defined by the values of the
connected value nodes. Moreover, AGDS structures can contain additional nodes
representing subsets or ranges of values, and various combinations of values or objects,
defining clusters or classes, as well as various dependencies and relations between the
nodes of such graphs, e.g. the sequence in time or the proximity or neighborhood in
space. AGDS structures can directly represent a lot of useful features and relations
between stored values and objects, e.g. neighborhood, similarity, proximity, order,
defining, aggregations of the same value and objects, and numbers of aggregated value
or objects. Therefore, they eliminate the necessity to search for various relations in
loops, delivering results in a much faster time because such features and relations are
always available in constant time. Thanks to the aggregations of duplicates made
during the transformation of data stored in tables into AGDS structures which often
compress the data losslessly. The possible compression factor depends on the number
of duplicates in raw tabular data and the types of aggregated duplicates because each
duplicate is replaced by an extra connection that also uses some memory. The com-
pression is treated as a side product of this transformation, but it can have a certain
value for Big Data collections. The aggregated, counted, and sorted values for all
attributes simultaneously allow us to compute minima, maxima, sums, averages,
medians faster in AGDS structures than using tables as described in [7, 8]. We can also

Associative Graph Data Structures 649

quickly move to neighbor values for each attribute. This feature was a basis to define a
new associative data model for kNN classifiers which allows to significantly limit the
number of checked training patterns to lift the efficiency of kNN classifiers presented in
this paper.

The above-described features make AGDS structures a universal model for data
and relation storing that can be adapted to many computational tasks optimizing access
to the stored data and decreasing computational complexities of various operations. In
computer science, we used to talk about data structures, focusing on storing data and
optimizing the access to them. The main disadvantage of this approach is that almost all
data relations must be searched in single or nested loops. The AGDS structures remove
this disadvantage making data and their relations available faster and often decreasing
the computational complexity of many operations in the way that is not achievable in
classic tabular structures.

Sample data presented in Table 1 represent typical data from ML Repository [19]
which include many duplicates. Training patterns are numbered, aggregated (when
defined by the same combinations of attribute values), and presented as nodes in Fig. 1
at the intersections of the attribute values which define them. The data are sorted, and

Table 1. Sample data consisting of two attributes of the Iris training patterns of two classes from
UCI ML Repository [19] used for the presentation of the introduced algorithm approach.

650 A. Horzyk and K. Gołdon

the duplicates are aggregated and represented by single representatives in the AGDS
structure, where training patterns are represented by object nodes connected to value
nodes. On this basis, it is possible to go along the axes to the nearest values and objects
until k nearest neighbors are found. Fig. 1 presents an AGDS structure constructed for
the sample data presented in Table 1. In this structure, horizontal nodes below

Fig. 1. Object proximity in the 2D space representing two attributes of the Iris data. The
automatically widened sample areas (the red dotted lines) for a given classified object depicted by
a question mark “?” are used by the AGDS structure and the introduced algorithm for searching
for the nearest neighbors of this classified object. The IDs of the training patterns are displayed in
the yellow and green vertices. (Color figure online)

Associative Graph Data Structures 651

represent leaf width attribute values, vertical nodes on the left represent leaf length
attribute values, where all the same values from training data (from Table 1) where
already aggregated and represented by the same value nodes. Training patterns are
represented by green and yellow object nodes where the colors of nodes indicate the
connected class labels that are also connected to the appropriate object nodes which
define these classes. In the AGDS structure, class labels are treated in the same way as
the values of other attributes. This approach has important significance described in [7]
and [10].

3 K Nearest Neighbor Classifiers

K Nearest Neighbor algorithms are well-known among machine learning methods.
The idea of these algorithms is to determine which training patterns (neighbors)
from a training set are the closest to the classified object (test pattern). The main
challenge of this algorithm is to determine the distances of the classified object to
training patterns in order to find the closest ones (called nearest neighbors) for the
defined distance function. The most popular distance function is undoubtedly an
Euclidean distance (1), but many times, it is also used a Manhattan distance (2) that can
be faster calculated:

de x; yð Þ ¼
ffiXn

i¼1
xi � yið Þ2

q
ð1Þ

dm x; yð Þ ¼
Xn

i¼1
xi � yij j ð2Þ

Although k Nearest Neighbor algorithms are very simple and supply us with
usually good results, they can be very slow for large training datasets in comparison to
other classifiers because the kNN is a lazy method which does not create a computa-
tional model for any training dataset. To find k nearest neighbors, the whole training
dataset must be looked through, so it takes linear time. Hence, the processing time of
classifying a single test sample is proportional to a number of all training patterns
stored in the training dataset [15, 17]. This paper introduces an associative model for
storing data together with some important relations which allows reducing the com-
putational complexity of the search for k nearest neighbors to logarithmic or even
constant computational complexity dependently on the number of duplicates in raw
data and the way how unique attribute values are stored and searched. The final
computational complexity depends on the way how the unique attribute values are
stored (sorted tables, sorted lists, hash-tables, or AVB+trees [3, 7]) and whether new
training patterns can be added to the AGDS structure, and how many duplicates of
values are in raw training data. The way of organizing and storing attribute values
determines the search algorithms that can be used to get fast access to the given value

652 A. Horzyk and K. Gołdon

using a binary search algorithm, an approximation search algorithm, hash functions [3],
or AVB+trees [7]. In this paper, lists and a modified binary search algorithm were used
to represent attribute values.

4 Acceleration Associative Algorithm for kNN Classifiers

Classifiers are usually built for datasets which consist of training patterns collected in
the past and stored in the tables. In this paper, we use AGDS structures instead of tables
to store training patterns as well as their selected relations that are important from the
kNN point of view. To accelerate kNN classifiers, we need to have fast access to
nearest neighbors. AGDS structures automatically aggregate all attribute value dupli-
cates and sort the nodes representing these aggregated values for all attributes simul-
taneously. Hence, we have fast access to all nodes representing objects (training
patterns) which are defined by the same or close values. The nearest neighbors are
always represented by the training patterns which are defined by the same or close
attribute values to the values defining classified sample. Therefore, we need to create an
AGDS structure for a given training dataset and use the features of the AGDS struc-
tures to move only to the nodes representing training patterns which are the closest
from all attributes point of view in order to compute their distances from the depicted
classified input sample.

The introduced Acceleration Associative Algorithm (AAA) operating on ADGS
structures describes the way how to quickly move to the nodes representing the closest
(most similar) training patterns to the given combination of input values (classified
object), e.g. “?” in Fig. 1.

Assume that we have N training patterns P1, …, PN which are defined by J
attributes, i.e. Pn ¼ p1n; . . .; p

J
n

� �
, where each attribute value p j

n is a real number.
During the construction process of the AGDS structure for the training patterns, all
duplicated values of each attribute j are aggregated separately and represented by value
nodes V j

1 ; . . .; V
j
M that represent Mj unique attribute values v j1; . . .; V

j
M . Moreover,

each value node V j
m contains the counter c jm that represents the number of aggregated

duplicates of the values p j
n1 ; . . .; p

j
n
c jm

that are equal to the value v jm represented by this

node (Fig. 2). Training patterns are represented by the object nodes O1; . . .; OR. Each
object node Or represents and counts up all duplicates of training patterns, where
duplicates of training patterns mean the training patterns defined by the same attribute
values. If there are no duplicated training patterns in the training dataset, then the
number of the object nodes is equal to the number of training patterns R ¼ N else
R\N.

Associative Graph Data Structures 653

Acceleration Associative Algorithm for kNN classifiers using AGDS:

Input: T: training data, x: classified sample, k: number of nearest neighbor

Output: winClass: classified label of x

BinSearchEqualOrLess(array, val) // It returns an index of the node which value

equals to val if such a node exists, else it returns the closest lower value if

there is such a value in the array, else the null value is returned.

size = len(array); start = 0; end = size - 1; result = null;

while(start <= end)

middle = (start + end) / 2

if (array[middle] <= x)

start = middle + 1

result = middle

else end = mid – 1

return result

FindNextClosest(val)
if (valueNodeLessClosest == null) and (valueNodeGreaterClosest == null)

then

valueNodeLessClosest = BinSearchEqualOrLess(val)

if (valueNodeLessClosest == null)

then valueNodeGreaterClosest = First

return valueNodeGreaterClosest

else if (valueNodeLessClosest.Val == val)

then valueNodeGreaterClosest = valueNodeLessClosest

return valueNodeGreaterClosest

else if (valueNodeLessClosest.IsNotMax)

then valueNodeGreaterClosest = valueNodeLessClosest.Next

if (val-valueNodeLessClosest.Val < valueNodeGreaterClosest.Val-

val)

then return valueNodeLessClosest

else return valueNodeGreaterClosest

else valueNodeGreaterClosest = null

return valueNodeLessClosest

else if (val - valueNodeLessClosest.Val < valueNodeGreaterClosest.Val - val)

then if (valueNodeLessClosest.IsNotMin)

then valueNodeLessClosest = valueNodeLessClosest.Prev

else if (valueNodeGreaterClosest.IsNotMax)

then valueNodeGreaterClosest = valueNodeGreaterClosest.Next

else return null

else if (valueNodeGreaterClosest.IsNotMax)

then valueNodeGreaterClosest = valueNodeGreaterClosest.Next

else if (valueNodeLessClosest.IsNotMin)

then valueNodeLessClosest = valueNodeLessClosest.Prev

else return null

if (val - valueNodeLessClosest.Val < valueNodeGreaterClosest.Val - val)

then return valueNodeLessClosest

else return valueNodeGreaterClosest

654 A. Horzyk and K. Gołdon

FindkNN(k, x)
valueNodeLessClosest = null

valueNodeGreaterClosest = null

create empty rankList of k object pointers and distances

// Create the rankList of k nearest objects to the classified sample x

do valueNode = AGDS.Attributes[0].FindNextClosest(x[0])

foreach objectNode connected to valueNode

d = calculateDistance(objectNode, x)

if d < rankList.LastDistance then

rankList.InsertInAscendingOrder(objectNode)

if (rankList.Count > k) then

while (rankList.LastDistance > rankList[k-1].Distance)

rankList.RemoveLast

while (x[0] - valueNodeLessClosest.Val <= rankList.LastDistance) and

(valueNodeGreaterClosest.Val – val <= rankList.LastDistance)

// Determine the winning class for the classified sample

foreach objectNode in ranklist

countLabels[objectNode.ClassLabel] += 1

if (countLabels[objectNode.ClassLabel] > countMax)

then countMax = countLabels[objectNode.ClassLabel]

winClass = objectNode.ClassLabel

else if (countLabels[objectNode.ClassLabel] == countMax) and

(objectNode.ClassLabel != winClass) then winClass = null

return winClass

The AAA algorithm described above is run for each classified object to quickly
determine its k nearest neighbors that are necessary for a used kNN method to classify
this object. This algorithm can be combined and used with any variation of this method.
Its role is to supply the selected kNN method with k nearest neighbors faster than
looking through all training patterns. This new combination of AGDS structures with
kNN classifiers was called a kNN+AGDS classifier.

5 Comparison of Results and Efficiencies

The results of the implemented AAA algorithm operating on AGDS structures together
with the kNN classifiers on various training data are shown in Table 2 and Fig. 2. The
classification times shown in Table 2 are means from one hundred of single classifi-
cation time. The presented approach can successfully accelerate k Nearest Neighbor
classifiers and work as an eager data-relation model for them.

In this paper, all datasets used in the described experiments came from the UCI
Machine Learning Repository [19], and the results obtained for these datasets are
presented in Table 2. For the experiments, we used datasets with various numbers of
instances, various numbers of attributes, and various numbers of duplicates to objec-
tively show differences between the average classification time of an input instance

Associative Graph Data Structures 655

processed by kNN and kNN+AGDS classifiers. The presented combination of AGDS
structures with kNNs becomes to be an eager solution instead of a lazy one as for
classic kNNs because this new classifier creates a model using an AGDS structure.
Thus, the use of AGDS structures removed the main inconvenience of the classic kNN
classifiers.

Table 2. Comparison of classification time using kNN and kNN+AGDS.

Dataset Number
of
instances

Number
of
attributes

kNN
classification
time [ms]

kNN+AGDS
classification
time [ms]

kNN+AGDS
construction
time [ms]

Iris 150 4 0.10 0.08 1
Banknote 1372 4 0.29 0.09 5
HTRU2 17898 8 3.14 0.09 134
Shuttle 43500 9 7.67 1.06 278
Credit
Card

30000 23 8.69 1.07 499

Skin 245057 3 26.87 1.10 683
Drive 58509 48 46.15 1.24 2224
HEPMASS 1048576 28 362.32 1.41 31214

0.00

0.50

1.00

Iris Banknote HTRU2 Shuttle Credit Card Skin Drive HEPMASS

Fig. 3. Memory usage ratio of using AGDS structures to arrays for various training data.

Fig. 2. Classification time as a function of the number of the instances multiplied by the number
of attributes, i.e. the number of data stored in the training data tables.

656 A. Horzyk and K. Gołdon

The results shown in Fig. 3 confirm compression ability of AGDS for some
training datasets. The most of the datasets used in this work using AGDS lead to the
significantly shorter classification time and lower memory usage. The compression was
not achieved for the three from eight datasets in Fig. 3 due to the small number of
duplicated values in these datasets and the memory used for the representation of the
connections. On the other hand, the small extra memory usage is compensated by the
much higher speed of classification. For sorting purposes, the quicksort algorithm was
used.

6 Conclusions and Final Remarks

This paper did not focus on improving classification results of kNN classifiers but on
the efficiency of their use implementing a new Associative Acceleration Algorithm
operating on Associative Graph Data Structures. The computational complexity of the
presented algorithm is independent of the number of training patterns, so it always
works in constant time (when k is much smaller than the number of all training
patterns) for a given k of searched nearest neighbors using associations between
attribute values defining training patterns. However, the number of computations
depends on the density of training patterns in hyperspace that is close to the classified
samples. Hence, the efficiency of the presented algorithm grows with the amount of
training data. Therefore, it is convenient to use for classification for Big Data collec-
tions. It was shown that AGDS structures could be used as a data-relation model for
kNN classifiers, and thanks to the use of this model we can accelerate classification of
various k Nearest Neighbor algorithms. The efficiency of the presented algorithm and
AGDS structures is significant for big training datasets especially when they contain
many duplicated values that define training patterns. The construction of an AGDS
structure for a training dataset can be treated as an adaptation process that develops a
computational model for kNN classifiers because AGDS structures contain all training
data enhanced by extra useful relations quickly available for kNN classifiers. In the
future studies, we will consider further improvements of the introduced approach
concerning the use of AVB+trees [7] to even more accelerate the access to attribute
values when searching for the closest values of the classified samples. This work was
supported by AGH 11.11.120.612.

References

1. Abidin, T., Perrizo, W.: A fast and scalable nearest neighbor based classifier for data mining.
In: Proceedings of ACM SAC 2006, Dijon, France, pp. 536–540. ACM Press, New York
(2006)

2. Agrawal, R.: Extensions of k-nearest neighbor algorithm. Res. J. Appl. Sci. Eng. Technol. 13
(1), 24–29 (2016)

3. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 3rd edn. MIT
Press, Cambridge (2009)

4. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

Associative Graph Data Structures 657

5. Grana, M.: Advances in Knowledge-Based and Intelligent Information and Engineering
Systems. IOS Press, Amsterdam (2012)

6. Horzyk, A.: Artificial Associative Systems and Associative Artificial Intelligence. EXIT,
Warsaw (2013)

7. Horzyk, A.: Associative graph data structures with an efficient access via AVB+trees. In:
11th Conference on Human System Interaction (HSI 2018). IEEE Xplore (2018, in print)

8. Horzyk, A.: Neurons can sort data efficiently. In: Rutkowski, L., Korytkowski, M., Scherer,
R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol.
10245, pp. 64–74. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_6

9. Horzyk, A.: Deep associative semantic neural graphs for knowledge representation and fast
data exploration. In: Proceedings of KEOD 2017, pp. 67–79. Scitepress Digital Library
(2017)

10. Horzyk, A., Starzyk, J.A.: Multi-class and multi-label classification using associative pulsing
neural networks. In: 2018 IEEE WCCI IJCNN, pp. 427–434. IEEE Xplore (2018)

11. Jensen, R., Cornelis, C.: A new approach to fuzzy-rough nearest neighbour classification. In:
Chan, C.-C., Grzymala-Busse, J.W., Ziarko, W.P. (eds.) RSCTC 2008. LNCS (LNAI), vol.
5306, pp. 310–319. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88425-
5_32

12. Kalat, J.W.: Biological Grounds of Psychology, 10th edn. Wadsworth Publishing, Belmont
(2008)

13. Tadeusiewicz, R.: New trends in neurocybernetics. Comput. Methods Mater. Sci. 10, 1–7
(2010)

14. Tadeusiewicz, R.: Introduction to intelligent systems. In: Fault Diagnosis. Models, Artificial
Intelligence, Applications, CRC Press, Boca Raton (2011)

15. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to
Algorithms. Cambridge university Press, Cambridge (2014)

16. Vivencio, D.P., et al.: Feature-weighted k-nearest neighbor classifier. In: Proceedings of
FOCI, pp. 481–486 (2007)

17. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd
edn. Morgan Kaufmann Publishers, Morgan Kaufmann Publishers (2005)

18. Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data. Trans. Knowl. Data Eng.
26(1), 97–107 (2014)

19. UCI ML Repository. https://archive.ics.uci.edu/ml/index.php. Accessed 25 May 2018
20. Dudani, S.A.: The distance-weighted k-nearest neighbor rule. IEEE Trans. Syst. Man

Cybern. 6, 325–327 (1976)
21. Gou, J., Lan, D., Zhang, Y., Xiong, T.: A new distance-weighted k-nearest neighbor

classifier. J. Inf. Comput. Sci. 9(6), 1429–1436 (2012)

658 A. Horzyk and K. Gołdon

http://dx.doi.org/10.1007/978-3-319-59063-9_6
http://dx.doi.org/10.1007/978-3-540-88425-5_32
http://dx.doi.org/10.1007/978-3-540-88425-5_32
https://archive.ics.uci.edu/ml/index.php

A Game-Theoretic Framework
for Interpretable Preference

and Feature Learning

Mirko Polato(B) and Fabio Aiolli

Department of Mathematics, University of Padova,
Via Trieste, 63, 35121 Padova, Italy
{mpolato,aiolli}@math.unipd.it

Abstract. We are living in an era that we can call machine learning
revolution. Started as a pure academic and research-oriented domain,
we have seen widespread commercial adoption across diverse domains,
such as retail, healthcare, finance, and many more. However, the usage of
machine learning poses its own set of challenges when it comes to explain
what is going on under the hood. The reason being models interpretabil-
ity is very important for the business is to explain each and every decision
being taken by the model. In order to take a step forward in this direction,
we propose a principled algorithm inspired by both preference learning
and game theory for classification. Particularly, the learning problem
is posed as a two player zero-sum game which we show having theo-
retical guarantees about its convergence. Interestingly, feature selection
can be straightforwardly plugged into such algorithm. As a consequence,
the hypotheses space consists on a set of preference prototypes along
with (possibly non-linear) features making the resulting models easy to
interpret.

Keywords: Game theory · Margin maximization · Classification
Preference learning

1 Introduction

Machine learning and intelligent systems in general are becoming increas-
ingly ubiquitous. However, after a first enthusiastic reaction to these seemingly
unbounded technologies, nowadays some concerns start to rise regarding the
black box nature of these methods. There are many examples of applications in
which the explanation plays a key role, such as recommender systems, bioinfor-
matical applications and support systems for physicians. The need of explana-
tions is also theme of the Article 22.1 of the General Data Protection Regulation
which states that: “The data subject shall have the right not to be subject to a
decision based solely on automated processing”. Unfortunately, most of the state-
of-the-art machine learning approaches are based on highly non-linear optimiza-
tion problems which are not very suited for being interpreted. A glaring example
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 659–668, 2018.
https://doi.org/10.1007/978-3-030-01418-6_65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_65&domain=pdf

660 M. Polato and F. Aiolli

are deep neural networks (DNNs). Despite in many applications DNNs are one
of the most successful approach, they represent a really hard challenge when
dealing with model interpretation. Similar considerations can also be done for
theoretical grounded methods such as Support Vector Machines.

In this work we present a principled algorithm inspired by game theory and
preference learning for classification. Specifically the learning problem is seen as a
zero-sum game between the nature and a learner. Interestingly, feature selection
can be easily plugged into the same algorithm in a natural way. The hypotheses
space consists on a set of preference prototypes attached with possibly non-linear
features making the interpretation and visualization of the resulting models very
easy.

2 Background

2.1 Preference Learning

Broadly speaking, a preference learning (PL) task consists of some set of items
for which (some) preferences are known, and the task is to learn a function able
to predict preferences for previously unseen items, or other preferences for the
same set of items [5]. In the context of PL, three different ranking tasks can be
defined, namely label ranking, instance ranking, and object ranking. In this work
we focus on label ranking which can be defined as follows: given a set of input
instances xi ∈ X , i ∈ [1, . . . , n], and a finite set of labels Y ≡ {y1, y2, . . . , ym}
the goal of a ranker is to learn a scoring function fθ : X × Y → R which assigns
for each label yi a score to a pattern x. Hence, a label ranking task represents
a generalization of a classification task, since fθ implicitly defines a full ranking
over Y for an instance x. In PL, the training set usually consists of a set of
pairwise preferences of the form yi �x yj , which means that, for the instance
x, yi is preferred to yj . In particular, in the case of classification, in which each
pattern x is associated to a single label yi, the following set of preferences are
implicitly defined {yi �x yj | 1 ≤ j �= i ≤ m}.

Formally, fθ has the following form [1]: fθ(x, y) = wᵀψ(x, y), where ψ : X ×
Y → R

d·m is a joint representation of item-label pairs, X ≡ R
d, Y ≡ {1, . . . , m},

and w is a weight vector. Since fθ has to properly rank the labels for each item,
given a preference yi �x yj then fθ(x, yi) > fθ(x, yj) should hold, that is,

wᵀψ(x, yi) > wᵀψ(x, yj) ⇒ wᵀ(ψ(x, yi) − ψ(x, yj)) > 0,

which can be interpreted as the margin (or confidence) of the preference. Higher
the confidence, higher the generalization capability of the obtained ranker. Thus,
given a preference yi �x yj we construct its corresponding representation by
z = ψ(x, yi) − ψ(x, yj), with z ∈ R

d·m.
We assume that the item-label joint representation is defined as

ψ(x, y) = x ⊗ em
y

= (0
↑
1

, 0
↑
2

, . . . , x1

↑
y

, 0, . . . , x2

↑
y + m

, . . . , xi

↑
y + (i − 1)m

, . . . , xd

↑
y + (d − 1)m

, . . . , 0),

A Game-Theoretic Framework for Interpretable Preference 661

where em
y is the y-th vector from the canonical basis of R

m. We indiciate the
f -th d-dimensional chunk of a preference z with

z[f] = (z(f−1)m, z(f−1)m+1, . . . , zfm) ∈ R
m.

Similarly, we define z[y] = (zy, zy+m, . . . , zy+(d−1)m) ∈ R
d.

At classification time, given a new example x the predicted class ŷ is com-
puted by selecting the label which mazimizes the value of the scoring function
fθ, that is, ŷ = arg maxy∈Y fθ(x, y).

2.2 Game Theory

Game theory studies the problem of making strategic decisions in competitive
environments. In this paper, we focus on two players zero-sum games. The strate-
gic form of a two-player zero-sum game is defined by a matrix M (the game
matrix). The two players, the row player P and the column player Q, play the
game simultaneously. In particular, the row player selects a row and the col-
umn player selects a column of M ∈ R

P×Q, where P and Q are the number of
available strategies for P and Q respectively. Each entry Mi,j represents the loss
of P, or equivalently the payoff of Q, when the strategies i and j are played by
the two players. The player P aims at finding a strategy minimizing its expected
loss (the value of the game) V , while the player Q aims at finding a strategy
maximizing V , its payoff. The strategies of the players are typically randomized,
meaning that the player P selects a row according to a distribution p over the
rows, and the player Q selects a column according to a distribution q over the
columns. These distributions are referred to as the mixed strategies of players
P and Q, respectively. The vectors p and q can be thought of as stochastic vec-
tors, that is p ∈ SP and q ∈ SQ, where SP = {p ∈ R

P
+ | ‖p‖1 = 1} and

SQ = {q ∈ R
Q
+ | ‖q‖1 = 1}.

It is well known [11] that for any game matrix M there exists a saddle-point,
that is a pair of optimal strategies p∗ and q∗ for the two players such that

V = p∗ᵀMq∗ = min
p

max
q

pᵀMq = max
q

min
p

pᵀMq

A saddle-point of this type can be computed by solving an appropriately defined
linear program with a number of variables and constraints growing linearly with
the number of (pure) strategies of the two players. It is clear that this computa-
tion becomes prohibitive for game matrices of high dimensionality. An alternative
method called adaptive multiplicative weights (AMW) [3,4] has been proposed to
compute approximate optimal saddle-point values and strategies. The ficticious
play (FP) strategy, also called Brown-Robinson learning process, introduced by
Brown in the 50’s [2], is a simple algorithm to efficiently compute an approxima-
tion of the solution of a game. The FP method starts with an arbitrary initial
pure strategy for P. Then, each player in turn chooses his next pure strategy as
a best response assuming the other player chooses among his previous choices
at random equally likely. In other words, at each step each player tries to infer
the mixed strategy of the opponent from its previous choices. The pseudo-code
of FP is reported in Algorithm1.

662 M. Polato and F. Aiolli

Algorithm 1. FP: The Fictitious Play algorithm
Input:

M ∈ R
P×Q: matrix game

Te: number of iterations
Output:

p,q: row/column player strategy
V : the value of the game

1 r ← randint[1, P]
2 sp,vp ← 0,0

3 sq,vq ← Mr,:, e
P
r

4 for t ← 1 to Te do

5 q̂ ← arg max sq, sp ← sp + M:,q̂, vq ← vq + eQ
q̂

6 p̂ ← arg max sp, sq ← sq + Mp̂,:, vp ← vp + eP
p̂

7 end
8 p ← vp/‖vp‖1, q ← vq/‖vq‖1

9 V ← pᵀMq
10 return p,q, V

3 A Game Theoretic Perspective of Preference Learning

In this section we describe a new learning approach for label ranking based on
game theory. Specifically, we assume to have a set of training preferences of the
form pi ≡ (y+ �x y−) which can be converted in their vectorial representation
zi as described in Sect. 2.1. We consider an hypothesis space of linear functions,
that is, F ≡ {fw(z) : z �→ wᵀz | w, z ∈ R

d·m, ‖w‖2 = 1}. Given any preference
vector z then, for the preference to be satisfied, wᵀz > 0 should hold. The
margin of the preference ρ(z) = wᵀz will represent the confidence of the current
hypothesis over the preference z. According to the maximum margin principle,
our aim is to select the hypothesis (w) that maximizes the minimum margin
over the preferences of the training set.

From the Representer Theorem (see e.g. [7,9]) we know that w can be defined
as a convex combination of a subset of the training preferences, that is w ∝∑

j αjzj ,α ∈ SP . Thus, the margin of a preference can be expressed as

ρ(z) =
∑

j

αjz
ᵀ
j z =

∑

j

αj

∑

f

μfzj [f]ᵀz[f],=
∑

(j,f)

q(j,f)zj [f]ᵀz[f]

where the dot product zᵀ
j z is generalized by giving different weights to the

features according to a distribution μ over the features, and q such that
q(j,f) = αjμf is a new distribution over all the possible preference-feature pairs.

Now, let p be a distribution over the set of training preferences, the expected
preference margin when the preferences are drawn according to p is:

ρ̄(p,q) =
∑

i

pi

∑

(j,f)

q(j,f)zi[f]ᵀzi[f] = pᵀMq (1)

A Game-Theoretic Framework for Interpretable Preference 663

where Mi,(j,f) = zi[f]ᵀzj [f]. This formulation highlights the relation between a
preference learning problem and game theory. Consider a two-player zero-sum
game in which the row player P (the nature) chooses a distribution over the
whole set of training preferences as its mixed strategy aiming at minimizing the
expected margin. Simultaneously, the column player Q (the learner) chooses a
distribution over the set of hypothesis, or preference-feature pairs, as its mixed
strategy aiming at maximizing the expected margin (its payoff). Then the value
of the game, that is the maximal minimum margin solution will be:

V = ρ̄(p∗,q∗) = min
p

max
q

pᵀMq

4 Approximating the Optimal Strategies

The game matrix M has number of rows equal to the number of training pref-
erences P , and number of columns equal to Q = P ·F where F is the number of
features. The number of preference-feature pairs can be huge, thus solving the
game using standard off-the-shelf methods from game theory is impractical.

For this, in this section we propose a new method to solve the game incre-
mentally. The pseudo-code of the algorithm is given in Algorithm2. Specifically,
given a game matrix M and the optimal solution (p∗,q∗, V ∗) for the game. At
each iteration we only consider a subset of columns of the entire matrix, that is
Mt = MΠt where Πt ∈ {0, 1}|Q|×B are left-stochastic (0, 1)-matrices, i.e. matri-
ces whose entries belong to the set {0, 1} and whose columns add up to one. Let
(p∗

t ,q
∗
t , V

∗
t) be the solution for the matrix Mt. The columns of Mt correspond-

ing to null entries in q∗
t are replaced by new columns drawn randomly from M.

We show in the following that the value of the game obtained at each iteration
increases monotonically and it is upper bounded by the optimal margin.

At the iteration t + 1 a new left-stochastic (0, 1)-matrix Πt+1 is considered
which is Πt where every column corresponding to null entries in q∗

t are substi-
tuted with a new random stochastic vector eQ

r for a random pair r. Thus, it can
be shown that

V ∗
t = p∗

t Mtq∗
t = p∗

t MΠtq∗
t

≤ p∗
t+1MΠtq∗

t

= p∗
t+1MΠt+1q∗

t

≤ p∗
t+1Mt+1q∗

t+1 = V ∗
t+1

and V ∗
t ≤ p∗MΠtq∗

t︸ ︷︷ ︸
q̂t

≤ p∗Mq∗ = V ∗ for every t.

5 Evaluation

In this section we describe the experiments performed to assess the effectiveness
of our proposal. We performed two different sets of experiments. The first set
aims to assess the proposed algorithm in terms of interpretability. The second one
is focused on the performance comparison between our method and a standard
SVM.

664 M. Polato and F. Aiolli

Algorithm 2. Proposed algorithm
Input:

P: set of training preferences
genF : random feature generator
B: size of the working set
T : number of epochs
Te: number of iterations of Fictitious Play (FP)

Output:
Q: working set of preference-feature pairs
q: mixed strategy of preference-feature pairs in Q

1 random initialization of the set Q such that |Q| = B
2 compute the matrix game M on the basis of P (rows) and Q (cols)
3 for t ← 1 to T do
4 p,q, v ← FP(M, Te)
5 if t < T then
6 foreach (j, f) | q(j,f) = 0 do
7 (j′, f ′) ← pick(P), genF ()
8 update Q: replace (j, f) with (j′, f ′)
9 update columns of M w.r.t. Q:

10 let k the position of (j′, f ′) in Q,
11 for all i ∈ P, Mi,k = zi[f]ᵀzj′ [f]

12 end

13 end

14 end
15 return q,Q

5.1 Model Interpretation

In the first set of experiments, we employed our algorithm to select the most
relevant features in order to interpret the model. The aim is to use these fea-
tures to explain the decision. We run the method on four benchmark datasets,
three of which (namely, tic-tac-toe, monks-1 and monks-3) have a specific
logical rule that explains the positive class. The tic-tac-toe dataset has been
converted into a binary-valued dataset through one-hot encoding. The remain-
ing dataset, i.e., mnist-49, is composed with instances of the handwritten digit
dataset mnist concerning only the classes 4 and 9. In this case, the extracted
features are used as a visual aid in order to highlight the points of interest that
the model uses to discriminate a 4 from a 9, and viceversa. The details of the
datasets are reported in Table 1. Table 2, instead, shows the logical rules which
explain the positive class. It is noteworthy that the difference between monks-1
and monks-3 is only the instance labelling. Even though both these datasets
have been artificially created, their coverage w.r.t. the associated explanation
rule is not complete. These experiments have been performed using the follow-
ing procedure. We trained our model by using polynomial features of different
degrees [1, . . . , 3]. This choice depends on the fact that all the interested rules
are expressed in terms of disjunctive normal form formulas with conjunctive

A Game-Theoretic Framework for Interpretable Preference 665

Table 1. Datasets information: name, number of instance, number of features, and
class prior. All the dataset are freely available in the UCI repository [10].

Dataset #Instances #Features Class prior

tic-tac-toe 958 27 65/35

monks-1 432 17 50/50

monks-3 432 17 53/47

mnist-49 13782 784 50/50

Table 2. Logical rules which explain the positive class of the datasets. The variable
xi indicates the i-th input feature of a vector in the corresponding dataset.

Dataset Rule

tic-tac-toe (x8 ∧ x14 ∧ x20) ∨ (x5 ∧ x14 ∧ x23) ∨ (x2 ∧ x14 ∧ x26)∨
(x8 ∧ x17 ∧ x26) ∨ (x11 ∧ x14 ∧ x17) ∨ (x2 ∧ x11 ∧ x20)∨
(x20 ∧ x23 ∧ x26) ∨ (x2 ∧ x5 ∧ x8)

monks-1 (x0 ∧ x3) ∨ (x1 ∧ x4) ∨ (x2 ∧ x5)

monks-3 (x13 ∧ x8) ∨ (¬x5 ∧ ¬x14)

clauses up to the arity 3. In the case of binary valued data, polynomial features
correspond to conjunctions, and hence they are suited for our purposes. Since
we have a-priori knowledge about the game tic-tac-toe, for this specific dataset
we only used the polynomial of degree 3.

Table 3 shows the 10 most relevant features for each tested dataset for each
polynomial. Features are sorted with respect to their corresponding weight in
the solution. It is evident from the table that the retrieved best features are
the ones involved in the explanation rules (Table 2). In tic-tac-toe the first
8 polynomial features correspond to the rule which describe the wins of the
crosses. The remaining two features represent a single naught in the central and
in the bottom right cell. These features are useful to discriminate a win for the
naught, which is reasonable in particular for the central cell which is actually
one of the most useful square to get a three-in-a-row. Despite the tic-tac-toe
case in which the polynomial was suited for the specific set of rules, in the case
of monks we tried all polynomials up to the degree 3. Nonetheless, in these
cases the algorithm managed to retrieve the right features regardless of the
used polynomial. For example, in monks-1 with d = 3 the first three features
contain repeated variables, which means that the features are actually of degree
2 (x = x2 if x ∈ {0, 1}). Same considerations can be done for monks-3. Moreover,
in monks-3 the algorithm has also been able to correctly identify the polarity
of the features. In fact, x14 and x5 contribute to distinguish the negative class
w.r.t. the positive which reflect the ¬ logical operator in the explanation rule.

The mnist-49 dataset has been used as a more realistic use case since there
are not simple rules that govern the classification. The goal here is to use the
most relevant features for interpreting, in a human fashion, which are the visual

666 M. Polato and F. Aiolli

Table 3. Logical rules which explain the positive class of the datasets. The variable
xi indicates the i-th input feature of a vector in the corresponding dataset. (·) means
that the feature discriminate the negative class from the positive one. The column d
indicates the degree of the used polynomial.

Data d R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

t-t-t 3 x8x17x26 x2x11x20 x2x14x26 x8x14x20 x20x23x26 x11x14x17 x2x5x8 x5x14x23 x3
13· x3

25·
mks-1 1 x14· x13· x12· x5 x1 x3 x8 x0 x10 x4

mks-1 2 x0x3 x1x4 x2x5 x2
11 x2

14· x2
12· x2

13· x2
16· x2

15· x2
7·

mks-1 3 x2
0x3 x2

1x4 x2x
2
5 x1x

2
3 x3

14· x3
12· x3

13· x3
6· x3

7· x3
15·

mks-3 1 x14· x5· x13 x8 x3 x4 x2 x1 x0 x12

mks-3 2 x8x13 x2
14· x2

5· x2
4 x2

3 x2
11 x2

13 x2
12 x2

1 x2
2

mks-3 3 x8x
2
13 x3

14· x3
5· x3

4 x3
3 x3

12 x3
11 x3

13 x3
15 x3x

2
6

characteristics that are leveraged by the model to discriminate the two classes.
Also for this dataset all polynomials up to the degree 3 have been considered.
The best results in terms of accuracy have been achieved by the degree 2. For
this reason and also for visualization purposes we used the degree 2 features to
build Fig. 1. The figure shows the most relevant poly 2◦ features used by the
model to distinguish a 4 from a 9 (left) and viceversa (right). The features are
represented as segment between the two involved variables (i.e., pixels) in each
monomial. In the background is depicted the average digits. From the figure it is
clear that there are huge differences in how the two numbers are discriminated.
In the 4 vs 9 case (left), the region of interests is the left (almost) vertical line of
the 4. In particular, each pair of pixels involved in the features seems to follow
the gradient of this line. Similarly, in the 9 vs 4 case (right), the region of interest

Fig. 1. Visualization of the most relevant polynomial features of degree 2. The poly-
nomial features are visualized as segments limited by the involved input variables. The
left hand side plot shows the features relevant to discriminate the 4 from the 9, vicev-
ersa in the right hand side plot. In the plots, the opacity of the visualized feature is
exponentially related to its weight.

A Game-Theoretic Framework for Interpretable Preference 667

is represented by the left curvature of the circle of the 9. In this case, the pair
of pixels seems to follow the border of such curvature. It is also interesting to
notice that some of the relevant pixels are outside the grey region. This can be
explained as a way to deal with outliers.

5.2 Feature Selection

This set of experiments aims to assess the effectiveness of the proposed algorithm
on datasets with many noisy and redundant features. The chosen testbeds have
been the datasets of the NIPS 2003 Feature selection challenge [6]. The details
of these datasets are reported in Table 4. An important observation about the
datasets is the huge number of features w.r.t. the number of training instances.
In addition to the number of features of each datasets, Table 4 reports the actual
number of real features. For more details about the datasets please refer to [6,8].
All datasets concern binary classification tasks.

Table 4. Datasets information: name, number of instance, number of features, number
of relevant features (probes), and class prior. All the dataset are freely available at
the NIPS 2003 Feature selection challenge site, http://clopinet.com/isabelle/Projects/
NIPS2003/.

Dataset #Instances #Features # Real feat. Class prior

arcene 200 10000 7000 44/56

dexter 600 20000 9947 50/50

dorothea 1150 100000 50000 90/10

gisette 7000 5000 250 50/50

madelon 2600 500 20 50/50

We compared the proposed algorithm with a standard SVM. Given the huge
number of features of the target datasets, the usage of higher degree polynomial
kernels was not effective. For this reason, the reported results have been obtained
using the linear kernel. The C parameter of the SVM has been validated in the set
of values {10−4, . . . , 105} using a 5-fold cross validation procedure. The reported
results are the average over 10 runs of the experiments over different data splits.
Table 5 summarizes the achieved results. The size B of the working set has been
set to 2000.

As evident from the table, the proposed method is able to achieve comparable
and sometimes better performances than SVM. It is worth to mention that, since
the working set had size of 2000, generally the number of used features by our
algorithm was order of magnitude less than the number of original features.

http://clopinet.com/isabelle/Projects/NIPS2003/
http://clopinet.com/isabelle/Projects/NIPS2003/

668 M. Polato and F. Aiolli

Table 5. Accuracy results achieved by SVM and the proposed algorithm. The last
column indicate the number of support preference-feature pairs used by the proposed
algorithm.

Dataset SVM Proposal # Relevant feat.

arcene 90.00 88.33 125

dexter 92.78 91.11 260

dorothea 91.88 93.04 468

gisette 96.71 97.05 1056

madelon 60.10 60.10 1448

6 Conclusions and Future Work

We proposed a principled algorithm for classification inspired by preference
learning and game theory. Empirical evaluations have shown the feasibility of
efficiently making non linear feature selection. Moreover, we have shown how it
is possible to leverage the selected (possibly) non linear features to interpret the
resulting model. In the future we plan to adapt the proposed method to very
large scale datasets.

References

1. Aiolli, F., Sperduti, A.: A preference optimization based unifying framework for
supervised learning problems. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference
Learning, pp. 19–42. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14125-6 2

2. Brown, G.W.: Iterative solutions of games by fictitious play. In: Activity Analysis
of Production and Allocation, pp. 374–376 (1951)

3. Freund, Y., Schapire, R.E.: Game theory, on-line prediction and boosting. In:
COLT, pp. 325–332 (1996)

4. Freund, Y., Schapire, R.E.: Adaptive game playing using multiplicative weights.
Games Econ. Behav. 29(1–2), 79–103 (1999)

5. Fürnkranz, J., Hüllermeier, E.: Preference Learning, 1st edn. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-0-387-30164-8

6. Guyon, I., Gunn, S., Ben-Hur, A., Dror, G.: Result analysis of the nips 2003 feature
selection challenge. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neu-
ral Information Processing Systems, vol. 17, pp. 545–552. MIT Press, Cambridge
(2005)

7. Hofmann, T., Schlkopf, B., Smola, A.J.: Kernel methods in machine learning. The
Ann. Stat. 36(3), 1171–1220 (2008)

8. Johnson, N.: A study of the nips feature selection challenge (2009). https://web.
stanford.edu/∼hastie/ElemStatLearn/comp.pdf

9. Kimeldorf, G.S., Wahba, G.: Some results on Tchebycheffian spline functions. J.
Math. Anal. Appl. 33(1), 82–95 (1971)

10. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/
ml

11. von Neumann, J.: Zur theorie der gesellschaftsspiele. Math. Ann. 100, 295–320
(1928)

https://doi.org/10.1007/978-3-642-14125-6_2
https://doi.org/10.1007/978-3-642-14125-6_2
https://doi.org/10.1007/978-0-387-30164-8
https://web.stanford.edu/~hastie/ElemStatLearn/comp.pdf
https://web.stanford.edu/~hastie/ElemStatLearn/comp.pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

A Dynamic Ensemble Learning Framework
for Data Stream Analysis and Real-Time

Threat Detection

Konstantinos Demertzis1, Lazaros Iliadis1,
and Vardis-Dimitris Anezakis2(&)

1 School of Engineering, Department of Civil Engineering,
Democritus University of Thrace, University Campus, Kimmeria, Xanthi, Greece

kdemertz@fmenr.duth.gr, liliadis@civil.duth.gr
2 Department of Forestry and Management of the Environment and Natural

Recourses, Democritus University of Thrace,
193 Pandazidou St., 68200 N Orestiada, Greece

danezaki@fmenr.duth.gr

Abstract. Security incident tracking systems receive a continuous, unlimited
inflow of observations, where in the typical case the most recent ones are the most
important. These data flows and characterized by high volatility. Their charac-
teristics can change drastically over time in an unpredictable way, differentiating
their typical normal behavior. In most cases it is not possible to store all of the
historical samples, since their volume is unlimited. This fact requires the
extraction of real-time knowledge over a subset of the flow, which contains a
small but recent percentage of all observations. This creates serious objections to
the accuracy and reliability of the employed classifiers. The research described
herein, uses a Dynamic Ensemble Learning (DYENL) approach for Data Stream
Analysis (DELDaStrA) which is employed in RealTime Threat Detection sys-
tems. More specifically, it proposes a DYENL model that uses the “Kappa”
architecture to perform analysis of data flows. The DELDaStrA is based on the
hybrid combination of k Nearest Neighbor (kNN) Classifiers, with Adaptive
Random Forest (ARF) and Primal Estimated SubGradient Solver for Support
Vector Machines (SVM) (SPegasos). In fact, it performs a dynamic extraction of
the weighted average of the three results, to maximize the classification accuracy.

Keywords: Dynamic ensemble learning � Big data � Data streams analysis
“Kappa” architecture � Critical infrastructure � Real-time threat detection

1 Introduction

The data created by SCADA [31] and more generally by Industrial Control Systems
(ICS) [20], has caused an exponential increase of the obtained information. This fact has
led to the adoption of architectures which incorporate proper algorithms for real-time
data stream processing. These algorithms are dynamically adjusted by new models or
when the data are produced as a function of time [5]. The “Kappa” architecture uses a
real-time engine and it is the most suitable approach for the analysis of data flows [25].

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 669–681, 2018.
https://doi.org/10.1007/978-3-030-01418-6_66

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_66&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_66&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_66&domain=pdf
https://doi.org/10.1007/978-3-030-01418-6_66

For each new sample, a small gradual update of the model takes place, which
gradually improves as more data arrive. The error in the real-time engine is calculated
at each iteration as data characteristics can change drastically and in an unpredictable
way. This changes the typical, normal behavior, and an object that may have been
considered extreme, can be included in the normal observations, due to rapid devel-
opments in the data stream (Fig. 1).

Due to the unlimited volume of data, data mining is performed on a subset of the
flow, which is called a sliding window (SLWI). Clearly the SLIWI contains a small but
recent percentage of the observations included in the global set. The goal of these data
processing algorithms is to minimize the cumulative error for all iterations, which can
be calculated by the following function (1) [2]:

In w½ � ¼
Xn
j¼1

V w; xj
� �

; yj
� � ¼

Xn
j¼1

xTj w� yj
� �2

ð1Þ

where xj 2 Rd , w 2 Rd and yj 2 R supposing that Xi� d is a data matrix and Yi� 1 is
a target values vector, obtained after the arrival of the first i data points. If we accept
that the covariance matrix Ri ¼ XTX is reversable, the optimal solution f �ðxÞ ¼
hw�; xi is given by the following function (2):

w� ¼ XTX
� ��1

XT� ¼ R�1i

Xi

j¼1
xjyj ð2Þ

If we estimate the covariance matrix Ri ¼
Pi

j¼1 xjx
T
j the time complexity

ðTCÞ changes fromO ðid2Þ ðd � dÞ and it becomes Oðd3Þ, whereas the rest of the
multiplication requires TC equal to Oðd2Þ. Thus, the TC finally becomes equal to
Oðid2þ d3Þ. If n is the number of points in the dataset, it is necessary to recalculate the
solution after the arrival of each new data point i ¼ 1; 2; . . .; n. So, the final time
complexity is of the order Oðn2d2þ nd3Þ which would make the algorithm unsuitable
for application in demanding fast changing environments such as the one under con-
sideration [2, 24]. It is therefore important to note that in-stream processing is subject to
time constraints, as applications require explanatory results in real time, and there are
also significant memory requirements.

Fig. 1. Kappa architecture (https://www.oreilly.com/ideas/applying-the-kappa-architecture-in-
the-telco-industry)

670 K. Demertzis et al.

https://www.oreilly.com/ideas/applying-the-kappa-architecture-in-the-telco-industry
https://www.oreilly.com/ideas/applying-the-kappa-architecture-in-the-telco-industry

It is clear from the above, that a secure approach for data flow mining problems,
requires robust systems characterized by reliability and high accuracy rates, without a
demand for high resources availability. Good preparation and methodological deter-
mination of their operating parameters is needed, to avoid long-term convergence, or
undesirable fluctuations in accuracy, which may be associated with frequent model
updates and instability or loss of generalization, which may be due to corrupted and
noisy data.

1.1 Literature Review

Soft computing techniques are capable to model and detect cyber security threats [6–14]
and they also offer optimization mechanisms in order to produce reliable results. In
many applications, learning algorithms have to act in dynamic environments where data
are collected in the form of transient data streams. Krawczyk et al. [21] investigated 3
data stream classification as well as regression tasks. Besides presenting a compre-
hensive spectrum of ensemble approaches for data streams, authors also discussed
advanced learning concepts such as imbalanced data streams. According to Liu et al.
[26] a weight computation policy based on confidence was presented to deal with the
problem in the sub-classifier’s weight in dynamic data stream ensemble classification.
The policy fully considers influence of the sample on the weight of the sub-classifier.
Krawczyk and Cano [22] introduced a dynamic and self-adapting threshold that was
able to adapt to changes in the data stream, by monitoring outputs of the ensemble to
exploit underlying diversity in order to efficiently anticipate drifts.

Nowadays, the intrusion detection systems (IDS) have become one of the most
important weapons against cyber-attacks. Chand et al. [4] performed a comparative
analysis of SVM classifier’s performance when it was stacked with other classifiers like
BayesNet, AdaBoost and Random Forest. Ahmin and Ghoualmi-Zine [1] used two
different classifiers iteratively, where each-iteration represented one level in the built
model. To ensure the adaptation of their model, authors added a new level whenever
the sum of new attacks and the rest of the training dataset reached the threshold.

Data mining in non-stationary data streams is gaining more attention recently,
especially in the context of Internet of Things and Big Data. Losing et al. [27] proposed
the Self Adjusting Memory (SAM) model for the k-Nearest Neighbor (k-NN) algo-
rithm since k-NN constitutes a proven classifier within the streaming setting. SAM-
kNN could deal with heterogeneous concept drift, i.e. different drift types and rates,
using biologically inspired memory models and their coordination. Rani and Sumathy
[28] used k-NN algorithm to determine the best optimal subset.

There are a few researches about Primal Estimated sub-Gradient Solver for SVM
(Pegasos) algorithm. Shalev-Shwartz et al. [29] described and analyzed a simple and
effective stochastic sub-gradient descent algorithm for solving the optimization prob-
lem cast by SVM. Their algorithm was particularly well suited for large text classifi-
cation problems, where authors demonstrated an order-of-magnitude speedup over
previous SVM methods. Farda [18] explored machine learning in Google Earth Engine
and its accuracy for multi-temporal land used mapping of coastal wetland area.

A Dynamic Ensemble Learning Framework for Data Stream Analysis 671

1.2 Datasets

Appropriate datasets were chosen that closely simulate ICS communication and
transaction data. They were used in the development and evaluation of the proposed
model. The following preprocessed network transaction data, and preprocessed to strip
lower layer transmission data, were used in this research (e.g. TCP, MAC) [15]:

• The water_tower_dataset includes 23 independent parameters and 236,179 instan-
ces, from which 172,415 are normal and 63,764 outliers. Totally 86,315 normal
instances were used in the training phase (water_train_dataset) whereas the
water_test_dataset comprised of 86,100 normal instances and 63,764 outliers.

• The gas_dataset includes 26 independent features and 97,019 instances, from which
61,156 normal and 35,863 outliers. Training of the algorithm was done with the
gas_train_dataset that contains 30,499 normal instances, whereas the gas_test_-
dataset comprises of 30,657 normal instances and 35,863 outliers.

• Finally, the electric_dataset includes 128 independent variables with 146,519
instances, from which 90,856 normal and 55,663 outliers. The training was per-
formed 4 based on the electric_train_dataset comprising of 45,402 normal instances,
whereas the rest 45,454 normal and the 55,663 outliers, belong to the
electric_test_dataset.

More details regarding the dataset and their choice can be found in [15].

2 Proposed Dynamic Weighted Average Methodology

This research proposes an intelligent and dynamic Ensemble Machine Learning system
(EMLS) [32] aiming to develop a stable and accurate framework, which will have the
ability to generalize. The EMLS employs an innovative version of the “Kappa”
architecture that combines the ARF, SPegasos and k-NN SAM algorithms. DEL-
DaStrA performs real time analysis and assessment of critical infrastructure data, in
order to classify and identify undesirable digital security situations, related to cyber-
attacks. The reason for using the ensemble approach, is the multivariance that usually
appears in such multifactorial problems of high complexity, due to the heterogeneity of
the data flows. This is a typical case of digital security and critical infrastructures.

The two most important advantages of the Ensemble Techniques focus on the fact
that they offer better prediction and more stable models, as the overall behavior of a
multiple model is less noisy than a corresponding single [23]. Also, an Ensemble
method can lead to very stable prediction models, while offering generalization.
Finally, these models can reduce the bias, the variance, and they can avoid overfitting
[17] producing robust learning models.

Three classifiers were employed in the development of this model (Ensemble Size).
The number of the classifiers was determined after considering the law of diminishing
returns in ensemble construction in a trial and error approach. The applied algorithms
were chosen based on their different decision-making philosophy and methodology to
address the problem, in order to cover the number of possible cases associated with the
tactic of attacks against critical infrastructure. In general, the choice was based on both

672 K. Demertzis et al.

static tests combined with the trial and error method, but also on the basic properties of
these algorithms regarding the way they handle each situation.

More specifically, the following approaches were used: SVM non-parametric
models due to the way they handle outliers. Random Forests which are using subsets of
the training sets with bagging, and subsets of features that favor the reduction of the
outliers’ or extreme values’ effect. The k-NN classifier is automatically non-linear, it
can detect linear or non-linear distributed data and it tends to perform very well with a
lot of data points. Also, the choice of the algorithms was based on the diversity of their
operation and parameterization (Reliability of Ensemble) which is achieved with dif-
ferent architectures, hyper-parameter settings and training techniques. The weights’
determination of the different models of the Ensemble, was based exclusively on static
trial and error tests [16].

