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+ Graphical Models * Large-Margin

* Nonparametric * Regularized

Bayesian Models Bayesian Methods Methods

« Stochastic Gradient = Coordinate * L-BFGS

Descent / Bac Descent
propagation

* Mahout

(MapReduce)

Hadoop

» Network * Network attached

switches storage

* Infiniband - Flash storage

MPI

« Server machines
+ Desktops/Laptops
* NUMA machines

+ Mobile devices
* GPUs, CPUs, FPGA, TPU
+ ARM-powered devices

* Deep Learning

* Spectral/Matrix

+ Sparse Coding

* Sparse Structured

I/0 Regression

* Gibbs Sampling * Metropolis-
Hastings

sorflow
(Async)

GraphlLab

* Cloud compute
(e.g. Amazon EC2)

* [oT networks

+ Data centers

* Virtual
ECES
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ML vs DL
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Plan

» Statistical And Algorithmic Foundation and Insight of Deep
Learning

* On Unified Framework of Deep Generative Models

« Computational Mechanisms: Distributed Deep Learning
Architectures

© Petuum,Inc. 3
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Outline

* Probabilistic Graphical Models: Basics

« An overview of DL components
» Historical remarks: early days of neural networks
* Modern building blocks: units, layers, activations functions, loss functions, etc.
* Reverse-mode automatic differentiation (aka backpropagation)

« Similarities and differences between GMs and NNs
« Graphical models vs. computational graphs
« Sigmoid Belief Networks as graphical models
» Deep Belief Networks and Boltzmann Machines

« Combining DL methods and GMs

» Using outputs of NNs as inputs to GMs
« GMs with potential functions represented by NNs
* NNs with structured outputs

« Bayesian Learning of NNs
« Bayesian learning of NN parameters
* Deep kernel learning

© Petuum,Inc. 5
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Outline

* Probabilistic Graphical Models: Basics

© Petuum,Inc. 6
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Fundamental questions of probabilistic modeling

* Representation: what is the joint probability distr. on multiple variables?

(7. ) =
P(X1, X5, X3, ..., Xgq) T
- How many state configurations are there? F )
» Do they all need to be represented? 6] CHOD

« Can we incorporate any domain-specific insights into the representation?

« Learning: where do we get the probabilities from?
« Maximum likelihood estimation? How much data do we need?
» Are there any other established principles?

 Inference: if not all variables are observable, how to compute the conditional
distribution of latent variables given evidence?
« Computing P(H|A) would require summing over 26 configurations of the unobserved variables

© Petuum,Inc. 7
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What is a graphical model?

» A possible world of cellular signal transduction

Receptor A

Kinase C

Gene G

X

X;

X;

Receptor B
Kinase D X,
[ T ] "
Gene H Xg

Kinase E

© Petuum,Inc.
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GM: structure simplifies representation

» A possible world of cellular signal transduction
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Probabilistic Graphical Models

* |t X;'s are conditionally independent (as described by a PGM), then
the joint can be factored into a product of simpler terms

| Receptora_| x, | ReceptorB_| x, P(X1, X5, X3, X4, X, Xe,X7,Xg) =
P(X1)P(X2)P(X3|X1)P(X4|X2)P(X5]X2)
Kinase D ? P(Xe|X3, X4)P(X7|X6)P (Xg|Xs5, X¢)

« Why we may favor a PGM?
» Easy to incorporate domain knowledge and causal (logical) structures

» Significant reduction in representation cost (28 reduced down to 18)
© Petuum,Inc. 10
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The two types of GMs P(H|V)
0 = argmax,P4(V)
 Directed edges assign causal meaning to the relationships
(Bayesian Networks or Directed Graphical Models)
P(Xy, X5, X3, X4, Xs, Xg, X7, Xg) =
P(X1)P(X2)P(X3|X1)P(X4|X2)P(Xs5|X>)
P(Xe|X3, X4)P(X7|Xe)P (Xg| X5, Xe)

» Undirected edges represent correlations between the variables
(Markov Random Field or Undirected Graphical Models)

i)(X1,X2,X3»X4;Xs»X6;X7;X8) =
Zexp{E(Xl) + EX)) + E(Xy, X3) + E(X,, X)) + E(Xs, X,) +
E(X3;X4; X6) + E(X6) X7 ) + E(XSrX6) X8)}

=T

© Petuum,Inc. 11
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Outline

« An overview of DL components
» Historical remarks: early days of neural networks
* Modern building blocks: units, layers, activations functions, loss functions, etc.
» Reverse-mode automatic differentiation (aka backpropagation)

© Petuum,Inc. 12
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Perceptron and Neural Nets

* From biological neuron to artificial neuron (perceptron)

) ( wvenares Il’lplzlfS MCCU"OCh & P|tts (1943)
. X Linear Hard
: Axon : \.\(iombme’” Lamiter O”tp”t
synapses j- /./V@‘ J_ — Y
%/.l_, ﬁ
R : -

Threshold

« From biological neuron network to artificial neuron networks

=

Middle Layer

Output Signals

Output Layer © Petuum,Inc. 13
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The perceptron learning algorithm

» Recall the nice property of sigmoid function Z—(Z = o(1— o)
« Consider regression problem f: X=>VY, for scalar Y: y = f(x) + ¢

 \We used to maximize the conditional data likelihood

e Here ... |

© Petuum,Inc. 14
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The perceptron learning algorithm

OEp|w])

(’9wj

1 Z(td — 04)°

1

;(td — Od)( — g’LOUi)

_Z(t ~ 04) dog Onety
~ d d Onet; Ow;

— Z(td - Od)Od(]. — Od)xé
d

a (td — 04)

= input
t, = target output
04 = Observed output

w; = weight i

Batch mode:
Do until converge:

1. compute gradient VE,[w]
2. = W — NV Ep ]

Incremental mode:

Do until converge:

» For each training example d in D

1. compute gradient VE [w]
20 = W — NV Eg [u_f]

where
VEd[u_i] = —(td - od)od(l - Od).’fd

© Petuum,Inc.
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Neural Network Model

» Output
0.6
Gende
. “Probability of
beingAlive”
Stage
' _ D dent
Independent Weights  Hidden Weights vae,»pZZ[een
variables Layer |
Prediction

© Petuum,Inc. 16
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“Combined logistic models”

Inputs
» Output
5 0.6
Gende 2
) ‘/8 “Probability of
beingAlive”
Stage
' _ D dent
Independent Weights  Hidden Weights vae,»pZZ[een
variables Layer |
Prediction

© Petuum,Inc. 17
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“Combined logistic models”

Output

0.6

“Probability of
beingAlive”

Dependent

Independent Weights  Hidden Weights variable

variables Layer
Prediction
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“Combined logistic models”
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© Petuum,Inc. 19
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Not really, no target for hidden units...

0.6

“Probability of

beingAlive”
' _ D dent
Independent Weights  Hidden Weights vae,»pZZ[een
variables Layer |
Prediction

© Petuum,Inc. 20
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Backpropagation:
Reverse-mode differentiation

« Artificial neural networks are nothing more than complex functional compositions that can be

represented by computation graphs|
o f@) G-
ox

v @ 2
Outputs

Input e

variables
Intermediate

computations

© Petuum,Inc. 21
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Backpropagation:
Reverse-mode differentiation

Artificial neural networks are nothing more than complex functional compositions that can be
represented by computation graphs
Ofn

x f(l’) o

« By applying the chain rule and using reverse accumulation, we get

irem(n) i1€m(N)

’i2€7‘l’(’i1)
* The algorithm is commonly known as backpropagation

« \What if some of the functions are stochastic?

» Then use stochastic backpropagation!
(to be covered in the next part)

« Modern packages can do this automatically (more later) © Petuum.Inc. 22
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Modern building blocks of deep networks

« Activation functions
e Linear and RelLU
« Sigmoid and tanh
e Etc.

output

X1
Xy

X3

Linear

inpu't

Wi

T

2

/'

W3

f(Wx + b)

—

A

/

output

inpu't

Rectified linear (RelLU)

© Petuum,Inc. 23
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Modern building blocks of deep networks

» Activation functions

Linear and RelL.U
Sigmoid and tanh
Etc.

* Layers

Fully connected
Convolutional & pooling
Recurrent

ResNets

Etc.

i)
Fove

fully connected

convolutional

[->_Aj=AA>A

recurrent

blocks with residual connections

v

@—>—®

© Petuum,Inc. 24
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Modern building blocks of deep networks

« Activation functions
e Linear and RelLU
« Sigmoid and tanh
« Etc.

« Layers
» Fully connected
« Convolutional & pooling
» Recurrent
* ResNets
» Etc.

» Loss functions
» Cross-entropy loss
 Mean squared error
» Etc.

Putting things together:
loss ——=->

concatenation

fully connected
—

convolutional

..

avg& max
pooling

(a part of GoogleNet)

© Petuum,Inc. 25
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Modern building blocks of deep networks

Putting things together: e Arbitrary combinations of

* Activation functions the basic building blocks

* Linear and Rel.U E_f; e Multiple loss functions —
« Sigmoid and tanh multi-target prediction,
e Etc transfer learning, and more
e Given enough data, deeper
* Layers architectures just keep

» Fully connected improving
« Convolutional & pooling
» Recurrent

» ResNets

e Etc.

« Loss functions
» Cross-entropy loss
 Mean squared error

e Representation learning:
the networks learn
increasingly more abstract
representations of the data
that are “disentangled,” i.e.,
amenable to linear
separation.

a part of GoogleNet
e Etc. ( P 9 ) © Petuum,Inc. 26
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Outline

« Similarities and differences between GMs and NNs
« Graphical models vs. computational graphs
« Sigmoid Belief Networks as graphical models
» Deep Belief Networks and Boltzmann Machines

© Petuum,Inc. 27
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Graphical models vs. Deep nets

Graphical models Deep neural networks

» Representation for encoding e Learn representations that
meaningful knowledge and the facilitate computation and
associated uncertainty in a performance on the end-metric
graphical form (intermediate representations are

not guaranteed to be meaningful)

Inpuc layer (S1) 4 feacure maps

E\ (C1) 4 feature maps  (S2) 6 feature maps  (C2) 6 feature maps

B %

L convolution layer L sub-sampling layer 1 convolution layer 1 sub-sampling layer llulty connected Hl!l

Topic proportions

S i i e
Topic assignments | 4
oooooa \

Learning and inference in the bnh% A
Friston K. l‘.
The Wolcome Dopartment of imaging Neuroscionce, Insthuse of Nour v © PetuumJnC 28
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Graphical models vs. Deep nets

Graphical models Deep neural networks

» Representation for encoding e Learn representations that

meaningful knowledge and the
associated uncertainty in a
graphical form

Learning and inference are based
on a rich toolbox of well-studied
(structure-dependent) techniques
(e.g., EM, message passing, VI,
MCMC, etc.)

» Graphs represent models

facilitate computation and
performance on the end-metric
(intermediate representations are
not guaranteed to be meaningful)

e Learning is predominantly based
on the gradient descent method
(aka backpropagation);

Inference is often trivial and done
via a “forward pass”

e Graphs represent computation

© Petuum,Inc. 29
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Graphical models vs. Deep nets

Graphical models

Utility of the graph
» A vehicle for synthesizing a global loss
function from local structure
» potential function, feature function, etc.

» A vehicle for designing sound and
efficient inference algorithms

+ Sum-product, mean-field, etc.

» A vehicle to inspire approximation and
penalization

» Structured MF, Tree-approximation, etc.

* A vehicle for monitoring theoretical and
empirical behavior and accuracy of
inference

Utility of the loss function
* A major measure of quality of the

learning algorithm and the model 6 = argmax,P 4(V)

mt‘aa(xi) = H mc—n‘(xi)

ceN(i)\a

ba(Xa) o« ja(Xa) l—Imn’-‘m('xi)

ieN(a)

m, i (x;) = Zf(X) [Im,..

JjeN(a)\i

- € RY|A(D) < +0}

(H)~P(H|V) , «5 ©°
F(): <4 © 2 =
o O
= o o

QUF) :={0€Q| 0,y =0V (s,t) eE}. QT) :={0€Q |0, =0V (s,¢) ¢ E(T)}

© Petuum,Inc.
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Graphical models vs. Deep nets

= = E
b

Images from Distill.pub

Deep neural networks

Utility of the network

e A vehicle to conceptually synthesize
complex decision hypothesis

o stage-wise projection and aggregation

e A vehicle for organizing computational
operations

o stage-wise update of latent states

e A vehicle for designing processing steps
and computing modules

o Layer-wise parallelization

e No obvious utility in evaluating DL
inference algorithms

Utility of the Loss Function
e Global loss? Well it is complex and non-

convex... © Petuum,Inc.
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Graphical models vs. Deep nets

Graphical models

Utility of the graph

A vehicle for synthesizing a global loss
function from local structure

» potential function, feature function, etc.
A vehicle for designing sound and
efficient inference algorithms

+ Sum-product, mean-field, etc.