The DELDaStrA operation mode, includes the parallel analysis of the data flow by
all three algorithms and the dynamic extraction of the weighted average of the three
results. More specifically, each data flow is checked by each algorithm and the clas-
sification accuracy is obtained. Then the maximum accuracy isincreased by a weight
equal to 0.6 whereas in the rest of the forecasts this weight is equal to 0.2 and the
weighted average is calculated. This process is presented in the pseudocode of the
following Algorithm 1.

Algorithm 1. Dynamic Weighted Average
Input: x1, x2, x3 /* classifier accuracy
Step 1: if ((x1 > x2) && (x1 > x3))

max = x1; else if(x2 > x3)
max = x2; else max = x3;

Step 2: Set wmax=0.6, w1=0.2 and w2=0.2
Step 3: Calculate

Output: The dynamic weighted average of classification accuracy

The use of the weighted average potential significantly enhances the visualization
of the trends in the estimated state, as it eliminates or at least minimizes the statistical
noise of the data streams. This is one of the best ways to assess the strength of a trend
and the likelihood of its reversal, as it places more weight on the classification with the
highest accuracy. It provides real indications before the start of a new situation or
event, thus allowing for a quick and optimal decision.

It is also important to note that this dynamic process ensures the adaptation of the
system to new situations, by offering generalization which is one of the key issues in
the field of machine learning. In this way we are implementing a robust framework
capable of responding to high complexity problems. Also, this architecture greatly
accelerates the process of making an optimal decision with the rapid convergence of the
multiple model, which is less noisy and much more reliable than a single learning
algorithm [23].

A Dynamic Ensemble Learning Framework for Data Stream Analysis 673

3 Ensemble Algorithms

3.1 Adaptive Random Forests

It is clear that data flow management and especially knowledge extraction procedures
with Machine Learning algorithms applied on the flows, are unlikely to be performed
with iterations over input data. Accordingly, the adaptation of the Random Forest
algorithm depends on a suitable accumulation process that is partly achieved by
bootstrap, and partly by limiting any decision to divide the sheets into a subset of
attributes. This is achieved by modifying the base tree algorithm, by effectively
reducing the set of features examined for further separation into random subsets of size
m, όπου m < M (M corresponds to the total number of characteristics examined per
case) [19].

In non-streaming bagging, each of the n-base models is trained in a Z-size bootstrap
sample, created by random samples being substituted by the original training kit. Each
bootstrapped sample contains a prototype training snapshot K, where P (K = k) follows
a binomial distribution. For large values of Z this binomial distribution adheres to a
Poisson distribution with λ = 1. In contrast to the ARF method for streaming data,
Poisson is used with λ = 6 instead of Poisson λ = 1. This “feedback” has the practical
effect of increasing the possibility of assigning higher weights to instances during the
training of the basic models.

ARF is an adaptation of the original Random Forest algorithm, which has been
successfully applied to a multitude of machine learning tasks. In layman’s terms the
original Random Forest algorithm is an ensemble of decision trees, which are trained
using bagging and where the node splits are limited to a random subset of the original
set of features. The “Adaptive” part of ARF comes from its mechanisms to adapt to
different kinds of concept drifts, given the same hyper-parameters.

The overall ARF pseudo-code is presented below [19].

Algorithm 2. Adaptive Random Forests
function ARF (m, n, δw, δd)
T ←CreateTrees(n)
W ←InitWeits(n)
B ←Ø
while HasNext(S) do

(x, y)←next(S)
for all t T do

←predict (t, x)
←

RFTreeTrain (m, t, x, y)
if C (δw, t, x, y) then

b←CreateTrees()
B(t)←b

end if
end for
for all b B do

RFTreeTrain (m, b, x, y)
end for

end while
end function

674 K. Demertzis et al.

Where m: the maximum features evaluated per split; n: the total number of trees
(n = |T|); δw: the warning threshold; δd: the drift threshold; c(�): the change detection
method; S: the data stream; B: the Set of background trees; W(t): the Tree t weight; P
(�): the learning performance estimation function.

3.2 K-NN Classifier with Self Adjusting

The k-NN SAM algorithm is inspired by the Short-Term and Long-Term memory
(STM & LTM) model [27]. The information arriving in STM, are accompanied by
relevant knowledge from the LTM. The information that receives enough attention is
transferred in the LTM in the form of the Synaptic Consolidation. The memories are
assigned the following sets MST, MLT, MC which are subsets of the Rn � 1; . . .; cf g.
The STM is a dynamic sliding window that contains the most recent m examples of the
data flow [27]:

MST ¼ xi; yið Þ 2 Rn � 1; . . .; cf gji ¼ t�mþ 1; . . .; tf g ð3Þ

The LTM retains all of the initial information and unlike the STM, it is not a
continuous part of the data flow. It is a set of points p:

MLT ¼ xi; yið Þ 2 Rn � 1; . . .; cf gji ¼ 1; . . .; pf g ð4Þ

The combined memory CM is the union of both memories with size m + p:

MC ¼ MST [MLT ð5Þ

Each set includes the weighted k-NN classifier:

Rn � 1; . . .; cf g; k � NNMST ; k � NNMLT ; k � NNMC ð6Þ

The k-NN approach assigns a label to each data point x based on a set
Z ¼ xi; yið Þ 2 Rn � 1; . . .; cf gji ¼ 1; . . .; nf g :

k � NNZ xð Þ ¼ argmax
X

xi2Nk x;Zð Þjyi¼ĉ

1
d xi; xð Þ jĉ ¼ 1; ::; c

8<
:

9=
; ð7Þ

where d xi; xð Þ is the Euclidean distance between two points and Nk x; Zð Þ returns the set
comprising of the k nearest neighbors x in Z [27].

3.3 Primal Estimated Sub-Gradient Solver for SVM

The SPegasos is a simple and effective stochastic sub-gradient descent algorithm for
solving the optimization problem by using SVM [29]. Initially, w1 is defined. In the
t iteration of the algorithm, we use a random training example xit ; yitð Þ by choosing an
index it 2 1; . . .; mf g. Then we use the following Eq. (8):

A Dynamic Ensemble Learning Framework for Data Stream Analysis 675

min
w

k
2

wk k2þ 1
m

X
x;y2S

l w; x; yð Þð Þ ð8Þ

where l w; x; yð Þð Þ ¼ max 0; 1� y w; xh if g; with a sample xit ; yitð Þ, giving input to the
following function:

f w; itð Þ ¼ k
2

wk k2þ l w; xit ; yitð Þð Þ ð9Þ

where
ð10Þ

and is the index function, which takes the value 1 if the argument is
true and it becomes equal to 0 in any other case. Then, we update the relation wtþ 1
wt � gtrt by using weight step gt ¼ 1

kt. After Τ iterations, the last value of the weight is
the wT +1 [29].

4 Results and Discussion

We have evaluated the performance of the proposed methods by measuring the average
values for Kappa Statistic and Kappa Temporal Statistic. The results of all experiments
are shown in the following Tables 1, 2 and 3.

The learning evaluation used 10,000 instances and the validation of the results was
done by employing the Prequential Evaluation method [3]. The training window used
5,000 instances. Window based approaches were allowed to store 5,000 samples (for
the sake of completeness, we also report the error rates of all window-based approaches
with a window size of 1,000 samples) but never more than 10% of the whole dataset.
This large amount gives the approaches a high degree of freedom and prevents the
concealment of their qualities with a too restricted window.

Table 1. Results for the water_tower_dataset

Network traffic analysis

Performance metrics

Classifier Window size 5000 Window size 1000
Kappa
statistic

Kappa temporal
statistic

Kappa
statistic

Kappa temporal
statistic

k-NN SAM 74.56% 75.29% 79.22% 79.96%
SPegasos 72.07% 72.94% 74.65% 76.51%
ARF 71.86% 72.47% 75.24% 77.72%
Ensemble
averaging

73.52% 74.26% 77.51% 78.82%

676 K. Demertzis et al.

The assessment of the actual error of the data flow classifiers, is done in terms of the
Accuracy Kappa statistic and the Kappa-Temporal statistic. The “true” label is pre-
sented right after the instance has been used for testing, where there is a delay between
the time an instance is presented and the moment in which its “true” label becomes
available [30]. The use of the dynamically estimated weighted average is the optimal
approach, considering that is solves a real problem of information systems security,
where it is rare for all data flows to have the same importance. The algorithm, which
has achieved the highest accuracy for each data stream, is multiplied by the corre-
sponding weighting factor of 0.6, reflecting its transient superiority and hence the
relative importance of the model to the particular algorithm at that time.

Based on this technique, the model is led to a relatively smooth but high learning
rate, which determines how quickly learning is converging. A high rate of learning can
lead to faster convergence and oscillation around optimal weight values, while the low
rate of learning results in slower convergence and can lead to trapping at local
extremes. The high learning rate is confirmed by the high accuracy rates of the model,
since very small size data flows are considered compared to the evaluation of a batch
data set. According to this technique, the quality of the model’s adaptation is inter-
preted as a “better forecasting” rate, due to the increased percentage of classification

Table 2. Results for the gas_dataset

Network traffic analysis

Performance metrics

Classifier Window size 5000 Window size 1000
Kappa
statistic

Kappa temporal
statistic

Kappa
statistic

Kappa temporal
Statistic

k-NN SAM 72.03% 72.73% 74.18% 75.41%
SPegasos 72.02% 72.69% 73.94% 75.01%
ARF 71.83% 72.41% 73.87% 74.89%
Ensemble
averaging

71.99% 72.66% 74.07% 75.23%

Table 3. Results for the electric_dataset

Network traffic analysis

Performance metrics

Classifier Window size 5000 Window size 1000
Kappa
statistic

Kappa temporal
statistic

Kappa
statistic

Kappa temporal
statistic

k-NN SAM 75.72% 76.33% 78.93% 79.56%
SPegasos 75.63% 76.12% 77.95% 78.93%
ARF 74.47% 75.16% 76.18% 77.97%
Ensemble
averaging

75.45% 76.05% 78.19% 79.17%

A Dynamic Ensemble Learning Framework for Data Stream Analysis 677

precision. More specifically, the temporal bias created to the dynamics of a model at a
specific time, is reflected in the high precision percentages of Table 1.

An additional important interpretation, resulting from the high accuracy of the 9
learning algorithms and the mild “mutation”, attributable to the dynamically deter-
mined weighted average, is to assist in discovering the local extremes that may be
included in a data flow or in a learning window. This is expected, since new areas of
the multidimensional solution space are examined.

On the contrary, if the “mutation” rate was too high, it could lead to a reduction in
the exploitation of highly suitable areas of the solution space, and it could trap the
system into solutions that do not generalize [30, 33]. An important comment also refers
to the Kappa coefficient that links the level of observed agreement to the level of the
random agreement. It estimates the variability in each observer rater variation that
occurs when the same observer - evaluates differently in repeated evaluations of the
same size. The maximum value of the Kappa index represents the full agreement
between observers - markers, while the minimum value 0 is interpreted as there is only
random agreement and thus no reliability between observers - markers.

As we can see, there is considerable reliability in all cases tested, which also
strengthens the overall reliability and usability of the proposed model. Similarly, by
attempting a comparison of the results between the algorithms, we see that the ARF
method generally needs a larger number of cases to yield new data. In addition, ARF
works by combining some loose linear boundaries on the decision surface, as opposed
to SPegasos which can achieve max margin in non-linear boundaries. Therefore, given
that sliding windows are characterized by a small amount of data, SPegasos yielded
higher success rates than ARF. Regarding the comparison between SPegasos and k-NN
SAM, an clear reason that k-NN SAM performed better, is because a particular
problem is located in a high-dimensional space where this algorithm is more efficient.
Also, the optimal combination of the two levels of memory, the different retention
intervals between the memories and the transfer of knowledge, has been shown to
minimize errors and to increase classification accuracy.

5 Conclusions

An innovative, reliable and highly effective cyberattack detection system, based on
sophisticated computational intelligence, was presented in this paper. The DELDaStrA,
is an innovative effort to analyze large-scale, reliable and accurate data flows in order to
detect cyber-attacks in critical infrastructure networks. The implementation of DEL-
DaStrA was based on the philosophy of the dynamic ensemble learning method, which
ensures the adaptation of the system to new situations offering impartiality and gen-
eralization. It is a robust framework capable of responding to high complexity prob-
lems. The performance of the proposed system has been tested by using three
multidimensional datasets of high complexity. These datasets were obtained after
extensive research in the operation of ICS (SCADA, DCS, PLC). They realistically
state the operating states of these devices under normal conditions and under situations
of cyberattacks. The very high precision results that have emerged, reinforce the
general methodology followed. Proposals for the development and future

678 K. Demertzis et al.

http://dx.doi.org/10.1007/978-3-030-01418-6_1

improvements of this system, should focus on further optimizing the algorithms used to
achieve an even more efficient, accurate and faster classification process. Also, new
approaches for further optimization should be considered, by employing self-
improvement and adaptive learning, which will fully automate the cyber-detection
process.

References

1. Ahmim, A., Ghoualmi-Zine, N.: A new adaptive intrusion detection system based on the
intersection of two different classifiers. Int. J. Secur. Netw. 9(3), 125–132 (2014)

2. Aretz, K., Bartram, S.M., Pope, P.F.: Asymmetric loss functions and the rationality of
expected stock returns. Int. J. Forecast. 27(2), 413–437 (2011)

3. Brzezinski, D., Stefanowski, J.: Prequential AUC for classifier evaluation and drift detection
in evolving data streams. In: Appice, A., Ceci, M., Loglisci, C., Manco, G., Masciari, E.,
Ras, Z.W. (eds.) NFMCP 2014. LNCS (LNAI), vol. 8983, pp. 87–101. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-17876-9_6

4. Chand, N., Mishra, P., Krishna, C.R., Pilli, E.S., Govil, M.C.: A comparative analysis of
SVM and its stacking with other classification algorithm for intrusion detection. In:
Proceedings - 2016 International Conference on Advances in Computing, Communication
and Automation, ICACCA 2016, pp. 1–6 (2016)

5. Dedić, N., Stanier, C.: Towards differentiating business intelligence, big data, data analytics
and knowledge discovery. In: Piazolo, F., Geist, V., Brehm, L., Schmidt, R. (eds.) ERP
Future 2016. LNBIP, vol. 285, pp. 114–122. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58801-8_10

6. Demertzis, K., Iliadis, L.: A hybrid network anomaly and intrusion detection approach based
on evolving spiking neural network classification. In: Sideridis, A.B., Kardasiadou, Z.,
Yialouris, C.P., Zorkadis, V. (eds.) E-Democracy 2013. CCIS, vol. 441, pp. 11–23. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11710-2_2

7. Demertzis, K., Iliadis, L.: Evolving computational intelligence system for malware detection.
In: Iliadis, L., Papazoglou, M., Pohl, K. (eds.) CAiSE 2014. LNBIP, vol. 178, pp. 322–334.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07869-4_30

8. Demertzis, K., Iliadis, L.: Evolving smart URL filter in a zone-based policy firewall for
detecting algorithmically generated malicious domains. In: Gammerman, A., Vovk, V.,
Papadopoulos, H. (eds.) SLDS 2015. LNCS (LNAI), vol. 9047, pp. 223–233. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-17091-6_17

9. Demertzis, K., Iliadis, L.: A bio-inspired hybrid artificial intelligence framework for cyber
security. In: Daras, N.J., Rassias, M.T. (eds.) Computation, Cryptography, and Network
Security, pp. 161–193. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18275-9_7

10. Demertzis, K., Iliadis, L.: SAME: an intelligent anti-malware extension for android ART
virtual machine. In: Núñez, M., Nguyen, N.T., Camacho, D., Trawiński, B. (eds.) ICCCI
2015. LNCS (LNAI), vol. 9330, pp. 235–245. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24306-1_23

11. Demertzis, K., Iliadis, L.: Bio-inspired hybrid intelligent method for detecting android
malware. In: Kunifuji, S., Papadopoulos, G.A., Skulimowski, A.M.J., Kacprzyk, J. (eds.)
Knowledge, Information and Creativity Support Systems. AISC, vol. 416, pp. 289–304.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27478-2_20

12. Demertzis, K., Iliadis, L.: Ladon: a cyber-threat bio-inspired intelligence management
system. J. Appl. Math. Bioinf. 6(3), 45–64 (2016)

A Dynamic Ensemble Learning Framework for Data Stream Analysis 679

http://dx.doi.org/10.1007/978-3-319-17876-9_6
http://dx.doi.org/10.1007/978-3-319-58801-8_10
http://dx.doi.org/10.1007/978-3-319-58801-8_10
http://dx.doi.org/10.1007/978-3-319-11710-2_2
http://dx.doi.org/10.1007/978-3-319-07869-4_30
http://dx.doi.org/10.1007/978-3-319-17091-6_17
http://dx.doi.org/10.1007/978-3-319-18275-9_7
http://dx.doi.org/10.1007/978-3-319-24306-1_23
http://dx.doi.org/10.1007/978-3-319-24306-1_23
http://dx.doi.org/10.1007/978-3-319-27478-2_20

13. Demertzis, K., Iliadis, L., Spartalis, S.: A spiking one-class anomaly detection framework for
cyber-security on industrial control systems. In: Boracchi, G., Iliadis, L., Jayne, C., Likas, A.
(eds.) EANN 2017. CCIS, vol. 744, pp. 122–134. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-65172-9_11

14. Demertzis, K., Iliadis, L., Anezakis, V.-D.: An innovative soft computing system for smart
energy grids cybersecurity. Adv. Build. Energy Res. 12(1), 3–24 (2018)

15. Demertzis, K., Iliadis, L., Anezakis, V.D.: A deep spiking machine-hearing system for the
case of invasive fish species. In: 2017 IEEE International Conference on Innovations in
Intelligent Systems and Applications, pp. 23–28. ΙΕΕΕ (2017)

16. Demertzis, K., Iliadis, L., Anezakis, V.-D.: Commentary: Aedes albopictus and Aedes
japonicus—two invasive mosquito species with different temperature niches in Europe.
Front. Environ. Sci. 5(DEC), 85 (2017)

17. Dietterich, Thomas G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.)
MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45014-9_1

18. Farda, N.M.: Multi-temporal land use mapping of coastal wetlands area using machine
learning in Google earth engine. In: 5th Geoinformation Science Symposium 2017, vol. 98,
no. 1, pp. 1–12 (2017)

19. Gomes, H.M., et al.: Adaptive random forests for evolving data stream classification. Mach.
Learn. 106(9–10), 1469–1495 (2017). https://doi.org/10.1007/s10994-017-5642-8

20. Hurst, W., Merabti, M., Fergus, P.: A survey of critical infrastructure security. In: Butts, J.,
Shenoi, S. (eds.) ICCIP 2014. IAICT, vol. 441, pp. 127–138. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45355-1_9

21. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble learning for
data stream analysis: a survey. Inf. Fus. 37, 132–156 (2017)

22. Krawczyk, B., Cano, A.: Online ensemble learning with abstaining classifiers for drifting
and noisy data streams. Appl. Soft Comput. 68, 677–692 (2018)

23. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms, 1st edn. Wiley,
Hoboken (2004). ISBN 0-471-21078-1

24. Kushner, H.J., Yin, G.G.: Stochastic Approximation and Recursive Algorithms and
Applications. Stochastic Modeling and Applied Probability, vol. 35, 2nd edn. Springer,
Heidelberg (2003). https://doi.org/10.1007/b97441

25. Lin, J.: The Lambda and the Kappa. IEEE Internet Comput. 21(5), 60–66 (2017)
26. Liu, S.M., Liu, T., Wang, Z.Q., Xiu, Y., Liu, Y.X., Meng, C.: data stream ensemble

classification based on classifier confidence. J. Appl. Sci. 35(2), 226–232 (2017)
27. Losing, V., Hammer, B., Wersing, H.: KNN classifier with self-adjusting memory for

heterogeneous concept drift. In: 16th IEEE International Conference on Data Mining, vol.
7837853, pp. 291–300. IEEE (2017)

28. Rani, M.S., Sumathy, S.: Analysis of KNN, C5.0 and one class SVM for intrusion detection
system. Int. J. Pharm. Technol. 8(4), 26251–26259 (2016)

29. Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter, A.: Pegasos: primal estimated sub-
gradient solver for SVM. Math. Program. 127(1), 3–30 (2011)

30. Vinagre, J., Jorge, A.M., Gama, J.: Evaluation of recommender systems in streaming
environments. In: Workshop on Recommender Systems Evaluation: Dimensions and
Design, SV, US, pp. 1–6 (2014)

31. Wang, C., Fang, L., Dai, Y.: A simulation environment for SCADA security analysis and
assessment. In: Conference on Measuring Technology and Mechatronics Automation, vol. 1,
pp. 342–347. IEEE (2010)

680 K. Demertzis et al.

http://dx.doi.org/10.1007/978-3-319-65172-9_11
http://dx.doi.org/10.1007/978-3-319-65172-9_11
http://dx.doi.org/10.1007/3-540-45014-9_1
http://dx.doi.org/10.1007/3-540-45014-9_1
http://dx.doi.org/10.1007/s10994-017-5642-8
http://dx.doi.org/10.1007/978-3-662-45355-1_9
http://dx.doi.org/10.1007/b97441

32. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. Chapman & Hall/CRC
Machine Learning & Pattern Recognition Series, 1st edn. CRC Press, T&F, New York
(2012)

33. Žliobaitė, I., Bifet, A., Read, J., Pfahringer, B., Holmes, G.: Evaluation methods and
decision theory for classification of streaming data with temporal dependence. Mach. Learn.
98(3), 455–482 (2014)

A Dynamic Ensemble Learning Framework for Data Stream Analysis 681

Fuzzy/Feature Selection

Gaussian Kernel-Based Fuzzy Clustering
with Automatic Bandwidth Computation

Francisco de A. T. de Carvalho1(B), Lucas V. C. Santana1,
and Marcelo R. P. Ferreira2

1 Centro de Informatica, Universidade Federal de Pernambuco,
Av. Jornalista Anibal Fernandes s/n - Cidade Universitaria,

Recife-PE 50740-560, Brazil
fatc@cin.ufpe.br

2 Departamento de Estatistica, Centro de Ciências Exatas e da Natureza,

Universidade Federal da Paraiba, João Pessoa-PB 58051-900, Brazil

Abstract. The conventional Gaussian kernel-based fuzzy c-means clus-
tering algorithm has widely demonstrated its superiority to the conven-
tional fuzzy c-means when the data sets are arbitrarily shaped, and not
linearly separable. However, its performance is very dependent on the
estimation of the bandwidth parameter of the Gaussian kernel function.
Usually this parameter is estimated once and for all. This paper presents
a Gaussian fuzzy c-means with kernelization of the metric which depends
on a vector of bandwidth parameters, one for each variable, that are
computed automatically. Experiments with data sets of the UCI machine
learning repository corroborate the usefulness of the proposed algorithm.

1 Introduction

Clustering means the task of organizing a set of items into clusters such that
items within a given cluster have a high degree of similarity, while items belong-
ing to different clusters have a high degree of dissimilarity. Clustering has been
successfully used in different fields, including bioinformatics, image processing,
and information retrieval [14,21].

Hierarchy and Partition are the most popular cluster structures provided
by clustering methods. Hierarchical methods yield a complete hierarchy, i.e., a
nested sequence of partitions of the input data, whereas partitioning methods
aims to obtain a single partition of the data into a fixed number of clusters,
usually based on an iterative algorithm that optimizes an objective function.

Partitioning methods can be divided into crisp and fuzzy. Crisp clustering
provides a crisp partition in which each object of the dataset belongs to one and
only one cluster. Fuzzy clustering [1] generates a fuzzy partition that provides
a membership degree for each object in a given cluster. This allows distinguish
objects that belong to more than one cluster at the same time [15].

Fuzzy c-means partitioning algorithms often use the Euclidean distance to
compute the dissimilarity between the objects and the cluster representatives.
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 685–694, 2018.
https://doi.org/10.1007/978-3-030-01418-6_67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_67&domain=pdf

686 F. A. T. de Carvalho et al.

However, when the data structure is complex (i.e., clusters with non-hyper-
spherical shapes and/or linearly non-separable patterns), the conventional fuzzy
c-means will not be able to provide effective results. Kernel-based clustering
algorithms have been proposed to tackle these limitations [3,6,8,9].

There are two major variations of kernel-based clustering: one is the kernel-
ization of the metric, where the cluster centroids are obtained in the original
space and the distances between objects and cluster centroids are computed by
means of kernels, while the other is the clustering in feature space, in which the
cluster representatives are not in the original space and can only be obtained
indirectly in the feature space [3,9].

In kernel-based clustering algorithms it is possible to compute Euclidean
distances by using kernel functions and the so-called distance kernel trick [9].
This trick uses a kernel function to calculate the dot products of vectors implicitly
in the higher dimensional space using the original space.

The most popular kernel function in applications is the Gaussian kernel. In
general, this kernel function provides effective results and requires the tuning
of a single parameter, that is, the bandwidth parameter [4]. This parameter
is tuned once and for all, and it is the same for all variables. Thus, implicitly
the conventional Gaussian kernel fuzzy c-means assumes that the variables are
equally rescaled and, therefore, they have the same importance to the clustering
task. However, it is well known that some variables have different degrees of
relevance while others are irrelevant to the clustering task [7,11,17,20].

Recently, Ref. [5] proposed a Gaussian kernel c-means crisp clustering algo-
rithm with kernelization of the metric, where each variable has its own hyper-
parameter that is iteratively computed during the running of the algorithm.

The main contribution of this paper is to provide a Gaussian kernel c-means
fuzzy clustering algorithms, with both kernelization of the metric and automated
computation of the bandwidth parameters using an adaptive Gaussian kernel. In
these kernel-based fuzzy clustering algorithm, the bandwidth parameters change
at each algorithm iteration and differ from variable to variable. Thus, these
algorithms are able to rescale the variables differently and thus select the relevant
ones for the clustering task.

The paper is organized as follows. Section 2 first recalls the conventional
kernel c-means fuzzy clustering algorithm with kernelization of the metric. Then
presents the Gaussian c-Means fuzzy clustering algorithm with kernelization of
the metric and with automatic computation of bandwidth parameters. In Sect. 3,
experiments with data sets of the UCI machine learning repository corroborate
the usefulness of the proposed algorithm. Section 4 provides the final remarks of
the paper.

2 Kernel Fuzzy c-Means with Kernelization
of the Metric

This section briefly recalls the basic concepts about kernel functions and the
conventional kernel c-means algorithm with kernelization of the metric. Let E =

Gaussian Kernel-Based Fuzzy Clustering 687

{e1, . . . , en} be a set of n objects described by p real-valued variables. Let D =
{x1, . . . ,xn} be a non-empty set where for k = 1, . . . , n, the kth object ek is
represented by a vector xk = (xk1, . . . , xkp) ∈ R

p. A function K : D × D → R is
called a positive definite Kernel (or Mercer kernel) if, and only if K is symmetric
(i.e., K(xk,xl) = K(xl,xk) and if the following inequality holds [18]:

n∑

l=1

n∑

k=1

clckK(xl,xk) ≥ 0,∀n ≥ 2 (1)

where cl, ck ∈ R(1 ≤ l, k ≤ n).
Let Φ : D → F be a nonlinear mapping from the input space D to a high

dimensional feature space F . By applying the mapping Φ, the inner product
xT

l xk in the input space is mapped to Φ(xl)T Φ(xk) in the feature space. The
basic notion in the kernel approaches is that the non-linear mapping Φ does not
need to be explicitly specified because each Mercer kernel can be expressed as
K(xl,xk) = Φ(xl)T Φ(xk) [18].

One the most relevant implications is that it is possible to compute Euclidean
distances in F without knowing explicitly Φ, by using the so-called distance
kernel trick [9]:

||Φ(xl) − Φ(xk)|| = (Φ(xl) − Φ(xk))T (Φ(xl) − Φ(xk))
= Φ(xl)T Φ(xl) − 2Φ(xl)T Φ(xk) + Φ(xk)T Φ(xk)
= K(xl,xl) − 2K(xl,xk) + K(xk,xk).

2.1 Kernel Fuzzy c-Means with Kernelization of the Metric

The kernel fuzzy c-means with kernelization of the metric (hereafter named
KFCM-K) provides a fuzzy partition of E into c clusters, represented by a matrix
of membership degrees U =

(
uki

)
(1 ≤ k ≤ n; 1 ≤ i ≤ c), and a matrix of cluster

representatives (called hereafter matrix of prototypes) G = (g1, . . . ,gc) of the
fuzzy clusters in the fuzzy partition U. The prototype of cluster i (i = 1, . . . , c)
is represented by the vector gi = (gi1, . . . , gip) ∈ R

p.
From an initial solution, the matrix of prototypes G and the fuzzy partition

U are obtained iteratively in two steps (representation and assignment) by the
minimization of a suitable objective function, here-below denoted as JKFCM−K ,
that gives the total heterogeneity of the fuzzy partition computed as the sum of
the heterogeneity in each fuzzy cluster:

JKFCM−K(G,U) =
c∑

i=1

n∑

k=1

(uki)m ||Φ(xk) − Φ(gi)||2 (2)

where 1 < m < ∞ is the fuzziness parameter. Using the so-called distance kernel
trick [9], we have ||Φ(xk) − Φ(gi)||2 = K(xk,xk) − 2K(xk,gi) + K(gi,gi).

Hereafter we consider the Gaussian kernel, the most commonly used in the lit-
erature: K(xl,xk) = exp

{
− ||xl−xk||2

2σ2

}
= exp

{
− 1

2

∑p
j=1

1
σ2 (xlj − xkj)2

}
, where

σ2 is the bandwidth parameter of the Gaussian kernel.

688 F. A. T. de Carvalho et al.

Then, K(xk,xk) = 1, ∀k, K(gi,gi) = 1,∀i, and ||Φ(xk) − Φ(gi)||2 = 2 −
2K(xk,gi) and thus, the objective function JKFMC−K becomes:

JKFCM−K(G,U) = 2
c∑

i=1

n∑

k=1

(uki)m (1 − K(xk,gi)) (3)

During the representation step, the fuzzy partition U is kept fixed. The
objective function JKFMC−K is optimized with respect to the prototypes. Thus,
from ∂JKFMC−K

∂gi
= 0 and after some algebra, the fuzzy cluster prototypes are

obtained as follows:

gi =
∑n

k=1(uki)m K(xk,gi)xk∑n
k=1(uki)mK(xk,gi)

(1 ≤ i ≤ c). (4)

In the assignment step, the cluster prototypes are kept fixed. The compo-
nents uki (1 ≤ k ≤ n; 1 ≤ i ≤ c) of the matrix of membership degrees U, that
minimizes the clustering criterion given in Eq. (3), are computed as follows:

uki =

[
c∑

h=1

(
(1 − K(xk,gi))
(1 − K(xk,gh))

) 1
m−1

]−1

. (5)

2.2 KFCM-K with Automatic Computation of Bandwidth
Parameters

The kernel fuzzy c-means with kernelization of the metric and automatic com-
putation of bandwidth parameters (hereafter named KFCM-K-H) provides a
partition of E into c clusters, represented by a matrix of membership degrees
U =

(
uki

)
(1 ≤ k ≤ n; 1 ≤ i ≤ c), a vector of bandwidth parameters (one for

each variable) s = (s21, . . . , s
2
p) and a matrix of prototypes G = (g1, . . . ,gc) of

the fuzzy clusters in the fuzzy partition U.
From an initial solution, the matrix of prototypes G, the vector of band-

width parameters s and the fuzzy partition U are obtained interactively in three
steps (representation, computation of the bandwidth parameters and assign-
ment) by the minimization of a suitable objective function, here-below denoted
as JKFCM−K−H , that gives the total heterogeneity of the fuzzy partition com-
puted as the sum of the heterogeneity in each fuzzy cluster:

JKFCM−K−H(G, s,U) =
c∑

i=1

n∑

k=1

(uki)m||Φ(xk) − Φ(gi)||2 (6)

where

||Φ(xk) − Φ(gi)||2 = K(s)(xk,xk) − 2K(s)(xk,gi) + K(s)(gi,gi) (7)

with

K(s)(xl,xk) = exp

⎧
⎨

⎩−1
2

p∑

j=1

1
s2j

(xlj − xkj)2

⎫
⎬

⎭

Gaussian Kernel-Based Fuzzy Clustering 689

Because K(s)(xk,xk) = 1, ∀k, K(s)(gi,gi) = 1,∀i, and ||Φ(xk) − Φ(gi)||2 =
2 − 2K(s)(xk,gi), the objective function JKFMC−K−H becomes:

JKFCM−K−H(G, s,U) = 2
c∑

i=1

n∑

k=1

(uki)m(1 − K(s)(xk,gi)) (8)

During the representation step, the vector of bandwidth parameters s and
the fuzzy partition U are kept fixed. The objective function JKFMC−K−H is
optimized with respect to the prototypes. Thus, from ∂JKFMC−K−H

∂gi
= 0 and

after some algebra, the cluster prototypes are obtained as follows:

gi =
∑n

k=1(uki)mK(s)(xk,gi)xk∑n
k=1(uki)mK(s)(xk,gi)

(1 ≤ i ≤ c). (9)

In the computation of the bandwidth parameters step, the matrix of pro-
totypes G and the fuzzy partition U are kept fixed. First, we use the method
of Lagrange multipliers with the restriction that

∏p
j=1

(
1
s2
j

)
= γ, where γ is a

suitable parameter, and obtain

L1
KFCM−K−H(G, s,U) = 2

c∑

i=1

n∑

k=1

(uki)m(1 − K(s)(xk,gi)) − ω

⎛

⎝
p∏

j=1

1
s2j

− γ

⎞

⎠ .

(10)
Then, we compute the partial derivatives of L1

KFCM−K−H w.r.t 1
s2
j

and ω,
and by setting the partial derivatives to zero, and after some algebra we obtain

1
s2j

=
γ

1
p

{
p∏

h=1

[
c∑

i=1

n∑
k=1

(uki)mK(s)(xk,gi)(xkh − gih)2
]}

c∑
i=1

n∑
k=1

(uki)mK(s)(xk,gi)(xkj − gij)2
(1 ≤ j ≤ p). (11)

In the assignment step, the matrix of fuzzy cluster prototypes G and the
vector of bandwidth parameters s are kept fixed. First, we use the method of
Lagrange multipliers with the restriction that

∑c
i=1 uki = 1, and obtain

L2
KFCM−K−H(G, s,U)=2

c∑

i=1

n∑

k=1

(uki)m(1−K(s)(xk,gi))−
n∑

k=1

ωk

(
c∑

i=1

uki − 1

)
.

(12)
Then, we compute the partial derivatives of L2

KFCM−K−H w.r.t uki and ωk,
and by setting the partial derivatives to zero, and after some algebra we obtain

uki =

[
c∑

h=1

(
(1 − K(s)(xk,gi))
(1 − K(s)(xk,gh))

) 1
m−1

]−1

(1 ≤ k ≤ n; 1 ≤ i ≤ c). (13)

690 F. A. T. de Carvalho et al.

Algorithm 1. KCM-K and KCM-K-H algorithms
1: Iput
2: D = {x1, . . . ,xn} (the data set); c (the number of clusters); γ > 0 (a suitable

parameter); T (maximum number of iterations); ε (threshold parameter);
3: Output
4: KCM-K-GH and KCM-K-LH: the matrix of prototypes G = (g1, . . . ,gc);
5: KCM-K-H: the vector of bandwidth parameters s = (s21, . . . , s2p);

6: KCM-K-GH and KCM-K-LH: the matrix of membership degrees U =
(
uki

)
(1 ≤

k ≤ n; 1 ≤ i ≤ c).
7: Initialization
8: t = 0;

9: KCM-K and KCM-K-H: randomly select c distinct prototypes g
(t)
i ∈ D (1 ≤ i ≤

c);

10: KCM-K-H: set 1

(s
(t)
j)2

= (γ)
1
p (1 ≤ j ≤ p);

11: KCM-K: compute the components u
(t)
ki (1 ≤ k ≤ n; 1 ≤ i ≤ c) of the the matrix

of membership degrees U(t) according to Eq. (5);

12: KCM-K-H: compute the components u
(t)
ki (1 ≤ k ≤ n; 1 ≤ i ≤ c) of the the matrix

of membership degrees U(t) according to Eq. (13).

13: KCM-K: compute JKFCM−K(G(t),U(t)) according to Eq. (3);

14: KCM-K-H: compute JKFCM−K−H(G(t), s(t),U(t)) according to Eq. (8).
15: repeat
16: t = t + 1;
17: Step 1: representation.

18: KCM-K: compute the cluster representatives g
(t)
1 , . . . ,g

(t)
c using Eq. (4);

19: KCM-K-H: compute the cluster representatives g
(t)
1 , . . . ,g

(t)
c using Eq. (9).

20: Step 2: computation of the vector of bandwidth parameters
21: KCM-K: skip this step;
22: KMC-K-H: compute the vector of bandwidth parameters s(t) using Eq. (11);
23: Step 3: assignment

24: KCM-K: compute the components u
(t)
ki (1 ≤ k ≤ n; 1 ≤ i ≤ c) of the the matrix

of membership degrees U(t) according to Eq. (5).

25: KCM-K-H: compute the components u
(t)
ki (1 ≤ k ≤ n; 1 ≤ i ≤ c) of the the

matrix of membership degrees U(t) according to Eq. (13).

26: KCM-K: compute JKFCM−K(G(t),U(t)) according to Eq. (3).

27: KCM-K-H: compute JKFCM−K−H(G(t), s(t),U(t)) according to Eq. (8).
28: until
29: KCM-K: |JKFCM−K(G(t),U(t)) − JKFCM−K(G(t−1),U(t−1))| < ε or t > T ;
30: KCM-K-H:

|JKFCM−K−H(G(t), s(t),U(t))−JKFCM−K−H(G(t−1), s(t−1),U(t−1))| < ε or
t > T .

2.3 The Algorithms

The two steps of KFCM-K and the three steps of KFCM-K-H are repeated until
the convergence. The Algorithm 1 summarizes these steps.

3 Empirical Results

This section discusses the performance and the usefulness of the proposed algo-
rithm in comparison with the standard KFCM-K and FCM [1] algorithms.

Gaussian Kernel-Based Fuzzy Clustering 691

Twelve datasets from the UCI Machine learning Repository [2], namely,
Breast tissue, Ecoli, Image segmentation, Iris plants, Leaf, Libras Movement,
Multiple features, Seeds, Thyroid gland, Urban land cover, Breast cancer wis-
consin (diagnostic), and Wine, with different number of objects, variables and a
priori classes, were considered in this study. Table 1 (in which n is the number
of objects, p is the number of real-valued variables and K is the number of a
priori classes) summarizes these data sets.

Table 1. Summary of the data sets

Data sets n p K Data sets n p K

Breast tissue 106 9 6 Multiple features 2000 649 10

Ecoli 336 7 8 Seeds 210 7 3

Image segmentation 2100 19 7 Thyroid gland 215 5 3

Iris 150 4 3 Urban land cover 675 148 9

Leaf 310 14 36 Brest cancer winsconsin 569 30 2

Libras Movement 360 90 15 Wine 178 13 3

FCM, KFCM-K and KFCM-K-H were run on these data sets 100 times,
with c (the number of clusters) equal to K (the number of a priori classes). The
parameter gamma of the KFCM-K-H algorithm was set as γ = (σ2)p, where σ is
the optimal width hyper-parameter used in the conventional KFCM-K algorithm
that is estimated as the average of the 0.1 and 0.9 quantiles of ||xl −xk||2, l �= k
[4]. The fuzziness parameter was set as m = 1.6 and m = 2.0.

To compare the quality of the fuzzy partitions provided by these algorithms,
the Rand index for a fuzzy partition (Rand-F) [10], and the Hullemeyer index
(HUL) [13] were considered. Rand-F and HUL indexes allow to compare the
dataset a priori partition with the fuzzy partitions provided by the algorithms.
They range between 0 and 1, where a value equal to one corresponds to total
agreement between the partitions.

Table 2 shows the best results (according to the respective objective func-
tions) of the FCM, KCM-K and KCM-K-H algorithms on the data sets of Table 1,
according to the Rand-F and HUL indexes and for the fuzziness parameter set
as m = 1.6 and m = 2.0.

It can be observed that whatever the considered indexes (Rand-F and HUL),
FCM (for the great majority of the datasets), KFCM-K (for the great major-
ity of the datasets) and KFCM-K-H (for the totality of the datasets) algo-
rithms performed better with the m = 1.6. Moreover, whatever the considered
indexes and fuzziness parameters, the KFCM-K-H algorithm performed better
than the KFCM-K algorithm on the majority of the data sets of the Table 1.
Besides, whatever the considered indexes and fuzziness parameters, the stan-
dard FCM algorithm outperformed both KFCM-K and KFCM-K-H algorithms
on the majority of the datasets of the Table 1. This is not unexpected because

692 F. A. T. de Carvalho et al.

Table 2. Performance of the algorithms: fuzzy partition

Rand-F HUL
FCM KFCM-K KFCM-K-H FCM KFCM-K KFCM-K-H

Data sets m = 1.6 m = 2.0 m = 1.6 m = 2.0 m = 1.6 m = 2.0 m = 1.6 m = 2.0 m = 1.6 m = 2.0 m = 1.6 m = 2.0
Breast tissue 0.6236 0.6296 0.7153 0.7280 0.7268 0.7095 0.6205 0.6143 0.6937 0.6183 0.7163 0.6505
Ecoli 0.7624 0.7239 0.7246 0.6969 0.7653 0.7211 0.7445 0.6470 0.6364 0.5263 0.7524 0.6448
Image segmentation 0.7796 0.7787 0.7571 0.7588 0.8671 0.8113 0.7171 0.5974 0.4155 0.3111 0.8404 0.7049
Iris 0.8620 0.8131 0.7723 0.6881 0.7999 0.7037 0.8641 0.8187 0.7661 0.6632 0.8004 0.6880
Leaf 0.9528 0.9450 0.9499 0.9452 0.9551 0.9462 0.9035 0.7416 0.8223 0.5798 0.8772 0.6414
Libras Movement 0.8887 0.8793 0.8813 0.8789 0.8815 0.8788 0.6543 0.2603 0.3998 0.2656 0.4039 0.2599
Multiple features 0.8689 0.8500 0.8284 0.8227 0.8291 0.8226 0.8336 0.7141 0.3915 0.2707 0.3967 0.2590
Seeds 0.8287 0.7608 0.6047 0.5798 0.7515 0.6675 0.8268 0.7543 0.5133 0.4547 0.7412 0.6339
Thyroid gland 0.7195 0.6070 0.4941 0.4913 0.5731 0.4985 0.7213 0.6175 0.4634 0.4647 0.5856 0.5257
Urban land cover 0.7320 0.7477 0.7836 0.7830 0.8039 0.7852 0.6371 0.5184 0.2960 0.2085 0.5442 0.2755
Brest cancer winsconsin 0.7317 0.7151 0.5000 0.5000 0.7531 0.6452 0.7346 0.7234 0.5046 0.5095 0.7731 0.6978
Wine 0.7015 0.6758 0.8198 0.6664 0.7683 0.6471 0.6987 0.6651 0.6934 0.6533 0.7792 0.6279

as pointed out by Ref. [19], kernelization may impose undesirable structures on
the data, and hence, the clusters obtained in the kernel space may not exhibit
the structure of the original data.

From the fuzzy partition U it is obtained a crisp partition Q = (Q1, . . . , Qc),
where the cluster Qi(i = 1, . . . , c) is defined as: Qi = {ek ∈ E : uik =

c
max
m=1

umk}.
To compare the quality of the crisp partitions provided by KFCM-K and KFCM-
K-H algorithms, the adjusted Rand index (ARI) [12], and the mutual normalized
information (MNI) [16] were considered. ARI and MNI indexes allow to compare
the dataset a priori partition with the crisp partitions obtained from the fuzzy
partitions provided by the algorithms. ARI index takes its values on the interval
[−1, 1], in which the value 1 indicates perfect agreement between partitions. The
NMI takes its values on the interval [0, 1], in which the value 1 also indicates
perfect agreement between partitions.

Table 3 shows the best results (according to the respective objective func-
tions) of the KCM-K and KCM-K-H algorithms on the data sets of Table 1,
according to the ARI and NMI indexes and for the fuzziness parameter set as
m = 1.6 and m = 2.0.

Table 3. Performance of the algorithms: crisp partition

ARI NMI
FCM KFCM-K KFCM-K-H FCM KFCM-K KFCM-K-H

Data sets m = 1.6 m = 2.0 m = 1.6 m = 2.0 m = 1.6 m = 2.0 m = 1.6 m = 2.0 m = 1.6 m = 2.0 m = 1.6 m = 2.0
Breast tissue 0.1101 0.1252 0.2065 0.1143 0.2944 0.2934 0.3083 0.3218 0.3428 0.2766 0.5515 0.5356
Ecoli 0.3880 0.3682 0.3230 0.3277 0.4182 0.4015 0.5721 0.5514 0.5232 0.5162 0.6075 0.5927
Image segmentation 0.3116 0.3045 0.2133 0.2832 0.5257 0.4429 0.4920 0.4670 0.2931 0.3885 0.6444 0.6234
Iris 0.7163 0.7294 0.8015 0.7859 0.8856 0.9037 0.7419 0.7496 0.7899 0.7773 0.8641 0.8801
Leaf 0.3145 0.2654 0.3096 0.2877 0.3566 0.3602 0.6652 0.6477 0.6738 0.6538 0.7061 0.6981
Libras Movement 0.3227 0.1667 0.2726 0.1515 0.2419 0.2070 0.5821 0.3767 0.5315 0.4399 0.5239 0.4970
Multiple features 0.4280 0.4206 0.4128 0.3615 0.5324 0.4073 0.5669 0.5612 0.6053 0.5693 0.6397 0.6303
Seeds 0.7166 0.7166 0.7034 0.7034 0.6975 0.6954 0.6949 0.6949 0.6737 0.6737 0.6804 0.6716
Thyroid gland 0.5698 0.4413 0.0588 0.0495 0.1538 0.1819 0.4088 0.3434 0.1500 0.1353 0.2793 0.3240
Urban land cover 0.0356 0.0373 0.0737 0.0491 0.4289 0.2626 0.1345 0.1272 0.1909 0.1383 0.5011 0.3640
Brest cancer winsconsin 0.4810 0.4914 0.0215 0.0176 0.7178 0.7182 0.4567 0.4647 0.0593 0.0561 0.6174 0.6045
Wine 0.3602 0.3539 0.3711 0.3749 0.8332 0.8482 0.4212 0.4167 0.4287 0.4315 0.8199 0.8329

Gaussian Kernel-Based Fuzzy Clustering 693

It can be observed that also in this case whatever the considered indexes
(ARI and NMI), for the majority of the datasets, FCM, KFCM-K and KFCM-
K-H algorithms performed better with the m = 1.6. Moreover, whatever the
considered indexes and fuzziness parameters, the KFCM-K-H algorithm outper-
formed both the KFCM-K and FCM algorithms on the majority of the data sets
of the Table 1. Besides, for the ARI index and whatever the considered fuzziness
parameters, the standard FCM algorithm performed better than the KFCM-K
algorithm on the majority of the datasets of the Table 1.

4 Final Remarks and Conclusions

The clustering performance of the conventional KFCM-K, the gaussian kernel-
based fuzzy clustering algorithm, is highly related to the estimation of the band-
width parameter of the Gaussian kernel function, that is estimated once and
for all. In this paper we proposed KFCM-K-H, a Gaussian fuzzy c-Means with
kernelization of the metric and automatic computation of a vector of bandwidth
parameters, one for each variable. In the proposed kernel-based fuzzy clustering
algorithm, the bandwidth parameters change at each iteration of the algorithm
and are different from variable to variable. Thus, the proposed algorithm is able
to select the important variables for the clustering task.

Experiments with twelve data sets from UCI machine learning repository,
with different number of objects, variables and a priori classes, showed the per-
formance of the proposed algorithm. It was observed that, for the majority of
these data sets, the proposed KFCM-K-H algorithm provided crisp and fuzzy
partitions of better quality than those provided by the conventional KFCM-K
algorithm. Moreover, the KFCM-K-H algorithm provided crisp partitions of bet-
ter quality than those provided by the standard FCM algorithm. Besides, it was
observed that the FCM algorithm outperformed both KFCM-K and KFCM-K-H
algorithms on the majority of these data sets, concerning the quality of the fuzzy
partitions. These later finds support the remark provided by Ref. [19], i.e, that
the kernelization may impose undesirable structures on the data and the clusters
obtained in the kernel space may not exhibit the structure of the original data.

Acknowledgments. The authors are grateful to the anonymous referees for their
careful revision, and CNPq and FACEPE (Brazilian agencies) for their financial sup-
port.

References

1. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Plenum, New York (1981)

2. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases. University
of California, Department of Information and Computer Science, Irvine (1998).
http://www.ics.uci.edu/mlearn/MLRepository.html

3. Camastra, F., Verri, A.: A novel kernel method for clustering. IEEE Trans. Neural
Netw. 27, 801–804 (2005)

http://www.ics.uci.edu/mlearn/MLRepository.html

694 F. A. T. de Carvalho et al.

4. Caputo, B., Sim, K., Furesjo, F., Smola, A.: Appearence-based object recogni-
tion using SVMs: which kernel should I use? In: Proceedings of NIPS Workshop
on Statistical methods for Computational Experiments in Visual Processing and
Computer Vision (2002)

5. de Carvalho, F.A.T., Ferreira, M.R.P., Simões, E.C.: A Gaussian kernel-based clus-
tering algorithm with automatic hyper-parameters computation. In: Cheng, L.,
Liu, Q., Ronzhin, A. (eds.) ISNN 2016. LNCS, vol. 9719, pp. 393–400. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-40663-3 45

6. Cleuziou, G., Moreno, J.: Kernel methods for point symmetry-based clustering.
Pattern Recogn. 48, 2812–2830 (2015)

7. Diday, E., Govaert, G.: Classification automatique avec distances adaptatives.
R.A.I.R.O. Inform. Comput. Sci. 11(4), 329–349 (1977)

8. Fauvel, M., Chanussot, J., Benediktsson, J.: Parsimonious mahalanobis kernel for
the classification of high dimensional data. Pattern Recogn. 46, 845–854 (2013)

9. Filippone, M., Camastra, F., Masulli, F., Rovetta, S.: A survey of kernel and spec-
tral methods for clustering. Pattern Recogn. 41, 176–190 (2008)

10. Frigui, H., Hwanga, C., Rhee, F.C.H.: Clustering and aggregation of relational data
with applications to image database categorization. Pattern Recogn. 40, 3053–3068
(2007)

11. Huang, J., Ng, M., Rong, H., Li, Z.: Automated variable weighting in k-means type
clustering. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 657–668 (2005)

12. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
13. Huellermeier, E., Rifki, M., Henzgen, S., Senge, R.: Comparing fuzzy partitions: a

generalization of the rand index and related measures. IEEE Trans. Fuzzy Syst.
20, 546–556 (2012)

14. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31,
651–666 (2010)

15. Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, Hoboken (2005)

16. Manning, C., Raghavan, P., Schuetze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

17. Modha, D.S., Spangler, W.S.: Feature weighting in k-means clustering. Mach.
Learn. 52(3), 217–237 (2003)

18. Mueller, K.R., Mika, S., Raetsch, G., Tsuda, K., Schoelkopf, B.: An introduction
to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12, 181–202 (2001)

19. Pal, N.R.: What and when can we gain from the kernel versions of c-means algo-
rithm? IEEE Trans. Fuzzy Syst. 22, 363–369 (2014)

20. Tsai, C., Chiu, C.: Developing a feature weight self-adjustment mechanism for a
k-means clustering algorithm. Comput. Stat. Data Anal. 52, 4658–4672 (2008)

21. Xu, R., Wunusch, D.I.I.: Survey of clustering algorithms. IEEE Trans. Neural Netw.
16, 645–678 (2005)

https://doi.org/10.1007/978-3-319-40663-3_45

Fuzzy Clustering Algorithm Based on
Adaptive Euclidean Distance and Entropy
Regularization for Interval-Valued Data

Sara Inés Rizo Rodŕıguez(B) and Francisco de Assis Tenorio de Carvalho

Centro de Informática - CIn, Universidade Federal de Pernambuco, Recife, Brazil
{sirr,fatc}@cin.ufpe.br
http://www.cin.ufpe.br

Abstract. Symbolic Data Analysis provides suitable new types of vari-
able that can take into account the variability present in the observed
measurements. This paper proposes a partitioning fuzzy clustering algo-
rithm for interval-valued data based on suitable adaptive Euclidean dis-
tance and entropy regularization. The proposed method optimizes an
objective function by alternating three steps aiming to compute the
fuzzy cluster representatives, the fuzzy partition, as well as relevance
weights for the interval-valued variables. Experiments on synthetic and
real datasets corroborate the usefulness of the proposed algorithm.