A vehicle to inspire approximation and
penalization

» Structured MF, Tree-approximation, etc.

A vehicle for monitoring theoretical and
empirical behavior and accuracy of
inference

Utility of the loss function
* A major measure of quality of the

learning algorithm and the model

Deep neural networks

Utility of the network

e A vehicle to conceptually synthesize
complex decision hypothesis

o stage-wise projection and aggregation

e A vehicle for organizing computational
operations

o stage-wise update of latent states

e A vehicle for designing processing steps
and computing modules

o Layer-wise parallelization

e No obvious utility in evaluating DL
inference algorithms

Utility of the Loss Function
e Global loss? Well it is complex and non-

convex... © Petuum,Inc.
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Empirical goal: e.g., classification, feature learning e.g., latent variable inference, transfer
learning

Structure: Graphical Graphical

Objective: Something aggregated from local functions Something aggregated from local functions

Vocabulary: Neuron, activation function, ... Variable, potential function, ...

Algorithm: A single, unchallenged, inference algorithm A major focus of open research, many

— algorithms, and more to come
Backpropagation (BP)

Evaluation: On a black-box score — On almost every intermediate quantity
end performance

Implementation: Many tricks More or less standardized

Experiments: Massive, real data Modest, often simulated data (GT known)
(GT unknown)

© Petuum,Inc. 33
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Graphical Models vs. Deep Nets

* SO far:
« Graphical models are representations of probability distributions
« Neural networks are function approximators (with no probabilistic meaning)

« Some of the neural nets are in fact proper graphical models
(i.e., units/neurons represent random variables):
» Boltzmann machines (Hinton & Sejnowsky, 1983)
» Restricted Boltzmann machines (Smolensky, 1986)
* Learning and Inference in sigmoid belief networks (Neal, 1992)
 Fast learning in deep belief networks (Hinton, Osindero, Teh, 2006)
« Deep Boltzmann machines (Salakhutdinov and Hinton, 2009)

 Let's go through these models one-by-one

© Petuum,Inc. 34
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|: Restricted Boltzmann Machines

« RBM is a Markov random field represented with a bi-partite graph

» All nodes in one layer/part of the graph are connected to all in the other;
no inter-layer connections

hidden QQ\\QQ Q// /QM

W X1

,k_..'\_,';,,x.../_ 4. weight: w;;
N\ ..).'i.;-‘.'('.'.‘-‘ .

visible Cﬁ/ 1Y
o Joint distributior:;

1
P(v, h) = Zexp {z Wijvihi + z bivi + z thj}
L,j [ Jj

Images from Marcus Frean, MLSS Tutorial 2010 © Petuum,Inc. 35

factor: exp(v; wij hj)
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|: Restricted Boltzmann Machines

» Log-likelihood of a single data point (unobservables marginalized out):

logL(v) = logz exp {2 w;ivih; + z bjv; + z cihj — log(Z)}
h i, i J

« Gradient of the log-likelihood w.r.t. the model parameters:

0 0 P
6W--lOgL(v) - Z P(h|v) P(v,h) — ; P(v, h)

i aWU aWU

P(v,h)

* where we have averaging over the posterior and over the joint.

Images from Marcus Frean, MLSS Tutorial 2010 © Petuum,Inc. 36
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|: Restricted Boltzmann Machines

« Gradient of the log-likelihood w.r.t. the parameters (alternative form):

log L(v) = Eppp) [ P(v, h)] — Ep,n) [ P(v, h)]

aWU aWU aWU

Both expectations can be approximated via sampling
Sampling from the posterior is exact (RBM factorizes over h given v)
Sampling from the joint is done via MCMC (e.g., Gibbs sampling)

In the neural networks literature:

« computing the first term is called the clamped / wake / positive phase
(the network is “awake” since it conditions on the visible variables)

« Computing the second term is called the unclamped / sleep / free / negative phase
(the network is “asleep” since it samples the visible variables from the joint;
metaphorically, it is "dreaming” the visible inputs) © Petuum,Inc. 37



~  PETUUM

|: Restricted Boltzmann Machines

« Gradient of the log-likelihood w.r.t. the parameters (alternative form):

0
P(U, h)] o IEP(U,h) [ P(U, h)]

0
lOg L(U) = IEP(h|v) [ -
lj

aWij aWU

* Learning is done by optimizing the log-likelihood of the model for a given
data via stochastic gradient descent (SGD)

 Estimation of the second term (the negative phase) heavily relies on the
mixing properties of the Markov chain

 This often causes slow convergence and requires extra computation

© Petuum,Inc. 38
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lI: Sigmoid Belief Networks

OOQOQ Hidden units

Hidden units QOO0 Symptoms $ OOQO Diseases
% b OOOO Symptoms b
OOQO Hidden units ' OOOQO Hidden units
0000 QOO0 } OOQO Hidden units
Symptoms Diseases OOQOQO Diseases ‘ OO0OQ0 Symptoms
OOQOQ Diseases from Neal, 1992

« Sigmoid belief nets are simply Bayesian networks over binary variables with conditional
probabilities represented by sigmoid functions:

P(xi|m(x) = o x; Z WijX;
xj € m(x;)
» Bayesian networks exhibit a phenomenon called “explain away effect”

CA O 8B > If A correlates with C, then the chance of B correlating with C
decreases. = A and B become correlated given C.
<>

© Petuum,Inc. 39
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lI: Sigmoid Belief Networks

Hidden units

%O
0000 0000

Symptoms Diseases

OOOQO Symptoms
OOOQO Hidden units
OOQQO Diseases

OOQOQ Hidden units
OO0O Symptoms
OOQO Hidden units
OOQOQ Diseases

OOQQ Diseases
OOOQO Hidden units
OOOO Symptoms

from Neal, 1992

« Sigmoid belief nets are simply Bayesian networks over binary variables with conditional
probabilities represented by sigmoid functions:

» Bayesian networks exhibit a phenomenon called “explain away effect”

P(xi|m(x) = o x; Z WijX;
xj € m(x;)

Note:

Due to the “explain away effect,” when we
condition on the visible layer in belief networks,
hidden variables all become dependent.

© Petuum,Inc. 40
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Sigmoid Belief Networks:

Learning and Inference

Neal proposed Monte Carlo methods for learning and inference (Neal, 1992):

Approximated with Gibbs sampling

Conditional distributions:

PSi=x|Sj=s:j#1i)

aL

aw,-,

e o) T (oun v )

Jj<i Jj>i

No negative phase as in RBM!

Convergence is very slow,
especially for large belief nets,
due to the intricate
“explain-away” effects...

Equations from Neal, 1992

k<j,k#i

| APV = 1)

et P(V =17) dw;,
~eT PV =v) = 8wu
Y3 PSS =) | V=10
i 1 aP(S = (h, 7))
P(S = (h, D)) dw,
T 3 P(S = 5) i
YY PS=517=0
VET 3 ‘ 1 90 (57 Y pe; SkWix)
0 (S7 Lhei SkWik) dw;;
Y Y PS=5|V=1) s,‘s,a(—s,-‘ Zskw,-k).
ET 3 kel

log derivative
prob. of the visibles
via marginalization

Bayes rule +
rearrange sums

Plug-in the actual
sigmoid form of the
conditional prob.

© Petuum,Inc. 41
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RBMs are infinite belief networks

* Recall the expression for the gradient of the log likelihood for RBM:
0
oW, log L(v) = Epup) [awij P(v, h)] — Ep,n) [ P(v, h)]

aWij
« To make a gradient update of the model parameters, we need compute

the expectations via sampling.
» We can sample exactly from the posterior in the first term
» We run block Gibbs sampling to approximately sample from the joint distribution

hidden () QQ QQO QQQ

OO visible OO OO

images from Marcus Frean, MLSS Tutorial 2010 © Petuum,Inc. 42
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RBMs are infinite belief networks

» Gibbs sampling: alternate between sampling hidden and visible variables

hidden () QQ OO0 OO

O O visible OU OO

sampling steps

« Conditional distributions P(v|h) and P(h|v) are represented by sigmoids

* Thus, we can think of Gibbs sampling from the joint distribution represented by
an RBM as a top-down propagation in an infinitely deep sigmoid belief network!

images from Marcus Frean, MLSS Tutorial 2010 © Petuum,Inc. 43
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RBMs are infinite belief networks

 RBMs are equivalent to infinitely deep belief networks

to generate:

W

visible layer

and so on

aelauab oy

« Sampling from this is the same as sampling from
the network on the right

LTINS Sl
T \Sem/
o
A N
- Y
& & 3
= | /

:,\\?{S visibl!a layer

images from Marcus Frean, MLSS Tutorial 2010 © Petuum,Inc. 44



RBMs are infinite belief networks

 RBMs are equivalent to infinitely deep belief networks

ang 50 on

'@
«W'g
KE |

Y

ke
K’ 1 : K‘j "‘l W' ’\“ '.l"'..nsu
«Sempp QMQM \

images from Marcus Frean, MLSS Tutorial 2010 © Petuum,Inc. 45



-
~ PETUUM

RBMs are infinite belief networks

 RBMs are equivalent to infinitely deep belief networks

ang S0 o
AP RN 'f

LY o Y s

o

Ll AL \
AR w o :
W v Y e )
T > - A, e AN : o~
w w § w o
tatst AN A Ltat st A NI \J LY Y Bk
w w W )
“ \ “ r Y W "’ \ oL
» "' VSN‘G)CV b ‘ Y visihie layer b ‘ y vy dve Ly B el e

* When we train an RBM, we are really training an infinitely deep brief net!

* |t Is just that the weights of all layers are tied.
* |t the weights are “untied” to some extent, we get a Deep Belief Network.

images from Marcus Frean, MLSS Tutorial 2010 © Petuum,Inc. 46
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lll: Deep Belief Nets

Deep Belief Network

« DBNs are hybrid graphical models (chain graphs):
» Exact inference in DBNSs is problematic due to explaining away effect
 Training: greedy pre-training + ad-hoc fine-tuning; no proper joint training
« Approximate inference is feed-forward

© Petuum,Inc. 47



PETUUM

Deep Belief Networks

Deep Belief Network <« DBNSs represent a joint probability distribution
P(v,hY, k2, h3) = P(h2, h3)P(ht|h?)P(v|hY)

 Note that P(h?, h?) is an RBM and the conditionals P(h!|h?)
and P(v|h') are represented in the sigmoid form

* The model is trained by optimizing the log likelihood for a
given data log P(v)

Challenges:
» Exact inference in DBNs is problematic due to explain away effect
* Training is done in two stages:
« greedy pre-training + ad-hoc fine-tuning; no proper joint training
« Approximate inference is feed-forward (bottom-up) e pretwum.inc. 48
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DBN: Layer-wise pre-training

and so on...

* Pre-train and freeze the 18t RBM
« Stack another RBM on top and train it

visible layer

* The weights weights 2+ layers remain tied

* We repeat this procedure: pre-train and untie
the weights layer-by-layer...

images from Marcus Frean, MLSS Tutorial 2010 © Petuum,Inc. 49
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DBN: Layer-wise pre-training

and so on...

* We repeat this procedure: pre-train and untie
the weights layer-by-layer:

* The weights of 3+ layers remain tied

e and so forth

* From the optimization perspective, this procedure loosely corresponds
to an approximate block-coordinate accent on the log-likelihood

images from Marcus Frean, MLSS Tutorial 2010 © Petuum,Inc. 50
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DBN: Fine-tuning

* Pre-training is quite ad-hoc and is unlikely to lead to a good probab|l|st|c

model per se e
* However, the layers of representations could perhaps be T o
useful for some other downstream tasks! e |
[ 500 |

RBM

- We can further “fine-tune” a pre-trained DBN for some othertask
T ;

Setting A: Unsupervised learning (DBN = autoencoder) —— L — Lo

1. Pre-train a stack of RBMs in a greedy layer-wise fashion
2. “Unroll” the RBMs to create an autoencoder

3. Fine-tune the parameters by optimizing the reconstruction error

RBM
Pretraining

images from Hinton & Salakhutdinov, 2006 © Petuum,Inc. 51
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DBN: Fine-tuning

* Pre-training is quite ad-hoc and is unlikely to lead to a good probab|l|st|c

model per se

* However, the layers of representations could perhaps be
useful for some other downstream tasks!