1 Introduction

Clustering methods seek to organize a set of items into clusters such that objects
within a given group have a high degree of similarity, whereas elements belong-
ing to different clusters have a high degree of dissimilarity [15]. Partition and
hierarchy are the most popular cluster structures provided by clustering meth-
ods. Hierarchical methods yield a complete hierarchy, i.e., a nested sequence of
partitions of the input data, whereas partitioning methods aims to obtain a sin-
gle partition of the data into a fixed number of clusters, usually based on an
iterative algorithm that optimizes an objective function.

Partitioning methods can be divided into hard and fuzzy clustering. Hard
clustering methods restrict each point of the dataset to exactly one cluster. On
the other hand, in fuzzy clustering, a pattern may belong to all clusters with a
specific membership degree. Generally, in conventional clustering methods, all
the variables participate with the same importance to the clustering process.
However, in real situations, some variables could be more or less important or
even irrelevant for this task. A better solution is to introduce the proper attribute
weight into the clustering process [16].

Most clustering algorithms are defined to deal with data described by single-
valued variables, i.e., variables that takes a single measurement or a category
for an object. However, there are many other kinds of information that cannot
be explained with single-valued variables. For example, to take into account

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 695–705, 2018.
https://doi.org/10.1007/978-3-030-01418-6_68

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_68&domain=pdf

696 S. I. R. Rodŕıguez and F. A. T. de Carvalho

variability inherent to the data, variables must be multi-valued, assuming sets
of categories or intervals, possibly even with frequencies or weights. These kinds
of data have been mainly studied in Symbolic Data Analysis (SDA), a domain
related to multivariate analysis, pattern recognition and artificial intelligence.
The SDA aim is to provide suitable methods for managing aggregated data
described by multi-valued variables [2].

Hard and fuzzy clustering methods are already available for manage interval-
valued data. For example, Ref. [17] introduced a fuzzy clustering algorithms for
mixed features of symbolic and fuzzy data. In these fuzzy clustering algorithms,
the membership degree is associated to the values of the features in the clus-
ters for the cluster centers instead of being associated to the patterns in each
group, as is the usual case. De Carvalho [4] presented a fuzzy C-means clustering
algorithms based on suitable Euclidean distances for interval valued-data.

This paper presents a new fuzzy C-means type algorithm based on adap-
tive Euclidean distances with Entropy Regularization for interval-value data,
where the adaptive distance takes into account lower and upper boundaries of
the data. The improvement in comparison with Ref. [4] concerns a new auto-
matic weighting scheme for the interval boundaries. The weights of the lower
and upper boundaries in Ref. [4] are managed independently. In that case, even
if a boundary plays a minor role concerning the others, the algorithm of Ref. [4]
may assign a relevant contribution also if it is not relevant. Following Ref. [14],
this paper proposes a solution to solve this side effect. The proposed fuzzy clus-
tering algorithm alternates three steps: allocation, weighting and representation
steps that computes the objects memberships to the clusters, the weights for
each variable and/or each boundary and the clusters’ prototypes respectively,
until a stationary value of a homogeneity criterion is reached.

Section 2 presents the fuzzy clustering algorithm based on Adaptive
Euclidean distance and entropy regularization. Section 3 provides several exper-
iments with synthetic and real datasets that corroborate the usefulness of the
proposed algorithm. Finally, conclusions are drawn in Sect. 4.

2 Fuzzy Clustering Algorithm Based on Adaptive
Euclidean Distance and Entropy Regularization
for Interval Data

This section describes the proposed fuzzy clustering algorithm based on Adaptive
distance and Entropy Regularization for interval-valued data (hereafter referred
as AIFCM-ER).

Let E = {e1, . . . , eN} be a set of N objects described by P interval-valued
variables [2]. An interval-valued variable is a mapping that it is defined from
the dataset E into the set � of closed intervals of IR. In other words, for any
e ∈ E the value y(e) is an interval of the form [a, b] where a, b are some real
numbers such that a ≤ b. The i-th object ei (1 ≤ i ≤ N) is represented by a
vector xi = (xi1, ..., xiP), where xij = [aij , bij], with aij ≤ bij , is the interval
value taken by the j-th variable (1 ≤ j ≤ P). Let D = {x1, . . . ,xN} be the

Fuzzy Clustering, Adaptive Euclidean Distance and Entropy Regularization 697

interval-valued dataset. Each fuzzy cluster Pk(k = 1, ..., C) has a representative
element, called hereafter a prototype. As the examined variables are interval-
valued, each prototype gk = (gk1, ..., gkP) is a vector of P intervals with gkj =
[αkj , βkj] (1 ≤ j ≤ P ; 1 ≤ k ≤ C).

Conventional clustering models consider that all variables are equally impor-
tant to the clustering task. However, in most applications some variables may
be irrelevant and, among the relevant ones, some may be more or less relevant
than others. Furthermore, the relevance of each variable to each cluster may be
different, i.e., each cluster may have a different set of relevant variables [5,8]. In
previous works, the boundary weights of the interval data were assigned inde-
pendently. Therefore, it was not possible to compare the relevance of the lower
boundaries concerning the upper boundaries. Furthermore, if the lower/upper
boundary is not (or very few) relevant for the clustering process, a set of weights
that are significantly greater than zero is always assigned. For overcome these
drawbacks, is proposed to consider the jointly weighting of the lower and upper
boundaries [14].

In this paper, we will denote as Vl = (vl,1, ...,vl,k, ...,vl,C) and Vu =
(vu,1, ...,vu,k, ...,vu,C) the matrices of positive weights for the lower and upper
boundaries respectively. The vl,k = (vl,k1, ..., vl,kP) and vu,k = (vu,k1, ..., vu,kP)
are the P -dimensional vectors of relevance weights and each of these weights mea-
suring the importance of each interval-valued variable on the i-th fuzzy cluster
for lower and upper boundaries respectively.

The proposed algorithm provides a fuzzy partition represented by the matrix
U = (u1, . . . ,uN) = (uik)1≤i≤N

1≤k≤C
, where uik is the membership degree of object

ei into the fuzzy cluster k and ui = (ui1, . . . , uiC), a matrix of prototypes G =
(g1, ...,gC) that represents the fuzzy clusters in the fuzzy partition, as well as
the matrices of relevance weights of the variables Vl and Vu.

The matrix of prototypes G, the matrices of positive weights Vl, Vu and the
matrix of membership degrees U are obtained iteratively by the minimization of
a suitable adequacy criterion, here-below denoted as JAIFCM−ER, that gives the
total homogeneity of the fuzzy partition computed as the sum of the homogeneity
in each fuzzy cluster:

JAIFCM−ER =
C∑

k=1

N∑

i=1

(uik)d2(vl,k,vu,k)
(xi,gk) + Tu

C∑

k=1

N∑

i=1

(uik) ln(uik) (1)

subject to:
C∑

k=1

(uik) = 1 and
P∏

j=1

(vl,kjvu,kj) = 1

where d2(vl,k,vu,k)
(xi,gk) =

P∑

j=1

[vl,kj (aij − αkj)2 + vu,kj (bij − βkj)2] (2)

is a suitable adaptive dissimilarity between the vectors of intervals xi and gk

parameterized by the vectors of relevance weights of the variables vl,k and vu,k

on the fuzzy cluster k, for lower and upper boundaries respectively. The second

698 S. I. R. Rodŕıguez and F. A. T. de Carvalho

term is the negative entropy and is used to control the membership degree uik.
Tu is a positive regularizing parameter.

In the literature, two main types of constraints are proposed: a product-to-
one constraint [5] and a sum-to-one constraint [10]. However, in this paper,
we will not consider this last alternative because it depends on the setting
of additional parameters. Thus, this dissimilarity function is parameterized by
the vectors of relevance weights vl,k and vu,k, in which vl,kj > 0, vu,kj > 0
and

∏P
j=1 vl,kjvu,kj = 1, and it is associated with the k-th fuzzy cluster

(k = 1, ..., C). Note that the vectors of weights vl,k = (vl,k1, ..., vl,kP) and
vu,k = (vu,k1, ..., vu,kP) are estimated locally and change at each iteration, i.e.,
they are not determined absolutely, and are different from one cluster to another.
Moreover, note also that the relevant variables in the groups have weights that
are superior to 1.

2.1 The Optimization Steps of the AIFCM-ER Algorithm

This section provides the optimization algorithm aiming to compute the pro-
totypes, the relevance weights of the variables and the fuzzy partition. For the
AIFCM-ER algorithm, the minimization of JAIFCM−ER (Eq. 1) is performed
iteratively in three steps (representation, weighting, and allocation).

The computation of the matrices U, Vl and Vu can be obtained applying
the Lagrange multipliers λi and γk to the constraints of Eq. 1 as:

L = JAIFCM−ER −
C∑

k=1

γk

⎡

⎣
P∏

j=1

vl,kjvu,kj − 1

⎤

⎦ −
N∑

i=1

λi

[
C∑

k=1

uik − 1

]
(3)

Representation Step: This section provides the solution for the optimal com-
putation of the prototype associated to each cluster. During this step, the matrix
of membership degree U and the matrices of positive weights Vl and Vu are
kept fixed. The prototype gk = (gk1, ..., gkP) of fuzzy cluster k which minimizes
the clustering criterion (Eq. 1) has the bounds of the interval gkj = [αkj , βkj]
(j = 1, ..., P) computed according to:

αk,j =
∑N

i=1 uikaij∑N
i=1 uik

and βk,j =
∑N

i=1 uikaij∑N
i=1 uik

(4)

Weighting Step: This step provides the solutions for the computation of the
matrices of relevance weights. During the weighting step, the vector G of pro-
totypes, and the matrix of membership degrees U are kept fixed. The objective
function (1) is optimized with respect to the relevance weights. After setting the
partial derivatives of L w.r.t. vl,kj , vu,kj and γk to zero and after some algebra,
the relevance weights are computed as follows:

Fuzzy Clustering, Adaptive Euclidean Distance and Entropy Regularization 699

vl,kj =

{∏P
h=1

[∑N
i=1 uik(aih − αk,h)2

] [∑N
i=1 uik(bih − βk,h)2

]} 1
2P

∑N
i=1 uik(aij − αk,j)2

(5)

vu,kj =

{∏P
h=1

[∑N
i=1 uik(aih − αk,h)2

] [∑N
i=1 uik(bih − βk,h)2

]} 1
2P

∑N
i=1 uik(bij − βk,j)2

(6)

Allocation Step: This step provides an optimal solution to the computation of
the matrix of membership degrees of the objects into the fuzzy clusters. During
the allocation step, the vector G of prototypes, the matrices Vl and Vu of
relevance weights are kept fixed. The objective function 1 is optimized with
respect to the membership degrees. After setting the partial derivatives of L
w.r.t. uik and λi to zero and after some algebra, we obtain:

uik =
exp

{
−

∑P
j=1[vl,kj(aij−αkj)

2 + vu,kj(bij−βkj)
2]

Tu

}

∑C
h=1 exp

{
−

∑P
j=1[vl,hj(aij−αhj)2 + vu,hj(bij−βhj)2]

Tu

} (7)

The Algorithm: The AIFCM-ER fuzzy clustering algorithm is summarized in
Algorithm 1.

Algorithm 1. AIFCM-ER Algorithm

Input: The dataset D = {x1, . . . ,xN}; the number C of clusters (2 ≤ C ≤ N) and
the parameter Tu > 0; the parameter T (maximum number of iterations); the
threshold ε > 0 and ε << 1.

Output: The vector of prototypes G; the matrix of membership degrees U; the
relevance weight matrices Vl and Vu.

1: Initialization: Set t = 0;
Randomly select C distinct prototypes g

(t)
k ∈ D (k = 1, ..., C) to obtain

the vector of prototypes G(t) = (g
(t)
1 , ...,g

(t)
C);

Initialize the matrices of relevance weightsV
(t)
l = (v

(t)
l,kj)1≤k≤C

1≤j≤P
with v

(t)
l,kj =

1 and V
(t)
u = (v

(t)
u,kj)1≤k≤C

1≤j≤P
with v

(t)
u,kj = 1, ∀k, j;

2: repeat
Set t = t + 1

3: Representation step: Compute G(t) using Equation 4;
4: Weighting step: Compute V

(t)
l and V

(t)
u using the Equations 5 and 6;

5: Allocation step: Compute U(t) using Equation 7;
6: until |J(t)

AIFCM−ER − J
(t−1)
AIFCM−ER| < ε or t > T

700 S. I. R. Rodŕıguez and F. A. T. de Carvalho

3 Experimental Results

This section aims to evaluate the performance and illustrates the usefulness of
the AIFCM-ER algorithm by applying it to suitable synthetic and real datasets.

3.1 Experimental Setting

The proposed algorithm performance will be compared with two previous fuzzy
clustering models: the fuzzy C-means for symbolic interval data (IFCM) and
the fuzzy C-means for symbolic interval data based on an Adaptive squared
Euclidean distance between intervals vectors (IFCMADC) [4].

To compare the clustering results furnished by the algorithms four measures
were used: Fuzzy Rand index (FRI) [7], The Hullermeier index (HUL) [12], the
Adjusted Rand index (ARI) [11] and the F -Measure [1]. From the fuzzy parti-
tion U = (u1, . . . ,uC) is obtained a hard partition Q = (Q1, ..., QC), where the
cluster Qk(k = 1, ..., C) is defined as: Qk = {i ∈ {1, ..., N} : uik ≥ uim,∀m ∈
{1, ..., C}}. FRI and HUL indices compare the a priori partition of the syn-
thetic datasets with the fuzzy partition provided by the algorithms and ARI and
F -Measure with the hard partition.

All the interval datasets (synthetic and real) were normalized as follows.
Let Dj = {x1j , . . . , xNj} be the set of observed intervals xij = [aij , bij] on
variable j(j = 1, ..., P). The dispersion of the j-th variable is defined as: s2j =
∑N

i=1 dj(xij , gj) =
∑N

i=1

[
(aij − αj)2 + (bij − βj)2

]
where gj = [αj , βj] is the

“central” interval computed from Dj as: αj =
∑N

i=1 aij

N and βj =
∑N

i=1 bij
N . Each

observed interval xij is normalized as xij = [aij , bij], where aij = aij−αj√
s2
j

and

bij = bij−βj√
s2
j

, with aij ≤ bij for all i, j. Therefore Dj = {x1j , . . . , xNj} and for this

dataset, one can show that gj = [αj , βj] = [0, 0] and that s2j =
∑N

i=1 dj(xij , gj) =
∑N

i=1

[
(aij − αj)2 + (bij − βj)2

]
= 1.

The choice of the parameter Tu for the proposed algorithm was achieved
without supervision as follows. For each dataset, the value of Tu was varied
between 10−4 to 100 (with step 10−4), and the threshold for Tu corresponds to
the value of the fuzzifier at which the minimum centroid distance falls under 0.1
for the first time. The parameter m for IFCM and IFCMADC algorithms was
set to 1.5 and 2.0. The parameter ε was set to 10−5, the maximum number of
iterations T was 50, and for each dataset, the number of clusters was set equal
to the number of a priori classes.

3.2 Synthetic Interval-Valued Datasets

This section investigates with synthetic datasets, performance aspects of the
AIFCM-ER algorithm. First, two datasets of 150 points in R

2 were constructed
to show the usefulness of the proposed method on interval datasets with linearly
non-separable classes of different shapes and sizes. In each dataset, the 150 points
are drawn from three bi-variate normal distributions of independent components.

Fuzzy Clustering, Adaptive Euclidean Distance and Entropy Regularization 701

There are three classes of unequal sizes and shapes: two classes with an ellipsoidal
shape and size 50 and one class with a spherical shape and size 50. The first
dataset shows well-separated classes and the second shows overlapping classes.
The data points of each class in these datasets were acquired according to the
parameters showed in Table 1.

Table 1. Mean (μ1, μ2) and standard deviation (σ1, σ2) vectors for every class in
synthetic dataset 1 and 2.

Dataset 1 Dataset 2

μ Class 1 Class 2 Class 3 μ Class 1 Class 2 Class 3

μ1 28 60 46 μ1 50 60 52

μ2 22 30 38 μ2 28 30 38

σ1 100 9 9 σ1 100 9 9

σ2 9 144 9 σ2 9 144 9

In order to build interval datasets from datasets 1 and 2, each point (z1, z2)
of these datasets is considered as the ‘seed’ of a rectangle. Each rectangle is
therefore a vector of two intervals defined by: ([z1− δ1

2 , z1+ δ1
2], [z2− δ2

2 , z2+ δ2
2]).

The parameters δ1 and δ2 are the width and the height of the rectangle. In our
experiments, δ1 and δ2 are obtained randomly from [1, 8].

Another synthetic dataset was created using lower and upper boundary con-
figurations shown in Table 2. For the lower boundary, variables x1 and x2 are
relevant for class 1 and class 2, and variables x2 and x3 are relevant for the class
3 and class 4. For the upper boundary, all variables are equally relevant for the
class definition. The purpose of this dataset is to see what happens if the variable
weight is heavily determined by just one boundary. In this case, the IFCMADC
algorithm should fail in identifying a cluster structure.

Table 2. Mean (μ1, μ2, μ3) and standard deviation (σ1, σ2, σ3) vectors for every class
in synthetic dataset 3.

Lower boundary configuration Upper boundary configuration

μ Class 1 Class 2 Class 3 Class 4 μ Class 1 Class 2 Class 3 Class 4

μ1 −0.5 0.5 0 0 μ1 3.0 4.0 3.5 3.5

μ2 −0.5 −0.5 0.5 0.5 μ2 3.0 3.0 4.0 4.0

μ3 0.0 0.0 −0.5 0.5 μ3 3.5 3.5 3.5 3.5

σ1 0.04 0.04 1.0 1.0 σ1 1.0 1.0 1.0 1.0

σ2 0.04 0.04 0.04 0.04 σ2 1.0 1.0 1.0 1.0

σ3 1.0 1.0 0.04 0.04 σ3 1.0 1.0 1.0 1.0

In the framework of a Monte Carlo experiment, 100 replications of the pre-
vious process have been repeated for seeds taken from all datasets. In each
replication, the algorithm was executed 50 times, and the cluster centers were

702 S. I. R. Rodŕıguez and F. A. T. de Carvalho

randomly initialized at each time. The best result for each algorithm was selected
according to their respective objective function. The average and standard devi-
ation of the indexes were calculated based on the 100 Monte Carlo iterations.

Results: Table 3 gives the values of the indexes obtained with adaptive and
non-adaptive distances for the synthetic interval-valued datasets.

Table 3. Performance of the algorithms on the synthetic interval-valued data.

Algorithms FRI HUL ARI F -Measure FRI HUL ARI F -Measure FRI HUL ARI F -Measure

Dataset 1 Dataset 2 Dataset 3
m=1.5 m=1.5 m=1.5
IFCM 0.7966 0.7966 0.5892 0.7331 0.6901 0.6846 0.3668 0.5868 0.6443 0.5153 0.1125 0.3333
(std) (0.0207) (0.0210) (0.0461) (0.0284) (0.0180) (0.0189) (0.0504) (0.0320) (0.0039) (0.0085) (0.0263) (0.0197)
m=2 m=2 m=2
IFCM 0.7456 0.7404 0.6082 0.7442 0.6471 0.6186 0.3842 0.5965 0.6268 0.2904 0.1236 0.3897
(std) (0.0179) (0.0203) (0.0522) (0.0327) (0.0126) (0.0163) (0.0485) (0.0313) (0.0006) (0.0180) (0.0265) (0.0172)
m=1.5 m=1.5 m=1.5
IFCMADC 0.9356 0.9382 0.9283 0.9519 0.7763 0.7758 0.5696 0.7139 0.6542 0.5496 0.1393 0.3537
(std) (0.0135) (0.0133) (0.0389) (0.0261) (0.0231) (0.0238) (0.0680) (0.0441) (0.0057) (0.0118) (0.0280) (0.0212)
m=2 m=2 m=2
IFCMADC 0.8499 0.8600 0.9274 0.9513 0.7075 0.6972 0.5754 0.7175 0.6277 0.3106 0.1351 0.3883
(std) (0.0115) (0.0116) (0.0390) (0.0261) (0.0156) (0.0190) (0.0652) (0.0427) (0.0011) (0.0212) (0.0281) (0.0185)

AIFCM-ER 0.9416 0.9453 0.9316 0.9541 0.7766 0.7722 0.5783 0.7194 0.9827 0.9827 0.9537 0.9652
(std) (0.0526) (0.0471) (0.0353) (0.0236) (0.0508) (0.0570) (0.0730) (0.0476) (0.0294) (0.0294) (0.0787) (0.0591)

As expected, the average indexes are better for the adaptive distances algo-
rithms. It is also noticed that whatever the index considered, the proposed algo-
rithm presents the best average performance since in general, can identify clus-
ters with different structure. Respect to the third dataset results, it is seen that
the AIFCM-ER algorithm is able also to discover cluster structures also when
this occurs for not all the boundaries of the interval variables, representing an
advantage in comparison with previous results reported on the literature. To see
how the learned metrics help to understand the data, Table 4 shows the matri-
ces of relevance weights of the variables on the fuzzy clusters obtained by the
IFCMADC algorithm for m = 1.5 and m = 2 and Vl and Vu for the proposed
method both on the Dataset 3.

Table 4. Relevance weights for the IFCMADC and the AIFCM-ER algorithms for the
Dataset 3.

IFCMADC (m = 1.5) IFCMADC (m = 2) AIFCM-ER

Var. 1 Var. 2 Var. 3 Var. 1 Var. 2 Var. 3 Var. 1 Var. 2 Var. 3

vl1 vu1 vl2 vu2 vl3 vu3

Cluster 1 0.7832 1.5333 0.8328 0.9960 1.0991 0.9135 0.3595 0.3453 8.8843 0.2682 10.4799 0.3226

Cluster 2 0.4985 2.0149 0.9955 0.9940 1.0994 0.9150 7.2457 0.3581 10.0801 0.3162 0.3050 0.3964

Cluster 3 0.8471 1.7137 0.6889 0.7260 1.2295 1.1203 7.2740 0.3358 10.2935 0.3806 0.3283 0.3182

Cluster 4 0.9693 1.6952 0.6085 1.0910 1.0850 0.8448 0.3374 0.3743 9.5973 0.3193 8.6486 0.2988

We can observe in the Table 4 that the weights for the upper boundary are
similar for each cluster for the proposed algorithm. For the lower boundary,

Fuzzy Clustering, Adaptive Euclidean Distance and Entropy Regularization 703

variables x2 and x3 have higher values for cluster 1 and 4 and for cluster 2 and
3, variables x1 and x2. These results confirm that the selection of the more influ-
ent variables, and/or boundaries in the cluster partition improve the clustering
performance.

3.3 Symbolic Interval Datasets

For the purpose of validating the proposed method, we have conducted sev-
eral experiments on the following datasets of type interval: Car models [6]
(N = 33, P = 8, C = 4), City temperature [9] (N = 37, P = 12, C = 4), Freshwa-
ter fish species [3] (N = 12, P = 13, C = 4), Horses (N = 12, P = 7, C = 4), Ichino
[13] (N = 8, P = 4, C = 4) and Wine (N = 23, P = 21, C = 4) symbolic interval
datasets (in which N represents the number of objects, P represents the number
of interval-valued variables and C represents the number of a priori classes). For
each dataset the algorithms were run 50 times and the best results were selected
according to the minimum value of their objective function. Table 5 presents the
results provided by the algorithms on the real interval-valued datasets.

Table 5. Performance of the algorithms on the interval-valued data.

Algorithms FRI HUL ARI F -Measure Algorithms FRI HUL ARI F -Measure

Car models City temperature
IFCM (m=1.5) 0.8240 0.8178 0.5623 0.6667 IFCM (m=1.5) 0.7578 0.7592 0.5458 0.6951
IFCM (m=2) 0.7448 0.6871 0.5623 0.6667 IFCM (m=2) 0.6768 0.6801 0.5134 0.6710
IFCMADC (m=1.5) 0.8148 0.8109 0.4998 0.6190 IFCMADC (m=1.5) 0.7639 0.7674 0.5458 0.6951
IFCMADC (m=2) 0.7644 0.7263 0.5257 0.6371 IFCMADC (m=2) 0.6875 0.6978 0.5160 0.6710
AIFCM-ER 0.7936 0.7638 0.6312 0.7160 AIFCM-ER 0.7460 0.8103 0.5458 0.6951
Freshwater fish species Horses
IFCM (m=1.5) 0.6621 0.6257 0.2376 0.4324 IFCM (m=1.5) 0.6972 0.6868 0.0559 0.2667
IFCM (m=2) 0.6798 0.5539 0.0671 0.2941 IFCM (m=2) 0.6900 0.6279 0.0559 0.2667
IFCMADC (m=1.5) 0.7569 0.7569 0.2757 0.4286 IFCMADC (m=1.5) 0.7848 0.7824 0.3295 0.4615
IFCMADC (m=2) 0.7332 0.7149 0.2087 0.3704 IFCMADC (m=2) 0.7041 0.6604 0.1417 0.3333
AIFCM-ER 0.9242 0.9242 0.7534 0.8000 AIFCM-ER 0.8026 0.7984 0.4272 0.5517
Ichino Wine
IFCM (m=1.5) 0.8212 0.8213 0.4444 0.5455 IFCM (m=1.5) 0.5745 0.4320 0.0059 0.3026
IFCM (m=2) 0.8131 0.8090 0.4444 0.5455 IFCM (m=2) 0.5879 0.3241 -0.0183 0.3828
IFCMADC (m=1.5) 0.8250 0.8250 0.3396 0.4444 IFCMADC (m=1.5) 0.5854 0.5126 0.1092 0.4048
IFCMADC (m=2) 0.8301 0.8285 0.3396 0.4444 IFCMADC (m=2) 0.5879 0.3243 0.0341 0.4098
AIFCM-ER 0.9988 0.9988 1.0000 1.0000 AIFCM-ER 0.6050 0.5475 0.1306 0.3922

The obtained results (Table 5) show that the proposed method obtain the
best result for almost all datasets according to FRI and HUL. Concerning to
the comparison between the hard partitions and the a priori partition, the pro-
posed method achieves the best results for all datasets. In general, the AIFCM-
ER algorithm shown that the selection of the more influent variables, and/or
boundaries in each fuzzy partition, helps to obtain better performance compared
with previous methods.

4 Conclusion

This paper presented a fuzzy clustering algorithm for interval-valued data based
on adaptive Euclidean distance and entropy regularization. In particular, the

704 S. I. R. Rodŕıguez and F. A. T. de Carvalho

algorithm can discover cluster structures also when this occurs for not all the
boundaries of the interval-valued variables. The algorithm starts from an ini-
tial fuzzy partition, and then it alternates over three steps (i.e., representation,
weighting, and allocation) until it converges as the adequacy criterion reaches a
stationary value. The paper provides a new objective function and updated rules
are derived. The applications on synthetic and real data confirm the hypothesis
that algorithms based on adaptive distances are useful to discover non-spherical
clusters and to perform a selection of the more influent variables, and/or bound-
aries, in the cluster partition.

Acknowledgment. The authors would like to thank CNPq and FACEPE (Brazil-
ian agencies) for their financial support and the anonymous referees for their helpful
suggestions.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, vol. 463. ACM
press, New York (1999)

2. Bock, H.H., Diday, E.: Analysis of Symbolic Data: Exploratory Methods for
Extracting Statistical Information from Complex Data. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-57155-8

3. Boudou, A., Ribeyre, F.: Mercury in the food web: accumulation and transfer
mechanisms. Met. Ions Biol. Syst. 34, 289–320 (1997)

4. de Carvalho, F.D.A.: Fuzzy c-means clustering methods for symbolic interval data.
Pattern Recognit. Lett. 28(4), 423–437 (2007)

5. Diday, E.: Classification automatique avec distances adaptatives. RAIRO Inform.
Comput. Sci. 11(4), 329–349 (1977)

6. Duarte Silva, P., Brito, P.: Model and analyse interval data. https://cran.r-project.
org/web/packages/MAINT.Data/index.html. Accessed 27 Apr 2018

7. Frigui, H., Hwang, C., Rhee, F.C.H.: Clustering and aggregation of relational
data with applications to image database categorization. Pattern Recognit. 40(11),
3053–3068 (2007)

8. Frigui, H., Nasraoui, O.: Unsupervised learning of prototypes and attribute weights.
Pattern Recognit. 37(3), 567–581 (2004)

9. Guru, D., Kiranagi, B.B., Nagabhushan, P.: Multivalued type proximity measure
and concept of mutual similarity value useful for clustering symbolic patterns.
Pattern Recognit. Lett. 25(10), 1203–1213 (2004)

10. Huang, J.Z., Ng, M.K., Rong, H., Li, Z.: Automated variable weighting in k-means
type clustering. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 657–668 (2005)

11. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
12. Hullermeier, E., Rifqi, M.: A fuzzy variant of the rand index for comparing clus-

tering structures. In: Joint 2009 International Fuzzy Systems Association World
Congress and 2009 European Society of Fuzzy Logic and Technology Conference,
IFSA-EUSFLAT 2009 (2009)

13. Ichino, M., Yaguchi, H.: Generalized Minkowski metrics for mixed feature-type
data analysis. IEEE Trans. Syst. Man Cybern. 24(4), 698–708 (1994)

14. Irpino, A., Verde, R., de Carvalho, F.A.T.: Fuzzy clustering of distributional data
with automatic weighting of variable components. Inf. Sci. 406–407, 248–268
(2017)

https://doi.org/10.1007/978-3-642-57155-8
https://cran.r-project.org/web/packages/MAINT.Data/index.html
https://cran.r-project.org/web/packages/MAINT.Data/index.html

Fuzzy Clustering, Adaptive Euclidean Distance and Entropy Regularization 705

15. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recognit. Lett.
31(8), 651–666 (2010)

16. Tsai, C., Chiu, C.: Developing a feature weight self-adjustment mechanism for a
k-means clustering algorithm. Comput. Stat. Data Anal. 52, 4658–4672 (2008)

17. Yang, M.S., Hwang, P.Y., Chen, D.H.: Fuzzy clustering algorithms for mixed fea-
ture variables. Fuzzy Sets Syst. 141(2), 301–317 (2004)

Input-Dependably Feature-Map Pruning

Atalya Waissman(&) and Aharon Bar-Hillel

Ben-Gurion University, Beer-Sheva, Israel
{ataliaw,barhille}@post.bgu.ac.il

Abstract. Deep neural networks are an accurate tool for solving, among other
things, vision tasks. The computational cost of these networks is often high,
preventing their adoption in many real time applications. Thus, there is a con-
stant need for computational saving in this research domain. In this paper we
suggest trading accuracy with computation using a gated version of Convolu-
tional Neural Networks (CNN). The gated network selectively activates only a
portion of its feature-maps, depending on the given example to be classified. The
network’s ‘gates’ imply which feature-maps are necessary for the task, and
which are not. Specifically, full feature maps are considered for omission, to
enable computational savings in a manner compliant with GPU hardware con-
straints. The network is trained using a combination of back-propagation for
standard weights, minimizing an error-related loss, and reinforcement learning
for the gates, minimizing a loss related to the number of feature maps used. We
trained and evaluated a gated version of dense-net on the CIFAR-10 dataset [1].
Our results show that with slight impact on the network accuracy, a potential
acceleration of up to �3 might be obtained.

Keywords: Neural networks � Pruning � Acceleration
Conditional computation � Feature-map

1 Introduction

The variability and richness of natural visual data make it almost impossible to build
accurate recognition systems manually. Thus, it is machine learning algorithms which
dominate these problems today. Deep Neural Networks (DNN) are hierarchical
machine learning algorithm which currently provide the best results at the fields of
computer vision, speech processing and Natural Language Processing (NLP). Focusing
on vision, CNN allow obtaining good solutions for difficult tasks such as image
classification, object detection/localization, captioning, segmentation and image gen-
eration. The research regarding CNNs is constantly evolving and the industrial inte-
gration of these nets increases significantly.

CNNs are a cascade of convolution, sub-sampling and activation layers which are
applied on the input. The computational cost of these networks is high, often pre-
venting their usage in real time applications. The improvement in computer hardware
and specifically GPUs allow the usage of deeper networks providing more accuracy but
raises the need for computational saving even more.

In this paper we present a network that uses only some of its feature maps, chosen
in an input-depended manner, to classify images. Using the assumption that each

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 706–713, 2018.
https://doi.org/10.1007/978-3-030-01418-6_69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_69&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_69&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_69&domain=pdf

feature map of the network allocates and extracts a certain feature from its input [2, 3]
we assume that given a specific example, only the computation of some feature maps is
indeed improving the network accuracy. We hence build decision mechanisms, termed
‘gates’, which decide for each feature map in every layer whether the map should be
computed or not. Since these gates make sharp decisions, we optimize their parameters
using a reinforcement learning framework. We experiment with a dense-net base
architecture, which is one of the more accurate contemporary alternatives, on the Cifar-
10 dataset. Our results indicate that speedups of up to 3� are obtainable with less than
2% error reduction.

2 Related Work

Many studies considered saving deep neural networks’ computational cost. Diverse
approaches are suggested, including low rank decomposition for convolutional and
global layers using separable filters [4, 5], tensor decomposition [6, 7], weights and
activations quantization [8, 9] and implementation using FFT [10]. In this research we
decrease CNN’s computational cost using conditional computation, and we hence
focus on this literature.

Combining conditional computation with networks is often non-trivial since it
makes the training process difficult. Despite this, the usage of conditional computation
during train and test time has been studied using several approaches. A CNN that deals
with dynamic time budget was suggested in [11], allowing output estimation without
completing the entire forward propagation process, using additional loss layers in
earlier stages of the network. Although an early classification is obtained, the accuracy
decreases significantly when having low time budget.

The model described in [12] suggests selection of a sub-networks combination
located between stacked LSTMs, in an input-depended fashion. This model aims to
increase its number of parameters using these sub-networks, thus allow handling tasks
with many parameters, such as language modeling. This model does not save com-
putation on tasks such as image classification considered in the present paper.

Another suggested model is a recurrent neural network which selectively processes
only some regions of the input, using reinforcement learning methods [13]. Also in [14]
reinforcement learning technique is used to train a fully connected neural network to
drop neurons in an input-depended manner. These models use sparse tensors which are
less compliant with hardware constrains, causing computational saving to be less
efficient.

In our model we trained a CNN with bypass connections in an input depended
manner, such that only the necessary feature-maps are computed. Our results show that
using this approach allows computational saving with significant test time
speedup. The method is orthogonal to many methods suggested above [4–7, 10], and
hence can be combined with them to obtain further acceleration.

Input-Dependably Feature-Map Pruning 707

3 Baseline Network – ‘DenseNet’

In traditional networks the layers are sequentially connected one after the other. Dif-
ferent studies [15, 16] have shown that networks containing shorter connections (by-
passes) enable deeper architectures which are more accurate. One such recent
architecture is our network’s baseline – DenseNet [17]. While traditional CNNs’ layers
are serially connected, in DenseNet the layers are sorted in large blocks, each con-
taining multiple convolutional layers. Within each block, convolutional layers (fol-
lowed by ReLU and Batch Normalization (BN)) forward their output maps to all
subsequent convolution layers within the same block. Transition layers (convolution
and average-pooling) separate between blocks and decrease the feature map size.
Deeper layer in the block hence get as input maps from all their predecessors in the
block, so their input size (number of input maps) increases. To reduce the amount of
input maps, the output size of all layers is limited to k maps.

Using the DenseNet architecture, each omitted feature map implies significant
computation saving, as the map is used as input for all following layers in the block,
and not only the one next following layer. Our architecture takes advantage of this
insight to reduce computation amount during test time.

4 Model

4.1 Motivation

As part of the efforts to reduce the deep networks’ computational cost, our model
prunes feature maps input-dependably. A computation of a feature-map can have
significant or negligible influence on the output accuracy for a given example,
depending on its content. For example, classifying dogs and cats is considerably dif-
ferent from distinguishing trains from tracks, thus these two tasks depend on different
feature maps. Motivated by this observation, we created an architecture selecting which
maps to compute and which to omit while classifying a given input.

4.2 Architecture

The model is based on the architecture described in [17], and to identify the essential
feature-maps of the networks, for a given input to be classified, input depended ‘gates’
are added. Each gate is associated with a feature-map and indicates if the feature-map
computation is necessary or not. These gates are binary valued: ‘1’ implies to the
necessity of using the feature-map, ‘0’ implies it is unnecessary. As shown in Fig. 1, to
produce these gates we connected to each layer a ‘gates branch’ whose outputs are
k gate values (one for each map). To keep the net’s computation’s efficiency, the
computational cost of the gates branches is low. Average pooling with fixed 4 � 4
output size is applied on the input layers (all the L preceding layers in the block),
diminishing the input size of the following fully-connected (FC) layer. The FC layer
outputs k neurons, each associated with one output map (of the L + 1 layer). Following

708 A. Waissman and A. Bar-Hillel

this, BN and sigmoid activation layers are applied, producing probability-like values
for map computation. Following the sigmoid layer, a stochastic decision is made
regarding map computation by a Bernoulli trail with the probability of ‘1’ provided by
the gate. At test time, only the maps whose gate output is ‘1’ are computed.

At training, to apply the gate decision for information flows on the main branch,
each output map of the convolutional layer is multiplied by its associated gate value.
Therefore, a gate’s decision of “not computing a map” causes multiplication of the
corresponding output map by 0 and avoiding the unnecessary map, while a gate valued
1 keeps the information of the map unchanged.

4.3 Optimization

The loss used for training is the standard softmax loss (the gates’ actions and proba-
bilities are implicit). During training the weights of the network’s main branch (i.e. the
DenseNet architecture) are adjusted using standard Stochastic Gradient Descent (SGD).

Since stochastic decisions are made in the gate branch, the introduced discontinuity
and non-differentiability prevent optimization of the entire network using SGD. For
optimization of the gate branches we use a reinforcement learning derivation as in [18]
and minimize the expected loss while taking expectations also with respect to the
stochastic decision made. For a single batch with B examples, the loss we minimize to
encourage map pruning is

LGate ¼
k
PL

l¼1

PK
k¼1

PB
i¼1 plki � t

� �Q�jtjQ
K � L � B ð1Þ

Where plki is the map computation probability of map k of layer l in example i. K is
the number of maps in a layer and L is the number of gated layers of the network. k; t
and Q are scalar parameters. Raising the probabilities plki to the power Q[1

Fig. 1. The unit structure: The unit consists of 3 branches: the main branch, the bypass
(identity) branch and the gate branch.

Input-Dependably Feature-Map Pruning 709

encourages diversity of plki values. The parameter t is used to avoid the derivatives from
obtaining very high values approaching þ1, which may happen otherwise for Q\1.
This loss is added to the standard Softmax loss to provide the total loss minimized. k is
used to weight the pruning-related loss function and create a balance between accuracy
and computational saving.

5 Experiments and Results

5.1 Dataset – CIFAR-10

We evaluate the network on the CIFAR-10 dataset [1], which consists of 60,000
images of 10 categorical classes: airplane, automobile, bird, cat, deer, dog, frog, horse,
ship and truck. All the images are RGB sized 32 � 32. The images are divided to a
train set and a test set: 50,000 and 10,000 images respectively. Followed by [17], we
used 5,000 images from the training set as a validation set.

5.2 Training

We trained the network using a batch size of 64 examples for 300 epochs on a single
GPU. We set the learning rate to 0.1 over the first 150 epochs, then diminish it to 0.01
for the next 75 epochs, and again diminish it to 0.001 for the last 75 epochs. We set the
number of output maps of each unit to be k ¼ 12 to prevent the network from growing
too wide. The layers are sorted in 3 dense blocks with feature-map sized 32 � 32,
16 � 16 and 8 � 8, each block contains 12 BN-Relu-Conv units. Followed by [17],
between the blocks we set a sequence of BN-Relu-Conv-Average-pooling with 2 � 2
pool size. The weight decay is set to 0.0001, the momentum is set to 0.9 and Q is set to
6. We initialize all the main branch weights to the final weights of a trained same-sized
DenseNet. We removed the drop-out layers from the network, since the map-pruning
produces significant training noise, and the additional drop-out noise disturbs the
network optimization and convergence.

Gradual Learning
In some experiments we trained the network gradually, with each dense block trained
separately at a time for 300 epochs, using the same parameters stated above. First, for
300 epochs, only the gate branches’ parameters of the bottom dense block were
adjusted. Then, for another 300 epochs, the gate branches’ parameters of the second
block as well as the first block were adjusted. Finally, the third block’s gate branches
were added to the process, and the entire network was trained simultaneously for 300
epochs.

5.3 Results

We evaluated the networks on the 10,000 remaining test set images. At test time, a
pruning threshold was set to 0.5 and if the gate probability is above this threshold, the
map is computed. To evaluate the computational saving potential of our gated version,

710 A. Waissman and A. Bar-Hillel

note that the computation complexity of a convolutional layer with input size
W � H � din, output size W � H � K and filter size F � F is

O W � H � din � K � F2� � ð2Þ

In our framework, the average probability of a map to be computed is
P ¼ El;i;k Pl

ki

� �
. If both the din input maps and the K output maps are not pruned with

probability P, the complexity of convolutional layer computing is

O W � H � Pdin � PK � F2
� � ð3Þ

And the speedup resulting from dividing (2) by (3) is 1=P2, i.e. quadratic in P.
Assuming that the pruning probability is approximately invariant across layers, this
provides a good estimation of the potential acceleration. We hence compute the
expected acceleration as 1=P2 where P is estimated by averaging Pl

i;k over all the maps
and all test examples.

Our main results are shown in Table 1. For k ¼ 0, i.e. when the map pruning loss is
not active, the network prefers to keep almost all its gates at ‘1’, thus using almost all
the maps. When k is raised to 5 our input dependent version can provide significant
potential accelerations of up to �3, with small accuracy drops of up to 1:7%.

We compare the results of our input-dependent version with DenseNet networks
containing less maps. In each row, we compare to a DenseNet with the number of maps
reduced to get a computational cost comparable to the gated network. This is done by
choosing kDenseNet ¼ k � P with P is the gate not-pruning probability. It can be seen that
the input dependent versions provide an advantage over the simpler alternatives.

Another advantage of a gated network version is that one can further control the
speed-accuracy trade-off by tuning the pruning threshold as test time. Hence the same
network can provide a certain range of speed-accuracy working points, chosen at test
time according to the application needs. This trade-off obtained by the network of row
three from Table 1 is shown in Fig. 2.

Table 1. Accuracy and potential speedup of gated networks using different train methods and
parameters. Together with the initial convolutional layer and the transition layers, the networks
depth is L = 40.

Training
technique

k Bias Error
rate

Average
P

Potential
speedup

kDensNet Baseline
error rate

Standard 0 4 7.2% 99.95% �1 12 7.2%
Gradual 5 1 8% 83.82% �1:42 10 8.18%
Standard 5 1 8.9% 57.73% �3 7 9.34%

Input-Dependably Feature-Map Pruning 711

6 Conclusions and Further Work

We have presented an architecture with input dependent gates, enabling partial com-
putation of feature maps in an input dependent manner. We showed that such a gated
version provides convenient accuracy to speed trade off, which is slightly preferable to
the trade-off obtained with plain DenseNet versions. Beyond that, the gated version
allows additional accuracy-speed trade-off at run time, hence enabling further flexibility
when computational constraints are present.

We currently work on optimizing the model during training using other techniques
and extending the testing to more datasets.

References

1. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report,
Computer Science Department, University of Toronto, pp. 1–60 (2009)

2. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep
network. Bernoulli 1341, 1–13 (2009)

3. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding neural networks
through deep visualization (2015)

4. Rigamonti, R., Sironi, A., Lepetit, V., Fua, P.: Learning separable filters. In: 2013 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2754–2761 (2013)

5. Mamalet, F., Garcia, C.: Simplifying ConvNets for fast learning. In: Villa, A.E.P., Duch, W.,
Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012. LNCS, vol. 7553, pp. 58–65. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33266-1_8

6. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with
low rank expansions. arXiv Preprint. arXiv 1405.3866, p. 7 (2014)

7. Jin, J., Dundar, A., Culurciello, E.: Flattened convolutional neural network for feedforward
acceleration. ICLR Work. 2014, 1–11 (2015)

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

2.973 3.078 3.133 3.494 3.698

Er
ro

r R
at

e

Poten al speed-up

Fig. 2. The potential speed-up and the corresponding error rate using different test threshold
values. The results are using a network that was trained with k ¼ 5 and bias = 1.

712 A. Waissman and A. Bar-Hillel

http://dx.doi.org/10.1007/978-3-642-33266-1_8
https://arxiv.org/abs/1405.3866

8. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification
using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M.
(eds.) ECCV 2016. LNCS, vol. 9908, pp. 1–17. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46493-0_32

9. Vanhoucke, V., Senior, A., Mao, M.: Improving the speed of neural networks on CPUs. In:
Proceedings of Deep Learning and Unsupervised Feature Learning NIPS, pp. 1–8 (2011)

10. Mathieu, M., Henaff, M., LeCun, Y.: Fast training of convolutional networks through FFTs.
In: International Conference on Learning Representations, pp. 1–9 (2014)

11. Amthor, M., Rodner, E., Denzler, J.: Impatient DNNs - deep neural networks with dynamic
time budgets, no. 2 (2016)

12. Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Dean, J.: Outrageously large
neural networks : the sparsely-gated mixture-of-experts layer, pp. 1–15 (2017)

13. Mnih, V., Heess, N., Graves, A., Kavukcuoglu, K.: Recurrent models of visual attention.
Adv. Neural. Inf. Process. Syst. 27, 1–9 (2014)

14. Bengio, E., Bacon, P.-L., Pineau, J., Precup, D.: Conditional computation in neural networks
for faster models, pp. 1–9 (2015)

15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. Arxiv.Org,
vol. 7, no. 3, pp. 171–180 (2015)

16. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks importance
of identity skip connections usage of activation function analysis of pre-activation structure,
no. 1, pp. 1–15 (2016)

17. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional
networks (2016)

18. Willia, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Mach. Learn. 8(3), 229–256 (1992)

Input-Dependably Feature-Map Pruning 713

http://dx.doi.org/10.1007/978-3-319-46493-0_32
http://dx.doi.org/10.1007/978-3-319-46493-0_32

Thermal Comfort Index Estimation
and Parameter Selection Using Fuzzy

Convolutional Neural Network

Anirban Mitra, Arjun Sharma, Sumit Sharma, and Sudip Roy(B)

CoDA Laboratory, Department of Computer Science and Engineering,
IIT Roorkee, Roorkee, India

anbanmta@gmail.com, arjunjamdagni@gmail.com, sumitsharma1825@gmail.com,
sudiproy.fcs@iitr.ac.in

Abstract. In order to monitor the comfort level of the city, which
depends on several thermal metrics, in many indoor and outdoor appli-
cations it is required to estimate the comfort level of the city in real-time.
Out of the many thermal comfort indices proposed so far, predicted mean
voter (PMV) is one of the widely used measures for both indoor and out-
door ambiances. Due to the complexity of calculating PMV in real-time,
many techniques have been proposed to estimate it without using all the
required parameters. So far fuzzy networks have shown the best results
for PMV estimation because of its rule generation capability. Convo-
lutional neural network (CNN) is an deep learning based technique to
classify, or to estimate particular parameter by shrinking them to sig-
nificant data-collections. In this work, we fuzzified the system before
applying CNN for regression to estimate the PMV values. Simulation
results show that the proposed model outperforms the existing ANFIS
model for PMV estimation with a lower root mean square error value.

Keywords: Convolutional neural network · Fuzzy neural network
Predicted mean vote · Thermal comfort index

1 Introduction

In various fields of everyday life such as traveling, going to work, even in indoor
systems, prediction of comfort level is an important concern of the ambiance.
A prediction comfort level of certain area or indoor system can have several
applications such as prediction of travel suitability, prediction of thermal stress
of residents and helping the workers to decide their working hours. Even in indoor
one could tune ventilation or air-conditioning according to predictions. Thermal
comfort is referred to as the condition of mind that expresses satisfaction of the
thermal environment. It is not only associated with air-temperature, but also
greatly associated with relative humidity, air velocity, mean radiant temperature,
metabolic rate, clothing factor along with air-temperature [2]. As a choice of
thermal comfort index, predicted mean vote (PMV) is a widely used one and
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 714–724, 2018.
https://doi.org/10.1007/978-3-030-01418-6_70

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_70&domain=pdf

Thermal Comfort Index Estimation Using Fuzzy CNN 715

uses all the six parameters mentioned previously along with some synthesized
variables. It is often very difficult to estimate PMV in real time because of the
complexity, but from meteorological data, it is easy to retrieve only some of
the parameters mentioned. Methods have been developed to estimate the PMV
value from a few of the parameters. Fuzzy systems ([15], [16]) has been proved
to work well in this scenario.

Convolutional neural network (CNN) has the ability to shrink large chunks of
data into smaller data containing most key features, which can be used for both
classification and regression. This work aims at solving the estimation (regres-
sion) problem with a novel architecture comprising of fuzzy system and deep
neural network along with analysis of the system leveraging rule synthesizing
ability of fuzzy systems and estimating ability of CNN. Moreover, the choice
and inter-dependency of parameters are also demonstrated.

The remainder of the paper is organized as follows. Basic background is
presented in Sects. 2 and 3 provides a literature survey. Motivation and problem
statement are presented in Sect. 4. The proposed approach using fuzzy-CNN
architecture is discussed in Sect. 5, whereas the input system description and
functionality of the architecture are explained in Sect. 6. Simulation results and
analysis are presented in Sect. 7. Finally, the paper is concluded in Sect. 8.

2 Basic Background

2.1 Predicted Mean Vote (PMV)

As defined by Fanger [9], predicted mean vote (PMV) is to scale human sensa-
tion of thermal comfort, which is backed by ASHRAE [2]. PMV is defined as a
function of six parameters namely air-temperature (Ta in ◦C or degree Celsius),
relative humidity (RH in %), mean radiant temperature (TR in ◦C or degree
Celsius), air-velocity (Vair in m/sec), human metabolic rate (Met in W/m2)
and clothing factor (Clo in Km2W−1). This quantification of thermal comfort
of a group of persons is defined within a scale of −3 to +3 as shown in Table 1.

Table 1. Correspondence between PMV indices and PMV labels.

PMV index −3 −2 −1 0 1 2 3

Label Cold Cool Less cool Neutral Less warm Warm Hot

Equation 1 below presents the PMV as a function of different parameters,
where W is the external work done (in W/m2), Pa is the water vapour pressure
in Pascal. Tcl is the surface temperature of clothing (in ◦C), hc is the convective
heat transfer coefficient (in ◦C) and fcl is the ratio of clothed body surface area
to naked body surface area.

716 A. Mitra et al.

PMV = (0.303e−0.036Met + 0.028)
[
(Met−W)− 3.05× 10−5 × [5733− 6.99(Met−W)

− Pa]− 0.42[(Met−W)− 58.15]− 1.7× 10−5Met(5867− Pa)− 0.0014×Met(34

− Ta)− 3.96× 10− 8fc × [(Tcl + 273)4 − (TR + 273)4]− fclhc(Tcl − Ta)
]

(1)

2.2 ANFIS Model

The adaptive-network-based fuzzy inference system (ANFIS) model was devel-
oped by Jang et al. [13] using Takagi-Sugeno fuzzy model [20] to leverage fuzzy-
rule strength and estimate outputs. For a rule i, the rule strength (wi) is defined
as wi = µi

1(x1) × µi
2(x2)... × µi

p(xp), where µi
j is the membership function for

input xj and the rule i. In ANFIS model, then the rule strengths are normalized
(w̄i) and put into linear combination with input values in order to get output y
as given by Eq. 2, where aj is called the consequent parameter.

y =
∑

i

w̄i(a0 + a1x1 + a2x2 + ... + anxn) (2)

2.3 Convolutional Neural Network (CNN)

A convolutional neural network (CNN) is similar to a generic feed-forward arti-
ficial neural network (ANN) except that they are specifically used to shrink or
“convolve” the input data into a lower dimensional data-form for further use.
The hidden layers of a CNN typically consists of three types of layers: convolu-
tional layer, pooling layer and fully-connected (FC) layer. In the convolutional
layer, a window of randomly initialized values is applied to convolve with the
part of input data having identical dimension; while the window is slid by some
predefined value. Pooling layer transforms the region of input into a singular
value (stride), which is generally done by taking maximum (max-pool), min-
imum (min-pool) or average (average-pool). In a fully-connected (FC) layer,
every neuron in previous layer is connected to every neuron in the next layer.
This layer is generally applied after convolving and/or pooling in order to obtain
the classification or regression value. The relative positioning and deciding num-
ber of layers are specific to a problem scenario.

3 Related Work

Various ways of estimating the thermal comfort levels proposed by researches
include simple version of comfort index [6] and weight-based or weighted comfort
index [19], predicted mean vote (PMV) [9], physiological equivalent temperature
(PET) [12], standardized PMV (SPMV) [10]. Among all these, PMV is the widely
used measure for thermal comfort index. Techniques like neural network, vector
machine [14], fuzzy set, genetic algorithm, etc. have been used to enhance the
accuracy of estimating the PMV value both in indoor and outdoor scenarios.
Ciglar et al. [5] showed a model-predictive control framework. Another work
presents how PMV zones in an outdoor environment of a district in Italy are

Thermal Comfort Index Estimation Using Fuzzy CNN 717

analyzed [11]. Similarly, PMV is also used for analysis of an outdoor environment
during urban planning [4].