« We can further “fine-tune” a pre-trained DBN for some other task

Setting A: Unsupervised learning (DBN = autoencoder)
1. Pre-train a stack of RBMs in a greedy layer-wise fashion

2. “Unroll” the RBMs to create an autoencoder
3. Fine-tune the parameters by optimizing the reconstruction error

images from Hinton & Salakhutdinov, 2006

Decoder!
i wi

......................................

Unrolling
© Petuum,Inc. 52
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DBN: Fine-tuning

* Pre-training is quite ad-hoc and is unlikely to lead to a good probabilistic
model per se

* However, the layers of representations could perhaps be

useful for some other downstream tasks! |

« We can further “fine-tune” a pre-trained DBN for some other task

Setting A: Unsupervised learning (DBN = autoencoder)

1. Pre-train a stack of RBMs in a greedy layer-wise fashion

2. “Unroll” the RBMs to create an autoencoder
3. Fine-tune the parameters by optimizing the reconstruction error

Fine-tuning
images from Hinton & Salakhutdinov, 2006 © Petuum,Inc. 53
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DBN: Fine-tuning

* Pre-training is quite ad-hoc and is unlikely to lead to a good probabilistic
model per se

* However, the layers of representations could perhaps be
useful for some other downstream tasks!

« We can further “fine-tune” a pre-trained DBN for some other task

Setting B: Supervised learning (DBN - classifier)

1. Pre-train a stack of RBMs in a greedy layer-wise fashion
2. “Unroll” the RBMs to create a feedforward classifier
3. Fine-tune the parameters by optimizing the reconstruction error

Some intuitions about how pre-training works:
Erhan et al.. Why Does Unsupervised Pre-training Help Deep Learning? JMLR, 2010 © Petuum,Inc. 54
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Deep Belief Nets and Boltzmann Machines
Deep Belief Network

« DBNs are hybrid graphical models (chain graphs):
 Inference in DBNs is problematic due to explaining away effect
» Training: greedy pre-training + ad-hoc fine-tuning; no proper joint training
» Approximate inference is feed-forward

© Petuum,Inc. 55
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Deep Belief Nets and Boltzmann Machines

Deep Belief Network Deep Boltzmann Machine

h3

W3
h?( )

W2
h!( )

Wl
A\

« DBMs are fully un-directed models (Markov random fields):

« Can be trained similarly as RBMs via MCMC (Hinton & Sejnowski, 1983)

» Use a variational approximation of the data distribution for faster training
(Salakhutdinov & Hinton, 2009)

« Similarly, can be used to initialize other networks for downstream tasks
© Petuum,Inc. 56
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Graphical models vs. Deep networks

A few critical points to note about all these models:

« The primary goal of deep generative models is to represent the
distribution of the observable variables. Adding layers of hidden
variables allows to represent increasingly more complex distributions.

« Hidden variables are secondary (auxiliary) elements used to facilitate
learning of complex dependencies between the observables.

 Training of the model is ad-hoc, but what matters is the quality of
learned hidden representations.

» Representations are judged by their usefulness on a downstream task
(the probabilistic meaning of the model is often discarded at the end).

* In contrast, classical graphical models are often concerned
with the correctness of learning and inference of all variables

© Petuum,Inc. 57
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An old study of belief networks

from the GM standpoint

[Xing, Russell, Jordan, UAI 2003]

Mean-field partitions of a sigmoid belief network for subsequent GMF inference

- ozl

-~
. = S0

Study focused on only inference/learning accuracy, speed, and partition

Singleton marginal error
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“Optimize” how to optimize via truncation & re-opt

« Energy-based modeling of the structured output (CRF)

y*(x; w) := argmin E(y, x; W)

Yy

« Unroll the optimization algorithm for a fixed number of steps (Domke, 2012)

y* (x; w) = opt-alg E(y, x; W)

We can backprop through the optimization steps
since they are just a sequence of computations

Relevant recent paper:

Anrychowicz et al.: Learning to learn by gradient
descent by gradient descent. 2016.

© Petuum,Inc. 59
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Dealing with structured prediction

« Energy-based modeling of the structured output (CRF)

y*(x;w) := argmin E(y, x; W)
y
« Unroll the optimization algorithm for a fixed number of steps (Domke, 2012)

y*(x; w) = opt-alg E(y, x; w)
Y

« We can think of y* as some non-linear differentiable function of the inputs and
weights - impose some |0ss and optimize it as any other standard computation
graph using backprop!

« Similarly, message passing based inference algorithms can be truncated and
converted into computational graphs (Domke, 2011; Stoyanov et al., 2011)

© Petuum,Inc. 60
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Outline

« Combining DL methods and GMs

» Using outputs of NNs as inputs to GMs
« GMs with potential functions represented by NNs
* NNs with structured outputs

© Petuum,Inc. 61
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Combining sequential NNs and GMs

H ybrid: RNN + HMM

YRR

) © Petuum,Inc. 62
slide courtesy: Matt Gormley
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Combining sequential NNs and GMs

ala 10‘3)

Hybrid: RNN + HMM ‘0

The model, inference, and
learning can be analogous to

our NN + HMM hybrid

* Objective: log-likelihood g g g ’:

* Model: HMM/Gaussian ‘- ‘ ‘- “
emissions

* Inference: forward-
backward algorithm

* Learning: SGD with
gradient by
backpropagation

_ © Petuum,Inc. 63
slide courtesy: Matt Gormley



=
~“PETUUM

Hybrid NNs + conditional GMs

 In a standard CRF, each of the factor cells is a parameter.
* In a hybrid model, these values are computed by a neural network.