Neural networks can learn the error in parameters in a converging manner,
while fuzzy sets are able to distribute the parameters over intervals in order to
express the result in a realistic manner. Combination of both have been lever-
aged in various works. Li et al. [15] proposed a type-2 fuzzy set based neural
network to estimate the PMV value and also used back-propagation to adjust
the membership function parameters. Yifan et al. [16] developed a simple fuzzy
neural network model with the 6-parameter variation and 4-parameter variation
(excluding metabolic rate, clothing factor) using multivariate regression for esti-
mating PMV and obtained excellent results in term of accuracy of prediction.
Popko et al. [18] used fuzzy logic module along with CNN for handwritten digits
classification. Moreno et al. [17] combined CNN and a final fuzzy layer to achieve
classification for object recognition. Zhou et al. [21] attempted regression using
CNN to estimate the pain of certain facial expressions in video data.

4 Motivation and Problem Statement

4.1 Motivation

CNN is primarily used for classification using deep layer techniques, converting
large data into to smaller and significant data-chunks. On the other hand, in
order to extend the use of PMV value as comfort index in both indoor and out-
door environment, finding a different technique for better estimation of PMV is
a challenge. Li et al. [15] and Yifan et al. [16] were able to achieve significant
accuracy with root-mean-square-error (RMSE) values as 0.2 and 0.045, respec-
tively, using fuzzy sets and neural networks. A know fact that the deep neural
network architectures like CNN can also be used to perform regression-like tasks
motivates us to leverage the advantages of both CNN as regression model and
fuzzy-set for better estimation of the PMV value.

4.2 Problem Statement

Here the problem is to have an efficient and effective method to estimate the
PMV value from a few known parameter values. In this paper, an attempt is
made to use CNN for regression along with fuzzy sets for PMV estimation. This
finding also incorporated selecting important parameters.

5 Proposed Approach: Fuzzy-CNN Architecture

We adopt the ANFIS model (without any prior knowledge of rules), while the
estimation of consequent parameters (aj as in Eq. 2) is left to the CNN lay-
ers. Regression using neural networks is a widely used practiced approach. In
case of 5-parameter case, five parameters are considered to estimate the PMV
value namely air-temperature (Ta), relative humidity (RH), air velocity (Vair),
metabolic rate (Met) and clothing factor (Clo). Whereas, for 6-parameter case,
mean radiant temperature (TR) is included as the sixth parameter.

718 A. Mitra et al.

5.1 Pre-processing

Six parameters are distributed into multiple fuzzy sets using standard Gaussian

distribution function (µ) that can be calculated as µj
i (xi) = e

[
− (xi−a

j
i
)2

2(bj
i
)2

]

, where
µj
i is membership function for input xi and the corresponding rule j; while a

and b are corresponding mean and standard deviation (s.d.) of the distribution,
respectively, for xi and j. Figure 1 depicts the initial fuzzy distributions step for
air-temperature, relative humidity and air velocity. The initial pre-processing
steps of all the six parameters are distributed into three fuzzy sets as follows.
Air-temperature is distributed into three fuzzy sets: cold, normal (with higher
s.d., i.e., flat/spread curve for the two extreme sets), hot as shown in Fig. 1(a).
For relative humidity Gaussian functions are used to split into 3 sets: humid,
normal, dry as shown in Fig. 1(b). Very low s.d. is applied to the two extreme sets
while flat curve was maintained for normal one. For air velocity, again Gaussian
distribution is used to divide into three sets: stormy, moderate air flow, almost
still air (giving moderate s.d. in two extreme sets and high s.d. in the median set)
as shown in Fig. 1(c). The mean radiant temperature TR is distributed in same
way as Ta. The metabolic rate is divided into three sets: slow, moderate, active
giving moderate set with a high variance. Finally, the clothing factor is divided
into three sets: heavily clothed, normal and minimal clothing. Heavily clothing
is given low variance while moderately clothing set is given high variance.

Fig. 1. Initial fuzzy distribution of (a) air-temperature, (b) relative humidity and (c)
air velocity.

5.2 Layer Architecture

Initially, all the five parameters are divided into three fuzzy sets, i.e., a total of
15 fuzzy-sets are obtained. The proposed fuzzy-CNN architecture consists of five
layers as depicted in Fig. 2 and discussed here layer-wise.

Thermal Comfort Index Estimation Using Fuzzy CNN 719

Fig. 2. Overall architecture of proposed fuzzy-CNN based model.

Layer 1: Using the pre-processed fuzzified values, the rule combinations are gen-
erated. Each rule is considered to be a tuple of five values for the 5-parameter
case (six values for the 6-parameter case), where each value is corresponding
to the particular fuzzy-set value of one parameter. Hence, a total of 243 (729)
rules are generated for 5-parameter (6-parameter) case. One sample rule j is
“if x1 is µj

1(x1), x2 is µj
2(x2), . . ., xp is µj

p(xp), then output is y”, where xis
are total p input parameters and µis are the corresponding membership func-
tions. For 5-parameter case, combinations are generated as follows: if there are
two sets A = [a1, a2] and B = [b1, b2], then their ordered combinations will be
[(a1, b1), (a1, b2), (a2, b1), (a2, b2)].

Layer 2: Each rule values are intra-multiplied in order to obtain the rule-
strength (wj) as discussed in Sect. 2.2.

Layer 3: Each rule strength value is normalized (w̄j) as given by Eq. 3, where
j ranges from 1 to 243 (729) for the 5-parameter (6-parameter) case.

w̄j =
wj∑
j wj

(3)

Layer 4: The input data tuple (dimension 5×1) is transformed into a 7×1 sized
tuple by appending the average of five parameters and numeric value integer 1.
This appending can be regarded as bias term a0 as mentioned in Eq. 2. Then, the
output of layer 3, i.e., the normalized value of each rule (size 1× 1) is multiplied
with the transformed tuple to get the expanded rule value of 7 × 1.

Layer 5: In order to get the parameters or to estimate y of Eq. 2, deep net-
works are incorporated. First, generic 3 layer neural network with RMSProp
optimizer [3] is used with a learning rate of around 0.0005 to find y from 1701
(= 243 × 7) parameters for the 5-parameter case and 5832 (= 729 × 8) for the
6-parameter case. Later on for the 5-parameter case, it is compared with the
deep architecture consisting of a 7 × 1 (8 × 1 for the 6-parameter case) convolve
layer with one channel and stride of 7 (8 for the 6-parameter case) units, followed

720 A. Mitra et al.

Fig. 3. Internal architecture of layer 5 of the proposed fuzzy-CNN based model.

by a 3 × 1 max-pool layer and stride of 3 units, which is again passed through a
convolve layer of size 1 × 1, 3 channels and unit stride, followed by the max-pool
layer same as the last one. This is followed by three fully-connected (FC) layers
with 500, 250 and 50 neurons, respectively. This entire architecture of layer 5
for 5-parameter case is depicted in Fig. 3.

5.3 Choice of Parameters

The mean radiant temperature (MRT) is related to the air-temperature accord-
ing to ISO 7726 standard [1]. Considering MRT as one of the input parameters
would grow the number of rules to significantly large number (729 × 8 = 5832
for the 6-parameter case) of consequent parameters reached, which is a three-
fold increase in terms of parameter estimation. The metabolic rate and clothing
factor were unavoidable as shown by Yifan et al. [16], whereas air-temperature,
relative humidity and air-velocity are maintained as the key parameters.

5.4 Input System

For experimenting and analysis, RP-884 are used as reference, where the
datasets for one NV building by Dear et al. [7] and 22 HVAC buildings by
Cena et al. [8] are combined as the entire dataset. The former one was obtained
from wet equatorial climate of Singapore, in the year 1991 and the latter one was
from hot arid region of Kalgoorlie-Boulder, Australia for both winter and sum-
mer seasons in 1998. The Singapore and Australian winter and summer datasets
has 584, 625 and 589 samples, respectively, totaling 1798 samples; out of which
around 1400 samples were used for training and 400 for testing randomly at
runtime. The parameters used in simulation are in the range as follows: air-
temperature from 16.7 ◦C to 36.1 ◦C, relative humidity from 24.54 % to 97.82
%, air velocity from 0.043 m/s to 1.567 m/s, mean radiant temperature from
16.82 ◦C to 32.81 ◦C, metabolic rate from 0.772 Met to 2.58 Met (where 1 Met
= 58 W/m2), and the clothing factor from 0.045 to 1.57.

Thermal Comfort Index Estimation Using Fuzzy CNN 721

6 Deep Layer Functioning

As discussed in Sect. 2, convolutional layer performs dot product and hence
results in downsampling of input. In the 5-parameter case, the input dimension
is 1701 × 1 × 1 × 1 (height × width × depth × channels). This is obtained by
expanding all 243 rules with 7 × 1 sized tuples as described earlier (243 × 7 =
1701). After convolving with 7 × 1 sized filter with a stride of 7 × 1 × 1
× 1, expanded rule values are reduced to a singular value meaning, i.e., into
243 parameters for the 5-parameter case. Similarly, in the 6-parameter case the
expanded rule values are reduced to 729 parameters. This value can be considered
as related to the normalized rule strength from layer 3. This reduction is similar
to layer 4 to 3 (backward), but in a different way. Max-pooling with window
size 3 × 1 × 1 × 1 downsamples every 3 consecutive values into a singular one
(maximum one). Before normalizing in layer 3, in layer 2 every 3 consecutive
rule strengths differs only in terms of the values of clothing factor (Clo) as
a membership function. Here, this pooling step is kept as the maximum (not
an average) as it would be easier for optimization. Then it is reduced to 81
parameters for the 5-parameter case and 243 parameters for the 6-parameter
case. The next convolve layer performs dot product with each value obtained in
the last step, but adds 3 channels to it making it 81 × 3 sized data. Reshaping
this data produces to 243 × 1 shape again. Furthermore, the max-pooling reduces
it to 81 values for the 5-parameter case (243 values for the 6-parameter case),
which imply getting rid of the effect of parameter clothing factor (Clo). One more
layer of max-pooling of similar dimension and stride reduces it to 27 parameters,
this can be considered as neutralizing the human metabolic rate (Met). Adding
layers to it affects the results and time to train the model. The second convolve
layer is added to make an increase in the number of parameters to optimize
and pass different values to second pooling layer. A few fully-connected (FC)
layers those are added to it start having neurons almost 20-fold of the number of
parameters (27 × 19 ≈ 500). Weights and biases of these FC layers are initialized
with the random normal values.

These rules basically boil down to a normalized value (Eq. 2). Those are first
expanded (refer to layer 4 of Sect. 5.2) and then compressed through the CNN
architecture in layer 5. The last max-pooling layer converts it from 243 to 27 for
the 5-parameter case (from 729 to 81 for the 6-parameter case), which is a fairly
scalable size that the Tensorflow fully-connected nets can handle. Compressing
those many rules using the proposed CNN architecture is important step to
tackle the combinatorial explosion of many fuzzy rules.

7 Simulation Results

The proposed method is implemented using Python 3.2 and Tensorflow and
NumPy. Initially, 3 FC traditional neural network layers are appended to layer
4 of the ANFIS model, which results in best root mean-squared error (RMSE)
value of around 0.8 on the test dataset. The proposed fuzzy-CNN model is fed

722 A. Mitra et al.

with the train and test dataset as mentioned in Sect. 5.4. It provides a good
RMSE value of around 0.018 for the 5-parameter case and around 0.08 the 5-
parameter case, considering no prior knowledge were used in both the cases. The
ANFIS model with prior knowledge for the 6-parameter case with multivariate
regression reaches the best RMSE value of 0.04.

The error plot in Fig. 4(a) shows the variation of actual and predicted PMV
values for the 5-parameter case for first 100 test samples. The shrinked size of
most of the data points indicate closeness of predicted and actual PMV val-
ues. Figure 4(b) represents the amount of error in the predicted value for each
sample for both the 5-parameter case and 6-parameter case of proposed model
(i.e., F-CNN without MRT and F-CNN with MRT, respectively, where MRT
is mean radiant temperature) and ANFIS model with prior knowledge for the
6-parameter case. The error in the 6-parameter case deviates the most from 0.
Over 400 samples, the RMSE values are around 0.02 and 0.08 for the 5-parameter
and the 6-parameter case, respectively, while for ANFIS model [16] with prior
knowledge it is around 0.04. The consideration of MRT reduces the accuracy.

It is also observed that RMSProp is able to converge slowly but more effi-
ciently (with global minima ≤ 0.019) for both the 5-parameter and 6-parameter

Fig. 4. Variation of (a) predicted and actual PMV values, and (b) relative error of
three approaches with varying number of samples.

Fig. 5. Comparison between RMSProp and GD optimzer for (a) 5-parameter case and
(b) 6-parameter case.

Thermal Comfort Index Estimation Using Fuzzy CNN 723

Fig. 6. Final fuzzy distribution of (a) air-temperature, (b) relative humidity and (c)
air velocity.

cases, while the gradient descent (GD) optimizer converged quickly but with a
higher global minima ≥ 0.021. Here, the learning rate is maintained as 0.0005
and batch size was maintained as 5. It is observed that increasing the batch size
does not have significant effect on global minima except, it converged at slower
rate. Figure 5(a) and (b) show how the RMSE converges against iterations for
the 5-parameter and 6-parameter case, respectively, with both the optimizers.

Figure 6 shows the finally tuned fuzzy set values for the three parameters
air-temperature, relative humidity and air-velocity, respectively.

8 Conclusions

Predicted mean voter (PMV) is a widely used thermal comfort index. In this
paper, we have proposed a novel method based on fuzzy convolutional neural
network (F-CNN) model to estimate the PMV values. This proposed model out-
performs the existing model for PMV estimation with a lower root mean square
error value. It is found that CNN can efficiently deduce the inter-dependencies of
the parameters and their impact in estimating the final PMV values. In future,
this work can be extended by incorporating selective networks like restricted
Boltzmann machine or belief networks in order to obtain better accuracy in
PMV value estimation.

References

1. Mean radiant temperature. https://en.wikipedia.org/wiki/Mean radiant
temperature. Accessed July 2018

2. Thermal Comfort. https://en.wikipedia.org/wiki/Thermal comfort. Accessed June
03 2018

https://en.wikipedia.org/wiki/Mean_radiant_temperature
https://en.wikipedia.org/wiki/Mean_radiant_temperature
https://en.wikipedia.org/wiki/Thermal_comfort

724 A. Mitra et al.

3. RMSPropOptimizer (2018). https://www.tensorflow.org/api docs/python/tf/
train/RMSPropOptimizer

4. Barakat, A., Ayad, H., El-Sayed, Z.: Urban design in favor of human thermal
comfort for hot arid climate using advanced simulation methods. Alexandria Eng.
J. 56(4), 533–543 (2017)

5. Cigler, J., Pŕıvara, S., Vána, Z., Komarkova, D., Sebek, M.: Optimization of pre-
dicted mean vote thermal comfort index within model predictive control frame-
work. In: Proceedings of the IEEE CDC, pp. 3056–3061 (2012)

6. Dai, M., et al.: A neural network short-term load forecasting considering human
comfort index and its accumulative effect. In: Proceedings of the ICNC, pp. 262–
266 (2013)

7. de Dear, R.J., Leow, K.G., Foo, S.C.: Thermal comfort in the humid tropics: field
experiments in air-conditioned and naturally ventilated buildings in Singapore. Int.
J. Biometeorol. 34(4), 259–265 (1991)

8. de Dear, R., Cena, K.: Field Study of Occupant Comfort and Office Thermal
Environments In a Hot-Arid Climate: Final Report on ASHRAE RP-921 (1998)

9. Fanger, P.O.: Thermal Comfort: Analysis and Applications in Environmental Engi-
neering. McGraw-Hill, New York (1972)

10. Gagge, A., Fobelets, A., Berglund, L.: A standard predictive index of human
response to the thermal environment. ASHRAE Trans. 92(2B), 709–731 (1986)

11. Gaspari, J., Fabbri, K.: A study on the use of outdoor microclimate map to address
design solutions for urban regeneration. Energy Procedia 111, 500–509 (2017)

12. Höppe, P.: The physiological equivalent temperature - a universal index for the
biometeorological assessment of the thermal environment. Int. J. Biometeorol.
43(2), 71–75 (1999)

13. Jang, J.S.R.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans.
Syst. Man, Cybern. 23(3), 665–685 (1993)

14. Kumar, M., Kar, I.: Non-linear HVAC computations using least square support
vector machines. Energy Convers. Manag. 50(6), 1411–1418 (2009)

15. Li, C., Yi, J., Wang, M., Zhang, G.: Prediction of thermal comfort index using
type-2 fuzzy neural network. In: Zhang, H., Hussain, A., Liu, D., Wang, Z. (eds.)
BICS 2012. LNCS (LNAI), vol. 7366, pp. 351–360. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31561-9 40

16. Luo, Y., Li, N., Li, S.: ANFIS modeling of the PMV thermal comfort index based
on prior knowledge. In: Proceedings of the IEEE ICIE, pp. 214–219 (2014)

17. Moreno, R.J., Sanchez, O.A., Ovalle, D.M.: RGB-D training for convolutional neu-
ral network with final fuzzy layer for depth weighting. Contemp. Eng. Sci. 10(29),
1419–1429 (2017)

18. Popko, E., Weinstein, I.: Fuzzy logic module of convolutional neural network for
handwritten digits recognition. J. Phys.: Conf. Ser. 738(1), 012123 (2016)

19. Rawi, M.I.M., Al-Anbuky, A.: Development of intelligent wireless sensor networks
for human comfort index measurement. In: Proceedings of the ANT, pp. 232–239
(2011)

20. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to
modeling and control. IEEE Trans. Syst. Man and Cybern. SMC 15(1), 116–132
(1985)

21. Zhou, J., Hong, X., Su, F., Zhao, G.: Recurrent convolutional neural network
regression for continuous pain intensity estimation in video. In: Proceedings of
the IEEE CVPRW, pp. 1535–1543 (2016)

https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer
https://www.tensorflow.org/api_docs/python/tf/train/RMSPropOptimizer
https://doi.org/10.1007/978-3-642-31561-9_40

Soft Computing Modeling of the Illegal
Immigration Density in the Borders of Greece

Serafeim Koutsomplias(&) and Lazaros Iliadis

School of Engineering, Department of Civil Engineering,
Lab of Mathematics and Informatics, University Campus,

Democritus University of Thrace, Xanthi, Greece
serafeim_sefis@windowslive.com, liliadis@civil.duth.gr

Abstract. It is a fact that due to the war in Syria and to instability/poverty in
wide regions of the world, immigration flows to Europe have increased to a very
significant extent. From the EU countries, Greece and Italy are accepting the
heaviest load due to their geographical location. This research paper, proposes a
flexible and rational Soft Computing approach, aiming to model and classify
areas of the Greek (sea and land) borderline, based on the density and range of
illegal immigration (ILIM). The proposed model employs Intuitionistic Fuzzy
Sets (IFUS) and Fuzzy Similarity indices (FUSI). The application of this
methodology can provide significant aid towards the assessment of the situation
in each of the involved areas, depending on the extent of the flow they face.

Keywords: Illegal immigration � Intuitionistic fuzzy sets
Degrees of membership � Degrees of non-membership � Similarity indices
Classification

1 Introduction

To the best of our knowledge, this is the first and pioneer Soft Computing approaches
employing Intuitionistic Fuzzy Sets, towards illegal immigration risk modeling for
Greece. This was achieved by employing Fuzzy Algebraic approaches, offering the
most flexible and effective solution for the representation and modeling of real world
concepts (e.g. “high temperature”, “small rain height”, “high altitude”). From this point
of view this research effort has a certain level of innovation.

Fuzzy Logic constitutes a part of Soft Computing, a branch of Artificial Intelligence
that is used in many scientific applications, like control systems and Hybrid Decision
Support systems. It is widely used in risk estimation. However, the most important
innovative element of this research is the introduction of a new risk estimation
approach, employing Intuitionist Fuzzy Sets in order to enhance flexibility. This is
really important for totally unstructured problems like the one faced herein.

This research proposes several annual local ILIM risk models for a period of eight
years (2010–2017). These models were compared to each other and analyzed thor-
oughly. The result was the estimation of cross checked indices, regarding annual illegal
immigration risk (ANIIR) similarities and differences, among the areas of entry. The
areas considered are the following: Greek - Albanian border, Greek - FYROM border,

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 725–735, 2018.
https://doi.org/10.1007/978-3-030-01418-6_71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_71&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_71&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_71&domain=pdf

Greek - Bulgarian border, river Evros (natural border between Greece and Turkey) the
islands of Lesvos, Samos, Crete, the islands of Dodecanese and Cyclades and finally
the rest of the country. The classification of all areas based on the produced metadata,
was performed through an innovative and flexible algorithmic approach. More atten-
tion was given to the area of river Evros and to the island of Lesvos as they are the
major entry points, carrying a major part of the illegal immigration flow.

2 Materials and Methods

2.1 Theoretical Background – Methodology (Hung and Yang 2004)

According to Athanassov (1999), an IFUS ~A is defined as follows:

~A ¼ fðx; l~AðxÞ; v~AðxÞÞj x 2 Xg ð2:1Þ

where l~AðxÞ; v~AðxÞ 2 ½0; 1� denote the degree of membership and the degree of non-
membership of x 2 ~A respectively.

The following condition must be met:

0� l~AðxÞþ v~AðxÞ� 1 8x 2 X ð2:2Þ

For each IFUS ~A in the universe of discourse X,

pAðxÞ ¼ 1� lAðxÞ �
1� lAðxÞ
1þ klAðxÞ

ð2:3Þ

and

pAðxÞ ¼ 1� lAðxÞ � vAðxÞ ð2:4Þ

is called the hesitancy degree of x to ~A and it satisfies the inequality
0� pAðxÞ� 1 8x 2 X.

The following membership function has been used:

lðxÞ ¼ 0:7e
�ðx�bÞ2

2r2 ð2:5Þ

A very important aspect of IFUS is the estimation of their degree of similarity
(DESI). The DESI S between two IFUS ~A and ~B can be calculated with various
functions such as:

• (Li and Cheng 2002):

Spdð~A; ~BÞ ¼ 1� 1ffiffiffi
np

p
ffi
Xn

i¼1

jm~AðiÞ � m~BðiÞjpp

s
ð2:6Þ

726 S. Koutsomplias and L. Iliadis

where

m~AðiÞ ¼ ðl~AðxiÞþ 1� v~AðxiÞÞ=2; m~BðiÞ ¼ ðl~BðxiÞþ 1� v~BðxiÞÞ=2 ð2:7Þ

and 1� p�1:
• (Liang and Shi 2003):

Spdð~A; ~BÞ ¼ 1� 1ffiffiffi
np

p
ffi
Xn

i¼1

ðUi~A~BðiÞþUf ~A~BðiÞÞpp

s
ð2:8Þ

where

Ut~A~BðiÞ ¼ jl~AðxiÞ � l~BðxiÞj=2 ð2:9Þ

and

Uf ~A~BðiÞ ¼ jð1� v~AðxiÞÞ=2� ð1� v~BðxiÞÞ=2j ð2:10Þ

The degree of similarity S for all IFUS ~A ; ~B and ~C satisfies the following
properties:

0� Sð~A; ~BÞ� 1 ð2:11Þ

Sð~A; ~BÞ ¼ 1 if ~A ¼ ~B ð2:12Þ

Sð~A; ~BÞ ¼ Sð~B; ~AÞ ð2:13Þ

Sð~A; ~CÞ� Sð~A; ~BÞ and Sð~A; ~CÞ� Sð~B; ~CÞ ð2:14Þ

if ~A�~B�~C; ~C 2 IFSsðXÞ

A new edition of property (2.12) is (2.15) (Mitchell 2003):

Sð~A; ~BÞ ¼ 1 if and only if ~A ¼ ~B ð2:15Þ

2.2 Data

The data used in this research, were obtained from the official website of the Hellenic
Police: http://www.astynomia.gr/newsite.php?&lang.

3 The Proposed Fuzzy Intuitionistic System

The proposed model estimates the degree of membership of each area to the Linguistics
“Low Risk”, “Moderate Risk”, “High Risk” separately, based on the number of inci-
dents. It is an indirect multiclass classification. Also the intuitionistic fuzzy sets (INFS)

Soft Computing Modeling of the Illegal Immigration Density 727

http://www.astynomia.gr/newsite.php?&lang

are used towards the estimation of the degree of similarities between the most risky
areas.

Initially, the raw data were stored in MS Excel. The global range of the problem
was found by obtaining the minimum and the maximum number of ILIM for the whole
country and for every year.

Then, the raw data were transferred in proper tables in MATLAB, and three
Membership functions corresponding to the three fuzzy Linguistics mentioned above,
have been defined automatically by the Fuzzy Toolbox of MATLAB after the input of
the range (minimum and maximum values). For all three linguistics Gaussian mem-
bership functions were employed. Screens 1 and 2 are the graphical user interface of
the Fuzzy toolbox of MATLAB.

Screen 1. Fuzzy toolbox of MATLAB

Screen 2. Gaussian membership function

728 S. Koutsomplias and L. Iliadis

4 Results and Discussion

4.1 Comparison Between the River Evros Area and Island of Lesvos

The river Evros area has been chosen because it is the natural main land border
between Greece and Turkey and the island of Lesvos is a characteristic destination that
can be easily reached by sea from the Turkish coast, using small boats.

The following chart resulted after the Analysis of Fuzzy Sets and the usage of
Intuitionistic Fuzzy Sets and it presents the degree of Similarity between the two areas.

As we have seen in 2016, the risk for Lesvos has started dropping (maybe because
there is no place in the refugee camps of Lesvos any more, and the refugees have
realized this). The same time the risk for Evros has started rising as the people were
looking for a new entry to Greece that can lead to Athens or to western Europe. The
very impressive in this case is the fast that the two lines almost met in 2017 and the two
areas have the same DOS.

Comparison 1
According to the number of ILIM incidents, for the years 2010–2012, the two above
areas do not have the same behavior and the same risk. Evros is a case of “High Risk”
whereas Lesvos is a case of “Low Risk” for the above years. Their degree of similarity
(DOS) is Moderate. All other degrees are almost equal to zero.

As it can be seen in Table 1 the degree of similarity is not high.

Table 1. Risk similarity for 2010–2012

Degrees of risk similarity (Lesvos-Evros) 2010 2011 2012

Low 0.017103 9.55E−05 0.024268
Moderate 0.977549 0.998743 0.971531
High 2.28E−07 2.03E−07 8.95E−07

Graph 1. The characteristic categories of risk according to the number of illegal immigrants for
Evros and Lesvos (2010–2017) (0 low risk, 0.5 moderate risk, 1 high risk)

Soft Computing Modeling of the Illegal Immigration Density 729

Comparison 2
For the year 2013, the two above areas have almost the same behavior for all risk
Linguistics as they have a very high degree of similarity and they are both “Low
Risky”. However, Evros is 7.7 times closer to the category of “Moderate Risk”. We
examine the year 2013 separately, because as we will see below 2013 is the start of a
new era (Table 2).

Comparison 3
For the year 2014, the two above areas do not have the same behavior and the same risk
according to the number of illegal immigrants. Evros is a typical case of “Low Risk”
and Lesvos is a case of “Moderate Risk”. This is due to the fact that (as we will also see
in Graph 1) the Risk level for Lesvos has started rising seriously, whereas the Risk for
Evros has started dropping for some years in the row (Table 3).

Comparison 4
If we compare the two areas for 2015 and 2016, we see that they do not have the same
behavior and the same risk according to the number of illegal immigrants. Evros is still
a typical case of “Low Risk” and Lesvos is a characteristic case of “High Risk”. The
refuges keep preferring the seaway and they keep risking their lives by using small
rotten boats to reach the islands, preferring mainly the island of Lesvos which is very
close to the Turkish mainland and it is also a major one. The 12 km fence that has been
built by Greece in the north land border with Turkey has plaid a significant role towards
this situation (Table 4).

Table 2. Risk similarities for the year 2013

Degrees of risk similarity (Lesvos-Evros) 2013

Low 0.583859885
Moderate 0.662525807
High 0.999935607

Table 3. Risk similarities for the year 2014

Degrees of risk similarity 2014

Low 0.094242768
Moderate 0.373050006
High 0.763732614

Table 4. Comparison of risk similarities for 2015–2016

Degrees of risk similarity 2015 2016

Low 0.000351104 0.009087607
Moderate 0.997457414 0.984788473
High 1.04915E−07 2.75765E−07

730 S. Koutsomplias and L. Iliadis

Comparison 5
For the year 2017, the two above areas have almost the same behavior for all risk
Linguistics as they have a high degree of similarity and they are both “Moderate Risky”.
However, Lesvos is 1560 times closer to the category of “Moderate Risk” (Table 5).

5 Conclusion-Discussion

After analyzing the results, we see that the degree of risk of the two pilot areas (Lesvos
and Evros) changes on an annual basis and it ranges from high to low, depending on
the orientation of the immigrants’ flow. It proves that the desperate immigrants who left
their countries to escape from war, are sometimes motivated to use land borders and
sometimes to cross the sea. This depends on the information they get and on the
interests of the people who exploit this unfortunate situation in order to make profit.
Another measure that motivated immigrants to cross the sea to the islands after 2013 is
the construction of the fence in river Evros from the Greek side. The construction of
this fence finished in 2014. In Fig. 4.1 we see that from 2013 (when the works for the
fence had started) till 2016 the ILIM incidents from the land border (Evros) has
dropped to an extremely Low level whereas the incidents in Lesvos have increased
dramatically. In 2017 the tendency of the refugees was to use both diodes equally. The
research has shown that the immigration of the refuges is not done randomly, but it is

Table 5. Comparison of risk similarities for the year 2017

Degrees of risk similarity 2017

Low 0.541804804
Moderate 0.678369381
High 0.823298925

Table 6. Comparison of degrees of immigration risk for Greece for 2010 and 2011

Areas Years

2010 2011
L M H L M H

Albanian 1E−04 0.432 0.25739 0.4557 0.24 2E−05
FYROM 0.986 0.021 7.8E−08 0.9947 0.0177 5E−08
Bulgarian 0.996 0.017 5E−08 0.998 0.0158 4E−08
Evros 3E−08 0.013 1 3E−08 0.0132 1
Lesvos 0.974 0.025 1.1E−07 0.9999 0.0138 3E−08
Samos 0.991 0.019 6.6E−08 0.9996 0.0143 4E−08
Chios 1 0.014 3.4E−08 1 0.0133 3E−08
Dodecanese 0.988 0.021 7.5E−08 1 0.0132 3E−08
Cyclades 1 0.013 3E−08 0.9999 0.0137 3E−08
Crete 0.964 0.028 1.4E−07 0.9854 0.0215 8E−08
Rest of Greece 2E−06 0.099 0.73042 0.0094 0.9937 0.0182

Soft Computing Modeling of the Illegal Immigration Density 731

organized and the desperate ILIM are following specific roots that changes annually,
depending on the policies of the involved countries.

The following Tables 6, 7, 8 and 9 present the fuzzy degrees of membership of all
border areas of Greece to the Linguistics Low, Medium and High ILIM Risk.

Evros is a typical case of High Risk with a Degree of Membership (DOM) equal to
1 for both 2010 and 2011 whereas Lesvos is Low Risky with DOM practically equal to
1 (0.99). The other areas are all Low Risky compared to these two spots.

Evros is still a High-risk area for 2012 and suddenly the risk drops to zero (Low
Risk area with the maximum DOM) for the next year 2013 whereas Risk for Lesvos
starts rising and the Rest of the country becomes High Risky with DOM equal to 1.

Table 7. Comparison of degrees of immigration risk for Greece for 2012 and 2013

Areas Years

2012 2013
L M H L M H

Albanian 0.108 0.708 0.0008 0.0009 0.7191 0.1028
FYROM 0.975 0.025 1.1E−07 0.9447 0.0336 2E−07
Bulgarian 0.998 0.016 4.4E−08 0.99 0.0198 7E−08
Evros 3E−08 0.013 1 0.9349 0.0363 2E−07
Lesvos 0.964 0.028 1.4E−07 0.4069 0.2774 3E−05
Samos 0.979 0.024 9.7E−08 0.5241 0.1959 1E−05
Chios 1 0.014 3.2E−08 0.8705 0.054 6E−07
Dodecanese 0.98 0.023 9.4E−08 0.7049 0.1088 3E−06
Cyclades 1 0.013 3E−08 1 0.0132 3E−08
Crete 0.862 0.057 6.4E−07 0.6728 0.1218 4E−06
Rest of Greece 7E−07 0.058 0.85442 3E−08 0.0131 1

Table 8. Comparison of degrees of immigration risk for Greece for 2014 and 2015

Areas Years

2014 2015
L M H L M H

Albanian 0.013 1 0.0138 0.9958 0.0172 5E−08
FYROM 0.952 0.032 1.8E−07 1 0.0134 3E−08
Bulgarian 0.986 0.021 8E−08 1 0.0133 3E−08
Evros 0.863 0.056 6.3E−07 0.9995 0.0145 4E−08
Lesvos 5E−04 0.627 0.14156 3E−08 0.0132 1
Samos 0.054 0.871 0.00243 0.4916 0.2159 2E−05
Chios 0.122 0.672 0.00064 0.3873 0.2937 4E−05
Dodecanese 2E−06 0.083 0.77688 0.3233 0.3545 7E−05
Cyclades 1 0.013 3E−08 1 0.0132 3E−08
Crete 0.65 0.132 4.6E−06 0.9997 0.0142 3E−08
Rest of Greece 3E−08 0.013 1 0.9616 0.0289 2E−07

732 S. Koutsomplias and L. Iliadis

In 2014 the problem is in recession (no area is High risky) whereas in 2015 all of a
sudden, only Lesvos is assigned DOM equal to 1 (extreme value) for the Linguistic
High Risk.

It is remarkable that is 2016 only Lesvos still remains High risky with the maxi-
mum Dom equal to 1. Suddenly the situation changes completely in 2017, where many
areas are assigned the Moderate Risk linguistic. These areas are: Lesvos, Samos, Chios,
Evros and the surprise is the Greek Albanian border. It should be mentioned that
Lesvos (though moderate risky is still the most risky one, followed by the Albanian
borders and the island of Chios.

All of the above conclusions are very interesting, and they show the roots that the
immigrants decide to follow every year. It is impressive that the vast majority of them
are guided to follow specific roots that change depending on the situations. This data
and results will be much more interesting to the people who have a clear view of the
situation and they can explain the root changes on an annual basis. Of course, the life
conditions of the immigrants must be improved.

Future research will focus on the estimation of similarities among all border areas
of Greece.

References

Deshpande, A.W., Raje, D.V.: Fuzzy logic applications to environment management systems
Case studies. In: Proceedings of IEEE on Industrial Informatics. IEEE Explore Digital Library
(2003)

Atanassov, K.: Intuitionistic Fuzzy Sets. Springer, Heidelberg (1999). https://doi.org/10.1007/
978-3-7908-1870-3

Table 9. Comparison of degrees of immigration risk for Greece for 2016 and 2017

Areas Years

2016 2017
L M H L M H

Albanian 0.95 0.032 1.9E−07 0.1284 0.6568 0.0006
FYROM 1 0.014 3.3E−08 0.9996 0.0142 4E−08
Bulgarian 0.999 0.015 4.1E−08 0.9632 0.0284 1E−07
Evros 0.986 0.021 7.8E−08 0.3269 0.3506 7E−05
Lesvos 3E−08 0.013 1 0.0009 0.7246 0.1012
Samos 0.68 0.119 3.6E−06 0.3183 0.3597 7E−05
Chios 0.053 0.875 0.00252 0.1974 0.5211 0.0002
Dodecanese 0.506 0.207 1.5E−05 0.5321 0.1909 1E−05
Cyclades 1 0.013 3E−08 1 0.0132 3E−08
Crete 0.998 0.016 4.5E−08 0.9182 0.0407 3E−07
Rest of Greece 0.658 0.128 4.3E−06 3E−08 0.0132 1

Soft Computing Modeling of the Illegal Immigration Density 733

http://dx.doi.org/10.1007/978-3-7908-1870-3
http://dx.doi.org/10.1007/978-3-7908-1870-3

Bradshaw, L.S., et al.: The 1978 National Fire – Danger Rating System, Technical
documentation (1978)

Booty, W.G.: Design and implementation of environmental decision support system (2001)
EC, European Commission: Forest Fires in Europe 2010, 92 p. EUR 24910 EN, ISBN 978-92-

79-20919-2. Publications Office of the European Union, Luxembourg (2011)
Hájek, P., Olej, V.: Adaptive intuitionistic fuzzy inference systems of Takagi-Sugeno type for

regression problems. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) AIAI 2012.
IAICT, vol. 381, pp. 206–216. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33409-2_22

Iakovidis, D.K., Pelekis, N., Kotsifakos, E., Kopanakis, I.: Intuitionistic fuzzy clustering with
applications in computer vision. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu,
D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 764–774. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-88458-3_69

Iliadis, L., Vangeloudh, M., Spartalis, S.: An intelligent system employing an enhanced fuzzy c-
means clustering model: application in the case of forest fires. Comput. Electron. Agric. 70(2),
276–284 (2010)

Iliadis, L., Tsataltzinos, T.: Fuzzy adaptive clustering of the Greek forest terrain towards forest
fire risk assessment (2008)

Iliadis, L.: A decision support system applying an integrated fuzzy model for long-term forest fire
risk estimation. EMS Environ. Model. Softw. 20(5), 613–621 (2005)

Iliadis, L., Spartalis, S.: Fundamental fuzzy relation concepts of a D.S.S. for the estimation of
natural disasters risk (The case of a trapezoidal membership function). J. Math. Comput.
Model. 42, 747–758 (2005)

Iliadis, L., Papastavrou, A., Lefakis, P.: A computer-system that classifies the prefectures of
Greece in forest fire risk zones using fuzzy sets. For. Policy Econ. 4(1), 43–54 (2002a). ISSN:
1389-9341

Iliadis, L., Papastavrou, A., Lefakis, P.: A heuristic expert system for forest fire guidance in
Greece. J. Environ. Manag. 65(3), 327–336 (2002b)

Iliadis, L., Zigkrika, N.: Performing fuzzy multi-feature scenarios for the determination of forest
fire risk. In: Proceedings of 3rd International Conference on Information and Communication
Technologies in Agriculture, Food, Forestry and Environment (ITAFFE 2010), pp. 170–177
(2010)

Kecman, V.: Learning and Soft Computing. MIT Press, Cambridge (2001)
Chang, K.-H., Cheng, C.-H.: A risk assessment methodology using intuitionistic fuzzy set in

FMEA. Int. J. Syst. Sci. 41(12), 1457–1471 (2010)
Li, D., Cheng, C.: New similarity measures of intuitionistic fuzzy sets and application to pattern

recognition (2002)
Liang, Z., Shi, P.: Similarity measures on intuitionistic fuzzy sets (2003)
Leondes, C.T.: Fuzzy Logic and Expert Systems Applications. Elsevier, New York (1998)
Mitchell, H.B.: On the Dengfeng – Chuntian similarity measure and its application to pattern

recognition (2003)
Malek, M.R., Karimipour, F., Nadi, S.: Intuitionistic fuzzy spatial relationships in mobile GIS

environment. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI), vol. 4578,
pp. 313–320. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73400-0_39

Sadiq, R., Tesfamarian, S.: Environmental Decision-making under uncertainty using intuition-
istic fuzzy analytic hierarchy process. Environ. Res. Risk Assess. 23, 75–91 (2009). https://
doi.org/10.1007/s00477-007-0197-z

Sharma, A., Yadav, J., Mandlik, P., Ladkat, P.: Fuzzy logic applications in water supply system
management: a case study. In: Proceedings of the Annual Meeting of the North American
Fuzzy Information Processing Society (2012)

734 S. Koutsomplias and L. Iliadis

http://dx.doi.org/10.1007/978-3-642-33409-2_22
http://dx.doi.org/10.1007/978-3-642-33409-2_22
http://dx.doi.org/10.1007/978-3-540-88458-3_69
http://dx.doi.org/10.1007/978-3-540-73400-0_39
http://dx.doi.org/10.1007/s00477-007-0197-z
http://dx.doi.org/10.1007/s00477-007-0197-z

Sotirov, S., Vardeva, I., Krawczak, M.: Intuitionistic fuzzy multilayer perceptron as a part of
integrated systems for early forest-fire detection. In: Proceedings of the 17th International
Conference on Intuitionistic Fuzzy Sets. Notes on IFS, vol. 19, no. 3, pp. 81–89 (2013)

Sotirova, E., et al.: Hexagonal Game Method model of forest fire spread with intuitionistic fuzzy
estimations. In: Proceedings of the 17th International Conference on Intuitionistic Fuzzy Sets.
Notes on IFS, vol. 19, no. 3, pp. 73–80 (2013)

Szmidt, E., Kacprzyk, J.: Classification with nominal data using intuitionistic fuzzy sets. In:
Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS
(LNAI), vol. 4529, pp. 76–85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72950-1_8

Tsataltzinos, T., Iliadis, L., Spartalis, S.: A generalized fuzzy-rough set application for forest fire
risk estimation feature reduction. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.)
AIAI/EANN 2011. IAICT, vol. 364, pp. 332–341. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-23960-1_40

Tsataltzinos, T., Iliadis, L., Spartalis, S.: A fuzzy Inference rule-based System for the estimation
of forest fire risk: the case of Greece. J. Eng. Intell. Syst. 18(1), 59–67 (2010)

Tsataltzinos, T., Iliadis, L., Spartalis, S.: An intelligent fuzzy inference system for risk estimation
using matlab platform: the case of forest fires in Greece. In: Iliadis, L., Vlahavas, I., Bramer,
M. (eds.) AIAI 2009. IFIP International Federation for Information Processing, vol. 296,
pp. 303–311. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-4419-0221-4_36

Chaira, T.: Intuitionistic fuzzy set approach for colour region extraction (2010)
Tzionas, P., Ioannidou, I., Paraskevopoulos, S.: A Hierarchical Fuzzy Decision Support System

for the Environmental Rehabilitation of Lake Koronia, Greece (2004)
Hung, W.L., Yang, M.S.: Similarity measures of intuitionistic fuzzy sets based on Hausdorff

distance (2004)
Hung, W.L., Yang, M.S.: Similarity measures of intuitionistic fuzzy sets based on Lp metric

(2004)
Deng, Y., Sadiq, R., Jiang, W., Tesfamariam, S.: Risk analysis in a linguistic environment: a

fuzzy evidential reasoning-based approach. Expert. Syst. Appl. 38(12), 15438–15446 (2011)

Soft Computing Modeling of the Illegal Immigration Density 735

http://dx.doi.org/10.1007/978-3-540-72950-1_8
http://dx.doi.org/10.1007/978-3-540-72950-1_8
http://dx.doi.org/10.1007/978-3-642-23960-1_40
http://dx.doi.org/10.1007/978-3-642-23960-1_40
http://dx.doi.org/10.1007/978-1-4419-0221-4_36

Fuzzy Implications Generating from Fuzzy
Negations

Georgios Souliotis and Basil Papadopoulos(&)

Department of Civil Engineering Section of Mathematics and Informatics,
Democritus University of Thrace, 67100 Kimeria, Greece

{gsouliot,papadob}@civil.duth.gr

Abstract. A basic building block in the foundation of fuzzy neural networks is
the theory of fuzzy implications. Fuzzy implications play a crucial role in this
topic. The aim of this paper is to find a new method of generating fuzzy
implications. based on a given fuzzy negation. Specifically, we propose using a
given fuzzy negation and a function so as to generate rules of fuzzy implications,
that is rules which regulate decision making, thus adapting mathematics to
human common sense. A great advantage of this construction is that the
implications generated in this way fulfil many axioms and serious properties
among the set of required ones.

Keywords: Fuzzy implication � Fuzzy negation � t-norm � t-conorm

1 Introduction

Everything starts from the well-known connection «if …… then ………», which is s
called implication in mathematic. In the above reasoning by filling the gaps with
phrases, we have a hypothesis, which, in classical logic, t is true or false, so their values
are 1 or 0, respectively. Fuzzy logic is not only to do with the values 0 and 1 but
explores these implications when their values are between 0, 1.

Basically, a fuzzy system is in essence a system of linguistic rules of the form “if
…. then ….”, which match two fuzzy linguistic concepts A and B according to natural
language and common sense, as in the following examples

– “If someone is tall, then (s) he is also heavy”

or

– “If it snows heavily, then the road gets dangerous”.

In other words, through implications and fuzzy operations, fuzzy systems enable
‘engines’ and mathematics to incorporate the way of expression of everyday language
and common sense. Note here that both mathematics and engines function according to
Boolean algebra.

In this paper our goal is to import a way of generating fuzzy implications through
fuzzy negations as has been described in the literature.

A fuzzy implication is a generalization of the classical implication, in the same way
that a t-norm and a t-conorm are generalizations of the classical conjunction and
disjunction, respectively. In the rest of the paper we will import the most fundamental

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 736–744, 2018.
https://doi.org/10.1007/978-3-030-01418-6_72

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_72&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_72&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_72&domain=pdf

properties of fuzzy conjunctions and examine the relations that connect negations and
conjunctions in fuzzy logic theory.

To find out whether a fuzzy negation can generate fuzzy implications, the we need
to ensure that effect of negation must be such that it will not alter the axioms of fuzzy
implications. For this reason, it is necessary to briefly mention the basic axioms and
properties of fuzzy implications [1].

2 Theoretical Background

In this paper as a definition of a fuzzy implication we will use the definition proposed
by Kitainik [2], Foodor and Roubens [3].

2.1 Fuzzy Implication

Definition 1. A function I : 0; 1½ � � 0; 1½ � ! 0; 1½ � is called a fuzzy implication if for
all x; x1; x2; y; y1; y2 2 0; 1½ � the following conditions are satisfied:
(I1) x1 � x2 then I x1; yð Þ � I x2; yð Þ, i.e., I (∙, y) is decreasing,
(I2) y1 � y2 then I x; y1ð Þ � I x; y2ð Þ; i.e., I (x, ∙) is increasing,
(I3) I (0, 0) = 1
(I4) I (1, 1) = 1
(I5) I (1, 0) = 0

The set of all fuzzy implications will be denoted by F I:
Examples for Fuzzy Implications are given in the Table 1 below:

2.2 Basic Properties of Fuzzy Implications

Additional properties of fuzzy implications have been published in many works (see
Trillas and Valverde [6], Dubois and Prade [7], Smets and Magrez [8], Fodor and
Roubens [3], Gottwald [4]). The most important of them are presented below [1].

Definition 2. A fuzzy implication I is said to satisfy

– the left neutrality property, if

I 1; yð Þ ¼ y; y 2 0; 1½ � NPð Þ

Table 1. Examples for fuzzy implications.

Name Formula implication

Lukasiewicz ILK x; yð Þ ¼ min 1; 1� xþ yf g
Godel

IGD x; yð Þ ¼ 1 am x � y
y am x [y

�

Reichenbach IRC x; yð Þ ¼ 1� x þ xy
Kleene-Dienes IKD ¼ max 1� x; yð Þ

Fuzzy Implications Generating from Fuzzy Negations 737

– the exchange principle, if

I x; I y; zð Þð Þ ¼ I y; I x; zð Þð Þ; x; y; z 2 0; 1½ � EPð Þ

– the identity principle, if

I x; xð Þ ¼ 1; x 2 0; 1½ � IPð Þ

– the ordering property, if

I x; yð Þ ¼ 1 , x� y; x; y 2 0; 1½ �: OPð Þ:

2.3 Fuzzy Negation

The fuzzy implication and fuzzy negation must be defined together.
A fuzzy negation N is a generalization of the classical complement or negation ::

Fuzzy negation truth table consists of the two conditions: ¬1 � 0 and ¬0 � 1. The
following definitions can be found in any introductory text book on Fuzzy logic (see,
Fodor and Roubens [3], Klir and Yuan [4], Nguyen and Walker [5]).

Definition 3. A function N: (0, 1) ! [0, 1] is called a Fuzzy negation if

N 0ð Þ ¼ 1; N 1ð Þ ¼ 0 ðN1Þ

N is decreasing: ðN2Þ

Definition 4

– A fuzzy negation N is called strict if, in addition,

N is strictly decreasing; ðN3Þ

N is continious; ðN4Þ

– A fuzzy negation N is called strong if the following property is met,

N N xð Þð Þ ¼ x; x 2 0; 1½ �: ðN5Þ

In this paper the strong negation will be denoted by

Ns xð Þ x 2 0; 1½ �

Examples for Fuzzy Negations are given in the Table 2 below:

738 G. Souliotis and B. Papadopoulos

2.4 Law of Contraposition

One of the most important tautologies in classical logic is the law of contraposition:

p ! q � :q ! :p

:p ! q � :q ! p

p ! :q � q ! :p

Definition 5. Let I 2 F I and N be a fuzzy negation. I is said to satisfy the

– law of contraposition with respect to N, if

I x; yð Þ ¼ I N yð Þ;N xð Þð Þ; x; y 2 0; 1½ �: CPð Þ

– law of left contraposition with respect to N, if

I N xð Þ; yð Þ ¼ I N yð Þ; xð Þ; x; y 2 0; 1½ � L� CPð Þ

– law of right contraposition with respect to N, if

I x;N yð Þð Þ ¼ I y;N xð Þð Þ; x; y 2 0; 1½ � R� CPð Þ

If I satisfies the (left, right) law of contraposition with respect to N, then we denote
this by CP Nð Þ.

If I satisfies the left or right law of contraposition with respect to N, then we denote
this by L� CP Nð Þ or R� CP Nð Þ; respectively [1].

2.5 Natural Negations of Fuzzy Implications

Lemma 1. If a function I : 0; 1½ �2! 0; 1½ � satisfies I1ð Þ; I3ð Þ and I5ð Þ, then the func-
tion NI : 0; 1½ � ! 0; 1½ � defined by

NI xð Þ ¼ I x; 0ð Þ; x 2 0; 1½ � ð1Þ

is a fuzzy negation. Proof [1].
Let I 2 F I. The function NI defined by (1) is called the natural negation of I.

Table 2. Examples of fuzzy negation with properties.

Formula Properties

NK xð Þ ¼ 1� x2 N1 to N4 strict

NR xð Þ ¼ 1� ffiffiffi
x

p
N1 to N4 strict

Sugeno class Nk xð Þ ¼ 1�x
1þ kx ; k 2 �1; þ1ð Þ N1 to N5 strong

Yager class Nw xð Þ ¼ 1� xwð Þ1w; w 2 0; þ1ð Þ N1 to N5 strong

Fuzzy Implications Generating from Fuzzy Negations 739

3 New Results

In this section, we will provide the definition of new generated implications and prove
some propositions using definitions introduced in the previous sections.

3.1 Production of Fuzzy Implications Through Fuzzy Negations

Definition 7. Let f : 0; 1½ � ! 0; 1½ � be a strictly decreasing and continuous function
with f 1ð Þ ¼ 0; f 0ð Þ ¼ 1 and N a fuzzy negation. The function I : 0; 1½ �2! 0; 1½ �
defined by

I x; yð Þ ¼ f�1 f N xð Þð Þ � f yð Þð Þ; x; y 2 0; 1½ � ð2Þ

is called an f � generated implication and is denoted If :

Proposition 1. If f is an f � generator and N is fuzzy negation, then If 2 F I:

Proof Firstly, since for every x; y 2 0; 1½ � we have 0 � f N xð Þð Þ � f yð Þ � 1, we see that
formula (3) is correctly defined.

• Since f is strictly decreasing, so is f�1 and for any y 2 0; 1½ �,

x1 � x2) Nðx1Þ � N x2ð Þ) f Nðx1ð ÞÞ � f N x2ð Þð Þ)
f Nðx1ð ÞÞ � f yð Þ � f N x2ð Þð Þ � f yð Þ)

f�1 f Nðx1ð Þð Þ � f yð ÞÞ � f�1ðf N x2ð Þð Þ � f yð ÞÞ)
Iðx1; yÞ � I x2; yð Þ i:e:; If satisfies I1ð Þ:

• Once again for any x 2 0; 1½ �, we have

y1 � y2) f ðy1Þ � f y2ð Þ) f N xð Þð Þ � f ðy1Þ � f N xð Þð Þ � f y2ð Þ)
f�1 f N xð Þð Þ � f ðy1ð ÞÞ � f�1 f N xð Þð Þ � f y2ð Þð Þ)

I x; y1ð Þ � I x; y2ð Þ i:e:; If satisfies I2ð Þ:
If 0; 0ð Þ ¼ f�1 f N 0ð Þð Þ � f 0ð Þð Þ ¼

¼ f�1 f 1ð Þ � 1ð Þ ¼ f�1 0ð Þ ¼ 1 i:e:; If satisfies I3ð Þ::
If 1; 1ð Þ ¼ f�1 f N 1ð Þð Þ � f 1ð Þð Þ ¼ f�1 f 0ð Þ � 0ð Þ ¼ f�1 0ð Þ ¼ 1 i:e:; If satisfies I1ð Þ:
If 1; 0ð Þ ¼ f�1 f N 1ð Þð Þ � f 0ð Þð Þ ¼ f�1 f 0ð Þ � 1ð Þ ¼ f�1 1ð Þ ¼ 0 i:e:; If satisfies I1ð Þ:

3.2 Natural Negations and f � generator

Proposition 2. Let If be a fuzzy implication with respect to fuzzy negation N then the
natural negation is N i.e., NIf ¼ N.