) © Petuum,Inc. 64
slide courtesy: Matt Gormley
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Hybrid NNs + conditional GMs
Hybrid: Neural Net + CRF

Forward computation

o &

_ © Petuum,Inc. 65
slide courtesy: Matt Gormley
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Hybrid NNs + conditional GMs

‘“”Q Hybrid: CNN + CRF

e - ‘e

“NN + SLL” T e =)
* Model: Convolutional
Neural Network e B
(CNN) with linear-
chain CRF
* Training objective:
maximize sentence- i aAa
level likelihood (SLL) o

il

Figure from (Collobert & Weston, 2011)

_ © Petuum,Inc. 66
slide courtesy: Matt Gormley
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Using GMs as Prediction Explanations

~ ———— ™ - - ——y~ .
[mm(nmm: J T - L -
o" - - -

* reguiar smoker
« family history of dlabetes
+ [no previcus heart sttacks)

(b) ()

* ldea: Use deep neural nets to generate parameters of a graphical model for a
given context (e.qg., specific instance or case)

* Produced GMs are used to make the final prediction

« GMs are built on top of interpretable variables (not deep embeddings!) and can
be used as contextual explanations for each prediction

© Petuum,Inc. 67
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Using GMs as Prediction Explanations

Dictionary | 0

>>‘ 2 dot I !
I—I—I—I OO I—I—I—I ==

I : : eoo

Attention OO ® O 60 0 ® ® ® ©® ® _: Attributes

_________________ I Il - - o o oo

A practical implementation:
* Maintain a (sparse) dictionary of GM parameters

* Process complex inputs (images, text, time series, etc.) using deep nets; use soft
attention to either select or combine models from the dictionary

» Use constructed GMs (e.g., CRFs) to make predictions
* Inspect GMs to understand the reasoning behind predictions

© Petuum,Inc. 68
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Outline

« Bayesian Learning of NNs
« Bayesian learning of NN parameters
* Deep kernel learning

© Petuum,Inc. 69
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Bayesian learning of NNs

* A neural network as a probabilistic model:

 Likelihood: p(y|x, @)
« Categorical distribution for classification = cross-entropy loss
« (Gaussian distribution for regression = squared loss

* Prior on parameters: p(0)

« Maximum a posteriori (MAP) solution:

* 64" = argmaxgy log p(y|x, )p(6)

» (Gaussian prior = L2 regularization
» Laplace prior = L1 regularization

« Bayesian learning [MacKay 1992, Neal 1996, de Freitas 2003]
» Posterior: p(0|x,y)
« Variational inference with approximate posterior q(0)

© Petuum,Inc. 70
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Bayesian learning of NNs

Variational inference (in a nutshell):
min, F(D, 8) = KL(q(8)|| p(8]D)) — Eqe[log p(D]0)]

ming F(D,0) = KL(q(0)]| p(6ID)) = ) logp(D|6;)
where 8; ~ q(0); KL term can be approximated similarly

We can define q(@) as a diagonal Gaussian or full-covariance Gaussian
Alternatively, g(8) can be defined implicitly, e.g. via dropout [Gal & Ghahramani, 2016]

0 = M - diag(z),
z ~ Bernoulli(p)

Dropping out neurons is equivalent to zeroing out
columns of the parameter matrices (i.e., weights)

z; = 0 corresponds to i-th column of M being dropped out
= the procedure is equivalent to dropout of unit i [Hinton et al., 2012]

Variational parameters are {M, p} © Petuum, Inc. 71
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“Infinitely Wide” Deep Models

 We have seen that an ”infinitely deep” network can be explained by a proper GM,
How about an “infinitely wide” one?

« Consider a neural network with a Gaussian prior on its weights an infinitely many hidden
neurons in the intermediate layer. %

 Turns out, if we have a certain Gaussian prior on the Infinitely many
weights of such infinite network, it will be equivalent hidden units
to a Gaussian process [Neal 1996].

6600

» (Gaussian process (GP) is a distribution over functions:
m(x) = E[f(x)],
k(x,x') = E[(f(x) —m(x))(f(x") —m(x))],
f(x) ~ GP(m(x),k(x,x")).

« When used for prediction, GPs account for correlations between the data points and can

output well-calibrated predictive uncertainty estimates.
© Petuum,Inc. 72
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Gaussian Process and Deep Kernel Learning

« Consider a neural network with a Gaussian prior on its weights an infinitely many hidden neurons in

the intermediate layer. gl

o600

» Certain classes of Gaussian priors for neural networks with infinitely many hidden units converge to
Gaussian processes [Neal 1996]

« Deep kernel [Wilson et al., 2016]

« Combines the inductive biases of deep model architectures with the non-parametric flexibility of Gaussian processes
k(xi’ xj |¢) - k(g (xil 9)' g(x]" 9) |¢' 6) where Kij - k(xi’ xj)

pYIf) =NOIf,.B7H)

p(fl$) = N (fIm(x),K)

« Learn both kernel and neural parameters {¢, 8} jointly by optimizing marginal log-likelihood (or its variational lower-bound).

« Fast learning and inference with local kernel interpolation, structured inducing points, and Monte Carlo approximations
© Petuum,Inc. 73
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hidden units

- Starting from a base kernel k(x;, x;|¢), transform the inputs x as
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Gaussian Process and Deep Kernel Learning

« By adding GP as a layer to a deep neural net, we can think of it as adding
an infinite hidden layer with a particular prior on the weights

. Wi N
* Deep kernel learning [Wwilson et al., 2016] W v > o WO i N ON
1P aver 1N " ‘_. i
« Combines the inductive biases of — T AN [ St b
deep models with the non-parametric O AT b W (% ¢ N | |
flexibility of Gaussian processes \ o \/ [\ \
« GPs add powerful regularization to COA \ A
the network ‘ ‘ ‘ | il [\ we
rp ' L ‘:‘(',‘ '.l
« Additionally, they provide predictive N [ AT T | /
uncertainty estimates (Y
Hidden layvers =

o0 ];l)'(,‘l'
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Deep kernel learning on sequential data

What if we have data of
sequential nature?

Can we still apply the same
reasoning and build rich

nonparametric models on top
recurrent nets?

© Petuum,Inc. 75
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Deep kernel learning on sequential data

The answer is YES! @

By adding a GP layer to a recurrent @ @
network, we effectively correlate

samples across time and get
predictions along with well calibrated
uncertainty estimates.

techniques however requires some
additional care (see our paper).