740 G. Souliotis and B. Papadopoulos

Proof Actually

NIf xð Þ ¼ If x; 0ð Þ ¼ f�1 f N xð Þð Þ � f 0ð Þð Þ ¼ f�1 f N xð Þð Þ � 1ð Þ ¼
f�1 f N xð Þð Þð Þ ¼ N xð Þ:

3.3 Laws of Contraposition and If

Proposition 3. If Ns is the strong negation of If then If satisfies the law of contra-
position with respect to Ns.

Proof

If Ns xð Þ;Ns yð Þð Þ ¼ f�1 f Ns Nsðxð ÞÞð Þ � f Nsðyð Þð Þ ¼ f�1 f xð Þ � f Nsðyð Þð Þ
¼ f�1 f Nsðyð ÞÞ � f xð Þð Þ ¼ If y; xð Þ:

Proposition 4. If Ns is the strong negation of If then If satisfies the law of left
contraposition with respect to Ns:

Proof

If Ns xð Þ; yð Þ ¼ f�1 f Ns Nsðxð ÞÞð Þ � f yð Þð Þ ¼ f�1 f xð Þ � f yð Þð Þ
¼ f�1 f xð Þ � f NsðNsðyð ÞÞð Þ ¼ f�1 f xð Þ � f NsðNsðyð ÞÞð Þ

¼ f�1 f NsðNsðyð ÞÞ � f xð Þð Þ ¼¼ If Ns yð Þ; xð Þ:

Proposition 5. If Ns is the strong negation of If then If satisfies the law of right
contraposition with respect to Ns:

Proof

If x;NsN yð Þð Þ ¼ f�1 f Ns xð ÞÞð Þ � f Nsðyð Þð Þ ¼
f�1 f Nsðyð Þ � f Ns xð Þð Þð Þ ¼ f �1 f Nsðyð ÞÞ � f Ns xð Þð Þð Þ ¼

¼ If y;Ns xð Þð Þ:

3.4 The Left Neutrality Property

Proposition 6. Let If be a fuzzy implication with respect to negation N, then the fuzzy
implication If satisfies the left neutrality property.

Proof

If 1; yð Þ ¼ f �1 f N 1ð Þð Þ � f yð Þð Þ ¼ f�1 f 0ð Þ � f yð Þð Þ ¼ f�1 1 � f yð Þð Þ ¼
If 1; 1ð Þ ¼ f�1 f yð Þð Þ ¼ y:

Fuzzy Implications Generating from Fuzzy Negations 741

3.5 The Exchange Principle

Proposition 7. Let If be a fuzzy implication with respect to negation N, then a fuzzy
implication If satisfies the exchange principle.

Proof

If x; If y; zð Þ� � ¼ f�1 f N xð Þð Þ � f If y; zð Þ� �� �
¼ f�1 f N xð Þð Þ � f ðf�1ðf N yð Þð Þ � f zð Þð Þ

¼ f�1 f N xð Þð Þ � f N yð Þð Þ � f zð Þð Þ
¼ f�1 f N yð Þð Þ � f N xð Þð Þ � f zð Þð Þ:

Similarly

If y; If x; zð Þ� � ¼ f�1 f N yð Þð Þ � f If x; zð Þ� �� � ¼ f�1 f N yð Þð Þ � f ðf�1ðf N xð Þð Þ � f zð Þð Þ
¼ f�1 f N yð Þð Þ � f N xð Þð Þ � f zð Þð Þ

Therefore

If x; If y; zð Þ� � ¼ If y; If x; zð Þ� �
:

3.6 The Identity Principle

Proposition 8. Let If be a fuzzy implication with respect to negation N, then a fuzzy
implication If satisfies the identity principle if and only if x ¼ 0 or x ¼ 1:

Proof

If x; xð Þ ¼ 1 , f�1 f N xð Þð Þ � f xð Þð Þ ¼ 1

, f N xð Þð Þ � f xð Þ ¼ f 1ð Þ
, f N xð Þð Þ � f xð Þ ¼ 0

, f N xð Þð Þ ¼ 0 or f xð Þ ¼ 0

, N xð Þ ¼ 1 or x ¼ 1

, x ¼ 0 or x ¼ 1:

3.7 The Ordering Property

Proposition 9. Let If be a fuzzy implication with respect to negation N, then a fuzzy
implication If satisfies the ordering property if and only if x ¼ 0 or x ¼ 1:

742 G. Souliotis and B. Papadopoulos

Proof

If x; yð Þ ¼ 1 , f�1 f N xð Þð Þ � f yð Þð Þ ¼ 1

, f N xð Þð Þ � f yð Þ ¼ f 1ð Þ
, f N xð Þð Þ � f yð Þ ¼ 0

, f N xð Þð Þ ¼ 0 or f yð Þ ¼ 0

, N xð Þ ¼ 1 or y ¼ 1

, x ¼ 0 or y ¼ 1:

i:e:; x ¼ 0 � y; 8y 2 0; 1½ � or x � 1; 8x 2 0; 1½ �:

3.8 Example

Let f xð Þ ¼ 1� x strictly decreasing

and fuzzy negation N xð Þ ¼ 1 ; if x ¼ 0
0 ; if x 2 0; 1ð �

�
then

the implication of Definition 6 yields

I x; yð Þ ¼ f�1 f N xð Þð Þ � f yð Þð Þ
if x ¼ 1 then N 0ð Þ ¼ 1 therefore

I x; yð Þ ¼ f�1 f 1ð Þ � f yð Þð Þ , I x; yð Þ ¼ f �1 0 � f yð Þð Þ , I x; yð Þ ¼ f�1 0ð Þ ¼ 1

, I x; yð Þ ¼ f�1 0ð Þ ¼ 1:

if x 2 0; 1ð � then N xð Þ ¼ 0 therefore

I x; yð Þ ¼ f�1 f 0ð Þ � f yð Þð Þ , I x; yð Þ ¼ f�1 1 � f yð Þð Þ ¼ f�1 f yð Þð Þ ¼ y

That is, we produce (implication)

I x; yð Þ ¼ 1; ifx ¼ 0
y; if x 2 0; 1ð � :

�

4 Conclusion

The above procedure has enabled us to generate a new class of fuzzy implications. The
importance of this relies on the fact that the reasoning process has improved, since we
have the possibility, for a given application, to choose the most appropriate implication
from a wider class. This methodology, to choose the most suitable fuzzy implication
from a given class of implications, will be applied in a forthcoming study based on
statistical data from previous research ([10–12]).

Fuzzy Implications Generating from Fuzzy Negations 743

References

1. Baczynski, M., Balasubramaniam, J.: Fuzzy Implications. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-69082-5

2. Kitainik, L.: Fuzzy decision procedures with binary relations. Kluwer, Dordrecht (1993)
3. Fodor, J.C., Roubens, M.: Fuzzy preference modelling and multicriteria decision support.

Kluwer, Dordrecht (1994)
4. Klir, G.J., Yuan, B.: Fuzzy sets and fuzzy logic. Theory and applications. Prentice Hall, New

Jersey (1995)
5. Nguyen, H.T., Walker, E.A.: A first course in fuzzy logic, 2nd edn. CRC Press, BocaRaton

(2000)
6. Trillas, E., Valverde, L.: On implication and indistinguishability in the setting of fuzzy logic.

In: Kacprzyk, J., Yager, R.R. (eds.) Management Decision Support Systems Using Fuzzy
Sets and Possibility Theory, pp. 198–212. TÜV-Rhineland, Cologne (1985)

7. Dubois, D., Prade, H.: Fuzzy sets in approximate reasoning. Part 1: Inference with possibility
distributions. Fuzzy Sets Syst. 40, 143–202 (1991). https://doi.org/10.1016/0165-0114(91)
90050-Z

8. Smets, P., Magrez, P.: Implication in fuzzy logic. Internat. J. Approx. Reason. 1, 327–347
(1987). https://doi.org/10.1016/0888-613X(87)90023-5

9. Gottwald, S.: A Treatise on Many-Valued Logics. Research Studies Press, Baldock (2001)
10. Ellina, G., Papaschinopoulos, G., Papadopoulos, B.K.: Fuzzy inference systems selection of

the most appropriate fuzzy implication from available lake water quality statistical data.
Environ. Process. 4(4), 923–935 (2017). https://doi.org/10.1007/s40710-017-0266-3

11. Pagouropoulos, P., Tzimopoulos, Christos D., Papadopoulos, Basil K.: A method for the
detection of the most suitable fuzzy implication for data applications. In: Boracchi, G.,
Iliadis, L., Jayne, C., Likas, A. (eds.) EANN 2017. CCIS, vol. 744, pp. 242–255. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-65172-9_21

12. Botzoris, N.G., Papadopoulos, K., Papadopoulos, K.B.: A method for the evaluation and
selection of an appropriate fuzzy implication by using statistical data. Fuzzy Econ. Rev. 20
(2), 19–29 (2015)

744 G. Souliotis and B. Papadopoulos

http://dx.doi.org/10.1007/978-3-540-69082-5
http://dx.doi.org/10.1016/0165-0114(91)90050-Z
http://dx.doi.org/10.1016/0165-0114(91)90050-Z
http://dx.doi.org/10.1016/0888-613X(87)90023-5
http://dx.doi.org/10.1007/s40710-017-0266-3
http://dx.doi.org/10.1007/978-3-319-65172-9_21

Facial/Emotion Recognition

Improving Ensemble Learning Performance
with Complementary Neural Networks

for Facial Expression Recognition

Xinmin Zhang and Yingdong Ma(&)

The School of Computer Science, Inner Mongolia University, Hohhot, China
csmyd@imu.edu.cn

Abstract. Facial expression recognition has significant application value in
fields such as human-computer interaction. Recently, Convolutional Neural
Networks (CNNs) have been widely utilized for feature extraction and expres-
sion recognition. Network ensemble is an important step to improve recognition
performance. To improve the inefficiency of existing ensemble strategy, we
propose a new ensemble method to efficiently find networks with complemen-
tary capabilities. The proposed method is verified on two groups of CNNs with
different depth (eight 5-layer shallow CNNs and twelve 11-layer deep VGGNet
variants) trained on FER-2013 and RAF-DB, respectively. Experimental results
demonstrate that the proposed method achieves the highest recognition accuracy
of 74.14% and 85.46% on FER-2013 and RAF-DB database, respectively, to the
best of our knowledge, outperforms state-of-the-art CNN-based facial expres-
sion recognition methods. In addition, our method also obtains a competitive
result of the mean diagonal value in confusion matrix on RAF-DB test set.

Keywords: Convolutional Neural Networks � Ensemble learning
Expression recognition

1 Introduction

Facial Expression Recognition (FER) analyzes the category (e.g., happiness, sadness)
of human expression based on face recognition. FER has been widely studied as
accurate recognition of human facial expression is a fundamental step for many
computer vision applications, such as medical security and human-computer interac-
tion. Significant progress has been made in the last decade [1–5]. However, FER is a
difficult task due to various illumination conditions, head position and occlusion in
different face images. If feature extraction is carried out directly using these raw data, it
would increase feature extraction error and eventually reduce FER performance. As a
result, before feature extraction, preprocessing of facial images is necessary, such as
face recognition, facial landmarks detection, face registration, histogram equalization,
etc.

Despite the continues research efforts, FER under uncontrolled environment is still
a challenging problem [5]. So far, most top performance approaches tend to utilize
shallow neural networks with ensemble learning methods [5–7]. Ensemble of networks

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 747–759, 2018.
https://doi.org/10.1007/978-3-030-01418-6_73

http://orcid.org/0000-0001-9354-2025
http://orcid.org/0000-0001-5446-8635
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_73&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_73&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_73&domain=pdf
https://doi.org/10.1007/978-3-030-01418-6_73

not only makes use of strong feature learning ability of neural networks, but also
explores the ability of different networks to complement each other during ensemble
learning. As a result, ensemble of multiple networks usually has better FER perfor-
mance than single classifier based methods. However, these methods have three main
limitations: (1) shallow networks need more training overhead than deep networks to
reach the same training termination condition; (2) because of the weak fitting ability,
shallow networks are often inferior to deep networks in terms of performance; (3) most
ensemble learning methods utilize all trained networks to make final decisions. But
according to our experiment, ensemble of all networks does not necessarily achieve
optimal performance. To solve these problems, in this paper, we propose a new
ensemble learning method which combines complementary CNNs to achieve high
performance with less time consumption. The method framework is shown in Fig. 1.
The main steps of this method are summarized as follows:

– Twenty CNNs (including twelve deep CNNs and eight shallow CNNs) are trained
as the candidate network set.

– An optimal deep network is selected to form our baseline system according to
recognition performance.

– Candidate networks are added to or removed from our system until the best per-
formance is achieved.

The proposed method is evaluated on two real-world facial expression databases (FER-
2013 [8] and RAF-DB [9]). To the best of our knowledge, our method outperforms
state-of-the-art top performing works on FER-2013 and RAF-DB databases.

Fig. 1. Overview of our ensemble method.

748 X. Zhang and Y. Ma

2 Related Works

2.1 Facial Landmarks Detection and Expression Recognition

Face images obtained under non-restrictive settings tend to have different degrees of
occlusions and varied postures. To extract accurate facial features from these images,
facial landmarks detection is usually required. Xiong and Torre proposed a Supervised
Descent Method for minimizing a Non-linear Least Squares function. They also pro-
posed a well-defined alignment error function which can be minimized using existing
algorithms [10]. Sun et al. proposed an effective three-layer CNNs cascaded for facial
landmarks detection [11]. Ren et al. learned a set of highly discriminative local binary
features for each facial landmark independently [12]. These features are then used to
jointly learn a linear regression to quickly locate facial landmarks. Zhu et al. proposed a
3D Dense Face Alignment and used cascaded CNNs to handle face alignment in the
case of large pose variations and self-occlusions [13].

Kim et al. utilized alignable faces and non-alignable faces to improve FER per-
formance [7]. They designed an alignment-mapping network to learn how to generate
aligned faces from non-aligned faces. Rudovic et al. proposed a probabilistic method to
implement facial expression recognition using head pose invariant [14]. The method
performed head pose estimation, head pose normalization and facial expression
recognition based on 39 facial landmarks.

2.2 Neural Networks

Krizhevsky et al. [15] proposed an eight-layer CNN in 2012 and made breakthrough
progress in image classification. Because of their powerful feature representation
ability, neural networks have been successfully applied to many computer vision
applications, such as speech recognition [16] and semantic segmentation [17].
Recently, several FER methods utilized deep neural networks for improving perfor-
mance. Liu et al. proposed a Boosted Deep Belief Network framework to carry out
feature learning, feature selection and classifier construction iteratively [18]. Molla-
hosseini et al. proposed a deep neural architecture which applied the Inception layer
[19] to address FER problem across multiple standard face databases [20]. In [21],
Tang showed that significant gains can be obtained on several deep learning databases
by simply replacing softmax with L2-SVMs. Meng et al. proposed an identity-aware
convolutional neural network to alleviate high inter-subject variations [22]. They
introduced an expression-sensitive contrastive loss and an identity-sensitive contrastive
loss to show that learning features are not influenced by the variations of facial
expression and different subjects. Vo et al. proposed CNN-based method to detect
global and local facial expression features [23]. In their work, global features were
computed to obtain possible candidate classification results for a face, and then, local
features were utilized to reorder the previously obtained candidates to yield final
recognition results.

Improving Ensemble Learning Performance with Complementary Neural Networks 749

2.3 Ensemble Learning

Ensemble learning builds a hypothesis set by training a series of learners [24]. It has
been studied for a long time towards ensemble multiple neural networks in different
visual fields [25–28]. As different neural networks provide complementary decision-
making information, theoretically, the more diverse training networks are, the better
performance they will be. Data preprocessing and different training configuration
schemes can lead to network diversity (e.g., using different training sets, whether to
adopt the dropout strategy [29]). In recent FER studies, combination of deep learning
and ensemble learning has made remarkable progress. Yu and Zhang trained six 8-layer
CNNs and automatically learned the ensemble weights among these networks by
optimizing two loss functions [5]. Kim et al. constructed a hierarchical committee
architecture with exponentially weighted decision fusion [6]. They combined nine 5-
layer shallow CNNs with three 3-layer MLP classifiers (trained using features extracted
from three alignment-mapping networks) in test stage [7]. Images in the training and
test set were divided into alignable faces and non-alignable faces. The results on FER-
2013 database showed that combination of alignable faces and non-alignable faces can
improve FER performance.

3 Proposed Approach

3.1 Problem Analysis

Depth of Networks. In general, adding network layers leads to significant increasing
of network parameters. As a result, it increases the training overhead in time and space.
For this reason, many works have limited the training to shallow networks [5–7].
However, we observe counter-examples in our experiments. For example, when using
“Xavier” [30] for parameter initialization and “ReLU” for activation to train FER-2013
database, shallow networks spend more training time than deep networks. Neverthe-
less, these networks do not get expected performance improvement. This fact shows
that considering the time overhead and recognition accuracy, we should primarily train
deep networks.

As some literatures have pointed out, the diversity of networks affects ensemble
performance. However, to our best knowledge, most works did not explore the
diversity of network depth. We believe that ensemble learning performance can be
improved if shallow networks can also be trained to utilize network diversity.

Ensemble Strategy. Ensemble of all networks does not necessarily achieve optimal
performance, which is mainly based on the following consideration: some networks do
not provide complementary capabilities to other networks. In this case, addition of
more networks might introduce negative effects for samples which had been predicted
correctly.

750 X. Zhang and Y. Ma

3.2 Configurations of All Networks

Considering different data preprocessing, parameter initialization, activation function,
training settings and network layer settings can lead to a variety of network models, we
train eight 5-layer networks (shallow CNNs) and twelve 11-layer VGGNet [31] vari-
ants (deep CNNs) for ensemble stage.

The forward propagation process of 5-layer shallow CNNs is shown in Fig. 2. The
architecture can be simplified as CPCPCPFDF (C, P, F, and D stands for Convolution,
Pooling, Fully connected layer, and Dropout, respectively). The detailed configurations
of 5-layer networks are summarized in Table 1. All of these networks use ReLU [32] as
activation function.

The forward propagation process of 11-layer VGGNet variants is shown in Fig. 3.
Their architecture can be expressed as 4*(CCPD)FDFF (4* indicates repeat four times).
The detailed configurations of 11-layer CNNs are summarized in Table 2. The acti-
vation process of 11-layer CNNs uses BN+ReLU, ReLU+BN, and ReLU, respectively.

Fig. 2. The forward propagation process of 5-layer shallow CNNs.

Table 1. Configurations of eight 5-layer networks. Raw: Raw train data. Hist: Histogram
equalization. Prep: Preprocessing methods. Stand: Standardization. M-M: Maximum-Minimum
normalization. WIni: Weight Initialization. TruN: Truncation Normal distribution. Xav: Xavier
initialization [30]. WRe: Weight Regularization. FCDrop: Dropout strategy used in Fully
Connected layer (FC). FC1: The first Fully Connected layer.

Config Data Prep WIni WRe FCDrop

1 Raw Stand TruN 0.0001 FC1 = 0.5
2 Raw Stand Xav 0.0001 FC1 = 0.5
3 Raw M-M TruN 0.0001 FC1 = 0.5
4 Raw M-M Xav 0.0001 FC1 = 0.5
5 Hist Stand TruN 0.0001 FC1 = 0.5
6 Hist Stand Xav 0.0001 FC1 = 0.5
7 Hist M-M TruN 0.0001 FC1 = 0.5
8 Hist M-M Xav 0.0001 FC1 = 0.5

Improving Ensemble Learning Performance with Complementary Neural Networks 751

In training stage, we use exponential decay learning to update a new learning rate.
The learning rate of a network is updated as:

g ¼ g0 � 0:99ð ÞN ð1Þ

where η0 denotes the initial learning rate, η represents new learning rate, and N is the
number of epochs. In order to fully learn the feature of training samples, a more severe
termination condition must be satisfied to stop the training, that is, the training error of
a batch does not exceed 10−6 for three consecutive times or the training reaches
maximum number of iterations.

3.3 Ensemble Method

According to the above analysis, combination of complementary CNNs improves
system performance. It can be achieved by gradually adding networks that improve

Fig. 3. The forward propagation process of 11-layer VGGNet variants.

Table 2. Configurations of twelve 11-layer VGGNet variants. BN: Batch Normalization [33].
Act: Activation function. BN+ReLU: Execute BN first, then ReLU. [ReLU+BN]: Execute ReLU
first, then BN for all layers except for last FC layer (only ReLU). CCP: Successive Convolution,
Convolution, and Pooling. CCPDrop: Dropout strategy used after every CCP.

Config Data Prep WIni Act CCPDrop

9 Raw Stand Xav BN+ReLU 0.2
10 Raw Stand Xav [ReLU+BN] 0.2
11 Raw Stand Xav ReLU 0.2
12 Raw M-M Xav BN+ReLU 0.2
13 Raw M-M Xav [ReLU+BN] 0.2
14 Raw M-M Xav ReLU 0.2
15 Hist Stand Xav BN+ReLU 0.2
16 Hist Stand Xav [ReLU+BN] 0.2
17 Hist Stand Xav ReLU 0.2
18 Hist M-M Xav BN+ReLU 0.2
19 Hist M-M Xav [ReLU+BN] 0.2
20 Hist M-M Xav ReLU 0.2

752 X. Zhang and Y. Ma

recognition accuracy and removing networks which cause system performance
degradation.

In general, the fitting ability of deep networks is better than that of shallow net-
works. Therefore, at the beginning, we select a network with the best accuracy from
deep network group as our baseline system.

In the next step, candidate networks from all shallow and deep networks are added
to or removed from baseline system step by step until the best performance is achieved.
The system ensemble mode in this paper is majority vote. It is important to note that the
evaluation scores of all networks on validation and test data have been calculated in
advance, so we do not need to spend a long time in the process of ensemble selection.
All we need to do is matrix addition.

4 Experiments on the FER-2013 Database

4.1 FER-2013

FER-2013 [8] is one of the largest facial expression databases so far. It has 28,709
images for training, 3,589 images for public test, and 3,589 images for private test. To
reduce training errors, we remove 46 non-face images and 11 non-number filled images
from original database.

We use IntraFace [10, 34] to detect facial landmarks. We label an image as Non-
Alignable Faces (NAF) if its detection score is smaller than a given threshold, and
otherwise, label it as Before Registered Alignable Faces (BRAF). The affine trans-
formation principle is applied to adjust two eyes to horizontal position. We refer to the
After Registered Alignable Faces as ARAF.

Data increment is implemented for training, validation and test set following the
method introduced in [7]. Specifically, 10 times increment are used in this work (four
42 * 42 corners and a resize of original image, as well as their horizontal flip images).

4.2 Training and Evaluation

In training stage, the initial learning rate of shallow and deep network group is set to
0.05. The maximum number of iterations for shallow and deep network groups is
600000 and 200000, respectively.

During validation and testing stage, the score of each image is the mean of 10
corresponding incremental images. For Alignable Faces (AF), we evaluate Before
Registered Alignable Faces (BRAF) and After Registered Alignable Faces (ARAF)
respectively and average the two values. After evaluating Non-Alignable Faces (NAF),
results of all validation (testing) samples are combined using the following formula:

acc ¼ acc AFð Þ � aþ acc NAFð Þ � b ð2Þ

where a is the proportion of alignable faces in validation (testing) set, and b is the
proportion of non-alignable faces in validation (testing) set.

Improving Ensemble Learning Performance with Complementary Neural Networks 753

4.3 Ensemble and Analysis

For FER-2013, we conduct network ensemble experiments on validation set. After
determining the optimal network combination, testing set is used as the final perfor-
mance evaluation.

Baseline System. In deep network group, network No. 11 is selected as the baseline
system as it has the highest validation accuracy (70.52%).

Ensemble Process. In this experiment, ensemble of all deep and shallow networks is
utilized to explore the change of system performance. Candidate networks are selected
from deep and shallow network groups. At the beginning, network No. 18 is selected as
combination of No. 18 and baseline system set has top performance (71.79%). In the
second step, network No. 13 is selected as combination of network No. 13 and new
system has best performance (72.35%). This process continues until system perfor-
mance is no longer growth. In the seventh step, after removing network No. 3, the
highest performance (72.64%) is obtained. The ensemble process is summarized in
Table 3. We observe performance reduction when more networks are added. For
example, ensemble of all 20 networks yields 72.30% validation accuracy. Finally, the
system achieves 74.14% test accuracy with an ensemble of five deep CNNs.

To prove the feasibility of our method, we list ensemble accuracy of the shallow
network group, the deep network group, and all networks on the validation set in
Table 4.

Result Analysis. Table 5 lists performance comparison of ours and state-of-the-art
works on the FER-2013 database. The proposed method only combines five deep

Table 3. Ensemble process on FER-2013.

Steps System Acc Select Candidate

1 11 70.52 18 1–20
2 11 18 71.79 13 1–20
3 11 18 13 72.35 9 1–20
4 11 18 13 9 72.42 12 1–20
5 11 18 13 9 12 72.64 3 1–20
6 11 18 13 9 12 3 72.62 – 1–20
7# 11 18 13 9 12 72.64 3 1–20

Table 4. Performance comparison of different combinations on FER-2013.

Networks Accuracy

Shallow network group 70.52
Deep network group 72.16
All 20 networks 72.30

754 X. Zhang and Y. Ma

CNNs (11-layer) to achieve 74.14% test accuracy. To our best knowledge, this method
outperforms other state-of-the-art CNN-based FER methods. Moreover, the proposed
method is efficient than other methods. The method is implemented on a personal
computer with i7-7700k CPU, 16 GB memory and a GTX 1080Ti GPU. The average
time to process a test image using a shallow network and a deep network is 12.3 ms
and 14.1 ms, respectively. Ensemble of five deep networks consumes 72.7 ms. As a
contrast, [5] and [7] spend 76.3 ms and 146.6 ms to process the same image on our
personal computer.

5 Experiments on the RAF-DB Database

5.1 RAF-DB

RAF-DB [9] is also a real-world facial expression database that used the crowdsourcing
technology for facial annotation. The database contains about 30000 images of basic 7
single-class expressions and 11 compound expressions. In our experiment, we use only
15339 registrated images of single-class expressions, including 12271 training images
and 3068 test images. We tripled the training and test set, including an original image,
and its horizontal mirror and vertical mirror.

5.2 Training and Evaluation

In training stage, the initial learning rate of shallow and deep network group is set to
0.01 and 0.05, respectively. The maximum number of iterations for shallow and deep
network group is 200000 and 20000, respectively.

During testing stage, the score of each image is the mean of three corresponding
incremental images.

5.3 Ensemble and Analysis

Baseline System. Similar to FER-2013, the best performing network No. 19 (83.41%)
from deep network group is selected as baseline system.

Table 5. Performance comparison of the proposed method and state-of-the-art works on FER-
2013.

Methods Accuracy Average time (ms)

[21] A DCN using L2-SVM Loss.
A DCN using cross-entropy Loss

71.16%
70.1%

–

–

[5] Ensemble of six 8-layer CNNs using learned weights 72% 76.3
[6] Ensemble of 36 DCNs in a hierarchical committee 72.72% –

[7] Ensemble three MLP classifiers
and nine 5-layer CNNs

73.73% 146.6

Ours Five 11-layer CNNs 74.14% 72.7

Improving Ensemble Learning Performance with Complementary Neural Networks 755

Ensemble Process. Candidate networks are also selected from deep and shallow
network groups. In the third step, the system performance increases to 85.46% when
three networks are combined. Please see Table 6 for detail information. Since then,
adding more networks leads to system performance reduction. For instance, adding
network No. 19 reduces system performance from 85.46% to 85.23%. However, the
highest ensemble performance can be observed after removing network No. 19 from
system network set. Finally, the system achieves 85.46% accuracy with an ensemble of
two deep CNNs and one shallow CNNs.

In Table 7, we list the ensemble performance of shallow network group, deep
network group, and all 20 networks on the RAF-DB database.

Table 6. Ensemble process on RAF-DB.

Steps System Acc Select Candidate

1 19 83.41 13 1–20
2 19 13 84.88 3 1–20
3 19 13 3 85.46 19 1–20
4 19 13 3 19 85.23 – 1–20
5# 19 13 3 85.46 19 1–20

Table 7. Performance comparison of different combinations on RAF-DB.

Networks Accuracy

Shallow network group 83.54
Deep network group 84.39
All 20 networks 84.42

Table 8. Our method is compared with the existing methods on two evaluation criteria:
diagonal average of confusion matrix (Ave) and recognition accuracy (Acc). The results of center
loss [35] + LDA, center loss + mSVM, DLP-CNN [9] + LDA and DLP-CNN + mSVM are
tested in [9]. Seven numbers in the second line represent the number of samples of different
expressions on original training set. Sur: Surprise, Fea: Fear, Dis: Disgust, Hap: Happy, Ang:
Anger, Neu: Neutral.

Methods Sur Fea Dis Hap Sad Ang Neu Ave Acc
1290 281 717 4772 1982 705 2524

Our 80.24 47.30 45 94.68 82.22 74.07 90.59 73.44 85.46
center loss + LDA 76.29 54.05 49.38 92.41 74.90 64.81 77.21 69.86 79.96
center loss + mSVM 79.63 54.05 53.13 93.08 78.45 68.52 83.24 72.87 82.86
DLP-CNN + LDA 74.07 52.50 55.41 90.21 73.64 77.51 73.53 70.98 78.81
DLP-CNN + mSVM 81.16 62.16 52.15 92.83 80.13 71.60 80.29 74.20 82.84

756 X. Zhang and Y. Ma

Result Analysis. The proposed ensemble method not only achieves the best recog-
nition accuracy, but also have competitive results for the average accuracy of seven
single-class expressions (the mean diagonal value of confusion matrix). After ensemble
of three networks, the values of diagonal in the confusion matrix are shown in Table 8.
As shown in the table, four existing methods are listed for comparison. All of them
apply different loss functions to train neural networks, and then use feature vectors
extracted to train LDA and SVM classifier. In contrast, our method only uses softmax
loss for training, and directly uses neural networks to present competitive classification
performance.

6 Conclusion

In this paper, we propose a new ensemble learning based method for improving facial
expression recognition. Specifically, two groups of CNNs (eight 5-layer CNNs and
twelve 11-layer CNNs) are trained with various configurations. On this basis, a new
network ensemble method is proposed to combine complementary CNNs to improve
FER performance. Extensive experiments on FER-2013 and RAF-DB show that the
proposed method achieves excellent recognition accuracy with less time overhead.
Performance comparison of the proposed method and state-of-the-art works demon-
strates that our method reaches the best recognition accuracy (74.14%) on the FER-
2013 database. On RAF-DB database, our ensemble method also achieves the highest
recognition accuracy (85.46%) and competitive performance of diagonal mean value of
confusion matrix (73.44%) without complicated training process.

References

1. Shan, C., Gong, S., McOwan, P.W.: Robust facial expression recognition using local binary
patterns. In: IEEE International Conference on Image Processing, vol. 2, pp. II-370 (2005)

2. Liu, W., Wang, Z.: Facial expression recognition based on fusion of multiple Gabor features.
In: 18th International Conference on Pattern Recognition, vol. 3, pp. 536–539 (2006)

3. Happy, S., Routray, A.: Automatic facial expression recognition using features of salient
facial patches. IEEE Trans. Affect. Comput. 6(1), 1–12 (2015)

4. Jung, H., Lee, S., Yim, J., Park, S., Kim, J.: Joint fine-tuning in deep neural networks for
facial expression recognition. In: Proceedings of the IEEE International Conference on
Computer Vision, pp. 2983–2991 (2015)

5. Yu, Z., Zhang, C.: Image based static facial expression recognition with multiple deep
network learning. In: Proceedings of the 2015 ACM on International Conference on
Multimodal Interaction, pp. 435–442 (2015)

6. Kim, B.K., Roh, J., Dong, S.Y., Lee, S.Y.: Hierarchical committee of deep convolutional
neural networks for robust facial expression recognition. J. Multimodal User Interfaces 10
(2), 173–189 (2016)

7. Kim, B.K., Dong, S.Y., Roh, J., Kim, G., Lee, S.Y.: Fusing aligned and non-aligned face
information for automatic affect recognition in the wild: a deep learning approach. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 48–57 (2016)

Improving Ensemble Learning Performance with Complementary Neural Networks 757

8. Goodfellow, I.J., et al.: Challenges in representation learning: a report on three machine
learning contests. Neural Netw. 64, 59–63 (2015)

9. Li, S., Deng, W., Du, J.P.: Reliable crowdsourcing and deep locality-preserving learning for
expression recognition in the wild. In: IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2584–2593 (2017)

10. Xiong, X., De la Torre, F.: Supervised descent method and its applications to face alignment.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 532–539 (2013)

11. Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 3476–3483 (2013)

12. Ren, S., Cao, X., Wei, Y., Sun, J.: Face alignment at 3000 fps via regressing local binary
features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1685–1692 (2014)

13. Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S.Z.: Face alignment across large poses: A 3D solution.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 146–155 (2016)

14. Rudovic, O., Pantic, M., Patras, I.: Coupled gaussian processes for pose-invariant facial
expression recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1357–1369 (2013)

15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

16. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the
shared views of four research groups. IEEE Sig. Process. Mag. 29(6), 82–97 (2012)

17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmen-
tation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3431–3440 (2015)

18. Liu, P., Han, S., Meng, Z., Tong, Y.: Facial expression recognition via a boosted deep belief
network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1805–1812 (2014)

19. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

20. Mollahosseini, A., Chan, D., Mahoor, M.H.: Going deeper in facial expression recognition
using deep neural networks. In: IEEE Winter Conference on Applications of Computer
Vision, pp. 1–10 (2016)

21. Tang, Y.: Deep learning using linear support vector machines. Comput. Sci. (2013)
22. Meng, Z., Liu, P., Cai, J., Han, S., Tong, Y.: Identity-aware convolutional neural network for

facial expression recognition. In: IEEE International Conference on Automatic Face and
Gesture Recognition, pp. 558–565 (2017)

23. Vo, D.M., Sugimoto, A., Le, T.H.: Facial expression recognition by re-ranking with global
and local generic features. In: 23rd International Conference on Pattern Recognition,
pp. 4118–4123 (2016)

24. Zhou, Z.H.: Ensemble learning. In: Li, S.Z. (ed.) Encyclopedia of Biometrics, vol. 1,
pp. 270–273. Springer, Berlin (2009)

25. Hansen, L.K.: Neural network ensemble. IEEE Trans. Pattern Anal. Mach. Intell. 12, 993–
1001 (1990)

26. Guan, Y., Li, C.T., Roli, F.: On reducing the effect of covariate factors in gait recognition: a
classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 37(7), 1521–1528
(2015)

758 X. Zhang and Y. Ma

27. Paisitkriangkrai, S., Shen, C., van den Hengel, A.: Pedestrian detection with spatially pooled
features and structured ensemble learning. IEEE Trans. Pattern Anal. Mach. Intell. 38(6),
1243–1257 (2016)

28. Ding, C., Tao, D.: Trunk-branch ensemble convolutional neural networks for video-based
face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 1002–1014 (2018)

29. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving
neural networks by preventing co-adaptation of feature detectors. Comput. Sci. 3(4), 212–
223 (2012)

30. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural
networks. In: Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pp. 249–256 (2010)

31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. Comput. Sci. (2014)

32. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In:
Proceedings of the 27th International Conference on Machine Learning, pp. 807–814 (2010)

33. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing
internal covariate shift. In: International Conference on Machine Learning, pp. 448–456
(2015)

34. Fernando, D.L.T., Chu, W.S., Xiong, X., Vicente, F., Ding, X., Cohn, J.: Intraface. In: 11th
IEEE International Conference and Workshops on Automatic Face and Gesture Recognition
(FG), pp. 1–8 (2015)

35. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep
face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS,
vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-
7_31

Improving Ensemble Learning Performance with Complementary Neural Networks 759

http://dx.doi.org/10.1007/978-3-319-46478-7_31
http://dx.doi.org/10.1007/978-3-319-46478-7_31

Automatic Beautification
for Group-Photo Facial Expressions

Using Novel Bayesian GANs

Ji Liu1, Shuai Li1,2(B), Wenfeng Song1, Liang Liu1, Hong Qin3,
and Aimin Hao1

1 Beihang University, Beijing, China
{lishuai,ham}@buaa.edu.cn

2 Qingdao Research Institute, Beihang University, Beijing, China
3 Stony Brook University (SUNY at Stony Brook), Stony Brook, USA

qin@cs.stonybrook.edu

Abstract. Directly benefiting from the powerful generative adversarial
networks (GANs) in recent years, various new image processing tasks
pertinent to image generation and synthesis have gained more popular-
ity with the growing success. One such application is individual portrait
photo beautification based on facial expression detection and editing.
Yet, automatically beautifying group photos without tedious and fragile
human interventions still remains challenging. The difficulties inevitably
arise from diverse facial expression evaluation, harmonious expression
generation, and context-sensitive synthesis from single/multiple photos.
To ameliorate, we devise a two-stage deep network for automatic group-
photo evaluation and beautification by seamless integration of multi-label
CNN with Bayesian network enhanced GANs. First, our multi-label CNN
is designed to evaluate the quality of facial expressions. Second, our novel
Bayesian GANs framework is proposed to automatically generate photo-
realistic beautiful expressions. Third, to further enhance naturalness of
beautified group photos, we embed Poisson fusion in the final layer of
the GANs in order to synthesize all the beautified individual expres-
sions. We conducted extensive experiments on various kinds of single-
/multi-frame group photos to validate our novel network design. All the
experiments confirm that, our novel method can uniformly accommodate
diverse expression evaluation and generation/synthesis of group photos,
and outperform the state-of-the-art methods in terms of effectiveness,
versatility, and robustness.

Keywords: Beautification of group-photo facial expressions
Multi-label CNN · Bayesian networks
Generative adversarial networks · Poisson fusion

1 Introduction and Motivation

With the omnipresence of digital cameras in today’s society, group photos are
routinely captured to record wonderful moments shared by families, friends,
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 760–770, 2018.
https://doi.org/10.1007/978-3-030-01418-6_74

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_74&domain=pdf

Beautification for Group-Photo Using Bayesian GANs 761

colleagues, etc. Hence, higher expectations are focused on the overall quality
of group photos. In practice, it is almost impossible to capture satisfying facial
expressions in a synchronous way for all involved people at any moment with
various types of hand-held devices. Therefore, it urgently needs to develop smart
group photo evaluation and beautification techniques. However, to achieve this
goal, there are still several challenges yet to be overcome, including evaluation of
the group-photo facial expression on an individual basis, simultaneous generation
of satisfying expressions for all people involved, natural synthesis integration of
individual facial expression into the final production of a group photo, etc. Obvi-
ously, evaluation and beautification of facial expressions in such unconstrained
settings remain an ill-posed task due to various factors, such as non-frontal faces,
varying lighting in different outdoor/indoor settings, and/or even the large vari-
ation in facial identities and appearances.

With a goal of tackling the aforementioned challenges, more research
works began to endeavor great efforts in related techniques. For example,
recent works have demonstrated generative adversarial networks (GANs) are
extremely effective. This ranges from image translation [6,8,17,20], to face gen-
eration [2,13,15,16] and even image completion [4,7,12]. Nonetheless, most of
the existing methods commonly employ the entire feature space to approximate
the generative feature distribution, which could not well respect facial expression
details for all individuals involved. In addition, most of the existing works con-
centrate on the attribute manipulation/transformation of single object, lacking
a principled way to optimize group-photo facial expressions.

In this paper, our research efforts are devoted to pioneering a systematic app-
roach for synthesizing a satisfying group photo by leveraging the synchronized
power of CNNs and GANs. Specifically, we propose a two-stage deep network for
automatic group-photo evaluation and beautification, which could greatly reduce
the negative influences caused by the diversity of faces. Figure 1 highlights the
framework of our novel method, which mainly consists of three major steps:
(1) Facial expression recognition with multi-label CNN and our newly-proposed
facial expression evaluation metric—the multi-label CNN recognizes two main
beautification related expressions (e.g., mouth-smiling and eyes-opening) and
predicts the softmax value of the expression for further evaluation; (2) Face
beautification with our Bayesian GANs—it is guided by the subspace clustering
based on attributes-aware priors, wherein we pre-distribute all the attributes’
weights according to the specific face regions’ impacts on the entire face appear-
ances; (3) Multiple single-person faces’ integration driven by ensemble Poisson
fusion—we add a Poisson layer to naturally fuse single-person face into the origi-
nal group photo with gradual gradient changes. The salient contributions of this
paper can be summarized as follows:

– We pioneer a two-stage group-photo beautification framework by combin-
ing multi-label CNN with Bayesian network enhanced GANs, which could
naturally and automatically perform evaluation and beautification on group
photos in a uniform and elegant way.

762 J. Liu et al.

– We propose novel Bayesian GANs to automatically generate beautiful expres-
sions by embedding Bayesian prior network into the powerful CycleGANs,
which has strong generalization ability for weakly-matched training datasets.

– We propose to embed the Poisson image clone technique in the final layer of
our Bayesian GANs in order to synthesize all the to-be-beautified expressions
on all individuals from single-/multi-frame continuous group photos, which
would lead to meaningful and harmonious manipulation in any local region
of a group photo.

Face Detection Expression Recognition Expression Evaluation and Beautification Image Fusion

Final Image

MTCNN
Poisson
 Fusion

Group Photos

CNN

0.65

0.33

0.91

0.28

0.53

0.89

0.61

0.41

0.93

0.28

0.56

0.89
0.52

0.38

0.91

0.98

0.87 0.37

0.43

0.19

Bayesian
GANs

Single Person EvaluationSoftmax Values

Fig. 1. The architecture of our framework. A group photo is converted into several
single-person faces by using the MTCNN [19], which is a multi-task cascaded convolu-
tional network to process the face detection tasks from coarse to fine.

2 Related Works

Facial Expression Recognition Methods. Facial expression recognition has
been gaining growing momentum, with a wide range of applications. Specially,
the expression recognition methods based on CNNs [1,18] and DBN [9] have
achieved excellent results on facial datasets. For example, Burkert et al. [1] pro-
posed a facial emotion recognition architecture based on CNNs. It consists of
two parallel feature extraction blocks (FeatEx), which dramatically improves
the performance on public datasets. Liu et al. [9] proposed a boosted deep belief
network (BDBN) for feature learning, feature selection, and classification in a
loopy framework. However, these methods are in some sense cumbersome due
to high-dimensional varying features for each attribute, leading to inefficiency in
recognition. Therefore, we apply multi-task learning to simultaneously optimize
multiple objective functions.

Facial Expression Generation and Editing Methods. In recent years,
many image generation approaches have been proposed. For example, Isola et
al. proposed a pix2pix approach [5] and achieved amazing results on paired
datasets. However, in many cases, paired data are not readily available. There-
fore, the image conversion based on unpaired data is particularly important.
Recently, Zhu et al. proposed the CycleGAN [20] method, which employed two

Beautification for Group-Photo Using Bayesian GANs 763

GANs and an additional cycle consistency loss to improve the quality of the gen-
erated images. Meanwhile, DualGAN and DiscoGAN [6,17] adopted the similar
idea for image-to-image translation based on unpaired data. Particularly, many
GAN-based methods have also been proposed for face generation. Perarnau et
al. introduced ICGAN [13], which combined the encoder with cGAN to manip-
ulate face images conditioned on arbitrary attributes. Shen et al. introduced a
framework [15] to avoid learning redundant facial information by learning resid-
ual images, which only focused on the attribute-specific area of a face image.
However, these works commonly have significant dependencies on the training
dataset and are difficult to preserve more details on other images. Moreover,
these methods are designed for single pre-processed face images instead of group
photos. Therefore, we should solve this to achieve strong generalization ability
for weakly-matched test datasets.

3 Facial Expression Evaluation and Beautification

3.1 Facial Expression Evaluation Based on Multi-label CNN

In order to synthesize group photo with perfect facial expressions, we need
to first select the face images that will be manipulated after face detection.
Considering the unbalanced distribution of samples in the training and testing
phases for multi-label classification, we adopt a mixed objective optimization
network [14] to recognize different facial attributes. We perform a joint optimiza-
tion over all the face attributes on CelebA dataset [10]. In practice, we focus on
two main beautification related attributes, including mouth-smiling and eyes-
opening. Based on the two attributes, we further construct a multi-label CNN
to recognize the two expressions at the same time, and this multi-task loss is
defined as

L(x, y) =
2∑

i=1

p(i|yi(x))‖fi(x) − yi(x)‖2, (1)

where p(i|yi(x)) is the assigned probability for the attribute i, which can make
the training set biased. fi(x) and yi(x) respectively represent the predicted value
and the ground truth for attribute i. Meanwhile, we formulate a beautification

Multiple Group Photos

Multi-label CNN

Detection and Recognition

Multiple Single-person Faces

Expression Evaluation

0v 11v … nv1

0v 01v … nv0

…

0mv m1v … mnv Global Optimum
Baseplate Image

Target Images

Target Images

Local Optimum

>Threshold?
Yes

No

Bayesian
GANs

Single-person Rank

Group-photo Rank

Fig. 2. Illustration of our facial expression evaluation pipeline.

764 J. Liu et al.

evaluation metric for facial expressions, which facilitates beautifying group pho-
tos with lower cost. First, we count the number of individual faces with better
expression in each group photo, so that we can choose the relatively better
group photo to serve as our baseplate image. The metric used for measuring
facial expression is the softmax value Vi = ezi/

∑2
j=1 e

zj , which is obtained from
the recognition network. As shown in Fig. 2, the softmax value vmn means the
n-th person of the m-th group photo. We can directly substitute the target image
with the highest softmax value (the softmax value must be greater than 0.5) for
the worse one (the softmax value is less than 0.5) in the baseplate image using
our improved Poisson fusion. It should be noted that, if there is no satisfying
facial image of certain person, we resort to our Bayesian GANs to generate a
desirable image.

3.2 Facial Expression Beautification with Bayesian GANs

Considering the importance of diverse faces with various kinds of attributes,
as shown in Fig. 3, we propose a three-layer Bayesian network to augment GAN
models. Of which, the first layer of the Bayesian network relates to the attributes
distribution prior, which is vital to cluster the semantics-similar images into one
attributes-specific subspace. The second layer relates to the subspaces, which are
clustered according to the attributes’ influences on the targeted face regions. The
third layer relates to the trained GANs, which are guided by the attributes-aware
priors resulted from subspace clustering.

Weighted Attributes

ijz

i1z
2iz

…

jz 0

01z

2z
…

…

Taining Set Subspaces

co
nv
1

co
nv
2

co
nv
3

re
s1

re
s2

re
s6L

de
co
nv
1

de
co
nv
2

co
nv

Attributes-aware Subspaces GANs Bank

Model1
(Slightly open)

Priors PriorsClustering Model2
(Middle open)

Model3
(Largely open)

Fig. 3. Pipeline of our Bayesian GANs based on facial-attribute priors.

In the first layer, we pre-distribute the attributes’ weights according to
the specific regions’ impacts on the entire face appearance. The j-th origi-
nal attribute label value of the i-th sample zij ∈ {1,−1} is re-distributed to
zij ∈ {aij , 0}. Of which, aij denotes the new weight of the positive attribute
value, and the ‘0’ means the negative attribute value, which has no effects on
face appearances. Based on such re-weighted attribute distribution in the first
layer, we employ the k-means algorithm to perform subspace clustering on the
training images according to the diverse attributes’ influence on the targeted
face regions. Here, we use the mean square errors of the attribute vectors to
cluster all the samples into K subspaces,

Beautification for Group-Photo Using Bayesian GANs 765

E =
K∑

i=1

∑

z∈Si

‖z − ui‖2, (2)

where Si denotes the i-th subspace, and ‖z − ui‖2 is the Euclidean distance
between sample z and the subspace center ui.

After attribute-aware subspace clustering, we further describe the image sam-
ple generating process from source domain X to target domain Y in details.
Given two datasets X,Y : source domain X = {xi|1 � i � nx} and target domain
Y = {yi|1 � i � ny}, nx, ny respectively represent the numbers of dataset X
and Y . We cluster the sample space into three subspaces Si, i = 1, 2, 3 based on
the attributes with important impacts. With the mapping function X → Y , we
adopt a loss function as:

LSi

X→Y = Ey∼pdata(y)[(DY (y) − 1)2] + Ex∼pdata(x)[(1 − DY (G(x)))2], (3)

where X,Y ∈ Si. Therefore, our Bayesian GANs have excellent generation abil-
ity, which can successfully transform images between two domains according to
the attribute-specific subspaces. Considering a test image, we first predict its
40 facial attributes using a multi-label CNN model, and then calculate which
subspace the test image belongs to, according to the prior knowledge and the
Bayesian network.

For our generator, we use three convolution layers to extract features from
input images, six residual blocks to preserve the features of the original image,
and simultaneously transform feature vectors from source domain to target
domain. Meanwhile, we use three deconvolution layers to restore low-level fea-
tures from feature vectors. Residual blocks consist of two convolution layers,
wherein part of the input data is directly added to the output, so that we can
reduce the deviation of the corresponding output from the original input. Finally,
we use four convolution layers for our discriminative network.

3.3 Poisson Fusion in Our GANs

To obtain a natural group photo, we need to conduct global fusion via local image
editing [11]. Therefore, we embed a Poisson fusion layer in our GANs’ final layer.
In this layer, we naturally fuse all the generated facial expressions of different
persons into the selected baseplate group photo. The key of Poisson fusion is to
obtain the transformed pixel by solving the Poisson equation. Here, we construct
the linear equation according to the method of Poisson image editing as: A×x =
b. Please refer to [3] for the details about this equation.

If we solve the above Poisson equation with Gaussian elimination, it will
exhibit a lot of time and memory cost. Considering the fusion region is a rect-
angle, some characteristics of matrix A can be leveraged: A is sparse, positive
definite, and can be partitioned into smaller square matrices. According to these
characteristics, we adopt the conjugate gradient method to solve the equation.
And we do not need to store the matrix A, because the conjugate gradient
method only needs the value of A × p, which can be easily obtained via the

766 J. Liu et al.

operation of block matrix. Thus, our method not only can embed larger region,
but also can achieve more than 5000 times speedup (compared to the Gaussian
elimination method) when both the height and width of the region are 100 pixels.

In practice, for ease of image synthesis, we need to store the facial coordinate
information during face detection. By means of Poisson fusion method, the gen-
erated target images can be seamlessly fused into the selected baseplate group
photo. Meanwhile, it can well keep the consistency of the color, texture, and
illumination in the scene.

4 Experimental Results and Evaluations

Experimental Settings. We carefully design three types of experiments to
evaluate the overall performance of our method: (1) single-person facial expres-
sion beautification of a group photo; (2) single-frame image based group photo
beautification (the images are randomly-crawled from the internet); (3) multi-
frame continuous images based group photo beautification (the images are cap-
tured by our hand-held device). CelebA is used as our training dataset, which
includes 202,599 colored face images and 40-attribute binary vectors for each
image. We use the aligned and cropped version and scale the images to the size
of 128 × 128. In addition, the distribution of attribute labels are highly biased.
In practice, for each attribute that needs to be edited, 1000 images from the
attribute-positive class and 1000 images from the attribute-negative class are
randomly chosen as our test set. We select all the rest images as our training
dataset. Meanwhile, to demonstrate the superiorities of our method, we ran-
domly search some facial images from the internet and take some photos casually,
which also serve as our test dataset. Please refer to our supplemental document
for more vivid results1.

Input Cropped ICGAN[14]Residual[17]CycleGAN[22] Ours

O
ld

Yo
un

g

Fig. 4. Comparison of the mouth-smiling results produced by different methods on
single-person faces of a group photo.

1 https://drive.google.com/file/d/159my8s52wzL-Eq9vGtubKDegMQLfLfQq/view?
usp=sharing.

https://drive.google.com/file/d/159my8s52wzL-Eq9vGtubKDegMQLfLfQq/view?usp=sharing
https://drive.google.com/file/d/159my8s52wzL-Eq9vGtubKDegMQLfLfQq/view?usp=sharing

Beautification for Group-Photo Using Bayesian GANs 767

Evaluations on Single-person Facial Expression Beautification of
Group Photos. Considering the detailed wrinkles on elder faces, we respec-
tively conduct experiments on the different-age faces of group photos. As shown
in Fig. 4, we compare our results with those produced by some state-of-the-
art methods, including ICGAN [13], learning residual images [15], and Cycle-
GAN [20]. We observe that, the compared methods commonly have a significant
dependence on the training dataset, thus, their results on other test images are
not satisfactory. In sharp contrast, our results are more natural and can pre-
serve more details. Moreover, when facing diversified and complicated expres-
sion manipulation tasks, our approach outperforms the state-of-the-art facial
expression beautifying methods with respects to effectiveness, versatility, and
robustness.

Evaluations on Single-frame Image Based Group Photo Beautification.
In this kind of experiments, we use our generalization network to manipulate
facial attributes and further synthesize a beautiful group photo. Our network can
successfully synthesize semantically-meaningful and visually-plausible contents
for the key face regions that need to be beautified. As shown in Fig. 5, our method
can generate satisfying results with high perceptual quality, which shows a great
promise for smart facial expression beautification during group photo capturing.

In
pu

t
R
es
ul
t

Fig. 5. The results of our method for single-frame image based group photo
beatification.

Evaluations on Multi-frame Continuous Images Based Group Photo
Beautification. Our method can also synthesize a new satisfying group photo
from unsatisfying multi-frame continuous images. Considering diverse poses in
multi-frame continuous group photos, we detect facial landmarks from the gen-
erated images and a group photo to locate a rectangle region of eyes/mouth for
ease of fusing the manipulated regions. As shown in Fig. 6, we replace worse
facial expressions with the beautified ones in the baseplate group photo based
on our improved Poisson fusion strategy.

Quantitative Evaluations. To quantitatively evaluate the visual quality of the
synthesized group photos, we carry out user study, wherein 20 people are asked
to classify the randomly shuffled images as real or synthetic ones. Each person
is shown a random selection of 50 real images and 50 synthesized images in a
random order, and is asked to label the images as either real image or synthetic

768 J. Liu et al.

In
pu

t
R
es
ul
t

Fig. 6. The results of our method for multi-frame continuous images based group photo
beautification.

image. Table 1 shows the confusion matrix, which indicates that, people feel very
hard to reliably distinguish real images from our synthetic ones.

Meanwhile, we conduct user study based on the survey from 20 participants,
wherein participants are required to assess the visual realism, image quality,
and individual detail preservation by asking them to label the best generated
image from the randomly shuffled images generated by different methods. Table 2
documents the results. For the voting about the best performance on attributes
manipulation, our method gains the majority of votes. It clearly shows that, our
method can well accommodate photo-realistic facial expression beautification
for highly-diverse group photos. In addition, as shown in Fig. 7, we further ask
participants to grade our results between 0 and 5 according to the image quality
and visual realism. It confirms that, our method outperforms other approaches
on facial expression beautification.

Table 1. Visual Turing test results for distinguishing real/synthesized images. The
average human classification accuracy is 57.25% (chance = 50%).

Labeled
as real

Labeled as
synthetic

Real 557 443

Synthetic 412 588

Table 2. Visual Turing test results about different-methods’ facial expression manip-
ulations on group photos. The voting percentage sum of each column is equal to 100%.

Methods Mouth-smiling
beautification

Eyes-opening
beautification

ICGAN 0.7% -

Residual 2.1% 1.3%

CycleGAN 37.3% 45.4%

Ours 59.9% 53.3%

Beautification for Group-Photo Using Bayesian GANs 769

Fig. 7. The subjective evaluation on different methods.

5 Conclusion and Future Works

This paper detailed a two-stage first-evaluation-then-beautification framework
with which we could synthesize satisfactory group photos from original single-
or multi-frame group photos that are routinely-captured in our daily life. Benefit-
ing from the novel integration of multi-label CNN and Bayesian prior embedded
GANs, our novel framework could generate natural and realistic images, which
helps improve the generalization ability of facial expression manipulation and
synthesis. Various qualitative and quantitative experiments were carried out to
evaluate the overall performance of our method, and all the experiments con-
firmed that, our method has apparent advantages over the existing techniques in
terms of efficacy, effectiveness, versatility, and robustness. Despite many promis-
ing results in most cases, the obtained results are sometimes less ideal. For
example, it remains difficult to generate and synthesize group photos when we
only have images of low quality, or images involving facial occlusion and/or com-
plex body pose. Such challenging cases deserve more research efforts. Besides,
we plan to exploit more intrinsic temporal context priors and how such priors
could further enhance group photo beautification in the near future.

Acknowledgments. This research is supported in part by National Natural Science
Foundation of China (NO. 61672077 and 61532002), Applied Basic Research Program
of Qingdao (NO. 161013xx), National Science Foundation of USA (NO. IIS-0949467,
IIS-1047715, IIS-1715985, and IIS-1049448), National Key R&D Program of China
(NO. 2017YFF0106407), and capital health research and development of special 2016-
1-4011.

References

1. Burkert, P.E.A.: Dexpression: deep convolutional neural network for expression
recognition. arXiv preprint arXiv:1509.05371 (2015)

2. Cole, F., Belanger, D., Krishnan, D., Sarna, A., Mosseri, I., Freeman, W.T.: Syn-
thesizing normalized faces from facial identity features. In: CVPR (2017)

3. Gangnet, M., Blake, A.: Poisson image editing. In: SIGGRAPH, pp. 313–318 (2003)
4. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image com-

pletion. TOG 36(4), 107:1–107:14 (2017)
5. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-

tional adversarial networks. In: CVPR (2017)

http://arxiv.org/abs/1509.05371

770 J. Liu et al.

6. Kim, T., Cha, M., Kim, H., et al.: Learning to discover cross-domain relations with
generative adversarial networks. In: ICML, vol. 70, pp. 1857–1865 (2017)

7. Li, Y., Liu, S., Yang, J., Yang, M.H.: Generative face completion. In: CVPR (2017)
8. Liu, M., Tuzel, O.: Coupled generative adversarial networks. In: NIPS, pp. 469–477

(2016)
9. Liu, P., Han, S., Meng, Z., Tong, Y.: Facial expression recognition via a boosted

deep belief network. In: CVPR (2014)
10. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:

ICCV (2015)
11. Mccann, J., Pollard, N.S.: Real-time gradient-domain painting. SIGGRAPH 27(3),

93 (2008)
12. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context

encoders: feature learning by inpainting. In: CVPR (2016)
13. Perarnau, G., van de Weijer, J., Raducanu, Bogdan, J.Y.: Invertible conditional

GANs for image editing (2016)
14. Rudd, E.M., Günther, M., Boult, T.E.: MOON: a mixed objective optimization

network for the recognition of facial attributes. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 19–35. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46454-1 2

15. Shen, W., Liu, R.: Learning residual images for face attribute manipulation. In:
CVPR (2017)

16. Shu, Z., Yumer, E., Hadap, S., Sunkavalli, K., Shechtman, E., Samaras, D.: Neural
face editing with intrinsic image disentangling. In: CVPR (2017)

17. Yi, Z., Zhang, H., Tan, P., Gong, M.: DualGAN: unsupervised dual learning for
image-to-image translation. In: ICCV (2017)

18. Yu, Z., Zhang, C.: Image based static facial expression recognition with multiple
deep network learning. In: ICMI, pp. 435–442 (2015)

19. Zhang, K.E.A.: Joint face detection and alignment using multitask cascaded con-
volutional networks. IEEE Sig. Process. Lett. 23(10), 1499–1503 (2016)

20. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: ICCV (2017)

https://doi.org/10.1007/978-3-319-46454-1_2

Fast and Accurate Affect Prediction Using
a Hierarchy of Random Forests

Maxime Sazadaly1(&), Pierre Pinchon1, Arthur Fagot1,
Lionel Prevost1, and Myriam Maumy Bertrand2

1 Learning, Data and Robotics Lab, ESIEA, Paris, France
sazadaly@et.esiea.fr, lionel.prevost@esiea.fr

2 Centre National de la Recherche Scientifique, Institut de Recherche
Mathématique Avancé, Université de Strasbourg, Strasbourg, France

Abstract. Hierarchical systems are powerful tools to deal with non-linear data
with a high variability. We show in this paper that regressing a bounded variable
on such data is a challenging task. As an alternate, we propose here a two-step
process. First, an ensemble of ordinal classifiers affect the observation to a given
range of the variable to predict and a discrete estimate of the variable. Then, a
regressor is trained locally on this range and its neighbors and provides a finer
continuous estimate. Experiments on affect audio data from the AVEC’2014 and
AV+EC’2015 challenges show that this cascading process can be compared
favorably to the state of the art and challengers results.

Keywords: Affective computing � Ensemble of classifiers � Random forests

1 Introduction

Nowadays, vocal recognition of emotions has multiple applications in domains as
diverse as medicine, telecommunications or transport. For example, in telecommuni-
cations, it would become possible to priorities the calls from individuals in imminent
danger situations over less relevant ones. In general, emotion recognition enables the
improvement of human/machine interfaces, which justifies the unexpected increase of
research on this field, due to the progresses in artificial learning.

Human interactions rely on multiple sources: body language, facial expressions,
etc. A vocal message carries a lot of information that we translate implicitly. This
information can be expressed or perceived verbally, but also non-verbally, through the
tone, the volume or the speed of the voice. The automatic analysis of such information
gives insights on the speaker emotional state.

The conceptualization of emotions is still a hot topic in psychology. Opinions do
not converge towards a unique model. In fact, we can mainly differentiate three
approaches [8]: (1) the basic emotions like happiness, sadness, surprise, fear, anger, or
disgust; described by Ekman, (2) the circumplex model of affect and (3) the appraisal
theory. In the second model, the affective state is generally described, at least, by two
dimensions: the valence which determines the positivity of the emotion and the arousal
which determines the activity of the emotion [17]. These two values, bounded on [−1,
+1], describe much more precisely the emotional state of an individual than the basic

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 771–781, 2018.
https://doi.org/10.1007/978-3-030-01418-6_75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_75&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_75&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_75&domain=pdf

emotions. However, it has been shown that other dimensions were necessary to report
more accurately this state during an interaction [7].

The choice of one model or the other restrains the kind of machine learning
algorithms used to estimate the emotional state. In case of basic emotions, the variable
to be predicted is qualitative and nominal. Classification methods must be used. On the
contrary, affective dimensions are quantitative, continuous, and bounded variables. So,
regression predictor will be needed. To take advantage of the best of both worlds, we
propose in this study a method that combines classification and regression. To predict a
continuous and bounded variable, we first quantize the affect variable into bounded
ranges. For example, a 5 ranges valence quantization would give the following
boundaries {−1, −0.5, −0.2, +0.2, +0.5, +1}. It could be interpreted as “very negative”,
“negative”, “neutral”, “positive” and “very positive”. Then, we proceed into 3 steps:

• Train an ensemble of classifiers to estimate if the affect value associated to an
observation is higher than a given boundary;;

• Combine the ensemble decisions to predict the optimal range;
• Regress locally the variable on this range.

The proposed method is therefore a cascade of ordinal classifiers and local regressors
(COCLR). We will see in the following state of art that similar proposals have been
made. But in this paper, we perform a thorough study on the key parameter of this
method: the number of ranges to be separated by the ensemble of ordinal classifiers.
We show experimentally that:

• On small and numerous ranges, ordinal classification performs correctly;
• On large ranges, the COCLR cascade performs better;
• On challenging databases (AVEC’2014 [20] and AV+EC’2015 [16], described in

Sect. 4), the COCLR cascade can be compared favorably to challengers’ and
winner’s proposals with an acceptable development and computational cost.

This paper is organized as follows. Section 2 focuses on the state of the art in affect
prediction on audio data. In Sect. 3, we will present the COCLR flowchart. In Sect. 4,
we will introduce the datasets used to train and evaluate our system and the different
pre-processing realized. Then, in Sect. 5, we will expose and discuss our results.
Finally, Sect. 6 offers some conclusions.

2 State of the Art

The Audio-Visual Emotion recognition Challenges (AVEC), that takes place every
year since 2011, enables to assess the systems proposed on similar datasets. The main
objective of these challenges is to ensure a fair comparison between research teams by
using the same data. Particularly, the unlabeled test set is released to registered par-
ticipants some days before the challenge deadline. Moreover, the organizers provide to
the competitors a set of audio and video descriptors extracted by approved methods.

The prosodic features such as the height, the intensity, the speech rate, and the
quality of the voice, are important to identify the different types of emotions. Low level

772 M. Sazadaly et al.

acoustic descriptors like energy, spectrum, cepstral coefficients, formants, etc. enable
an accurate description of the signal.

2.1 Emotion Classification and Prediction

The classification of emotion is done through classical methods like support vector
machines (SVM) [1], Gaussian mixture models (GMM) [18] or random forests
(RF) [14]. For regression task, numerous models have been proposed: support vector
regressors (SVR) [4], deep belief networks (DBN) [12], bidirectional long-short term
memory networks (BLSTM) [13], etc. As all these models having their own pros and
cons, recent works focus on model combinations to improve overall accuracy. Thus, in
[10], authors propose to associate BLSTM and SVR to benefit from the treatment of the
past/present context of the BLSTM and the generalization ability of the SVR.

AV+EC’2015 challenge winners proposed in [11] a hierarchy of BLSTM. They
deal with 4 information channels: audio, video (described by frame-by-frame geometric
features and temporal appearance features), electrocardiogram and electro dermal
activity. They combine the predictions of single-modal deep BLSTM with a multi-
modal deep BLSTM that performs the final affect prediction.

2.2 Ordinal Classification and Hierarchical Prediction

The standard approach to ordinal classification converts the class value into a numeric
quantity and applies a regression learner to the transformed data, translating the output
back into a discrete class value in a post-processing step [6]. Here, we work directly on
numerical values of affect variables but quantify them into several ranges. Recently, a
discrete classification of continuous affective variables through generative adversarial
networks (GAN) has been proposed [2]. Five ranges are considered.

The idea of a combining regressors and classifiers has already been applied to deal
with age estimation from images. In [9], a first “global” regression is done with an SVR
on all ages. Then, it is refined by locally adjusting the age regressed value by using an
SVM. In [19] authors propose another hierarchy on the same issue. They define 3 age
ranges (namely “child”, “teen” an “adult”). An image is classified by combining the
results of a pool of classifiers (SVC, FLD, PLS, NN and naïve Bayes) in a majority
rule. Then, a second stage uses the appropriate relevant vector machine regression
model (trained on one age range) to estimate the age.

The idea of such a hierarchy is not new, but its application to affect data, have not
been proposed yet. Moreover, we show in the following experiments that the number of
boundaries to be considered impacts the performance of the whole hierarchy.

3 Cascade of Ordinal Classifiers and Local Regressors

The cascade of ordinal classifiers and local regressors proposed here is a hybrid com-
bination of classification and regression systems. Let us note X, the observation (feature
vector), y the affective variable to be predicted (valence or arousal) and ŷ, the prediction.
The variable y is continuous and defined on the bounded interval [−1; +1]. Therefore, it

Fast and Accurate Affect Prediction Using a Hierarchy of Random Forests 773

is possible to segment this interval into a set of n smaller sub-intervals called “ranges” in
the following, bounded by the boundaries bi and bi+1 with i2{1, n + 1}. For example,
n = 2 define 2 ranges: [−1;0[(“negative”) and [0; +1] (“positive”) and 3 boundaries
bi2{−1, 0, +1}. Each boundary bi (except −1 and +1) may define a binary classification
issue: given the observation X, the prediction ŷ is lower (resp. higher) than bi. By
combining the outputs of the (n − 1) binary classifiers, we get an ordinal classification.
Given the observation X, the prediction ŷ is probably (necessarily in case of perfect
classification) located within the range [bi, bi+1]. Once this range obtained, a local
regression is run on it along to its direct neighbors to predict y. Figure 1 illustrate the full
cascade. The structure of this system is modular and compatible with any kind of
classification and regression algorithms. Moreover, it is generic and may be adapted to
other subjects than affective dimension prediction.

3.1 Ordinal Classification

The regression of an affect value y on an observation X can be bounded by the
minimum and the maximum this value might take. If y is not originally bounded, we
bound it by the minimal and maximal values of the studied dataset. The interval on
which y is defined, I = [min(y), max(y)], can be divided in n ranges.

The first stage of the cascade is an ensemble of (n − 1) binary classifiers. Each
classifier decides if, given the observation X, the variable to be predicted is higher than
the lower boundary bi of a range or not. Training samples are labeled −1 if their y value
is lower than bi and +1 otherwise. Considering the sorted nature of the boundaries bi,
we build here an ensemble of ordinal classifiers [6].

We combine the decisions of these classifiers to compute the lower and upper
bounds of the optimal range [bi, bi+1]. Consider an observation X with y = 0.15.
Suppose the number of ranges n = 6 and linearly distributed boundaries bi. The

Ordinal classifier

Local regression

Combination

Regression range (R3)

Fig. 1. COCLR: a two-stage cascade. The first stage is a combination of binary classifiers which
aim is to estimate y’s range. The observation X is handled by the corresponding local regressor
which will evaluate the value of y on this range and its neighbors.

774 M. Sazadaly et al.

following ranges are defined: [−1.0, −0.5, −0.25, 0, 0.25, 0.5, 1.0]. In case of perfect
classification, the output vector of the ensemble of classifiers will be: {1, 1, 1, 1, −1,
−1} where −1 means “y is lower than bi” while +1 means “y is higher than bi”.
Obviously, bi is the bound associated to the “latest” classifier with a positive output and
bi+1 the first classifier with a negative output. By combining the local decisions of these
binary classifiers, we get the (optimal) range [bi, bi+1]. This range Ci will be used in the
second stage to locally predict y. In the example, this range is [0, 0.25]. However,
indecision between two classifiers can happen [15]. This indecision will be handled by
the second stage of the cascade.

The performance measure of the ordinal classifiers, the accuracy, is directly linked
to the definition of the ranges. The choice of the number of ranges n is a key parameter
of our system and can be seen as a hyper-parameter. The n ranges and their corre-
sponding boundaries bi can be defined in several ways. If they are linearly distributed,
they will define a kind of affective scale as in [2]. But the choice of the boundaries bi
could also prevent strong imbalances between classes. In case of highly imbalanced
classes, the application of a data augmentation method is strongly recommended [3].

From now on, we can evaluate the accuracy (ranges detection rates) of the classifier
combination. It can also be used to compute a discrete estimate of y, using for ŷ the center
of the predicted range. Finally, we can estimate the correlation of ŷ to the ground truth y.

3.2 Local Regression

The aim of the second stage of the cascade is to compute the continuous value of
y. Thus, each range i is associated to a regressor Ri that locally regresses y on [bi, bi+1].
So, each regressor is specialized in the regression on a specific range. However, as
explained previously, indecisions between nearby classes throughout the ordinal

Fig. 2. Confusion matrix of the first stage of the cascade

Fast and Accurate Affect Prediction Using a Hierarchy of Random Forests 775

classification may induce an improper prediction of the range. De facto, the wrong
regressor can be activated, causing a drop of the correlation. The analysis of the first
stage results, illustrated by the confusion matrix (Fig. 2), indicates that prediction
mistakes are close enough or even connected to the optimal range which y belongs to.
Thus, we can expand the regression range to [bi−1; bi+2], if they exist.

Widening the local regression ranges helps to solve the indecision issue between
the nearby boundaries. Moreover, it frees us from the obligation to strongly optimize
the first stage. In fact, the use of a perfect classifier instead of a classifier that reaches an
accuracy of 90% on the first stage won’t modify deeply the result of the whole cascade.
By the way, the second stage local regression produces a continuous estimate ŷ of y and
it is possible to compute a correlation between both variables.

4 Databases

4.1 AVEC’2014

The AVEC’2014 database is an ensemble of audio and video recordings of human/
machine interaction [20]. This base is composed of 150 recordings, each of them
containing the reactions of only one person, realized from 84 German subjects. In order
to create this dataset, a part of the subjects has been recorded many times with a break
of two weeks between each recording session. The distribution of the records is
arranged as following: 18 subjects have been recorded three times, 31 of them have
been recorded twice and the 34 lefts have been recorded only once. Then the recordings
are split in 3 parts: learning set, validation set, and test set. We used generic audio
features provided by the organizers [21].

4.2 AV+EC’2015/RECOLA

The second dataset we used to measure the performance of our system is the affect
recognition challenge AV+EC’2015 [16]. The AV+EC’2015 relies on the RECOLA
base. This one is composed of a set of 9.5 h of audio, video and physiologic recordings
(ECG, EDA) from 46 records of French people with different origins (Italian, German,
and French) and different genders. The AV+EC’2015 relies on a sub-set of 27
recordings completely labelled. In our case, we only used the audio records and only
worked on the valence, which is the most complex affect to be predicted in this
challenge. The learning, development and testing partitions contain 9 recordings each.
The diversity of origins and genders of the subjects has been preserved in these. The
different audio features used are available in the AV+EC’2015 presentation paper [16].

5 Experimental Results

5.1 Performance Metrics

The cascade performance are directly linked to those of both stages. Thus, the per-
formances of the ensemble of ordinal classifiers are measured by the accuracy. It

776 M. Sazadaly et al.

measures the ratio of examples for which the interval has been correctly predicted. We
use the confusion matrix in order to analyze the behavior of this system in a more
precise way.

The performance of the ensemble of local regressors are measured using Pearson’s
correlation (PC), gold standard metric of the challenge AVEC’2014 [20] on which we
base our work. However, as these data are not normally distributed, we decided to
measure the performance of our system with Spearman’s correlation (SC) and the
concordance correlation coefficient (CCC) as well.

The experimental results presented in the following are computed on the
development/validation set of the different databases.

5.2 Used Systems and Baseline

The study of the valence on a bounded interval allows the identification of several
intensity thresholds of the felt emotion. For example, we can qualify this as negative,
neutral, positive, depending on this value. However, for the AVEC’2014 and the AV
+EC’2015 bases, these intensity thresholds are no equally represented: more than 60%
of the data belong to the range [−0.1; 0.1] and 80% within the range [−0.2; 0.2].
Considering the fact that some systems poorly support strong class unbalances, we
increased the volume of our using the Synthetic Minority Over-sampling Technique [3].

As previously stated, our architecture is modular and adapted to any kind of
classification or regression method. Throughout our experimentations, we tried to use
support vector machines (C-SVM with RBF kernels) and random forests (RF with 300
decision trees, attribute bagging on

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nfeatures
p

) as classifiers). Table 1 presents the
ordinal classification rate obtained by these two systems on the development sets of
AVEC’2014 and AV+EC’2015, for the prediction of valence. We choose this affect
variable because it’s known to be particularly hard to predict. By taking the center of
the predicted intervals as values of y, we have been able to process the correlations of
these two systems. These correlations enable to compare the performance of our
classifier ensemble to those of a unique “global” random forest regressor dealing with
the whole interval [−1; +1].

The results obtained on both databases encouraged us to continue with random
forests rather than the support vector machines. Indeed, the results returned by these are
significantly sharper than the SVM ones, independently of the choice of the sub-

Table 1. Valence prediction: comparison of different ordinal classifiers (SVM-OC and RF-OC)
and one global random forest regressor (RF-GR) on a subset of the training set. The performance
measure is the Pearson correlation coefficient.

AVEC’2014 AV+EC’2015

Baseline 0.38 0.17
RF-GR 0.45 –

SVM-OC 0.61 0.56
RF-OC 0.77 0.65

Fast and Accurate Affect Prediction Using a Hierarchy of Random Forests 777

intervals. For the same reasons, we have decided to use an ensemble of random forests
to perform local regression.

5.3 Results on AVEC’2014

Table 2 compares the performance of the different systems presented on the devel-
opment base of the AVEC’2014, while using several number of ranges n.

First, the interval I has been split here in 10 ranges: [−1.0; −0.4; −0.3; −0.2; −0.1;
0.0; 0.1; 0.2; 0.3; 0.4; 1.0]. The most performant system in term of correlation is here,
without a doubt, the ordinal classifier ensemble, where the values are the centers of the
predicted ranges. It is as well relevant to point out that, despite the very high correlation
of the local regressors alone, the COCLR system does not seem efficient.

Then, the interval I has been split into 6 ranges: [−1.0; −0.4; −0.2; 0.0; 0.2; 0.4;
1.0]. The most performant system, as far as the correlation is concerned, is still the
ordinal classifier ensemble. However, the performance gap between the COCLR and
the ordinal classifier ensemble has tightened. It is also noteworthy that the accuracy of
the classification system has risen and the correlation of the local regressors alone, has
slightly dropped.

Finally, the interval I here has been split into n = 4 ranges, [−1.0; 0.3; 0.0; 0.3;
1.0].previous conclusions on ordinal classifiers and local regressors remain checked.
But this time, the COCLR cascade, turned out to be significantly the most efficient one.
The correlation bound to this system is the highest obtained for every choice of
intervals of any sort. These different results highlighted the importance of the choice of
the number of ranges on which the COCLR system stands.

5.4 Results on AV+EC’2015/RECOLA

As we did previously, we measured the performance of our system according to the
different sub-intervals. Affect value varies within [−0.3; 1] so we discard classifier and

Table 2. Valence prediction: impact of the number of ranges on performance of global regressor
(GR), ordinal classifier (OC), local regressors (LR) and cascade (COCLR). LR performance are
computed considering the classification as “perfect” (Accuracy = 1).

n Model Accuracy Pearson C Spearman C CCC

1 GR – 0.45 0.47 0.27
10 OC 0.78 0.69 0.70 0.60

LR – 0.91 0.90 0.89
COCLR – 0.51 0.53 0.37

6 OC 0.83 0.63 0.66 0.54
LR – 0.85 0.85 0.76
COCLR – 0.54 0.53 0.39

4 OC 0.89 0.47 0.48 0.29
LR – 0.80 0.81 0.77
COCLR – 0.77 0.77 0.65

778 M. Sazadaly et al.

regressors trained on [−1; −0.3]. The Table 3 presents a summary of these results.
Throughout our tests, we used 3 groups of different sub-intervals. The biggest, com-
posed of 8 ranges, is: [−0.3; −0.2; −0.1; 0.0; 0.1; 0.2; 0.3; 0.4; 1.0]. The second one,
composed of 5 ranges, is: [−0.3; −0.1; 0.0; 0.1; 0.3; 1.0]. Finally, the last one, com-
posed of 3 ranges, is: [−0.3; 0.0; 0.3; 1.0].

We can observe in Table 3 that the results on the RECOLA database are similar to
the ones the AVEC’2014. In fact, the most performant system remains the COCLR,
when we chose a small number of ranges. The correlation obtained by the cascade of
ordinal classifiers and local regressors for the valence on the development base is worth
0.67. As previously, we have observed a decline of the correlation of the local
regressors and a rise of the accuracy of the first stage of the cascade when the size of
the sub-intervals increased. Comparisons with challenge winner’s results [11] are
encouraging. Though our cascade get lower results (0.675) than their multimodal
system (0.725), it get better result than those obtained on the audio channel only
(0.529). These latter are similar to those of the first stage ordinal classifier (0.521).

Last but not least, our proposal is fast to train (<10 mn for 3 ranges) and evaluate
(<0.1 ms) on an Intelcore I7-8 cores-3.4 GHz and doesn’t require too memory space
(<1 Go for 3 ranges).

6 Conclusions

We propose in this article an original approach for the regression of a continuous,
bounded variable, based on a cascade of ordinal classifiers and local regressors. We
chose to applicate it to the estimation of affective variables such as the valence. The
first stage allows us to predict a trend, depending to the chosen interval. Thus, taking
into account, for example, four intervals, the emotional state of a person will be
qualified as very negative, negative, positive or very positive. We have been able to
observe that this trend is more accurately estimated while the number of interval is
increasing. The second stage enable a sharper prediction of the variable by regressing
locally, on its interval and its direct neighbors. It seems even more efficient when the
number of considered interval is low. Indeed, it allows to reduce the influence of the
first stage on the prediction. Finally, we showed that the performances of this cascade
can be compared favorably to those of the winner of the challenge AV+EC’2015.

Despite these satisfying results, there are still room to improve it (others than
applying it to the prediction of the arousal and the – running – assessment of the

Table 3. Valence prediction: best obtained models for each number of ranges on AV+EC’2015
development set. Challenge results [11] on the audio channel (AC) and their multimodal system
(MM). The performance measure is the Pearson correlation coefficient.

Proposal Baseline AC Winner AC Winner MM

N 1 5 3 – – –

Best model GR OC COCLR – – –

Pearson C 0.463 0.521 0.675 0.167 0.529 0.725

Fast and Accurate Affect Prediction Using a Hierarchy of Random Forests 779

performances on the challenges test data). The COCLR is a cascade which first stage is
an ensemble of classifiers. The decision here is sanctioned by the least performant
classifier. A more adapted combination rule would impact advantageously the global
performances. The outputs (binary or probabilistic) of the ordinal classifier might also
enrich the descriptors used by the local regressors.

Acknowledgment. This work has been partially supported by the French National Agency
(ANR) in the frame of its FRQC program (TEEC, project number ANR-16-FRQC-0009-03).

References

1. Bitouk, D., Verma, R., Nenkova, A.: Class-level spectral features for emotion recognition.
Speech Commun. 52(7), 613–625 (2010)

2. Chang, J., Scherer, S.: Learning representations of emotional speech with deep convolutional
generative adversarial networks. In: ICASSP, pp. 2746–2750, 2017

3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, P.W.: SMOTE: synthetic minority
oversampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

4. Drucker, H., Burges, C., Kaufman, L., Smola, A.J., Vapnik, V.: Support vector regression
machines. In: Advances in Neural Information Processing Systems, pp. 155–161 (1997)

5. Ekman, P.: Basic emotions. In: Handbook of Cognition and Emotion, pp. 45–60. Wiley,
New York (1999)

6. Frank, E., Hall, M.: A simple approach to ordinal classification. In: De Raedt, L., Flach,
P. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 145–156. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44795-4_13

7. Fontaine, J.R., Scherer, K.R., Roesch, E.B., Ellsworth, P.C.: The world of emotions is not
two-dimensional. Psychol. Sci. 18(12), 1050–1057 (2007)

8. Grandjean, D., Sander, D., Scherer, K.R.: Conscious emotional experience emerges as a
function of multilevel, appraisal-driven response synchronization. Conscious. Cogn. 17(2),
484–495 (2008)

9. Guo, G., Fu, Y., Wang, T.S., Dyer, C.R.: Locally adjusted robust regression for human age
estimation. In: WACV (2008)

10. Han, J., Zhang, Z., Ringeval, F., Schuller, B.: Prediction-based learning for continuous
emotion recognition in speech. In: ICASSP, pp. 5005–5009 (2017)

11. He, L., Jiang, D., Yang, L., Pei, E., Hu, P., Sahli, H.: Multimodal affective dimension
prediction using deep bidirectional long short-term memory recurrent neural networks. In:
AVEC, pp. 73–80 (2015)

12. Hinton, G.E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural
Comput. 18(7), 1527–1554 (2006)

13. Nicolaou, M.A., Gunes, H., Pantic, M.: Continuous prediction of spontaneous affect from
multiple cues and modalities in valence-arousal space. IEEE Trans. Affect. Comput. 2(2),
92–105 (2011)

14. Noroozi, F., Sapinski, T., Kaminska, D., Anbarjafari, G.: Vocal-based emotion recognition
using random forests and decision tree. Int. J. Speech Technol. 20(2), 239–246 (2017)

15. Qiao, X.: Noncrossing ordinal classification. arXiv:1505.03442 (2015)
16. Ringeval, F., et al.: AV+EC 2015: the first affect recognition challenge bridging across

audio, video, and physiological data. In: AVEC, pp. 3–8 (2015)
17. Russell, J.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980)

780 M. Sazadaly et al.

http://dx.doi.org/10.1007/3-540-44795-4_13
http://arxiv.org/abs/1505.03442

18. Sethu, V., Ambikairajah, E., Epps, J.: Empirical mode decomposition based weighted
frequency feature for speech-based emotion classification. In: ICASSP, pp. 5017–5020
(2008)

19. Thukral, P., Mitra, K., Chellappa, R.: A hierarchical approach for human age estimation. In:
ICASSP, pp. 1529–1532 (2012)

20. Valstar, M.F., et al.: AVEC 2014: 3D dimensional affect and depression recognition
challenge. In: AVEC (2014)

Fast and Accurate Affect Prediction Using a Hierarchy of Random Forests 781

Gender-Aware CNN-BLSTM for Speech
Emotion Recognition

Linjuan Zhang1, Longbiao Wang1(B), Jianwu Dang1,2(B), Lili Guo1,
and Qiang Yu1

1 Tianjin Key Laboratory of Cognitive Computing and Application,
Tianjin University, Tianjin, China

{linjuanzhang,longbiao wang,liliguo,yuqiang}@tju.edu.cn
2 Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan

jdang@jaist.ac.jp

Abstract. Gender information has been widely used to improve the per-
formance of speech emotion recognition (SER) due to different expressing
styles of men and women. However, conventional methods cannot ade-
quately utilize gender information by simply representing gender char-
acteristics with a fixed unique integer or one-hot encoding. In order to
emphasize the gender factors for SER, we propose two types of features
for our framework, namely distributed-gender feature and gender-driven
feature. The distributed-gender feature is constructed in a way to repre-
sent the gender distribution as well as individual differences, while the
gender-driven feature is extracted from acoustic signals through a deep
neural network (DNN). These two proposed features are then augmented
into the original spectrogram respectively to serve as the input for the
following decision-making network, where we construct a hybrid one by
combining convolutional neural network (CNN) and bi-directional long
short-term memory (BLSTM). Compared with spectrogram only, adding
the distributed-gender feature and gender-driven feature in gender-aware
CNN-BLSTM improved unweighted accuracy by relative error reduction
of 14.04% and 45.74%, respectively.

Keywords: Speech emotion recognition · Gender information · DNN
CNN · BLSTM

1 Introduction

It is believed that SER can significantly improve the quality of spoken dialogue
systems. Although SER has been studied for many years, machines still have
difficulties in recognizing speakers’ emotions.

In many studies [1,2], gender differences are observed in emotional speech
expression, suggesting that gender information will bring certain advantages in
SER. Ways of incorporating gender information into SER can be summarized
into two methods. The first is to create a separate emotion model for each gender,

c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 782–790, 2018.
https://doi.org/10.1007/978-3-030-01418-6_76

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_76&domain=pdf

Gender-Aware CNN-BLSTM for Speech Emotion Recognition 783

which is referred to as Sep-System for the separate model [3]. The second is to
take gender information as an augmented feature vector, which is referred to as
Aug-System [4]. Both methods can utilize the gender information of speakers
and thus improve the accuracy of SER.

In Sep-System, gender information need not to be represented and the prob-
lem can be decomposed into gender identification followed by emotion recogni-
tion. However, utterances of the corresponding genders can be used to train male
and female emotion classifiers individually. Moreover, treating gender separately
increases the error of gender recognition and needs longer time in emotion recog-
nition. Regarding Aug-System, all the utterances in a training set are used to
train the emotion classifier, which makes it difficult to represent gender infor-
mation. Conventional methods of encoding gender employ a unique integer or
one-hot encoding. The gender ID is assigned by a nominal value, using fixed and
simple numerical values to encode gender may not make use of gender informa-
tion adequately.

In this work, we present a novel approach to deal with these challenges. Aug-
System is chosen to address the problem of insufficient training data. To rep-
resent gender information more properly, the distributed-gender feature is pro-
posed to describe the distribution of male and female speakers. The distributed-
gender feature is a set of random values, where male speakers are distributed
between 0 and 0.5 and female speakers are distributed between 0.5 and 1. The
distributed-gender feature is different in each utterance and reflects individual
differences. In order to utilize acoustic information and real individual differences
of humans, we propose the gender-driven feature, a gender-conscious bottleneck
feature that is extracted from acoustic features using DNN. The gender-driven
feature not only distinguishes between men and women, but also retains discrim-
inative acoustic information. Then, the two features are augmented into origi-
nal spectrogram individually. Finally, the gender-aware CNN-BLSTM model is
used to extract hierarchical feature and distinguish emotions. To the best of our
knowledge, our work is the first to make use of gender information, acoustic
information and original spectrographic features simultaneously for SER.

The outline of this paper is as follows: related work is presented in Sect. 2.
Our proposed gender-aware CNN-BLSTM is introduced in Sect. 3. Sections 4 and
5 cover the experiments, conclusion and future work.

2 Related Work

Gender information has been widely used for SER task. In [5], they used gen-
der information to improve the accuracy of SER. They revealed that the com-
bined gender and emotion recognition system performed better than gender-
independent emotion recognition system.

In [6], additional speaker-related information such as speaker identity, gender
and age were used on Sep-System and Aug-System. However, adding gender
information resulted only in a slight improvement.

Methods for SER have great achievements using acoustic features provided
by INTERSPEECH 2009 Emotion Challenge [7]. The 384-dimensional acoustic

784 L. Zhang et al.

Table 1. Acoustic features of INTERSPEECH emotion challenge 2009

LLDs (16 * 2) Statistical values (12)

(Δ)ZCR (Δ)RMS energy Mean; standard deviation; extremes: min/max value; range;

(Δ)F0 (Δ)HNR Relative min/max position; kurtosis; skewness;

(Δ)MFCC(1–12) Linear regression: offset; slope; MSE

features consist of 32-dimensional low-level descriptors (LLDs) and their statis-
tical values, which are described in Table 1.

In recent years, deep networks based on spectrogram [8,9] improved the accu-
racy of speech recognition. In [10–12], they employed CNN-BLSTM to deal with
spectrograms and showed significant enhancements on SER. In the present work,
we follow the successful structure to perform emotion recognition.

3 Gender-Aware CNN-BLSTM

3.1 Distributed-Gender Feature

Although basic emotions are shared between cultures and nationalities [13], dif-
ferent speakers express their emotions in different ways. In order to reflect indi-
vidual differences, random variables are added to a fixed male or female tem-
plate. It means that even the same gender has a slight difference. Finally, the
distributed-gender feature of males is set to change from 0 to 0.5, while that of
females varies from 0.5 to 1.

3.2 Gender-Driven Feature

Acoustic information can be used to classify male and female speakers. However,
acoustic features are interrelated having small inter-class distances [14]. In this
study, a DNN is used to transfer high-dimensional acoustic features to gender-
driven feature that is discriminative to represent gender information.

Visualization of Gender-Driven Feature. In this section, the gender-driven
feature is described graphically. Figures 1 and 2 show the feature space of the
acoustic features and gender-driven feature, respectively. We use the PCA to
reduce the acoustic features and gender-driven feature to two dimensions indi-
vidually. The abscissa and ordinate in these two figures represent the first and
second components of PCA, respectively.

From the right panel of Fig. 2, the distribution of male and female data
is clear using gender-driven feature. Moreover, the boundaries of different emo-
tions in the gender-driven feature are sharper than those in the acoustic features.
Compared with Figs. 1 and 2, the gender-driven feature not only reflects gender
information, but also retains acoustic information that is useful for SER. There-
fore, the gender-driven feature is conjectured more effective for SER, which will
be supported by experiments described in Sect. 4.

Gender-Aware CNN-BLSTM for Speech Emotion Recognition 785

Fig. 1. Feature space of the acoustic features. The left panel shows the distribution of
seven emotions. The right panel shows the distribution of male and female speakers.

Fig. 2. Feature space of the gender-driven feature. The left panel shows the distribution
of seven emotions. The right panel shows the distribution of male and female.

Gender-Driven Feature for SER. In this study, there are two reasons to
add the gender-driven feature into spectrographic data. The first is that adding
gender information can help improve the accuracy for SER. The gender-driven
feature encodes male and female data better with variable values. The second
reason is that wide-band spectrogram emphasizes formants but not F0, whereas
F0 is the main vocal cue for emotion recognition [15]. Since the gender-driven
feature is extracted from the acoustic features, it still retains some acoustic
information (e.g. F0) that is complementary to spectrogram.

Figure 3 depicts the structure of our proposed method. In feature preparation
and fusion stages, the DNN extracts 32-dimentional gender-driven feature from
384-dimentional acoustic features. Then, the spectrogram and gender-driven fea-
ture are combined as compositional feature (F). The compositional feature vec-
tors of the j-th segment in the i-th utterance can be formulated as:

Fij = [Sij , GDFij], (1)

where the Sij and GDFij correspond to spectrogram vector and gender-driven
feature vector of the j-th segment in the i-th utterance, respectively.

786 L. Zhang et al.

Segment 1

Segment 2

Segment 3

DNN

Spectrograms S

Compositional
Feature F

Acoustic Features GDF

1 X 384

25 X 32

25 X 129

1 X 32

25 X 161

repeat 25 times

Segmentation

Utterance 1

Feature Preparation and Fusion Feature
Extraction

Decision

C
N

N

B
L

ST
M

……

……

H
ierarchical
Feature

Fig. 3. The gender-aware CNN-BLSTM with the gender-driven feature

4 Experiments

4.1 Experimental Setup

Speech signals are chosen from Berlin Emotion Speech Database [16]. The
database has seven categorical emotion types including disgust, sadness, fear,
happiness, neutral, boredom and anger, where the numbers of utterances in each
category are 46, 62, 69, 71, 79, 81 and 127, respectively. The dataset consists of
535 simulated emotional utterances in German. There are 233 male utterances
and 302 female utterances.

Procedures in this study are as follows. All the trials are based on a CNN-
BLSTM model. CNN is chosen first to extract hierarchical feature from original
spectrogram, because it models temporal and spectral local correlations [17].
Adding BLSTM layers is to recognize sequential dynamics in consecutive utter-
ances [18]. There are two convolutional layers and two max-pooling layers of
CNN. The first convolutional layer has 32 filters with 5× 5 size, and the second
convolutional layer has 64 filters with 5×5 size. The size of two pooling layers is
2 × 2. After flatten layer, a fully connected layer is used with 1024 units. There
are two hidden layers in BLSTM, each of which has 256 units. In our experiment,
utterances are split into segments with a 265 ms window size and a 25 ms shift
length. For the limited size of Berlin Emotion Database, 10-fold cross validations
are used in following trials.

• Spectrogram: This is the baseline model, where only one emotion recognizer
is created for speakers. Short-time Fourier transform (STFT) are used to
transform segmental signals into amplitude spectrogram. When doing STFT,
the FFT points are 256.

• Spectrogram (Sep-System): Compared with the above trial, we create male
and female emotion classifiers separately.

Gender-Aware CNN-BLSTM for Speech Emotion Recognition 787

• Spectrogram + one-hot gender feature: It is a straightforward way to add
2-dimensional gender information into spectrogram. Male is represented as
“0 1”, while female is “1 0”.

• Spectrogram + fixed gender feature: The ground truth of gender information
is encoded as fixed male template or female template. Then, spectrogram is
augmented with fixed gender feature.

• Spectrogram + distributed-gender feature (Proposed): 32-
dimensional distributed-gender feature has been described in Sect. 3.1.

• Spectrogram + LLDs: 32-dimentional LLDs described in Table 1 are added
into spectrogram for SER.

• Spectrogram + gender-driven feature (Proposed): The detail of this
method is shown in Fig. 3. The structure of DNN contains three layers. There
are 32 units in the bottleneck layer and 1024 units in other hidden layers.
The input of DNN is acoustic features, and teacher signal is gender labels.

4.2 Evaluation Results

Table 2 shows results from the trials shown in the previous section. From Table 2,
we conclude: (1) The spectrogram (Sep-System) perform worse than the base-
line. It may be because there is less training data to train male and female
emotion classifiers separately. (2) Because the size of one-hot gender feature is
small, adding the one-hot gender feature into spectrogram shows slight improve-
ments than baseline. (3) Using the distributed-gender feature and gender-driven
feature in the gender-aware CNN-BLSTM outperforms the baseline by 14.04%
and 45.74% relative error reduction in UA, respectively. In addition, the use
of the gender-driven feature performs better than that of the distributed-gender
feature. The reason is that the gender-driven feature represents gender character-
istics, real individual differences and acoustic information, while the distributed-
gender feature only reflects gender information. (4) Using the distributed-gender
feature or gender-driven feature performs better than that of the fixed values.
The reason is that the variable features can handle gender information in a

Table 2. Weighted accuracy (WA) and unweighted accuracy (UA) of different features
for SER. WA refers to the accuracy of all test utterances. UA is defined as average of
per emotional category recall. F1 is the harmonic average of precision and recall.

System Features Size WA UA

Aug Spectrogram (Baseline) 26 × 129 86.73% 86.40%

Sep Spectrogram 26 × 129 86.17% 85.46%

Aug Spectrogram + one-hot gender feature 26 × 131 86.92% 86.24%

Aug Spectrogram + fixed gender feature 26 × 161 88.22% 87.65%

Aug Spectrogram + distributed-gender feature 26 × 161 88.97% 88.31%

Aug Spectrogram + LLDs 26 × 161 91.21% 90.76%

Aug Spectrogram + gender-driven feature 26 × 161 92.71% 92.62%

788 L. Zhang et al.

75

80

85

90

95

100

Fear Disgust Happiness Anger Boredom Neutral Sadness

F1
(%

)

Baseline_spe
Aug_spe + fixed gender feature
Aug_spe + LLDs

Sep_spe (sep : spectrogram)
Aug_spe + one-hot gender feature
Aug_spe + distributed-gender feature
Aug_spe + gender-driven feature

Fig. 4. F1 results of different features on different emotions

more appropriate way. (5) Improvements are shown when LLDs are added into
spectrogram. The result reveals that spectrogram and acoustic information are
complementary. (6) The gender-driven feature performs better than LLDs. The
result shows evidence that the gender-driven feature not only provides gender
information but also retains discriminative acoustic information of emotions.

Figure 4 shows the contribution of different features to identify different types
of emotions. This figure reveals the following: (1) Although the training data in
spectrogram (Sep-System) is less than the baseline, it still performs better on
fear and neutral emotions. (2) Use of the distributed-gender feature to repre-
sent gender performs better than that of the one-hot gender and fixed gender
features on disgust, happiness, anger, boredom and neutral. (3) Adding gender-
driven feature to spectrogram contributes to the best results on most emotions,
except for anger. Conversely, adding the LLDs to spectrogram achieves the
best performance on anger. The reason may be that after the DNN processing,
the gender-driven feature is more effective to distinguish gender characteristics.
Although the gender-driven feature still keeps acoustic information to classify
anger emotion, its contribution is smaller than that of the LLDs. Overall, both
the distributed-gender feature and gender-driven feature are effective for SER.

5 Conclusions and Future Work

In this paper, the gender-aware CNN-BLSTM was proposed for speech emotion
recognition. We first proposed the distributed-gender feature and gender-driven
feature. Then, the two novel features with gender information were individually
augmented into spectrogram as additional variables. Finally, the CNN-BLSTM
was used to conduct the final classification. The results of evaluations indicated
that our proposed features can take advantage of gender information adequately
and perform better on SER task. For future work, multi-modal features including
textural and visual features will be considered for constructing a SER system.

Gender-Aware CNN-BLSTM for Speech Emotion Recognition 789

Acknowledgements. The research was supported by the National Natural Science
Foundation of China (No. 61771333 and No. U1736219) and JSPS KAKENHI Grant
(16K00297).

References

1. Brody, L.R.: Gender differences in emotional development: a review of theories and
research. J. Pers. 53(2), 102–149 (1985)

2. Hall, J.A., Carter, J.D., Horgan, T.: Gender differences in nonverbal communica-
tion of emotion. In: Gender and Emotion: Social Psychological Perspectives, pp.
97–117 (2000). https://doi.org/10.1017/CBO9780511628191.006

3. Sidorov, M., Ultes, S., Schmitt, A.: Comparison of Gender-and Speaker-adaptive
Emotion Recognition. In: Language Resources and Evaluation Conference, pp.
3476–3480 (2014)

4. Sidorov, M., Ultes, S., Schmitt, A.: Emotions are a personal thing: towards speaker-
adaptive emotion recognition. In: IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 4803–4807 (2014)

5. Vogt, T., André, E.: Improving automatic emotion recognition from speech via
gender differentiation. In: Language Resources and Evaluation Conference, Genoa
(2006)

6. Sidorov, M., Schmitt, A., Semenkin, E., et al.: Could speaker, gender or age aware-
ness be beneficial in speech-based emotion recognition? In: Language Resources and
Evaluation Conference (2016)

7. Schuller, B., Steidl S., Batliner, A.: The INTERSPEECH 2009 emotion challenge.
In: Tenth Annual Conference of the International Speech Communication Associ-
ation (2009)

8. Hannun, A., Case, C., Casper, J., et al.: Deep speech: scaling up end-to-end speech
recognition. arXiv preprint arXiv:1412.5567 (2014)

9. Amodei, D., Ananthanarayanan, S., Anubhai, R., et al.: Deep speech 2: end-to-
end speech recognition in English and mandarin. In: International Conference on
Machine Learning, pp. 173–182 (2016)

10. Lim, W., Jang, D., Lee, T.: Speech emotion recognition using convolutional and
recurrent neural networks. In: Signal and Information Processing Association
Annual Summit and Conference, Asia-Pacific, pp. 1–4. IEEE (2016)

11. Satt, A., Rozenberg, S., Hoory, R.: Efficient emotion recognition from speech using
deep learning on spectrograms. In: Proceedings of INTERSPEECH 2017, pp. 1089–
1093 (2017)

12. Guo, L., Wang, L., Dang, J., Zhang, L., Guan, H.: A feature fusion method based on
extreme learning machine for speech emotion recognition. In: IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 2666–2670 (2018)

13. Scherer, K.R.: Emotion. In: Stroebe, W., Jonas, K., Hewstone, M. (eds.) Sozialpsy-
chologie. Springer-Lehrbuch, pp. 165–213. Springer, Heidelberg (2002). https://doi.
org/10.1007/978-3-662-08008-5 6

14. Grezl, F., Fousek, P.: Optimizing bottle-neck features for LVCSR. In: IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, pp. 4729–4732
(2008)

15. Petrushin, V.A.: Emotion recognition in speech signal: experimental study, devel-
opment, and application. In: Sixth International Conference on Spoken Language
Processing (2000)

https://doi.org/10.1017/CBO9780511628191.006
http://arxiv.org/abs/1412.5567
https://doi.org/10.1007/978-3-662-08008-5_6
https://doi.org/10.1007/978-3-662-08008-5_6

790 L. Zhang et al.

16. Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W.F., Weiss, B.: A database
of German emotional speech. In: Ninth European Conference on Speech Commu-
nication and Technology (2005)

17. Yu, D., et al.: Deep convolutional neural networks with layer-wise context expan-
sion and attention. In: INTERSPEECH, pp. 17–21 (2016)

18. Lee, J., Tashev, I.: High-level feature representation using recurrent neural network
for speech emotion recognition. In: INTERSPEECH (2015)

Semi-supervised Model for Emotion
Recognition in Speech

Ingryd Pereira1(B), Diego Santos2(B), Alexandre Maciel1(B),
and Pablo Barros3(B)

1 Polytechnic School of Pernambuco, University of Pernambuco, Recife, Brazil
{ivstp,amam}@ecomp.poli.br

2 Fedreal University of Pernambuco, Recife, Brazil
dgs2@ecomp.poli.br

3 Knowledge Technology, Department of Informatics, University of Hamburg,
Hamburg, Germany

barros@informatik.uni-hamburg.de

Abstract. To recognize emotional traits on speech is a challenging task
which became very popular in the past years, especially due to the recent
advances in deep neural networks. Although very successful, these mod-
els inherited a common problem from strongly supervised deep neural
networks: a large number of strongly labeled samples demands neces-
sary, so the model learns a general emotion representation. This paper
proposes a solution for this problem with the development of a semi-
supervised neural network which can learn speech representation from
unlabeled samples and used them in different emotion recognition in
speech scenarios. We provide experiments with different datasets, rep-
resenting natural and controlled scenarios. Our results show that our
model is competitive with state-of-the-art solutions in all these scenar-
ios while sharing the same learned representations, which were learned
without the necessity of strong labeled data.

Keywords: Emotion recognition · Semi-supervised learning · GAN
Speech representation · Deep learning

1 Introduction

Recent advances in deep learning provided an increase in popularity and robust-
ness on emotion recognition in speech tasks [14,20,23]. Such models usually make
use of a large number of labeled samples to learn general representations for
emotion recognition, providing state-of-the-art results in different speech related
scenarios [2,8,21].

However, supervised deep learning needs a lot of labeled training data.
Another problem with the current supervised deep learning models lies in the
nature of emotion description itself. Different persons can express and perceive
the same emotion in many ways, which causes a lack of agreement about how to
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 791–800, 2018.
https://doi.org/10.1007/978-3-030-01418-6_77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_77&domain=pdf

792 I. Pereira et al.

annotate samples from different scenarios [7]. One solution for this is the use of
an even larger number of labeled samples to represent different emotional states
into a general emotion categorization.

The use of unsupervised learning becomes useful to solve this problem since
it does not require labeled data to learn general speech representation, which
can be transferred to emotions. To work around this problem, recent works like
[1,15,16,19] apply semi-supervised training on deep neural networks for image
classification in domains where the labeled date is scarcity.