To train such model using stochastic s

© Petuum,Inc. 76
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Deep kernel learning on sequential data

Lane prediction: LSTM vs GP-LSTM

50

Front distance, m
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Deep kernel learning on sequential data

Lead vehicle prediction: LSTM vs GP-LSTM
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Conclusion

DL & GM: the fields are similar in the beginning (structure, energy, etc.), and then
diverge to their own signature pipelines

DL: most effort is directed to comparing different architectures and their components
(models are driven by evaluating empirical performance on a downstream tasks)

« DL models are good at learning robust hierarchical representations from the data and suitable
for simple reasoning (call it “low-level cognition”)

GM: the effort is directed towards improving inference accuracy and convergence
speed

« GMs are best for provably correct inference and suitable for high-level complex reasoning
tasks (call it “high-level cognition”)

Convergence of both fields is very promising!
» Next part: a unified view of deep generative models in the GM interpretation

© Petuum,Inc. 79
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Plan

» Statistical And Algorithmic Foundation and Insight of Deep
Learning

* On Unified Framework of Deep Generative Models

« Computational Mechanisms: Distributed Deep Learning
Architectures

© Petuum,Inc. 81
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Outline

* Overview of advances in deep generative models

« Backgrounds of deep generative models
« Wake sleep algorithm
* Variational autoencoders
» Generative adversarial networks

* A unified view of deep generative models
* new formulations of deep generative models
« Symmetric modeling of latent and visible variables

© Petuum,Inc. 82
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Outline

« Overview of advances in deep generative models

« Backgrounds of deep generative models
« Wake sleep algorithm
« Variational autoencoders
» Generative adversarial networks

* A unified view of deep generative models
* new formulations of deep generative models
« Symmetric modeling of latent and visible variables

© Petuum,Inc. 83



~  PETUUM

Deep generative models

 Define probabilistic distributions over a set of variables
« 'Deep’ means multiple layers of hidden variables!

i

© Petuum,Inc. 84
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Early forms of deep generative models

* Hierarchical Bayesian models

e Sigmoid brief nets [neal 1992] . 2
g 1992 1(1) _ {0’1}]
2y = {0,1)!

p (xkn = 1|9k»Z K )

)

© Petuum,Inc. 85
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Early forms of deep generative models

» Hierarchical Bayesian models

» Sigmoid brief nets eal 1992 89‘52382;"*
layer : o
* Neural network models V Vv CV)
 Helmholtz machines [Dayan et al.,1995] 21 O ;
o [0
z O00WOOO
inference : SHaaAHTe
weights ¢ B gweig ts
X OOO0OO
input

[Dayan et al. 1995]

© Petuum,Inc. 86
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Early forms of deep generative models

* Hierarchical Bayesian models
» Sigmoid brief nets [neal 1992)

 Neural network models
 Helmholtz machines [Dayan et al.,1995]
 Predictability minimization (schmidnhuoer 1995

DATA

Figure courtesy: Schmidhuber 1996
© Petuum,Inc. 87
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Early forms of deep generative models

* Training of DGMs via an EM style framework

« Sampling / data augmentation

zZ = {er ZZ}
neWNP(Zl |Z21 x)

Zq
new

z,°" ~p(z,|z7%", x)

 Variational inference
log p(x) = Eq z1x)[log pe(x,2)] —KL(qy(z|2x) || p(2)) = L(6, $; x)
maxg,(l,L(H, ¢; x)
« \Wake sleep
Wake: mingEq,, (z1x) llog pg (x|2)]
Sleep: mingE, x|z [log q¢(zlx)]

© Petuum,Inc. 88
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Resurgence of deep generative models

» Restricted Boltzmann machines (RBMS) ismokensky, 19z
 Building blocks of deep probabilistic models

hidden C& /Q //’

: XX factor: C‘(p(U,’ wij hj)

© Petuum,Inc. 89
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Resurgence of deep generative models

» Restricted Boltzmann machines (RBMS) ismokensky, 19z
 Building blocks of deep probabilistic models

° Deep belief networks (DBNS) [Hinton et al., 2006]
* Hybrid graphical model
* Inference in DBNs is problematic due to explaining away

° Deep Boltzmann Machines (DBMS) [Salakhutdinov & Hinton, 2009]

 Undirected model Deep Belief Network Deep Boltzmann Machine
h3
W3
h?( b
W2
h!( D)
Wl

v © Petuum,Inc. 90
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Resurgence of deep generative models

 Variational autoencoders (VAES) (kingma s weling, 2014]
/ Neural Variational Inference and Learning (NVIL) mnin & Gregor, 2014]

e
¢---t 0
ap@) || / pe (x17)
inference model | ° generative model
L N

Figure courtesy: Kingma & Welling, 2014

© Petuum,Inc. 91
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Resurgence of deep generative models

e \Variational autoencoders (VAES) [Kingma & Welling, 2014]
/ Neural Variational Inference and Learning (NVIL) mnin & Gregor, 2014]

» Generative adversarial networks (GANS)

zgen —> mgen

Ldata

Gg: generative model
code data/gen Dy: discriminator

© Petuum,Inc. 92
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Resurgence of deep generative models

 Variational autoencoders (VAES) (kingma s weling, 2014]
/ Neural Variational Inference and Learning (NVIL) mnin & Gregor, 2014]

» Generative adversarial networks (GANS)
* Generative moment matching networks (GMMNS) (et at. 2015; Driugaite e

al., 2015]

© Petuum,Inc. 93
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Resurgence of deep generative models

 Variational autoencoders (VAES) (kingma s weling, 2014]
/ Neural Variational Inference and Learning (NVIL) mnin & Gregor, 2014]

» Generative adversarial networks (GANS)
* Generative moment matching networks (GMMNS) (et at. 2015; Driugaite e

al., 2015]

» Autoregressive neural networks

A

© Petuum,Inc. 94
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Outline

» Overview of advances in deep generative models

« Backgrounds of deep generative models
* Wake sleep algorithm
 Variational autoencoders
» Generative adversarial networks

* A unified view of deep generative models
* new formulations of deep generative models
« Symmetric modeling of latent and visible variables

© Petuum,Inc. 95
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Synonyms in the literature

 Posterior Distribution -> Inference model
 Variational approximation
« Recognition model
 Inference network (if parameterized as neural networks)
« Recognition network (if parameterized as neural networks)
 (Probabilistic) encoder

* "The Model" (prior + conditional, or joint) -> Generative model
* The (data) likelihood model
» Generative network (if parameterized as neural networks)
« Generator
 (Probabilistic) decoder

© Petuum,Inc. 96
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Recap: Variational Inference

« Consider a generative model pg(x|z), and prior p(z)
- Joint distribution: pg(x, z) = pg(x|2)p(2)

* Assume variational distribution g4 (z|x)
» Objective: Maximize lower bound for log likelihood
log p(x)

= KL (412 11 po(z10)) + [ g (212 log?? 2

q¢(z|x)

Po (x, Z)
q¢ (2]x)

qu¢(ZIx) log
= L(0, P; x)
« Equivalently, minimize free energy

F(0,¢;x) = —logp(x) + KL(qy(2|x) || pe(2z|x))