If we train a deep neural model with a dataset from a given domain, the
model will specialize in that scenario. But a model specialized on to generate
a general representation of the data will be capable of representing the audio
in every presented scenario. To be able to be general enough, deep learning
models for speech emotion recognition usually rely on a large number of labeled
samples. This issue happens because (1) deep neural models need a large number
of samples to learn descriptors which are robust enough to generalize the domain
where they are applied. (2) Strongly supervised training produces a fast and
more focused change on the gradient directions, which usually leads to a better
fine-tuning of the descriptors and separation boundaries for classification.

We propose a hybrid neural network, composed of an adversarial autoen-
coder to learn general speech representations and use it as input to a strongly
supervised model to classify emotion expressions in the speech in different sce-
narios. In the first step, the model learns how to represent the audio through
an unsupervised training process. This representation will be the input for the
second step where the model learns the separation boundaries and distribution
between classes through a supervised learning process. In the unsupervised step,
a Generative Adversarial Network (GAN) trains an autoencoder that will be
responsible for learning how to represent speech present in the audio. As a GAN
has unsupervised training, the model can use unbranded and not emotional
data what possibilities that the use of the trained model over different scenar-
ios. After training, the encoder filters can extract prosodic characteristics of the
input speech without the necessity of supervised labels. The encoder ends up
learning representations based on the data distribution. The second module of
the proposed model uses these prosodic characteristics learned by the encoder as
low-level feature representations, and, now using a strongly supervised solution,
is trained to classify emotion recognition in speech. A set of different filters also
composes the classifier. These filters are fine-tuned and learn high-level abstrac-
tions of the input signal, which are pertinent to that specific domain.

We make used of an unconstrained and unlabeled corpus to learn general
speech representations, which is shared among all our emotion recognition sce-
nario. Our specific classifiers are fine-tuned to specific emotion recognition high-
level characteristics. This reduces the training effort and applicability of the
model to different emotion recognition scenarios.

So, in emotion recognition task, the use of general speech representation,
training in an unsupervised manner, improve the application performance and
also build an adaptive model for others scenarios, once the speech represen-
tation doesn’t be stuck in the scenario of the dataset evaluated. The main

Semi-supervised Model for Emotion Recognition in Speech 793

contribution of this proposition is the general speech recognition model. This
model can fit in different emotional recognition scenarios and different datasets
without retraining. In other emotional recognition works the audio represen-
tation ends up stuck in the scene obtained from the training dataset. In our
proposition the audio representation is more robust, being able to represent dif-
ferent domains, situations, and languages.

We evaluate the performance of our model in three different scenarios:
indoor, outdoor and cross-language and compare it with state-of-the-art solu-
tions. We prove that our model learned a general speech representation which
is shared among all these scenarios, and the different specific filters learn high-
level abstractions which are unique for each of these scenarios. For that, we use
three different datasets: the Surrey Audio-Visual Expressed Emotion Dataset
(SAVEE) [13] which represents a controlled environment, usually found in indoor
scenarios or simple interactions, the OMG Emotion Dataset [3], which represents
an in-the-wild, outdoor, unrestricted scenario and finally the Berlin Database of
Emotional Speech (EmoDB) [6] which evaluates how well the learned represen-
tations learned with speech signals in one language can be transferred to other
for emotion recognition. This way, we can prove the universal aspect of emo-
tion recognition, and that our fine-tuning step learns to correlate the emotional
aspects of the general speech representation, ignoring the information which is
not necessary for this task.

2 Proposed Model

In this work, we propose a semi-supervised model for emotion recognition. The
model contains two modules: the first one is the general speech representa-
tion and the second one is the classifier model. Figure 1 presents the model
illustration.

The training of the first module of our network happens in an unsupervised
way. The first model is composed of an autoencoder trained by a GAN. We use
the encoder present in the autoencoder model for learning the general speech
representation. The GAN was chosen because have an autoencoder in its struc-
ture and allows an adversary training with a large amount of unlabeled data. The
speech representation generated by the model will be the input for the second
part of the model.

The second part is responsible for the distribution between the classes in an
emotion classification or for prediction from the values in a dimensional model.
The training of this module is in a supervised way. We adapt the output of the
classifier accordingly to the task: or we use binary classification for categorical
emotions (e.g., anger, fear, happiness, etc.) or we use a double-head one unit
structure, for arousal/valence regression.

2.1 Adversarial Autoencoder

The Generative Adversarial Network (GAN) [12] has had a significant impact on
data generation, mainly of images, but also in audio applications, for example

794 I. Pereira et al.

Fig. 1. Abstraction of the classifier and prediction models

for melody generation [22] and noise cleaning [18]. The basic idea of a GAN is
to conduct unsupervised adversarial training in two artificial neural networks,
a discriminator model (D) and a generator model (G). The training process
occurs similarly to a minimax two-player game, in which G captures the data
distribution, and D estimates the likelihood of an example coming from G to
be real. The G training procedure is to maximize the probability of D making a
mistake.

The Boundary Equilibrium Generative Adversarial Networks (BEGAN) [5]
is a GAN variation, and have a differential are the use of an autoencoder as a
discriminator. Others particularities of BEGAN is the loss derived from Wasser-
stein’s distance; the addition of a γ variable to balance GAN training; and the
addition of a new metric called m global.

The training of the basic GAN, proposed by Goodfellow [12], G e o D is
trained in an The training of the basic GAN, proposed by Goodfellow [12], G
and the D are trained in an adversarial way. Figure 2 presents the training repre-
sentation of a GAN. In this figure, x represents the real samples, ẍ represents the
generated samples by the generator and z is the generated noise that is the gen-
erator inputs. The training of D has two different moments: first one where the
inputs are real samples and the expected output is the real class that example
belongs to (i.e., class 1). The second one where the inputs are samples generated
by the generator from the noise and the expected output is a fake classification
(i.e., class 0). For the generator, the flow is: the generator module receives as
input a noisy, and a fake sample generated as an input of the discriminator. The
objective is to make this sample be confused with a real sample, so the expected
output is a real classification by the discriminator. In this step the discriminator
training is frozen, and only training the generator.

A characteristic BEGAN is the application of a balance paired with a loss
derived from Wasserstein’s distance to the autoencoder training [5]. In the

Semi-supervised Model for Emotion Recognition in Speech 795

Fig. 2. Training representation of discriminator (D) and generator (G)

training step, the BEGAN has a balancing factor, defined by a variable γ, with
a range of 0 to 1. This variable penalizes D training, slowing it down. Since G
training is more difficult and slower than D, this penalty balances the algorithms,
thus increasing the performance of GAN [5].

GANs were used recently on semi-supervised learning for image classification
tasks [1,15,16,19] and was shown to be more effective than strongly supervised
classification. That happens because the use of unsupervised training makes
possible to the model to learn general representations of the domain, while the
supervised fine-tuning specializes in the model to solve the specific tasks. We
choose to use a variation of an adversarial autoencoder, the BEGAN [5] because
it presented better results than common GANs results on learning general rep-
resentations.

2.2 Supervised Classifiers

The supervised module of the proposed model varies according to the emotion
recognition scenario. But the basic structure is: it receives as input the speech
representation obtained by the unsupervised module, then it applies convolu-
tional layers and a softmax classifier which is adapted depending on the scenario.

We optimize the hyper-parameters of the supervised module for each task.
For that, we use the Hyperas [4] framework, where is specialized in optimizing
search spaces with real, discrete and conditional dimensions.

2.3 Semi-supervised Learning

The adversarial autoencoder will be pre-trained with a database with a larger
number of data. Once trained the autoencoder, don’t need to retrain this model
and this same autoencoder can be reuse in others applications, also without the
need of retraining.

The supervised model training happens during the semi-supervised model
training process. In this process, we freeze the encoder layers trained previously

796 I. Pereira et al.

and train only the supervised module. The layers of the autoencoder are freeze
because if it is trained too with the evaluated dataset, lose the nature of general
speech representation, specializing in the dataset scenario.

3 Experimental Methodology

3.1 Datasets

We use one dataset to train the unsupervised part of our model, and three to
evaluate the whole model in different scenarios. The LibreSpeech [17] dataset is
one of the largest audio datasets available, and we use it to train the unsuper-
vised module. We use this dataset because its amount of data and variability
of speakers and scenario is interesting to generate a general representation of
speech. LibriSpeech is a dataset with approximately 1000 h of English speech.

We use three others datasets, and these datasets are emotional, multimodal
and multispeaker. Each one has different characteristics and scenarios, which
possibility different analysis. Therefore, we evaluated our model in an indoor,
outdoor and cross-language scenarios, witch SAVEE [13], OMG Emotion [3] and
EmoDB [6] datasets, respectively.

SAVEE. We used the Surrey Audio-Visual Expressed Emotion Dataset
(SAVEE) [13] in our experiments. SAVEE is an emotional audiovisual dataset,
with consists of recordings of four male actors speaking phrases in 7 different
emotion intonations based on the Universal Emotions [11] with the addition
of the neutral emotion, where the speaker not present any of the six universal
emotions.

This work uses only the auditive module of the dataset, and has 480 state-
ments in total. The SAVEE database is balanced, recorded in a controlled and
noise-free environment and only has male voices. Therefore is considered a simple
base and applied as the starting point of the experiments.

OMG Emotion Dataset. The One-Minute Gradual-Emotional Behavior
dataset (OMG-Emotion) [3] is the database from the One-Minute Gradual-
Emotion Behavior Challenge, which takes place at IJCNN 2018. The dataset
contains 567 unique videos totaling 7371 clips each clip consisting of a single
utterance. Each video has a different utterance number with an average dura-
tion of 8 s by utterance and total average video duration next to 1 min.

The dataset has dimensional and categorical labels, being seven different
emotions, based on the Universal Emotions [11] with the addition of the neutral
emotion. The dataset also has continuous dimensional label being arousal and
valence with values in a range between −1 and 1. OMG emotion dataset is a
complex, given its variability of speakers, scenarios, dialogs and videos duration.
The dataset labels are either categorical and dimensional, what makes possible to
verify the proposed model performance in different emotional recognition tasks.

Semi-supervised Model for Emotion Recognition in Speech 797

EmoDB. The Berlin Database of Emotional Speech (EmoDB) [6] is an emo-
tional speech database recorded in German. It contains about 500 utterances
spoken by the actors in a happy, angry, anxious, fearful, bored and disgusted
manner, as well as in a neutral version. It has statements from 10 different actors
and ten different texts. We used the EmoDB dataset to verify it the proposed
model can also generalize emotional characteristics from other languages.

3.2 Preprocessing

Our first preprocessing step was to change the audio frequency to 16 kH. Then
each audio track was decomposed into 1-s chunks without overlapping. After
that, the raw audio was converted to a spectrogram via Short Time Fourier
Transform, with an FFT of size 1024 and a length of 512.

3.3 Experiments Setup

To evaluate our model on the SAVEE dataset, we train the BEGAN with part
of the LibreSpeech dataset but evaluating the emotion classification model with
SAVEE dataset. To be possible to compare with another work, this experiment
follows the same protocol of Ashwin work et al. [2], where perform the job
of classifying emotions present in audio and video proposing a novel hybrid
SVM-RBM classifier. We compare just with the audio module. Ashwin et al.
perform the experiment called dependent speaker, which uses each speaker sets
for training, and for each evaluated test of each speaker (DC, JE, JK, KL). The
division of the base is approximately 60% for training and 40% for testing.

Experiments were also carried out with the OMG Emotion dataset, with cate-
gorical and dimensional labels, which allows the evaluation of two emotion recog-
nition tasks: the classification of static emotion and prediction of dimensional
values arousal and valence. For all experiments with OMG Emotion dataset,
the training process of BEGAN uses part of the LibreSpeech dataset, and the
division of the training and testing process follows the same distribution made
available in the database itself.

The experiments performed on EmoDB dataset follow the Leave One Speaker
Out protocol (LOSO) to be possible perform the comparative with other works
that follow the same protocol. In the experiment, we train the BEGAN with
part of the LibreSpeech dataset recorded in English and the model evaluated on
EmoDB dataset which is one German language recorded database.

We train the algorithms in each experiment with 100 epochs, with a batch
size of 16. The discriminator and the generator of the BEGAN used the Adam
optimizer with a learning rate of 0.00005. The BEGAN also has a gamma value
that balances the generator and the discriminator with a value of 0.7.

4 Results and Discussion

Table 1 shows the accuracy averages achieved with ten executions of the model
and the best results obtained in Ashwin’s work [2]. The results obtained with

798 I. Pereira et al.

this proposal are bigger than the related work. The standard deviation is small,
so this means that the model proves to be stable.

Table 1. Comparison between the accuracy (%) averages

DC JE JK KL

Ashwin et al. [2] 79 78 76 80

This work 80.69 (±2.96) 80.96 (±3.41) 80.15 (±1.85) 82.46 (±2.70)

Table 2 presents the summary of the executions of the model when tested
with the OMG Emotion Dataset, the baseline results [3], and the best result
obtained in the challenge in audio modality1. The table has the F-score of the
classifier and also has the CCC of the arousal and valence values predicted. The
result F-score obtained with the classifier model was higher than the baseline,
and has the advantage that a general speech representation was used and that
it can be reused without the need of re-training in other datasets. The CCC
obtained in our experiments is smaller than the result obtained in the challenge,
but is better than baseline work. We obtained this result with the same model of
the classification experiments, without specific treatment for this task and still
the result is better than the baseline.

Table 2. Results with the OMG emotion dataset

F-score Arousal CCC Valence CCC

Barros et al. [3] 0.39 0.07 0.04

OMG emotion challenge - 0.29 0.36

This work 0.73 0.17 0.16

Table 3 presents the results from the executions with the EmoDB dataset and
the comparison with other works that use the same experimentation protocol.
As can be seen, our proposal is above of the related works. But considering that
our model learns how to represent the emotional data in another language, the
results can still be relevant for being next of the related works.

The BEGAN trained with LibreSpeech database used in our experiments
perform the training process only once. After saving the model, it can execute
different experiments without the need for retraining. The no reed of retraining
is one of the principal advantages of the proposed approach since once trained
the model; we can use it for different databases and several tasks without the
need for retraining.

1 https://www2.informatik.uni-hamburg.de/wtm/OMG-EmotionChallenge/.

https://www2.informatik.uni-hamburg.de/wtm/OMG-EmotionChallenge/

Semi-supervised Model for Emotion Recognition in Speech 799

Table 3. Results with EmoDB dataset

Accuracy

Deb and Dandapat [10] 83.80%

Deb and Dandapat [9] 85.10%

This work 72%

5 Conclusion

The work proposed is the development a new semi-supervised model for emotion
recognition tasks. The use of this algorithm can help overcome one of the common
challenges of emotion recognition field, which is the speech representation.

We propose a general speech representation model, which is constructed with
a GAN and trained in an unsupervised way and then incorporated into the
models, thus building the semi-supervised model. From a set of experiments,
with different datasets in the same algorithm, it was possible to verify that the
use of GAN can help in the training of an emotion recognizer, that besides
needing a smaller amount of training data in the supervised part, also achieves
superior performance and provides a more stable algorithm.

In this work, experiments were performed with the SAVEE dataset, which is
a simple dataset, and also with the OMG Emotion Dataset, which is a complex
database, given its speakers and scenarios variability, and has categorical and
dimensional labels. In the experiments, it was possible to verify that the pro-
posed model is superior to the baseline, and also the benefit of using a speech
representation model that can be reused in other models and other databases.

Experiment with a dataset of other language was performed. The speech
representation module was trained with one dataset of the English language
and was performed the emotion classification in a Germany dataset. The results
were similar to related works used how baseline. This experiment proves that
unsupervised model represents the speech emotional characteristics independent
of the language.

As a continuation of this work will be carried out sets of experiments where
BEGAN will be trained with different datasets, and the semi-supervised learn-
ing model will be evaluated with other datasets with different domains (e.g., a
dataset with only children’s voices, a dataset in other languages, etc.).

References

1. Adiwardana, D.D.F., Matsukawa, A., Whang, J.: Using generative models for semi-
supervised learning

2. Ashwin, T., Saran, S., Reddy, G.R.M.: Video affective content analysis based on
multimodal features using a novel hybrid SVM-RBM classifier. In: 2016 IEEE Uttar
Pradesh Section International Conference on Electrical, Computer and Electronics
Engineering (UPCON), pp. 416–421. IEEE (2016)

800 I. Pereira et al.

3. Barros, P., Churamani, N., Lakomkin, E., Siqueira, H., Sutherland, A., Wermter,
S.: The OMG-emotion behavior dataset. arXiv preprint arXiv:1803.05434 (2018)

4. Bergstra, J., Yamins, D., Cox, D.D.: Hyperopt: a python library for optimizing
the hyperparameters of machine learning algorithms. In: Proceedings of the 12th
Python in Science Conference, pp. 13–20. Citeseer (2013)

5. Berthelot, D., Schumm, T., Metz, L.: Began: boundary equilibrium generative
adversarial networks. arXiv preprint arXiv:1703.10717 (2017)

6. Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W.F., Weiss, B.: A database
of German emotional speech. In: Ninth European Conference on Speech Commu-
nication and Technology (2005)

7. Cabanac, M.: What is emotion? Behav. Process. 60(2), 69–83 (2002)
8. Chang, J., Scherer, S.: Learning representations of emotional speech with deep con-

volutional generative adversarial networks. arXiv preprint arXiv:1705.02394 (2017)
9. Deb, S., Dandapat, S.: Emotion classification using segmentation of vowel-like and

non-vowel-like regions. IEEE Trans. Affect. Comput. (2017)
10. Deb, S., Dandapat, S.: Multiscale amplitude feature and significance of enhanced

vocal tract information for emotion classification. IEEE Trans. Cybern. (2018)
11. Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992)
12. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Infor-

mation Processing Systems, pp. 2672–2680 (2014)
13. Haq, S., Jackson, P.J.: Multimodal emotion recognition. In: Machine Audition:

Principles, Algorithms and Systems, pp. 398–423 (2010)
14. Huang, Z., Dong, M., Mao, Q., Zhan, Y.: Speech emotion recognition using CNN.

In: Proceedings of the 22nd ACM International Conference on Multimedia, pp.
801–804. ACM (2014)

15. Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-supervised learn-
ing with deep generative models. In: Advances in Neural Information Processing
Systems, pp. 3581–3589 (2014)

16. Odena, A.: Semi-supervised learning with generative adversarial networks. arXiv
preprint arXiv:1606.01583 (2016)

17. Panayotov, V., Chen, G., Povey, D., Khudanpur, S.: LibriSpeech: an ASR corpus
based on public domain audio books. In: 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5206–5210. IEEE (2015)

18. Pascual, S., Bonafonte, A., Serrà, J.: SEGAN: speech enhancement generative
adversarial network. arXiv preprint arXiv:1703.09452 (2017)

19. Springenberg, J.T.: Unsupervised and semi-supervised learning with categorical
generative adversarial networks. arXiv preprint arXiv:1511.06390 (2015)

20. Trigeorgis, G., et al.: Adieu features? End-to-end speech emotion recognition using
a deep convolutional recurrent network. In: 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 5200–5204. IEEE (2016)

21. Weißkirchen, N., Bock, R., Wendemuth, A.: Recognition of emotional speech with
convolutional neural networks by means of spectral estimates. In: 2017 Seventh
International Conference on Affective Computing and Intelligent Interaction Work-
shops and Demos (ACIIW), pp. 50–55. IEEE (2017)

22. Yang, L.C., Chou, S.Y., Yang, Y.H.: MidiNet: a convolutional generative adver-
sarial network for symbolic-domain music generation. In: Proceedings of the 18th
International Society for Music Information Retrieval Conference (ISMIR 2017),
Suzhou, China (2017)

23. Zheng, W., Yu, J., Zou, Y.: An experimental study of speech emotion recognition
based on deep convolutional neural networks. In: 2015 International Conference on
Affective Computing and Intelligent Interaction (ACII), pp. 827–831. IEEE (2015)

http://arxiv.org/abs/1803.05434
http://arxiv.org/abs/1703.10717
http://arxiv.org/abs/1705.02394
http://arxiv.org/abs/1606.01583
http://arxiv.org/abs/1703.09452
http://arxiv.org/abs/1511.06390

Real-Time Embedded Intelligence System:
Emotion Recognition on Raspberry Pi

with Intel NCS

Y. Xing1(&), P. Kirkland1, G. Di Caterina1, J. Soraghan1,
and G. Matich2

1 University of Strathclyde, Glasgow, UK
{yannan.xing,paul.kirkland,gaetano.di-caterina,

j.soraghan}@strath.ac.uk
2 Leonardo MW Ltd, Sigma House, Christopher Martin Road,

Basildon, Essex SS143EL, UK

Abstract. Convolutional Neural Networks (CNNs) have exhibited certain
human-like performance on computer vision related tasks. Over the past few
years since they have outperformed conventional algorithms in a range of image
processing problems. However, to utilise a CNN model with millions of free
parameters on a source limited embedded system is a challenging problem. The
Intel Neural Compute Stick (NCS) provides a possible route for running large-
scale neural networks on a low cost, low power, portable unit. In this paper, we
propose a CNN based Raspberry Pi system that can run a pre-trained inference
model in real time with an average power consumption of 6.2 W. The Intel
Movidius NCS, which avoids requirements of expensive processing units e.g.
GPU, FPGA. The system is demonstrated using a facial image-based emotion
recogniser. A fine-tuned CNN model is designed and trained to perform infer-
ence on each captured frame within the processing modules of NCS.

Keywords: CNN � Embedded system � Low power system � SWaP profile

1 Introduction

Size, Weight and Power (SWaP) profile are important factors in many applications of
real-time embedded systems. However, it is difficult to incorporate the benefits of deep
learning (DL) in real-time embedded systems due to the limited computation capability
and power. One solution is to use cloud computing [1]. This paper shows the first
comparison between typical DL hardware and an edge device, which is applicable to
any DL model that does not require any online learning. Hoping to show how the NCS
can help bridge the gap between the two. The next phase of the Internet of Things
(IoT) development will be adding intelligence to the devices. This will not only allow
each device to share more in-depth information, but it will also require less information
to be sent off the device which provides a greater level of security. These devices are

Y. Xing and P. Kirkland—contributed equally to first author.

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 801–808, 2018.
https://doi.org/10.1007/978-3-030-01418-6_78

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_78&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_78&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01418-6_78&domain=pdf

typically unable to run DL models due to the amount of processing required, which we
show is no longer the case.

The remainder of the paper is organised as follows. Section 2 introduces the
background of DL on embedded systems. Section 3 describes the proposed Ras-Pi
NCS system with details on system configuration working with a very simple self-
designed CNN based on public emotion recognition dataset. The runtime speed and
power consumption of system are presented in Sect. 4 and compared to several DL
evaluation platforms. Section 5 concludes the paper.

2 Background

Advances in Smart devices and Internet of Things have led to a plethora of devices
with the potential to have real-time embedded intelligence. As traditional DL research
concentrated on GPUs, the focus was on computational runtime, accuracy and not
power use [2]. However, low powered edge devices are an important area of research.

Nvidia to date has arguably the most popular embedded DL devices with the Jetson
range. With the NVidia Jetson range TK1, TX1 and TX2 have featured in up to 1,000
research publications (Google Scholar Search) in a broad range of applications [3–5].
Benchmarks compared to PCs have shown there are good use cases for these devices,
with power savings of 15–30 times, with a reduction in throughput by one-tenth, a net
increase of 5–15 times [6].

Other chip manufacturers have introduced their own version of low powered
embedded DL accelerators, such as Qualcomm with their Snapdragon Neural Pro-
cessing Engine and Intel with both their Nervana Neural Network Processor and the
device featured in this paper, the Movidius Myriad Visual Processing Unit (in the form
of the Neural Compute Stick). Pena et al. [7] presented the first benchmarking results of
the NCS, Raspberry Pi 3, and the Intel Jolue 750x development board. All tests are
measuring the amount of time taking and power used to complete one pass of the
network, with the NCSs results being averaged over both boards. It also showed how
the different systems handled a variety of differing complexity networks. Figure 1 gives
an illustration of the design system. The NCS, Webcam and Power Bank are connected
via USB, while the touchscreen is connected via the GPIO pins to the Raspberry Pi.
The actual system showing how all the components are connected and how the UI
appears on the screen are shown on the right of Fig. 1.

Fig. 1. The Raspberry Pi – NCS system.

802 Y. Xing et al.

3 The System

As is shown in Fig. 1 a Raspberry Pi 3 model B development board with 40 GPIO pins
and four USB2.0 ports is used as the main processing unit in the proposed system. The
power of board is supplied by a 5 V/2 A mobile DC power bank to make the whole
system fully portable. The Raspberry Pi contains a 1.2 GHz 64-bit quad-core ARM
Cortex-A53 CPU with 1 GB of RAM, running standard RASPBIAN Jessie desktop OS
that supports required Python programming environment for the Intel NCS SDK to run
in API mode. A Logitech C270 HD (720p) webcam is used via one USB2.0 port to
provide desired video input. A 3.5” TFT touchscreen is set to satisfy general user
interaction and visualising the online-processing results. The Intel NCS is used
exclusively for the neural network model, with the information being transferred over
the USB interface.

3.1 The CNN for Emotes

The architecture of the network had to be a reduced and cut down version of the state of
the art architectures, as the inference models that are runnable on the NCS cannot
resolve the unknown placeholders/variables. Very often these placeholders are
employed for training specific parameters but are not necessary for NCS inferencing.
Before trying to compile the NCS model, the Tensorflow model can be trained to
generate three saved model files: index file as model indexing, data file as the network
parameters and meta file which contains the network structure. These files will be
further used in the shrunken version of the network to generate another set of inference-
only network models. The original network is reduced with dropout layers and training
specific code removed which usually contains: reading/importing data, loss function
and accuracy computation definition, placeholders except for the input tensor of the
network etc. The name for the input and output layer always requires to be set to make
sure the compiler is easier to determine and recognise from the structure of the network.

The facial based emotional recogniser network illustrated in Fig. 2 contains a total
of 6 layers: 2 convolutional, 2 pooling, and 2 fully-connected. The Rectified linear unit
(ReLU) activation function [8] is employed for each layer. The CNN inputs are

Fig. 2. The designed CNN architecture for facial expression recognition, the stride of
convolution kernel is set to be 1 and the stride of polling kernel is set to be 2.

Real-Time Embedded Intelligence System 803

grayscale 48 � 48 images and followed by 2 convolutional layers with 32 and 64
filters with the size of both being 3 � 3. The convolution operation in each layer is set
to be 1-pixel strides with the same padding. The max-pooling layers with 2 � 2 kernel
size is placed behind each convolutional layer to perform a subsampling for feature
maps from the previous layer. The final stage is a fully connected dense layer with
1024 neurons, the network output layer is comprised of 7 neurons performing the
softmax [9] calculation which indicates the number of facial emotions.

Training Phase. The training data utilises the FER2013 database [10]. According to
the results from previous work, we consider that the order of the original dataset
represents an unbalanced training set., which can lead to obvious overfitting and
underfitting issues. We randomly initialised the order of the originally given dataset as
well as correspond labels and split it into required data batches. The learning of the
CNN employed the backpropagation incorporating cross-entropy as target loss function
and the Adam stochastic optimiser [11]. In order to prevent the network suffering from
overfitting, the Ridge Penalisation (L2 regularisation) is implemented among the cross-
entropy function. The dropout technique [12] also well known as an effective regu-
larisation to prevent network overfitting. In the training phase, the fully connected layer
is set to randomly dropout with rate 0.5.

Result. The designed convolutional network was validated on the self-defined (shuf-
fled) testing set and validation set. The Extended Cohn-Kanade(CK+) [13] dataset was
also used to evaluate the actual performance of the network with the same model which
trained by the FER2013 dataset. After 100 epochs the model converged at 90.99%
testing accuracy and 87.73% validation accuracy based on the shuffled FER2013
dataset. The model showing a 70.51% test accuracy on the CK+ dataset with a very
good performance in recognising happy with 100%, supervised with 92% and neutral
with 84%. The confusion matrix on the FER2013 test set shows nearly perfect accuracy
on each emotion.

3.2 Embedded Device

The Raspberry Pi 3 was the chosen flexible platform for this work. As a Linux
microcomputer, it can run a multitude of programs similar to a Desktop PC. In our
problem, it needed to be able to run the Tensorflow deep learning environment and the
full Intel NCS SDK (although we are only going to utilise and use the API to save on
space). This approach makes use of the Raspbian stretch desktop OS while utilising
another 18 libraries. Along with API, the emotion recognition system makes significant
use of two other important libraries, OpenCV [14], an open source computer vision
library that is used for the Haar cascade face detection function and to display the live
emotion recognition feed to the display. The decision to use the inbuilt Haar cascade
was due to the speed at runtime compared to similar models, once optimised, for
example, the dlib [15] libraries Histogram of Gradients (HoG) face detector. The Haar
classifier was able to produce a robust detection of a face at 3–4x the speed of the HoG
classifier. The Haar classifier is known to be the faster and less accurate classifier but
proves to be robust enough as the face cropper within this system. The well-established
Multi-Task Cascaded Convolutional Network (MTCNN) [16] deep learning approach

804 Y. Xing et al.

to face detection and alignment was also tested, as a recent implementation had
appeared on the NCS GitHub page called the NCS App Zoo. This network requires the
use of a further 2 Intel NCS units to run but would allow an end-to-end deep learning
approach to the emotion recognition. However, due to the bounding box regression
stages of the network, it proved to be slower with an average runtime similar to that of
the dlib HoG classifier.

The other important library to ensure real-time operation is imutils [17]. This
convenience library helps with a significant speed up with one of the bottleneck areas
of image acquisition. Compared to the OpenCV function, the imutils function utilises
the multi-threading of the Raspberry Pi’s quad-core processor having a function able to
collect the image from the webcam as soon as it is available and then store it to a queue
of images. The result is the time taken to acquire the next image reduces from 10 s of
milliseconds to 10 s of nanoseconds.

3.3 Intel NCS

DL is appearing in an increasing number of mobile devices without the necessity for
cloud computing. The NCS used in this paper is from chipmaker Intel’s Movidius
department, which incorporates one Myriad 2 machine vision processing unit into a
small USB stick, Movidius announced that it delivers more than 100 gigaflops of
performance. It can locally run neural networks inference model using Caffe and
Tensorflow framework. A general development process of NCS based embedded
system is illustrated in Fig. 3. The training process does not need to utilise the NCS
stick or SDK but only standard DNN development on a desktop PC. Using the software
SDK of the NCS, the user should subsequently perform training, profiling, tuning and
compiling a DNN model on the NCS and a PC that runs x86 64bit ubuntu 16.04 OS.
The provided SDK can check the validity of designed DNN and API for python and C
languages. After that, any developer system (e.g. a raspberry pi) that runs a compatible
OS with neural compute API can accelerate neural network inferences.

4 Evaluation

This section looks at the running of the emotion recognition program and delivers the
results in terms of processing time. The Raspberry Pi 3 is compared against two other
devices running the same application both running Ubuntu 16.04. An Alienware 15

Fig. 3. Illustration of using the Intel NCS to develop for a DNN based embedded system

Real-Time Embedded Intelligence System 805

Laptop with an Intel i7 6820HK Quad-core CPU @ 2.7 GHz with 16 GB of RAM and
a GTX 980m GPU. The other machine was a Desktop PC with an AMD Ryzen 1700X
Octa-core CPU @ 3.4GHZ with 32 GB of RAM and a GTX 1080Ti., with the added
measure of how much power is being used to deliver the results.

4.1 Real Time Running on Pi

The actual system with all devices is illustrated in Fig. 1. Figure 4 shows runtimes, for
10 runs of the code averaged, each running for 300 frames. The times for the non-deep
learning parts are combined and averaged so as not to influence the overall results as
only minor fluctuations appear between runs. Figure 4, breaks down the timing into
sections:

– Camera Read – the time taken for reading an image from the camera
– Image Show – the time taken to display the image onto the touchscreen with

emotion emoji,
– Haar Face Detection – the time taken for the detector to crop the image around a

found face
– Inference Runtime – the time taken for the CNN model to run and
– Loop Runtime – the total time taken to process one image of the video capture.

The graph highlights which parts of the process are slow, especially on an
embedded device, with the time axis given in a log format to allow for the differing
magnitudes of time taken for different tasks to be represented equally. Only one section
differs from the previously mentioned arrangement which is the R-Pi (opt) which is the
optimised version to allow the system to run in true real-time (sub 33 ms), while still
displaying the camera feed to the user. Modifications included running the Haar face
detector only every 3rd frame. Also removing the emoji image to the image displayed
on the device and instead, printing the emotion to the terminal. This resulted in a saving
of 20 and 12 ms respectively. Therefore, while the Pi with NCS can run at 14 fps
(66 ms) the optimised code can run at 30 fps (33 ms), both of which can be classed as
real-time, though the latter is obviously the preferred to perceive smooth motion on the
video feed. Meanwhile, the Laptop and PC can output 142–167 fps (7 and 6 ms
respectively), though to do so they consume a considerable amount more power which
is typically an undesired trait for an embedded device.

4.2 Benchmarking

Figure 4, shows a significant speed up for the other processes in the application, with
the GPUs managing to run the TensorFlow models with the fastest time as expected.
A better comparison though is to see how the systems perform in terms of Inference per
Second per Watt, which would be an important factor to consider with a minimal SWaP
profile. Table 1 shows how the results for the 6 system types, with the new value given
the term RP (Run-Power is the coefficient - inference/second/Watt).

The results of the final experiment show that the Intel NCS given its low power
usage of 1.2 W, rates highly when given these SWaP constraints. Which vary per

806 Y. Xing et al.

application in many of the DL use cases of Robotics, Human-Computer Interaction,
Healthcare Application and several other Autonomous Systems. Given size and weight
or even cost as extra parameters, the NCS would perform even higher than shown.

5 Conclusion

This paper presented a novel design concept, that shows how the Intel NCS device can
help to bring state of the art DL to low powered edge devices. The combination of
Raspberry Pi and NCS demonstrated the potential of these devices to help carry out
complex image processing in real time similar to the Nvidia Jetson, the Intel NCS can
be applied to almost any DL research area. This shows the ability of this low-cost
inference model runner, to bridge the gap between current edge devices and desktop
PCs for DL applications. With growing research into low powered embedded intelli-
gence devices, this paper highlights the usefulness of this type of device.

Table 1. Results of power related inferences.

System Time (ms) Power (watt) RP (inf/s/W)

R-Pi (+NCS) 45.26 (7.57) 5 (6.2) 4.42 (21.31)
Intel CPU (+GPU) 1.92 (1.04) 45 (167) 11.57 (5.76)
AMD CPU (+GPU) 1.30 (0.73) 95 (345) 8.10 (3.97)

0.001

0.01

0.1

1

10

100

1000

Ti
m

e
(m

ili
se

co
nd

s)

Camera Read Image Show Haar Face Detec�on
Inference Run�me Looop Run�me

Fig. 4. Chart of results showing each device’s running time for the given section

Real-Time Embedded Intelligence System 807

References

1. Announcing Amazon Elastic Compute Cloud (Amazon EC2) – Beta, 24 August 2006.
Amazon.com

2. Shi, S., Wang, Q., Xu, P., Chu, X.: Benchmarking state-of-the-art deep learning software
tools. https://arxiv.org/abs/1608.07249

3. Tomè, D., Monti, F., Baroffio, L., Bondi, L., Tagliasacchi, M., Tubaro, S.: Deep
convolutional neural networks for pedestrian detection. Signal Process.: Image Commun.
47, 482–489 (2016)

4. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: ENet: a deep neural network architecture
for real-time semantic segmentation. https://arxiv.org/abs/1606.02147

5. Smolyanskiy, N., Kamenev, A., Smith, J., Birchfield, S.: Toward low-flying autonomous
MAV trail navigation using deep neural networks for environmental awareness. https://arxiv.
org/abs/1705.02550

6. Rungsuptaweekoon, K., Visoottiviseth, V., Takano, R.: Evaluating the power efficiency of
deep learning inference on embedded GPU systems. In: 2017 2nd International Conference
on Information Technology (INCIT), pp. 1–5. IEEE (2017)

7. Pena, D., Forembski, A., Xu, X., Moloney, D.: Benchmarking of CNNs for low-cost, low-
power robotics applications. In: RSS 2017 Workshop: New Frontier for Deep Learning in
Robotics (2017)

8. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In:
Proceedings of the 27th International Conference on Machine Learning (ICML-10),
pp. 807–814 (2010)

9. Nasrabadi, N.M.: Pattern recognition and machine learning. J. Electron. Imaging 16(4),
049901 (2007)

10. Goodfellow, I.J., et al.: Challenges in representation learning: a report on three machine
learning contests. In: Lee, M., Hirose, A., Hou, Z.G., Kil, R. (eds.) ICONIP 2013. LNCS,
vol. 8228, pp. 117–124. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
42051-1_16

11. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. https://arxiv.org/abs/1412.
6980

12. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a
simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–
1958 (2014)

13. Lucey, P., Cohn, J., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-
Kanade dataset (CK+): a complete dataset for action unit and emotion-specified expression.
In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition -
Workshops (2010)

14. Bradski, G., Kaehler, A.: OpenCV. Dr. Dobb’s Journal of Software Tools, 3 (2000)
15. King, D.E.: Dlib-ml: A machine learning toolkit. J. Mach. Learn. Res. 10(Jul), 1755–1758

(2009)
16. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask

cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)
17. Imutils Library. https://github.com/jrosebr1/imutils, 27 May 2018

808 Y. Xing et al.

http://Amazon.com
https://arxiv.org/abs/1608.07249
https://arxiv.org/abs/1606.02147
https://arxiv.org/abs/1705.02550
https://arxiv.org/abs/1705.02550
http://dx.doi.org/10.1007/978-3-642-42051-1_16
http://dx.doi.org/10.1007/978-3-642-42051-1_16
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://github.com/jrosebr1/imutils

Short Papers

Improving Neural Network Interpretability
via Rule Extraction

Stéphane Gomez Schnyder1,2(B), Jérémie Despraz1,2,
and Carlos Andrés Peña-Reyes1,2

1 School of Business and Engineering Vaud (HEIG-VD),
University of Applied Sciences of Western Switzerland (HES-SO),

Yverdon-les-Bains, Switzerland
2 Computational Intelligence for Computational Biology (CI4CB),

SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
{stephane.schnyder,jeremie.despraz,carlos.pena}@heig-vd.ch

Abstract. We present a method to replace the fully-connected layers of
a Convolutional Neural Network (CNN) with a small set of rules, allowing
for better interpretation of its decisions while preserving accuracy.

Keywords: Convolutional neural network · Deep-learning
Rule extraction · Random forests · Interpretability

1 Introduction

Convolutional neural networks (CNNs) perform extremely well in many visual
classification and object detection tasks. However, interpreting neural networks
is still a challenging task and many studies propose to visualize, analyze, or
label the feature representations hidden in the internal layers. Such studies seek
to obtain insights about the process that happens inside the neural networks
when it classifies an image. Extracting simple IF-ELSE rules has been tackled
in previous works, for instance by plugging deep Neural Decision Forests on a
CNN [3] and more recently by interpreting CNNs with decision trees [7]. Herein
we present a method to replace part of a neural network with an interpretable
algorithm while preserving a similar level of accuracy.

2 Methodology

In our methodology, see Fig. 1, we: (1) use a trained CNN to extract features
from a set of images, (2) train a Random Forest (RF) [1] to create a set of rules
based on these features, and (3) rank the rules according to their utility, i.e., how
much they contribute to the prediction, by applying a form of preference learning
[5]. An analyst can then select the top-N rules allowing for an interpretation.

First, we present a dataset of 30.000 imageNet [4] images covering 26 different
classes to a pretrained VGG-16 CNN [6] and discard all the images classified
c© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 811–813, 2018.
https://doi.org/10.1007/978-3-030-01418-6

812 S. G. Schnyder et al.

VGG 16 Random Forest PerceptronInput images

f1

f2

Average
feature
activations

Rules
activation

Rules ranking

(F1 > 2) & (F25 < 1)

Relu

Pick top
rules

0
1

0

0

0
1

0

0

1

(F1 > 2) &...

Rule majority vote

Label

0

1

1

0

0

0

0

0

0

0

1

Many
Shallow
Trees

0
0

0

1

Fig. 1. Schematic summary of the proposed methodology

wrongly. We then consider the average activations of the 512 features for all the
images of a target class, and complete it with the same number of images from
the other classes. This is the training set for a RF classifier that reproduces
the behavior of the fully-connected layers of the CNN. Each root-to-leaf path in
the trees of the forest corresponds to a rule. These rules are ranked, according
to their predictive accuracy, by a simple perceptron. The perceptron is trained
to classify the images by weighting the rule outputs, and minimize a small �1
penalty to mitigate rule correlations. The rules with the largest weights are kept
as the top rules for the target class and may then be used as an approximation of
the CNN for the class of interest, classifying any input image by majority vote.

3 Results and Discussion

Figure 2a shows that the accuracy of the selected rules quickly reaches an accept-
able threshold and that only 3 rules are often enough for 85–95% accuracy.

(a) (b)

Fig. 2. (a) Classification accuracy (on test set) per number of top rules selected. (b)
Top rule for the ‘Great Grey Owl’ class with example images. Images are embedded
according to their average filter activation.

Improving NN Interpretability via Rule Extraction 813

The rule shown in Fig. 2b discriminates a class based on two relevant features.
The most characteristic images of the class are grouped together as they have
similar filter activations. We can also get the intuition for visual patterns that
are present in one class but absent in all other classes.

These results show that it is possible to reduce the complexity of the CNN
(fully-connected layers) to a small set of relevant rules, without a great loss in
accuracy. Furthermore, these rules can be interpreted by looking at how they
split the input data. Such a combined analysis helps us to better understand the
global behavior of the network.

Further results can be found under our Github repository [2].

References

1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
2. Gomez, S., Despraz, J., Peña-Reyes, C.A.: Improving neural network interpretability

via rule extraction (2018). https://github.com/stephster/perceptron-rule-ranking
3. Kontschieder, P., Fiterau, M., Criminisi, A., Bulo, S.R.: Deep neural decision forests.

In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1467–
1475. IEEE, December 2015. http://ieeexplore.ieee.org/document/7410529/

4. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural (2012). http://papers.nips.cc/
paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

5. Ribeiro, G., Duivesteijn, W., Soares, C., Knobbe, A.: Multilayer perceptron for label
ranking. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN
2012. LNCS, vol. 7553, pp. 25–32. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33266-1 4

6. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 (2014)

7. Zhang, Q., Yang, Y., Wu, Y.N., Zhu, S.C.: Interpreting cnns via decision trees.
arXiv preprint arXiv:1802.00121 (2018)

https://github.com/stephster/perceptron-rule-ranking
http://ieeexplore.ieee.org/document/7410529/
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://doi.org/10.1007/978-3-642-33266-1_4
https://doi.org/10.1007/978-3-642-33266-1_4
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1802.00121

Online Multi-object Tracking Exploiting
Pose Estimation and Global-Local

Appearance Features

Na Jiang(&), Sichen Bai, Yue Xu, Zhong Zhou, and Wei Wu(&)

State Key Laboratory of Virtual Reality Technology and Systems,
Beihang University, Beijing, China

{Jiangna,wuwei}@buaa.edu.cn

Abstract. Multi-object tracking is a challenge in intelligent video analytics
(IVA) due to possible crowd occlusions and truncations. Learning discriminant
appearance features can alleviate these problems. An online multi-object
tracking method with global-local appearance features is thus proposed in this
paper. It consists of a pedestrian detection with pose estimation, a global-local
convolutional neural network (GLCNN), and a spatio-temporal association
model. The pedestrian detection with pose estimation explicitly leverages pose
cues to reduce incorrect detections. GLCNN extracts discriminative appearance
representations to identify the tracking objects, which implicitly alleviates the
occlusions and truncations by integrating local appearance features. The spatio-
temporal association model incorporates orientation, position, area, and
appearance features of the detections to generate complete trajectories. Exten-
sive experimental results demonstrate that our proposed method significantly
outperforms many state-of-the-art online tacking approaches on popular MOT
challenge benchmark.

Keywords: Multi-object tracking � Pose estimation � Global-local features
Spatial-temporal association

1 Our Method

Online multi-object tracking is a popular topic in computer vision [1–3], which con-
centrates on identifying object identities at each incoming frame and achieving multiple
complete trajectories in single camera. It recently attracts increasing attentions since the
advance of detection based on deep learning [4, 5]. Many traditional methods [6, 7]
have been revisited and achieved promising performance. Meanwhile, several methods
[8–10] based on deep learning network have been proposed to improve multi-object
tracking. However, the occlusions or truncations often result in incorrect detection and
inconsistent appearance, which significantly decrease the performance of multi-object
tracking algorithm. Targeting to solve these problems, an online multi-object tracking
exploiting pose estimation and global-local appearance features thus is proposed in this
paper, which consists of pedestrian detection with pose estimation, global-local
appearance feature extraction, and spatio-temporal association model.

© Springer Nature Switzerland AG 2018
V. Kůrková et al. (Eds.): ICANN 2018, LNCS 11139, pp. 814–816, 2018.
https://doi.org/10.1007/978-3-030-01418-6

Pedestrian detection with pose estimation. The two-stage detection chooses
improved Faster RCNN [11] is selected as basic framework, and incorporates pose
estimation to reduce the lost objects and incorrect detections. In the first phase, we
replace the VGG-16 with ResNet50 as the convolutional module and adopt five-scale
anchors instead of feature pyramids. In the second phase, we change four fixed scales to
adaptive size for pose estimation inputs. Global-local appearance feature extraction.
A global-local convolutional neural network (GLCNN) is designed to extract dis-
criminative appearance representations. It integrates two kinds of global features from
unshared branches and three local features of different body parts. The first main branch
only extracts global features, while the second one is responsible for extracting head,
torso, legs, and another global features. The achieved global feature vectors will be
merged as appearance representations by concatenation. Spatio-temporal association
model. Common spatio-temporal features include the IOU between two bounding
boxes, the position of person feet and so on. When facing with dense crowds or
occlusions, such spatio-temporal features often increases the number of identity
switches and fragmented trajectories. To avoid the problems, this paper chooses ori-
entation, central position, and area of bounding boxes as the spatio-temporal features.
After achieving the appearance features and spatio-temporal features, the multi-object
trajectories are generated by measuring appearance feature similarity and spatio-
temporal correlativity of pairwise detections.

We show some qualitative results from static and dynamic cameras in Fig. 1, in
which the different color bounding boxes with solid line indicate the tracking objects.
Beside, we demonstrate the effectiveness of the proposed online multi-object tracking,
referred as FMOT, on MOT benchmark [12]. The evaluation results illustrate that our
approach is superior to many state-of-the-art methods.

Fig. 1. Visual Results on the MOT benchmark. (Best viewed in color)

Online Multi-object Tracking Exploiting Pose Estimation 815

Acknowledgement. This work is supported by the Natural Science Foundation of China under
Grant No. 61472020.

References

1. Iqbal, U., Milan, A., Gall, J.: Posetrack: Joint multi-person pose estimation and tracking. In:
35th Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, Honolulu (2017)

2. Insafutdinov, E., Andriluka, M., Pishchulin, L., et al.: Arttrack: Articulated multi-person
tracking in the wild. In: 35th Proceedings of the IEEE Conference on Computer Vision and
Pattern Recogni-tion, p. 4327. IEEE, Honolulu (2017)

3. Ma, C., Yang, C., Yang, F., et al.: Trajectory factory: tracklet cleaving and re-connection by
deep siamese Bi-GRU for multiple object tracking. In: Proceedings of the IEEE International
Conference on Multimedia and Expo. IEEE, San Diego (2018)

4. Kim, H.U., Kim, C.S.: CDT: Cooperative detection and tracking for tracing multiple objects
in video sequences. In: Proceedings on European Conference on Computer Vision,
pp. 851–867. Springer, Cham (2016)

5. Bae, S.H., Yoon, K.J.: Confidence-based data association and discriminative deep
appearance learning for robust online multi-object tracking. IEEE Trans. Pattern Anal.
Mach. Intell. 40(3), 595–610 (2018)

6. Reid, D.: An algorithm for tracking multiple targets. IEEE Trans. Autom. Control 24(6),
843–854 (1979)

7. Fortmann, T., Bar-Shalom, Y., Scheffe, M.: Sonar tracking of multiple targets using joint
probabilistic data association. IEEE J. Oceanic Eng. 8(3), 173–184 (1983)

8. Leal-Taixé, L., Canton-Ferrer, C., Schindler, K.: Learning by tracking: Siamese cnn for
robust target association. In: 34th Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pp. 33–40. IEEE, Las Vegas (2016)

9. Schulter, S., Vernaza, P., Choi, W., et al.: Deep network flow for multi-object tracking. In:
35th Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2730–2739. IEEE, Honolulu (2017)

10. Son, J., Baek, M., Cho, M., et al.: Multi-object tracking with quadruplet convolutional neural
networks. In: 35th Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5620–5629. IEEE, Honolulu (2017)

11. Ren, S., He, K., Girshick, R., et al.: Faster r-cnn: Towards real-time object detection with
region proposal networks. In: 28th International Proceedings on Advances in Neural
Information Processing Systems, pp. 91–99. MIT, Montreal (2015)

12. MOT Challenge Benchmark, https://motchallenge.net/results/DukeMTMCT/, last accessed
2018/05/27

816 N. Jiang et al.

https://motchallenge.net/results/DukeMTMCT/

Author Index

Abdennour, Najmeddine II-511
Abdullah, S. I-487
Abe, Takeshi II-393
Adams, R. I-579
Agathocleous, Michalis II-444
Ahmetoğlu, Alper I-134
Aiolli, Fabio I-546, I-659
Al Moubayed, Noura III-468
Albert, Silvana II-79
Alhassan, Zakhriya III-468
Alpay, Tayfun III-137
Alpaydın, Ethem I-134
Alshammari, Riyad III-468
Alves, Wonder A. L. I-33
Amar, Chokri Ben II-545
Andreini, Paolo III-522
Anezakis, Vardis-Dimitris I-669
Annane, Djillali III-662
Antoniou, Antreas III-594
Arpit, Devansh III-392
Arrenberg, Aristides B. III-652
Arsiwalla, Xerxes D. II-403
Asada, Minoru III-672
Asai, Yoshiyuki II-393
Azabou, Eric III-662
Aziz, Adnan II-456
Azizi, Niloofar III-630

Baba, Yukino II-596
Bai, Sichen I-814
Balashov, Maksim III-208
Ballas, Nicolas III-392
Bao, Guillaume III-662
Bar-Hillel, Aharon I-706
Barros, Pablo I-791, III-738
Bauckhage, Christian III-3, III-13, III-564
Baxter, Paul II-37
Beel, Joeran III-94
Behnke, Sven III-630
Beigl, Michael I-61
Belanche, Lluís A. II-577
Belzner, Lenz II-240
Benalcázar, Marco E. I-352
Bengio, Yoshua III-392

Bennani, Younès III-817
Bensmail, Chama I-304
Ben-Suliman, Karima II-167
Berendsen, Gerard III-554
Bertrand, Myriam Maumy I-771
Beyazit, Ege I-508
Bhatt, Varun I-263
Bianchini, Monica III-522
Blachnik, Marcin II-56
Blahuta, Jiri II-90
Bo, Xiaochen I-104
Bobrowski, Leon III-574
Bocicor, Maria-Iuliana II-79
Bogdan, Martin I-372
Bohté, Sander I-284, II-250, III-457
Bonechi, Simone III-522
Borodin, Gregory II-179
Bothe, Chandrakant II-304
Botsch, Michael I-423
Bougiouklis, Andreas II-230
Bradley, Steven III-157
Brady, James III-795
Bruijns, Sebastian A. III-652
Budgen, David III-468
Burikov, Sergey I-435
Butz, Martin V. III-748

Cabanes, Guénaël II-501
Cabessa, Jérémie III-693
Cai, Jianping III-105
Cai, Ruichu I-447
Călin, Alina Delia I-589
Campo, Alexandre Brincalepe II-117
Cao, Robin III-447
Cao, Yanan II-263, III-178, III-805
Carregosa, Felipe III-218
Cela, Javier I-346
Chai, Xiangfei II-158
Chandra Sekhar, C. I-556
Chang, Oscar III-41
Chaulwar, Amit I-423
Chen, Feng II-101
Chen, Shengyong II-101
Chen, Xiaojun III-178

Chen, Ying I-115
Cheng, Li I-626
Cheng, Xiyao I-115
Chevallier, Sylvain III-662
Christodoulou, Chris II-444
Cloud, Joe III-795
Collier, Mark III-94
Comet, Jean-Paul I-335
Conradt, Jörg I-244
Coroiu, Adriana Mihaela I-589
Cortez, Paulo III-479
Cosmi, Erich II-148
Coufal, David II-621
Czibula, Gabriela II-79

Daghstani, Tahani III-468
Dai, Dawei I-199
Dang, Jianwu I-782
Das, Debasmit III-342
Dash, Bodhisattva II-14, III-759
Davey, Neil I-304, I-314, I-579
Dawei, Dai II-383
de Abreu de Sousa, Miguel Angelo I-166
de Carvalho, Francisco de Assis Tenorio

I-685, I-695
de Figueiredo, Rodrigo Marques III-147
de Luca, Vitor Tocci F. III-703
de Oliveira de Souza, João Olegário III-147
de Sousa, Mark Cappello Ferreira I-166
de Viña, Pablo I-538
Delibasis, K. I-188
Del-Moral-Hernandez, Emilio I-166
Demertzis, Konstantinos I-669
Despraz, Jérémie I-811
Dhibi, Naziha II-545
Di Caterina, G. I-801
Di Gregorio, Eleonora II-556
Dias, Cleber G. I-33
Diaz, Jose II-195
Dillmann, Rüdiger I-211, I-244
Ding, Meng III-363
Ding, Xinghao II-109
Dionysiou, Antreas II-444
Dirik, Ahmet Emir III-544
Dolenko, Sergey I-435, II-567
Dolenko, Tatiana I-435
Dong, Xiao I-3, I-402
Dora, Shirin III-457
dos Santos, José Vicente Canto III-147
Drchal, Jan III-771

Du, Baolin II-109
Du, Qingfeng II-479
Durr-e-Nayab III-199
Dutta, Sangya I-273

E., Xu II-286
Ecke, Gerrit A. III-652
Edwards, Harrison III-594
Efitorov, Alexander II-567
Elbasiony, Reda III-310
Elkefai, Akram II-545
Eppe, Manfred III-137

Fagot, Arthur I-771
Faigl, Jan III-771
Fan, Yingruo I-84
Fang, Zheng III-178
Farazi, Hafez III-630
Farkaš, Igor III-228
Farkaŝ, Igor III-73
Feigl, Josef I-372
Feng, Xiaobing I-3, I-402
Fenoglio, Enzo III-289
Ferreira, Marcelo R. P. I-685
Filchenkov, Andrey III-208
Fischer, Asja III-392
Floria, Sabina-Adriana III-828
Frikha, Tarek II-511
Frosini, Angelo III-584
Fujita, Takayuki I-235

Gabor, Thomas II-240
Gajbhiye, Amit III-157
Gallicchio, Claudio II-556
Ganguly, Udayan I-263, I-273
Gaona Garcia, Paulo Alonso II-186
Gaudreault, Jimmy III-641
Gelenbe, Erol I-335
Georgakopoulos, S. I-188
Gepperth, Alexander I-487, II-422
Gergel’, Peter III-73
Gewaltig, Marc-Oliver I-211
Gibert, Daniel III-383
Giese, Martin A. III-168
Giunchiglia, Eleonora III-23
Golak, Sławomir II-56
Gołdon, Krzysztof I-648
Gomaa, Walid III-310
Gonçalves, Sérgio III-479

818 Author Index

Goodwin, Morten III-245
Göpfert, Jan Philip I-456
Granados, Ana I-617, II-66
Granmo, Ole-Christopher III-245
Grenet, Ingrid I-335
Grisan, Enrico II-148
Grozavu, Nistor III-817
Grzesiak, L. M. I-294
Gu, Xiaodong I-14
Gu, Yiwei I-14
Guan, Qiu II-101
Guan, Qiuyu III-436
Guckert, Michael II-337
Guo, Li III-805
Guo, Lili I-782

Hadjicharalambous, Myrianthi I-566
Hadriche, Abir II-511
Hamker, Fred H. I-253
Hammami, Mayssa III-662
Hammer, Barbara I-456
Han, Jingfei III-84
Han, Liping II-47
Han, Tianqi III-331
Han, Xue II-219
Hao, Aimin I-760
Hao, Zhifeng I-447
Haralambopoulos, Dias II-587
Hartwig, Waldemar II-456
Haselhoff, Anselm III-33
Hashimoto, Masafumi III-353
Hasuike, Nobuaki I-43
Hauser, Helmut III-781
He, Song I-104
He, Tieke II-326
He, Yu II-479
Hernández-Ruiz, Catalina Maria II-186
Hernández-García, Alex I-95
Hichri, Bassem III-717
Hoffstadt, Dirk II-456
Hofmaier, Lea III-748
Horzyk, Adrian I-648
Hosseini, Matin I-508
Hou, Jian II-286
Hou, Wenjun I-115
Houthuys, Lynn II-205, III-489
Hovaidi-Ardestani, Mohammad III-168
Hu, Haigen II-101
Hu, Qinghua II-469
Hu, Yue II-263

Hua, Hang I-154
Huamán, Samuel G. III-280
Huang, Yue II-109
Huauya, Roger II-195
Huri, Katia III-604
Huve, Gauvain III-353

Iliadis, Lazaros I-669, I-725
Illouz, Evyatar III-613
İrsoy, Ozan I-134
Isaev, Igor I-435
Isakov, Mihailo II-607

Jaf, Sardar III-157
Jama, Anna II-56
James, Anne I-51
Jastrzębski, Stanislaw III-392
Jiang, Na I-637, I-814
Jiang, Wenbin III-321
Jin, Hai III-321
Jmail, Nawel II-511
Johannessen, Kjetil I-392
Jun, Tae Joon II-24

Kabziński, Jacek II-3
Kaiser, Jacques I-211, I-244
Kalloniatis, Christos II-587
Kalra, Gaurav II-24
Kang, Zhezhou III-805
Karakama, Daisuke II-523
Karamanis, Marios II-250
Karatsiolis, Savvas III-425
Karatzoglou, Antonios I-61
Karevan, Zahra III-489
Kashima, Hisashi II-596, III-373
Katamura, Norihito II-523
Kawai, Yuji III-672
Kelleher, John D. I-176, III-189
Keller, Philip I-244
Kenton, Zachary III-392
Kerzel, Matthias III-300
Khan, Gul Mummad III-199
Khan, Muhammad Aamir I-314
Kilian, A. I-487
Kim, Daeyoung II-24
Kinsy, Michel A. II-607
Kirkland, P. I-801
Kitano, Lucas Aparecido Silva II-117
Klecker, Sophie III-717

Author Index 819

Klüver, Christina II-456
Kobayashi, Taisuke II-315, III-116
Kochetov, Kirill III-208
Komodakis, Nikos I-412
Kong, Tao III-270
König, Peter I-95
Kopinski, Thomas II-422
Koprinska, Irena I-528
Korkofigkas, Antonis II-230
Kostopoulos, George K. III-682
Kottari, K. I-188
Koutras, Athanasios III-682
Koutsomplias, Serafeim I-725
Kr Dutta, Ujjal I-556
Král, Pavel I-73, I-608
Kramer, Oliver I-123
Kronenberger, Jan III-33
Krzyżak, Adam II-167
Kuhlmann, Philipp III-232
Kulak, Thibaut II-489
Kůrková, Věra III-534
Kyono, Trent III-260

Lakomkin, Egor III-500
Lam, Jacqueline C. K. I-84
Lamata, Pablo II-148
Laptinskiy, Kirill I-435
Lareo, Angel II-359
Larisch, René I-253
Latapie, Hugo III-289
Lauriola, Ivano I-546
Lavelli, Alberto I-546
Lee, C. S. George III-342
Lei, Yongmei I-362
Lenc, Ladislav I-73, I-608
Lenz, David II-337
Leon, Florin III-828
Li, Anwei II-158
Li, Guangli I-3, I-402
Li, Hongyu II-275, III-331
Li, Jinfen I-447
Li, Jiyi II-596
Li, Kan II-434
Li, Kangjie II-101
Li, Lingling II-434
Li, Saisai III-363
Li, Shuai I-760
Li, Shuqin III-363
Li, Victor O. K. I-84
Li, Xiaoxue III-805

Li, Yang II-127
Li, Zongren I-626
Liang, Bin II-326
Liao, Zhaohui I-447
Limberg, Christian I-518
Lin, Xianghong I-222
Lin, YiQun II-479
Lindh, Annika I-176
Lintas, Alessandra II-393
Lipson, Hod III-41
Liu, Chunfang III-270
Liu, Ji I-760, II-127
Liu, Junyu II-158, III-436
Liu, Lei I-3, I-402
Liu, Liang I-760
Liu, Pai III-321
Liu, Wenpeng II-263
Liu, Yanbing II-263, III-178, III-805
Liu, Yang II-158, III-436
Liu, Yue II-469
Llerena, C. I-579
Lofaso, Frédéric III-662
Logofătu, Doina III-828
López, Jorge II-195
Lopez-Hazas, Jessica I-468, II-296
Løvvik, Ole Martin I-392
Luo, Chunjie I-382
Luo, Guibo II-127
Lv, Chengcong II-286
Lv, Guiwen II-127
Lyhyaoui, Abdelouahid III-817

Ma, Xingkong I-626
Ma, Yingdong I-747
Maciel, Alexandre I-791
Maggini, Marco III-126, III-584
Maglogiannis, Ilias I-188
Mahalunkar, Abhijit I-176, III-189
Maida, Anthony I-508
Makedon, Fillia III-795
Malialis, Kleanthis I-498
Malinovská, Kristína III-228
Malinovský, Ľudovít III-228
Mallot, Hanspeter A. III-652
Marlats, Fabienne III-662
Marra, Giuseppe III-126
Martínek, Jiří I-73, I-608
Martinez, Aleix M. III-168
Martínez-Muñoz, Gonzalo I-538, II-415
Marty, Jean-Marc II-501

820 Author Index

Matei, Basarab II-501
Mateu, Carles III-383
Matich, G. I-801
Mauricio, Antoni II-195, III-622
Mauricio, Leonidas III-622
May, Arne III-300
Mayaud, Louis III-662
McGough, A. Stephen III-157, III-468
Mecocci, Alessandro III-522
Meganck, V. I-294
Mehnert, Jan III-300
Melacci, Stefano III-126, III-584
Meladianos, Polykarpos I-22
Meng, Bowen II-158
Meng, Kun III-363
Micheli, Alessio II-556
Mikulasch, Fabian A. III-652
Mitra, Anirban I-714, III-511
Mohanty, Figlu II-14
Montana, Giovanni II-148
Montero, Aaron I-468, II-66, II-296
Monti, Ricardo Pio III-447
Morales, Giorgio III-280
Moro, Sérgio III-479
Motoche, Cristhian I-352
Moubayed, Noura Al III-157
Müller, D. I-579
Muñoz, Adrián I-598

Nakajima, Kohei III-781
Nakano, Chigusa II-523
Nemchenko, Anton III-23, III-260
Nesky, Amy III-51, III-62
Netanyahu, Nathan S. III-604, III-613
Ng, Hwei Geok III-300
Nguyen, Hoang Minh II-24
Ni, Yicheng II-101
Nikolentzos, Giannis I-22
Nishikawa, Ikuko III-403
Nusselder, Roeland I-284
Nuțu, Maria I-589

Oehmcke, Stefan I-123
Ogata, Tetsuya III-310
Okafor, Emmanuel III-554
Ortiz Guzmán, Johan Enrique II-186
Ortiz, Michael Garcia II-489
Osana, Yuko I-43, I-235, II-523
Otte, Sebastian III-232, III-748
(Omid) David, Eli III-604, III-613

Pacheco, Daniel II-403
Paes, Aline III-218
Palade, Vasile I-51
Panayiotou, Christos G. I-566
Panayiotou, Christos I-498
Pandini, Alessandro II-79
Papachiou, Panagiotis II-587
Papadopoulos, Basil I-736
Park, Jihoon III-672
Paurat, Daniel III-13
Peña-Reyes, Carlos Andrés I-811
Peng, Jigen II-37, III-728
Pennartz, Cyriel III-457
Pereira, Ingryd I-791
Pessin, Gustavo III-147
Petkov, Nicolai III-425
Pfülb, B. I-487
Phan, Thomy II-240
Pinchon, Pierre I-771
Pires, Ricardo II-117
Plagianakos, V. I-188
Planes, Jordi III-383
Plapper, Peter III-717
Plastino, Angel R. III-703
Pogančić, Marin Vlastelica I-211
Polato, Mirko I-546, I-659
Polycarpou, Marios M. I-498, I-566
Potapov, Alexey I-476, III-289
Pozzi, Isabella I-284
Prevost, Lionel I-771
Principe, Alessandro II-403
Promponas, Vasilis II-444
Putin, Evgeny III-208

Qi, Qi II-109
Qin, Hong I-760
Qiu, Juan II-479
Qiu, Junhua II-275
Qu, Leyuan III-500
Qu, Zhenshen III-436

Rajasekaran, Sanguthevar III-414
Ramamurthy, R. III-3
Rasheed, Adil I-392
Rastin, Parisa II-501
Reichard, Daniel I-244
Reitmann, Stefan II-532
Ren, Rui I-382
Ren, Xingzhang I-154
Rinaldi, Fabio I-546

Author Index 821

Ritter, Helge I-518
Rocamora, Rodrigo II-403
Rodionov, Sergey I-476, III-289
Rodriguez, Francisco B. I-468, I-617, II-66,

II-296, II-359
Rodríguez, Sara Inés Rizo I-695
Roennau, Arne I-211, I-244
Rogovschi, Nicoleta III-817
Rong, Wenge III-84
Ross, Robert J. I-176
Roy, Sudip I-714, III-511
Ruiz-Garcia, Ariel I-51
Rup, Suvendu II-14, III-759
Rustad, Anne Marthine I-392

Sabzevari, Maryam II-415
Sagvolden, Espen I-392
Saini, Nitin III-168
Salton, Giancarlo I-176
Santana, Lucas V. C. I-685
Santos, Diego I-791
Santos, Sara Dereste II-117
Sanzenbacher, Paul III-232
Sarasa, Guillermo I-617, II-66
Sarkar, Ayanava II-422
Satar, Burak III-544
Sato, Ryoma III-373
Savioli, Nicoló II-148
Sayed, Saif Iftekar III-795
Sazadaly, Maxime I-771
Scarselli, Franco III-522
Schizas, Christos N. III-425
Schmid, Kyrill II-240
Schnell, Nikolai I-61
Schomaker, Lambert III-554
Schuecker, Jannis III-564
Schultz, Michael II-532
Schulze, Christian II-337
Senyukova, Olga II-179
Seo, Masataka III-403
Shalyto, Anatoly III-208
Shang, Yanmin III-805
Sharma, Arjun I-714, III-511
Sharma, Jivitesh III-245
Sharma, Sumit I-714, III-511
Shcherbakov, Oleg I-476
Schnyder, Stéphane Gomez I-811
Shehu, Yahaya Isah I-51
Shi, Guoyong I-222

Shi, Jing II-137
Shimazaki, Hideaki III-641
Shiroky, Vladimir II-567
Shukla, Shashwat I-273
Sifa, Rafet II-369, III-3, III-13
Silva, Luiz C. I-33
Simonovsky, Martin I-412
Skacel, Jakub II-90
Skianis, Konstantinos I-22
Skorobogatko, Nikolai I-476
Song, Anping II-349
Song, Wenfeng I-760
Song, Xinyu I-104
Soraghan, J. I-801
Soukup, Tomas II-90
Souliotis, Georgios I-736
Sousa, Miguel Angelo Abreu II-117
Speck, Daniel III-738
Stamou, Giorgos II-230
Steffen, Lea I-244
Steuber, Volker I-304, I-314
Storkey, Amos III-392, III-594
Stout, Quentin F. III-51, III-62
Su, Zihao I-199
Suárez, Alberto I-346, I-598, II-415
Sun, Chenxin I-637
Sun, Fuchun III-270
Sun, Lin III-105
Sun, Qiang I-142
Sun, Y. I-579
Suykens, Johan A. K. II-205, III-489
Szadkowski, Rudolf J. III-771

Tabib, Mandar V. I-392
Tachikawa, Kazuki III-672
Takahashi, Kazuhiko III-353
Tan, Chuanqi III-270
Tan, Jianlong II-263, III-178
Tang, Jie III-84
Tang, Wei II-137
Teichmann, Michael I-253
Teletin, Mihai II-79
Telles, Joel III-280
Theofanidis, Michail III-795
Thome-Souza, Sigride II-117
Tieck, Juan Camilo Vasquez I-211, I-244
Tiezzi, Matteo III-584
Tixier, Antoine Jean-Pierre I-22
Tootoonian, Sina III-447

822 Author Index

Topczewska, Magdalena III-574
Trabold, Daniel III-13
Troumbis, Ioannis A. II-587
Tsekouras, George E. II-587
Twiefel, Johannes III-500

Ueda, Takaya III-403
Utschick, Wolfgang I-423

van der Schaar, Mihaela III-23
Van Der Schaar, Mihaela III-260
Varona, Pablo II-359
Vazirgiannis, Michalis I-22
Verschure, Paul II-403
Vervald, Alexey I-435
Villa, Alessandro E. P. II-393, III-693
Villagrán Martínez, Sergio Andrés II-186
Visentin, Silvia II-148
Vizcarra, Gerson III-622

Waissman, Atalya I-706
Wang, Cheng II-158
Wang, Hongxin III-728
Wang, Huatian II-37
Wang, Lei I-382
Wang, Lingfeng II-219
Wang, Longbiao I-782
Wang, Shuqing I-362
Wang, Xueying I-402
Wang, Yijie I-626
Wang, Yuehua I-637
Wang, Zheng I-528
Wang, Zhihua II-37
Weber, Cornelius II-304, III-500
Wedemann, Roseli S. III-703
Wei, Hui I-199
Weihui II-383
Weinland, Jakob I-244
Wermter, Stefan II-304, III-137, III-300,

III-500, III-738
Wersing, Heiko I-456, I-518
Wieczorek, Tadeusz II-56
Wiering, Marco III-554
Witschel, Thede III-652
Wróbel, Borys I-304, I-314, I-322
Wrobel, S. III-3
Wu, Wei I-637, I-814
Wu, Xindong I-508

Wu, Yue I-142
Wulff, Benjamin III-564

Xiang, Chao II-434
Xiao, Xia III-414
Xie, Yonghua II-47
Xing, Y. I-801
Xiong, Zhang III-84
Xu, Quanhua II-349
Xu, Yue I-814
Xue, Xiaohe I-382

Yaguchi, Takaharu III-781
Yamamoto, Takehiro III-373
Yamanaka, Yuki III-781
Yan, Hongping II-219
Yang, Chao III-270
Yang, Chunyu III-436
Yang, Qiang I-382
Yang, Su II-137
Yaqoob, Muhammad I-322
Ye, Geyan III-321
Ye, Wei I-154
Ye, Zhihao I-447
Yin, Kanglin II-479
Yin, Yonghua I-335
Yu, Qiang I-782
Yue, Shigang II-37, III-728

Zambrano, Davide I-284, II-250
Zaverucha, Gerson III-218
Zhan, Jianfeng I-382
Zhang, Aihua II-286
Zhang, Changqing II-469
Zhang, Chun II-37
Zhang, Dongjie III-178
Zhang, Fang III-84
Zhang, Junge II-219
Zhang, Lei I-637
Zhang, Leilei I-154
Zhang, Linjuan I-782
Zhang, Shikun I-154
Zhang, Wenchang III-270
Zhang, Xiaofang II-326
Zhang, Xinmin I-747
Zhang, Yangsong III-321
Zhang, Youcai I-14
Zhang, Yutao III-84
Zhang, Yuxin III-436

Author Index 823

Zhang, Zhongnan I-104
Zhao, Guohong I-626
Zhao, Peng I-3, I-402
Zhdanov, Innokentii I-476
Zheng, Han II-109
Zheng, Xiaoping I-104
Zheng, Zengwei III-105
Zhou, Qian II-326
Zhou, Wenyu II-127
Zhou, Xiaomao II-304
Zhou, Yanzhen III-105

Zhou, Zhong I-637, I-814
Zhu, Fan II-275
Zhu, Jiaye II-479
Zhu, Pengfei II-469
Zhu, Yuesheng II-127
Zielinski, Oliver I-123
Zihao, Su II-383
Zou, Dongsheng II-137
Zouinina, Sarah III-817
Zugarini, Andrea III-126
Zuo, Panli II-158

824 Author Index

	Preface
	Organization
	Keynote Talks
	Cognitive Phase Transitions in the Cerebral Cortex – John Taylor Memorial Lecture
	On the Deep Learning Revolution in Computer Vision
	From Machine Learning to Machine Diagnostics
	Multimodal Deep Learning in Biomedical Image Analysis
	Contents – Part I
	Contents – Part II
	Contents – Part III
	CNN/Natural Language
	Fast CNN Pruning via Redundancy-Aware Training
	1 Introduction
	2 Related Work
	3 Redundancy-Aware Training
	3.1 Pruning Weights During Training
	3.2 Model Partition

	4 Evaluation
	4.1 Compression Result and Time Efficiency
	4.2 Ablation Study

	5 Conclusion
	References

	Two-Stream Convolutional Neural Network for Multimodal Matching
	1 Introduction
	2 Related Work
	3 Two-Stream CNN
	3.1 Network Architecture
	3.2 Network Learning

	4 Experiment
	4.1 Datasets and Evaluation Metrics
	4.2 Implementation Details
	4.3 Experimental Results

	5 Conclusion
	References

	Kernel Graph Convolutional Neural Networks
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Patch Extraction and Normalization
	3.2 Graph Processing
	3.3 Processing New Graphs
	3.4 Channels

	4 Experimental Setup
	4.1 Synthetic Dataset
	4.2 Real-World Datasets

	5 Conclusion
	References

	A Histogram of Oriented Gradients for Broken Bars Diagnosis in Squirrel Cage Induction Motors
	Abstract
	1 Introduction
	2 Theoretical Background
	2.1 The Histogram of Oriented Gradients as a Feature Descriptor

	3 The HOG-MLP Method for Broken Bars Detection
	4 Experimental Results
	4.1 Analysis of Parameters for the Proposed Method
	4.2 Fault Detection Using HOG, MLP and Bayesian Approach

	5 Conclusions
	Acknowledgments
	References

	Learning Game by Profit Sharing Using Convolutional Neural Network
	1 Introduction
	2 Deep Q-Network
	2.1 Structure
	2.2 Learning

	3 Profit Sharing Using Convolutional Neural Network
	3.1 Outline
	3.2 Structure
	3.3 Learning

	4 Computer Experiment Results
	4.1 Task
	4.2 Experimental Conditions
	4.3 Transition of Obtained Scores

	5 Conclusions
	References

	Detection of Fingerprint Alterations Using Deep Convolutional Neural Networks
	Abstract
	1 Introduction
	2 Related Works
	3 Dataset
	4 Methodology and Experimental Setup
	4.1 Convolutional Neural Network Model
	4.2 Residual Convolutional Neural Network Model

	5 Results and Discussion
	6 Conclusion
	References

	A Convolutional Neural Network Approach for Modeling Semantic Trajectories and Predicting Future Locations
	1 Introduction
	2 Related Work
	3 Theoretical Background
	3.1 Semantic Trajectories
	3.2 Convolutional Neural Networks (CNNs)

	4 CNNs for Semantic Trajectories - Our Approach
	5 Evaluation
	6 Conclusion
	References

	Neural Networks for Multi-lingual Multi-label Document Classification
	1 Introduction
	2 Related Work
	3 Multi-lingual Document Classification
	3.1 Multi-lingual Document Representation
	3.2 Neural Network Architecture

	4 Experiments
	4.1 Reuters RCV1/RCV2 Dataset
	4.2 Neural Network Set-Up
	4.3 Single-Label Results
	4.4 Multi-label Results
	4.5 Word Similarity Experiment

	5 Conclusions
	References

	Multi-region Ensemble Convolutional Neural Network for Facial Expression Recognition
	1 Introduction
	2 Related Work
	3 The Proposed Method
	3.1 Data Pre-processing
	3.2 Multi-Region Ensemble Convolutional Neural Network
	3.3 The Sub-networks in MRE-CNN Framework

	4 Experiments
	4.1 Experimental Setup
	4.2 Implementation Details
	4.3 Results on RAF-DB
	4.4 Results on AFEW 7.0
	4.5 Discussions

	5 Conclusion
	References

	Further Advantages of Data Augmentation on Convolutional Neural Networks
	1 Introduction
	1.1 Related Work

	2 Experimental Setup
	2.1 Network Architectures
	2.2 Data
	2.3 Training and Testing

	3 Results
	3.1 Reduced Training Sets
	3.2 Shallower and Deeper Architectures

	4 Discussion and Conclusion
	References

	DTI-RCNN: New Efficient Hybrid Neural Network Model to Predict Drug–Target Interactions
	Abstract
	1 Introduction
	2 Methods
	2.1 Data Source
	2.2 Construction of Positive and Negative Samples
	2.3 Hybrid Model Construction
	2.4 Learning Semantic Information via a LSTM Network
	2.5 Extracting Loci Information Through a CNN
	2.6 Assessment of the Model Performance

	3 Results
	3.1 The Impact of Hyper Parameters on Model Performance
	3.2 Comparison with Other Models
	3.3 Prediction of Novel DTIs

	4 Conclusions
	Acknowledgements
	References

	Hierarchical Convolution Neural Network for Emotion Cause Detection on Microblogs
	Abstract
	1 Introduction
	2 Related Work
	3 Our Approach
	3.1 Task Definition
	3.2 Overview
	3.3 The Clause-Level Encoder
	3.4 The Subtweet-Level Encoder

	4 Experiments
	4.1 Experimental Setup
	4.2 Method Comparison
	4.3 Model Analysis

	5 Conclusion
	References

	Direct Training of Dynamic Observation Noise with UMarineNet
	1 Introduction
	2 Original MarineNet
	3 MarineNet Upgrade
	3.1 Changes to the Architecture
	3.2 Automatic Training of Accurate Uncertainty Predictions

	4 Experimental Evaluation
	4.1 Combined TSS and BEFmate Dataset
	4.2 Methodology
	4.3 Results

	5 Conclusion
	References

	Convolutional Soft Decision Trees
	1 Introduction
	2 Soft Decision Trees
	3 Convolutional Soft Decision Trees
	4 Regularizing Soft Decision Trees
	5 Experiments
	5.1 Data Sets and Training Details
	5.2 Regularization Experiments
	5.3 Convolutional Tree Experiments

	6 Conclusions
	References

	A Multi-level Attention Model for Text Matching
	1 Introduction
	2 The Model
	2.1 Matching Matrix Analysis
	2.2 Model Architecture

	3 Experiment Methodology
	3.1 Dataset
	3.2 Baseline Methods

	4 Experiments Details
	4.1 Training Details
	4.2 Experiment Results

	5 Analysis of MA-RRSD
	5.1 Attention Scale Factor Size and Embed Size
	5.2 A Comparison of Convergence Rate

	6 Related Work
	7 Conclusion
	References

	Attention Enhanced Chinese Word Embeddings
	1 Introduction
	2 Model
	2.1 Motivation
	2.2 CBOW
	2.3 Attention Enhanced CBOW (AWE)
	2.4 Position & Attention Enhanced CBOW (P&AWE)

	3 Experimental Setup
	3.1 Preprocessing
	3.2 Baseline Algorithms
	3.3 Training Details of Word Representations

	4 Evaluation
	4.1 Word Similarity
	4.2 Word Analogy
	4.3 Attention Visualization
	4.4 Qualitative Analysis

	5 Conclusions
	References

	Balancing Convolutional Neural Networks Pipeline in FPGAs
	Abstract
	1 Introduction
	2 Related Work
	3 Convolutional Neural Networks in FPGAs
	4 CNNs Parallelism Exploited in FPGA Implementation
	5 Data Buffering Strategy
	6 Augmenting Kernel Loading Throughput
	7 Implemented Architecture
	8 Data Precision
	9 Experimental Results and Discussion
	Acknowledgments
	References

	Generating Diverse and Meaningful Captions
	Abstract
	1 Introduction
	2 Measuring Caption Quality
	2.1 Diversity Metrics
	2.2 Meaningful Diversity Through Specificity

	3 Optimizing for Specificity
	3.1 Model Architecture
	3.2 Specificity Loss Functions
	3.3 Training

	4 Experiment Design
	4.1 Dataset

	5 Results and Discussion
	5.1 Qualitative Analysis

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

	Assessing Image Analysis Filters as Augmented Input to Convolutional Neural Networks for Image Classification
	Abstract
	1 Introduction
	2 Dataset
	3 Definition of Image Filters
	3.1 Laplacian of Gaussian (LoG) Filters
	3.2 Image Features Based on the Hessian Matrix
	3.3 Gabor Filter Bank
	3.4 Other Steerable Filters
	3.5 Construction of Augmented Input to CNN

	4 Experimental Results
	5 Conclusion
	Acknowledgment
	References

	Spiking
	Balanced Cortical Microcircuitry-Based Network for Working Memory
	Abstract
	1 Introduction
	2 Negative-Derivative Feedback Mechanism
	3 Negative-Derivative Feedback Model
	3.1 Network Model
	3.2 Firing Rate Model
	3.3 Flexible Inhibition Signal
	3.4 Memory Updating
	3.5 Memory Association

	4 Behavioral Data Comparison
	4.1 Experimental Study A
	4.2 Experimental Study B

	5 Conclusion
	Acknowledgments
	References

	Learning Continuous Muscle Control for a Multi-joint Arm by Extending Proximal Policy Optimization with a Liquid State Machine
	1 Introduction
	2 Methods
	2.1 Arm Model Description and Interface to the Muscles
	2.2 ANN for Proximal Policy Optimization on the Readout
	2.3 LSM for State Representation

	3 Results
	3.1 Parameters
	3.2 Average Reward and Policy Entropy
	3.3 Muscle Activations and Spike Activity

	4 Discussion
	References

	A Supervised Multi-spike Learning Algorithm for Recurrent Spiking Neural Networks
	Abstract
	1 Introduction
	2 Network Structure and Spike Train Transformation
	2.1 The Structure of RSNNs
	2.2 Spike Train Transformation Relationship

	3 Supervised Multi-spike Learning Algorithm
	3.1 Learning Rule of Synaptic Weights in Output Layer
	3.2 Learning Rule of Synaptic Weights in Context Layer
	3.3 Learning Rule of Synaptic Weights in Input Layer

	4 Experiments and Results
	4.1 Neuron Model and Parameter Settings
	4.2 Spike Train Learning Performance
	4.3 Network Structure Change and Analysis

	5 Conclusions
	Acknowledgment
	References

	Artwork Retrieval Based on Similarity of Touch Using Convolutional Neural Network
	1 Introduction
	2 Artwork Retrieval Based on Similarity of Touch Using Convolutional Neural Network
	2.1 Structure
	2.2 Learning Process
	2.3 Generation of Feature Vector
	2.4 Image Retrieval Process

	3 Computer Experiment Result
	3.1 Retrieval Results
	3.2 Search Accuracy
	3.3 Transition of Classification Accuracy and Error Function

	4 Conclusions
	References

	Microsaccades for Neuromorphic Stereo Vision
	1 Introduction
	2 Related Work
	3 Evaluation
	3.1 Micro-saccades on the Robotics Head
	3.2 Static Scenes Perceived Through Microsaccades
	3.3 Dynamic Scenes Perceived Through Microsaccades

	4 Conclusion
	References

	A Neural Spiking Approach Compared to Deep Feedforward Networks on Stepwise Pixel Erasement
	1 Introduction
	2 Methods
	2.1 Spiking Model
	2.2 Deep Convolutional Networks
	2.3 Measurement of Accuracy
	2.4 Robustness Against Pixel Erasement

	3 Results
	4 Discussion
	References

	Sparsity Enables Data and Energy Efficient Spiking Convolutional Neural Networks
	1 Introduction
	2 Background and Related Work
	3 Network Architecture and Learning Rules
	3.1 Spiking Neural Network
	3.2 Convolution and Max Pooling
	3.3 Training
	3.4 Learning Rules

	4 Experiments
	4.1 Comparison of Learning Rules Using Fully Connected SNN
	4.2 Comparing Learning with Varying Data Size

	5 Discussions
	6 Conclusions
	References

	Design of Spiking Rate Coded Logic Gates for C. elegans Inspired Contour Tracking
	Abstract
	1 Introduction
	2 Network Architecture
	2.1 Turning Left and Right: The AND Sub-network
	2.1.1 Sensory Neurons
	2.1.2 Motor Neurons
	2.1.3 Design Principles for the AND Sub-network

	2.2 Random Walk
	2.3 Escaping Local Extrema: The XOR Sub-network
	2.3.1 Design Principles for the XOR Sub-network

	3 Results: Worm Dynamics
	4 Benchmarking
	5 Hardware Feasibility
	6 Conclusions
	Acknowledgement
	Appendix: LIF Model and Ionic Currents
	References

	Gating Sensory Noise in a Spiking Subtractive LSTM
	1 Introduction
	2 Model
	3 Experiments
	4 Results
	5 Discussion
	References

	Spiking Signals in FOC Control Drive
	1 Spiking Signal Processing
	1.1 Spiking Transformation
	1.2 Accuracy

	2 Spiking Signals in FOC Control Drive Experimentation
	2.1 Space Vector Modulation (SVM) - Field Oriented Control (FOC)
	2.2 Spiking Speed Controller in FOC
	2.3 Experimental Results

	3 Conclusion
	References

	Spiking Neural Network Controllers Evolved for Animat Foraging Based on Temporal Pattern Recognition in the Presence of Noise on Input
	1 Introduction
	2 The Model
	3 Results and Discussion
	3.1 The Efficiency to Discern Correct Pattern
	3.2 Robustness of the Winner
	3.3 Analysis of the Network

	4 Conclusions and Future Work
	References

	Spiking Neural Networks Evolved to Perform Multiplicative Operations
	1 Introduction
	2 The Model
	3 Results and Discussion
	4 Conclusions and Future Work
	References

	Very Small Spiking Neural Networks Evolved for Temporal Pattern Recognition and Robust to Perturbed Neuronal Parameters
	1 Introduction
	2 The Model
	3 Results and Discussion
	4 Conclusions and Future Work
	References

	Machine Learning/Autoencoders
	Machine Learning to Predict Toxicity of Compounds
	1 Introduction
	2 Learning Procedure
	2.1 Data Description
	2.2 Learning Algorithms
	2.3 Classification Settings and Performance Metrics

	3 Classification Results
	3.1 Results on Unbalanced Datasets
	3.2 Results on Balanced Datasets

	4 Classification Results on Extended Datasets
	4.1 New Datasets and Learning Procedure
	4.2 Results on Unbalanced Datasets
	4.3 Results on Balanced Datasets

	5 Conclusion and Perspectives
	References

	Energy-Based Clustering for Pruning Heterogeneous Ensembles
	Abstract
	1 Introduction
	2 Ensemble Clustering Based on Model Outputs
	3 Empirical Evaluation
	Acknowledgements
	References

	Real-Time Hand Gesture Recognition Based on Electromyographic Signals and Artificial Neural Networks
	1 Introduction
	2 Materials and Methods
	2.1 Materials
	2.2 Methods

	3 Results and Discussion
	3.1 Evaluation Method
	3.2 Results
	3.3 Discussion

	4 Conclusions
	References

	Fast Communication Structure for Asynchronous Distributed ADMM Under Unbalance Process Arrival Pattern
	Abstract
	1 Introduction
	2 Distributed ADMM
	2.1 Asynchronous Distributed ADMM
	2.2 Star Communication Topology

	3 Asynchronous Distributed ADMM Based on Hierarchical Parameter Server
	3.1 Hierarchical Parameter Server
	3.2 Asynchronous Distributed ADMM Based on HPS

	4 Convergence and Performance Analysis
	4.1 Convergence Analysis
	4.2 Performance Analysis

	5 Experiment
	5.1 Convergence Test
	5.2 Performance Test

	6 Conclusion
	Acknowledgements
	References

	Improved Personalized Rankings Using Implicit Feedback
	1 Introduction
	2 Preliminaries
	3 Model
	3.1 Main Idea
	3.2 Model Overview
	3.3 Notation

	4 Training
	4.1 Preparation of Training Sets
	4.2 Explicit Part
	4.3 Implicit Part
	4.4 Mini-Batch-Processing

	5 Experiments and Results
	5.1 Setting
	5.2 Network Initialization Details
	5.3 Results

	6 Summary
	References

	Cosine Normalization: Using Cosine Similarity Instead of Dot Product in Neural Networks
	Abstract
	1 Introduction
	2 Background and Motivation
	3 Methods
	3.1 Cosine Normalization
	3.2 Implementation

	4 Experiments
	4.1 Fully-Connected Networks
	4.2 Convolutional Networks

	5 Conclusions
	References

	Discovering Thermoelectric Materials Using Machine Learning: Insights and Challenges
	1 Introduction
	2 Methodology and Data
	2.1 Descriptors
	2.2 Data
	2.3 Choice of Algorithms
	2.4 Model Selection - Cross Validation and Learning Curve

	3 Results and Discussion
	3.1 Sensitivity Study: Influence of Training and Testing Dataset Selection
	3.2 Comparison of RF vs. DNN Models: Material Screening and Efficiency

	4 Conclusions
	References

	Auto-tuning Neural Network Quantization Framework for Collaborative Inference Between the Cloud and Edge
	1 Introduction
	2 Auto-tuning Quantization Framework
	2.1 Neural Network Quantization
	2.2 Candidate Network Partition Points
	2.3 Auto-Tuning Partition

	3 Experiments
	3.1 Experimental Results

	4 Related Work
	5 Conclusion
	References

	GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders
	1 Introduction
	2 Related Work
	3 Method
	3.1 Variational Autoencoder
	3.2 Probabilistic Graph Decoder
	3.3 Reconstruction Loss
	3.4 Graph Matching
	3.5 Further Details

	4 Evaluation
	4.1 Application in Cheminformatics
	4.2 QM9 Dataset
	4.3 ZINC Dataset

	5 Conclusion
	References

	Generation of Reference Trajectories for Safe Trajectory Planning
	1 Introduction
	2 Variational Autoencoder
	3 HARRT+ Algorithm
	4 Generation of Reference Trajectories
	4.1 Generative Model for Trajectories
	4.2 3D-ConvNet Regressor

	5 Vehicle Motion Planning Algorithms
	5.1 Generative Algorithm for Trajectory Exploration (GATE)
	5.2 GATE-ARRT+

	6 Results
	7 Conclusion
	References

	Joint Application of Group Determination of Parameters and of Training with Noise Addition to Improve the Resilience of the Neural Network Solution of the Inverse Problem in Spectroscopy to Noise in Data
	Abstract
	1 Introduction
	2 Problem Statement
	3 Description of the Noise
	4 Solving the Problem
	4.1 Use of Neural Networks
	4.2 Selection of Input Features
	4.3 Method of Group Determination of Parameters
	4.4 Method of Training with Noise

	5 Results
	6 Conclusions
	References

	Learning
	Generating Natural Answers on Knowledge Bases and Text by Sequence-to-Sequence Learning
	1 Introduction
	2 Related Work
	3 Our Framework
	3.1 Framework Overview
	3.2 Candidate Facts Retriever
	3.3 Question Encoder
	3.4 Reply Decoder

	4 Experiments
	4.1 Dataset
	4.2 Model
	4.3 Evaluation Metrics
	4.4 Results

	5 Conclusion and Future Work
	References

	Mitigating Concept Drift via Rejection
	1 Introduction
	2 Learning with a Reject Option
	2.1 Classifiers
	2.2 Evaluation Measure

	3 Learning with Concept Drift and Its Extension to Rejection
	4 Experiments
	4.1 Linear Setting
	4.2 General Setting

	5 Discussion
	References

	Strategies to Enhance Pattern Recognition in Neural Networks Based on the Insect Olfactory System
	1 Introduction
	2 Methods
	2.1 Model of the Insect Olfactory System
	2.2 PN-KC Connectivity
	2.3 Input Patterns

	3 Results
	3.1 Level of Sparseness and PN-KC Connection Probability
	3.2 Gain Control
	3.3 Structured PN-KN Connectivity Model

	4 Conclusions
	References

	HyperNets and Their Application to Learning Spatial Transformations
	Abstract
	1 Introduction
	2 Main Idea
	3 Experiments and Results
	3.1 Rotation Experiment
	3.2 Affine Transformation Experiment
	3.3 Rotation Compensation Experiment

	4 Conclusion
	References

	Catastrophic Forgetting: Still a Problem for DNNs
	1 Introduction
	1.1 Application Relevance of Catastrophic Forgetting
	1.2 Approach of the Article
	1.3 Related Work on CF in DNNs

	2 Methods
	2.1 Learning Tasks
	2.2 Models
	2.3 Experimental Procedure
	2.4 Hyperparameters and Model Selection
	2.5 Reproduction of Previous Results by Prescient Evaluation
	2.6 Realistic Evaluation

	3 Discussion of Results and Principal Conclusions
	4 Future Work
	References

	Queue-Based Resampling for Online Class Imbalance Learning
	1 Introduction
	2 Background and Related Work
	2.1 Online Learning
	2.2 Class Imbalance and Concept Drift
	2.3 Online Class Imbalance Learning

	3 Queue-Based Resampling
	4 Experimental Setup
	5 Experimental Results
	5.1 Analysis of Queue-Based Resampling
	5.2 Comparative Study

	6 Conclusion
	References

	Learning Simplified Decision Boundaries from Trapezoidal Data Streams
	1 Introduction
	2 Methodology
	2.1 Network Architecture
	2.2 Shortcut Connections
	2.3 Growing and Pruning

	3 Experiments and Results
	4 Conclusion
	References

	Improving Active Learning by Avoiding Ambiguous Samples
	1 Motivation
	2 Active Learning
	3 Density-Based Querying Exclusion
	4 Evaluation
	5 Conclusion
	References

	Solar Power Forecasting Using Dynamic Meta-Learning Ensemble of Neural Networks
	Abstract
	1 Introduction
	2 Data and Experimental Setup
	3 Dynamic Meta-Learning Ensemble
	3.1 Training Ensemble Members
	3.2 Training Meta-Learners
	3.3 Weight Calculation and Combination Methods

	4 Methods Used for Comparison
	4.1 Single Models
	4.2 Classical Ensembles
	4.3 Static and Dynamic Ensembles Without Meta-Learners

	5 Results and Discussion
	5.1 Performance of EN-Meta
	5.2 Comparison with Other Methods

	6 Conclusion
	References

	Using Bag-of-Little Bootstraps for Efficient Ensemble Learning
	1 Introduction
	2 Proposed Method
	3 Experiments
	4 Conclusions
	References

	Learning Preferences for Large Scale Multi-label Problems
	1 Introduction
	2 Notation and Background
	2.1 Related Work

	3 Working with Preferences
	3.1 Preference Learning Machine

	4 The Proposed Extension
	5 Experimental Assessment
	5.1 Baselines
	5.2 Empirical Evaluation

	6 Conclusion
	References

	Affinity Propagation Based Closed-Form Semi-supervised Metric Learning Framework
	1 Introduction
	2 Proposed Semi-supervised DML Framework
	3 Choices for the Prior Metric
	4 Experimental Studies
	5 Conclusions
	References

	Online Approximation of Prediction Intervals Using Artificial Neural Networks
	1 Introduction
	2 Methods
	2.1 Prediction Interval Estimation Methods
	2.2 Online Estimation of Prediction Intervals

	3 Results and Discussion
	3.1 Comparison of Prediction Interval Estimation Methods
	3.2 Online Estimation of Prediction Intervals with LUBE and BLM

	4 Conclusions
	References

	Classification
	Estimation of Microphysical Parameters of Atmospheric Pollution Using Machine Learning
	Abstract
	1 Introduction
	2 Data Description
	3 Retrieval of Microphysical Parameters
	3.1 Single Regression Solution
	3.2 Combined Solution

	4 Experiments
	4.1 Single Regression Solution
	4.2 Combined Solution

	5 Discussion and Conclusions
	References

	Communication Style - An Analysis from the Perspective of Automated Learning
	Abstract
	1 Introduction
	2 State of the Art
	3 Methods and Experiments
	3.1 Dataset Descriptions

	4 Classification Methods Used
	5 Data Preprocessing
	6 Evaluation of the Classification Models
	6.1 Metrics Used for Evaluation
	6.2 Results and Discussion

	7 Conclusions and Future Directions
	References

	Directional Data Analysis for Shape Classification
	1 Introduction
	2 Clustering and Classification of Otoliths
	3 Conclusions
	References

	Semantic Space Transformations for Cross-Lingual Document Classification
	1 Introduction
	2 Literature Review
	3 Cross-Lingual Document Classification
	3.1 Document Representation
	3.2 Classification Models

	4 Experiments
	4.1 Reuters Corpus Volume I
	4.2 Baseline Approaches Results
	4.3 Proposed Approaches Results
	4.4 Comparison with the State of the Art

	5 Conclusions
	References

	Automatic Treatment of Bird Audios by Means of String Compression Applied to Sound Clustering in Xeno-Canto Database
	1 Introduction
	2 Normalized Compression Distance
	2.1 Object Size Problem

	3 Materials and Methods
	4 Experimental Results
	5 Conclusions
	References

	FROD: Fast and Robust Distance-Based Outlier Detection with Active-Inliers-Patterns in Data Streams
	Abstract
	1 Introduction
	2 Methods
	2.1 AIP for Outlier Detection
	2.2 Micro-cluster-Based Storing Structure
	2.3 Workflow of FROD
	2.4 Optimization and Analysis

	3 Experiments
	3.1 Experimental Methodology
	3.2 Results

	4 Conclusion
	Acknowledgement
	References

	Unified Framework for Joint Attribute Classification and Person Re-identification
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Approach
	3.1 Identity Learning Framework
	3.2 Attribute Classification

	4 Experiments
	4.1 Implementation Details
	4.2 Performance on Attribute Classification
	4.3 Performance on Person Re-Identification

	5 Conclusion
	Acknowledgment
	References

	Associative Graph Data Structures Used for Acceleration of K Nearest Neighbor Classifiers
	Abstract
	1 Introduction
	2 Associative Graph Data Structures
	3 K Nearest Neighbor Classifiers
	4 Acceleration Associative Algorithm for kNN Classifiers
	5 Comparison of Results and Efficiencies
	6 Conclusions and Final Remarks
	References

	A Game-Theoretic Framework for Interpretable Preference and Feature Learning
	1 Introduction
	2 Background
	2.1 Preference Learning
	2.2 Game Theory

	3 A Game Theoretic Perspective of Preference Learning
	4 Approximating the Optimal Strategies
	5 Evaluation
	5.1 Model Interpretation
	5.2 Feature Selection

	6 Conclusions and Future Work
	References

	A Dynamic Ensemble Learning Framework for Data Stream Analysis and Real-Time Threat Detection
	Abstract
	1 Introduction
	1.1 Literature Review
	1.2 Datasets

	2 Proposed Dynamic Weighted Average Methodology
	3 Ensemble Algorithms
	3.1 Adaptive Random Forests
	3.2 K-NN Classifier with Self Adjusting
	3.3 Primal Estimated Sub-Gradient Solver for SVM

	4 Results and Discussion
	5 Conclusions
	References

	Fuzzy/Feature Selection
	Gaussian Kernel-Based Fuzzy Clustering with Automatic Bandwidth Computation
	1 Introduction
	2 Kernel Fuzzy c-Means with Kernelization of the Metric
	2.1 Kernel Fuzzy c-Means with Kernelization of the Metric
	2.2 KFCM-K with Automatic Computation of Bandwidth Parameters
	2.3 The Algorithms

	3 Empirical Results
	4 Final Remarks and Conclusions
	References

	Fuzzy Clustering Algorithm Based on Adaptive Euclidean Distance and Entropy Regularization for Interval-Valued Data
	1 Introduction
	2 Fuzzy Clustering Algorithm Based on Adaptive Euclidean Distance and Entropy Regularization for Interval Data
	2.1 The Optimization Steps of the AIFCM-ER Algorithm

	3 Experimental Results
	3.1 Experimental Setting
	3.2 Synthetic Interval-Valued Datasets
	3.3 Symbolic Interval Datasets

	4 Conclusion
	References

	Input-Dependably Feature-Map Pruning
	Abstract
	1 Introduction
	2 Related Work
	3 Baseline Network – ‘DenseNet’
	4 Model
	4.1 Motivation
	4.2 Architecture
	4.3 Optimization

	5 Experiments and Results
	5.1 Dataset – CIFAR-10
	5.2 Training
	5.3 Results

	6 Conclusions and Further Work
	References

	Thermal Comfort Index Estimation and Parameter Selection Using Fuzzy Convolutional Neural Network
	1 Introduction
	2 Basic Background
	2.1 Predicted Mean Vote (PMV)
	2.2 ANFIS Model
	2.3 Convolutional Neural Network (CNN)

	3 Related Work
	4 Motivation and Problem Statement
	4.1 Motivation
	4.2 Problem Statement

	5 Proposed Approach: Fuzzy-CNN Architecture
	5.1 Pre-processing
	5.2 Layer Architecture
	5.3 Choice of Parameters
	5.4 Input System

	6 Deep Layer Functioning
	7 Simulation Results
	8 Conclusions
	References

	Soft Computing Modeling of the Illegal Immigration Density in the Borders of Greece
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Theoretical Background – Methodology (Hung and Yang 2004)
	2.2 Data

	3 The Proposed Fuzzy Intuitionistic System
	4 Results and Discussion
	4.1 Comparison Between the River Evros Area and Island of Lesvos

	5 Conclusion-Discussion
	References

	Fuzzy Implications Generating from Fuzzy Negations
	Abstract
	1 Introduction
	2 Theoretical Background
	2.1 Fuzzy Implication
	2.2 Basic Properties of Fuzzy Implications
	2.3 Fuzzy Negation
	2.4 Law of Contraposition
	2.5 Natural Negations of Fuzzy Implications

	3 New Results
	3.1 Production of Fuzzy Implications Through Fuzzy Negations
	3.2 Natural Negations and {\varvec f} - {\varvec generator}
	3.3 Laws of Contraposition and {\varvec I}_{{\varvec f}}
	3.4 The Left Neutrality Property
	3.5 The Exchange Principle
	3.6 The Identity Principle
	3.7 The Ordering Property
	3.8 Example

	4 Conclusion
	References

	Facial/Emotion Recognition
	Improving Ensemble Learning Performance with Complementary Neural Networks for Facial Expression Recognition
	Abstract
	1 Introduction
	2 Related Works
	2.1 Facial Landmarks Detection and Expression Recognition
	2.2 Neural Networks
	2.3 Ensemble Learning

	3 Proposed Approach
	3.1 Problem Analysis
	3.2 Configurations of All Networks
	3.3 Ensemble Method

	4 Experiments on the FER-2013 Database
	4.1 FER-2013
	4.2 Training and Evaluation
	4.3 Ensemble and Analysis

	5 Experiments on the RAF-DB Database
	5.1 RAF-DB
	5.2 Training and Evaluation
	5.3 Ensemble and Analysis

	6 Conclusion
	References

	Automatic Beautification for Group-Photo Facial Expressions Using Novel Bayesian GANs
	1 Introduction and Motivation
	2 Related Works
	3 Facial Expression Evaluation and Beautification
	3.1 Facial Expression Evaluation Based on Multi-label CNN
	3.2 Facial Expression Beautification with Bayesian GANs
	3.3 Poisson Fusion in Our GANs

	4 Experimental Results and Evaluations
	5 Conclusion and Future Works
	References

	Fast and Accurate Affect Prediction Using a Hierarchy of Random Forests
	Abstract
	1 Introduction
	2 State of the Art
	2.1 Emotion Classification and Prediction
	2.2 Ordinal Classification and Hierarchical Prediction

	3 Cascade of Ordinal Classifiers and Local Regressors
	3.1 Ordinal Classification
	3.2 Local Regression

	4 Databases
	4.1 AVEC’2014
	4.2 AV+EC’2015/RECOLA

	5 Experimental Results
	5.1 Performance Metrics
	5.2 Used Systems and Baseline
	5.3 Results on AVEC’2014
	5.4 Results on AV+EC’2015/RECOLA

	6 Conclusions
	Acknowledgment
	References

	Gender-Aware CNN-BLSTM for Speech Emotion Recognition
	1 Introduction
	2 Related Work
	3 Gender-Aware CNN-BLSTM
	3.1 Distributed-Gender Feature
	3.2 Gender-Driven Feature

	4 Experiments
	4.1 Experimental Setup
	4.2 Evaluation Results

	5 Conclusions and Future Work
	References

	Semi-supervised Model for Emotion Recognition in Speech
	1 Introduction
	2 Proposed Model
	2.1 Adversarial Autoencoder
	2.2 Supervised Classifiers
	2.3 Semi-supervised Learning

	3 Experimental Methodology
	3.1 Datasets
	3.2 Preprocessing
	3.3 Experiments Setup

	4 Results and Discussion
	5 Conclusion
	References

	Real-Time Embedded Intelligence System: Emotion Recognition on Raspberry Pi with Intel NCS
	Abstract
	1 Introduction
	2 Background
	3 The System
	3.1 The CNN for Emotes
	3.2 Embedded Device
	3.3 Intel NCS

	4 Evaluation
	4.1 Real Time Running on Pi
	4.2 Benchmarking

	5 Conclusion
	References

	Short Papers
	Improving Neural Network Interpretability via Rule Extraction
	1 Introduction
	2 Methodology
	3 Results and Discussion
	References

	Online Multi-object Tracking Exploiting Pose Estimation and Global-Local Appearance Features
	Abstract
	1 Our Method
	Acknowledgement
	References

	Author Index