© Petuum,Inc. 97



PETUUM

Recap: Variational Inference

Maximize the variational lower bound L(8, ¢; x)
» E-step: maximize £ wrt. ¢ with 0 fixed

maxyL(0, ¢; x) = Eq 2 x)llog pe(x]2)] + KL(q4 (z]x)||p(2))
 |f with closed form solutions

Qg (z|x) o exp[log pg(x,2)]
* M-step: maximize £ wrt. 8 with ¢ fixed
maxgL(0, ¢; x) = Eg (z)x)llog pe(x]2)] + KL(q4(z]x)||p(2))

© Petuum,Inc. 98
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Recap: Amortized Variational Inference

- Variational distribution as an inference model g4 (z|x) with
parameters ¢

« Amortize the cost of inference by learning a single data-
dependent inference model

* The trained inference model can be used for quick inference
on new data

* Maximize the variational lower bound £(0, ¢; x)
« E-step: maximize £ wrt. ¢ with @ fixed
« M-step: maximize L wrt. 8 with ¢ fixed

© Petuum,Inc. 99
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Deep generative models with amortized inference

 Helmholtz machines

 Variational autoencoders (VAES) / Neural Variational Inference
and Learning (NVIL)

* We will see later that adversarial approaches are also included
INn the list

* Predictability minimization (PM)
« Generative adversarial networks (GANS)

© Petuum,Inc. 100
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Wake Sleep Algorithm

 [Hinton et al., Science 1995]

 Train a separate inference model along with the generative model
« Generally applicable to a wide range of generative models, e.g., Helmholtz machines

« Consider a generative model pg(x|z) and prior p(z)
 Joint distribution pg(x, z) = pg(x|2)p(2)
« E.g., multi-layer brief nets

* Inference model q4(z]x)

« Maximize data log-likelihood with two steps of loss relaxation:

« Maximize the lower bound of log-likelihood, or equivalently, minimize the free
energy

F(0,¢;x) = —logp(x) + KL(q4(2z|x) || pe(2z|x))

« Minimize a different objective (reversed KLD) wrt ¢ to ease the optimization
» Disconnect to the original variational lower bound loss

F'(8,¢;x) = —logp(x) + KL(pg(z|x) || q¢(2]x))

© Petuum,Inc. 101
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Wake Sleep Algorithm .f 060
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* Free energy:
F(6,¢;x) = —log p(x) + KL(qp(z|x) || pe(z|x))
* Minimize the free energy wrt. @ of py > wake phase
maxg Eqz1x) [108 Pe(x, 2)]

« Get samples from g4 (z|x) through inference on hidden variables

« Use the samples as targets for updating the generative model pg(z|x)
« Correspond to the variational M step

[Figure courtesy: Maei’s slides] © Petuum, Inc. 102
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Wake Sleep Algorithm

* Free energy:
F(0,¢;x) = —logp(x) + KL(qp(z|x) || pe(z|x))

* Minimize the free energy wrt. ¢ of q4(z|x)

» Correspond to the variational E step
« Difficulties: pB(Zi x)

« Optimal | pe(z,x) dz intractable
» High variance of direct gradient estimate VpF (6, $;x) = -+ + Vg Eq, (21 [l0g Do (2, x)] + -
« Gradient estimate with the log-derivative trick:

VpEq,llog el = | Vyaglogpe = | qglog pg Vglog qp = Eq,[log pg Vglog qg]
* Monte Carlo estimation:
VpEq,llogpel = Ey_q,[l0g pe(x, ;) Vipqe(z:]x)]

* The scale factor log py of the derivative Vylog q4 can have arbitrary
large magnitude

qe(z|x) =

© Petuum,Inc. 103
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Wake Sleep Algorithm X 3 1
R1f VG,

X SO0 OO0 O

* Free energy:
F(0,¢; x) = —log p(x) + KL(q(z|%) || pe(z]x))
« WS works around the difficulties with the sleep phase approximation
* Minimize the following objective = sleep phase
F'(0, ¢; x) = —log p(x) + KL(pe(z|x) || g4 (2]x))
maxg Epg ) [l0g 44 (2]%)]

“Dreaming” up samples from pg(x|z) through top-down pass
« Use the samples as targets for updating the inference model

» (Recent approaches other than sleep phase is to reduce the variance of
gradient estimate: slides later)

[Figure courtesy: Maei’s slides] © Petuum,Inc. 104
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Wake Sleep Algorithm

Wake sleep Variational EM

- Parametrized inference model g4 (z|x) - Variational distribution q¢(z]x)

« Wake phase: » Variational M step:
 minimize KL(qg(z|x) || pe(z|x)) wrt. 6 * minimize KL(q4(z|x) || pg(z]x)) wrt. 6
* Eqyn) [Volog pe(x|2)] * Eqy(ziv) [Volog pe(x|2)]

» Sleep phase: « Variational E step:
« minimize KL(py(z|x) || q¢(2z|x)) wrt. ¢ « minimize KL(q4(z|x) || pe(z|x)) wrt. ¢
* Ep 20 [\7¢10g (2, x)] * g4  exp[log py] if with closed-form
- low variance * VpEq,llog pg(z x)]
* Learning with generated samples of x  need variance-reduce in practice

* Learning with real data x

* Two objective, not guaranteed to converge ¢ Single objective, guaranteed to converge
© Petuum,Inc. 105
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Variational Autoencoders (VAES)

* [Kingma & Welling, 2014]

* Use variational inference with an inference model
* Enjoy similar applicability with wake-sleep algorithm

« Generative model pg(x|z), and prior p(z) , __|

o Joint distribution pg(x, z) = pg(x|2z)p(2)
q¢(2]|x)

» Inference model g (z|x) inference model

generative model

Figure courtesy: Kingma & Welling, 2014

© Petuum,Inc. 106
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Variational Autoencoders (VAES)

e Variational lower bound
L(6,$;x) = Eq zix)[log pe(x,2)| —KL(q4(z|x) || p(2))

« Optimize L(0, ¢p; x) wrt. 8 of py(x|2)
* The same with the wake phase

* Optimize L(0, ¢; x) wrt. ¢ of g4 (z]x)

Vo L(0,¢;x) =+ VyEqg 212 [log po (x]2)] + -

» Use reparameterization trick to reduce variance

* Alternatives: use control variates as in reinforcement learning [Mnih &
Gregor, 2014; Paisley et al., 2012]
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Reparametrized gradient

* Optimize L(0, ¢; x) wrt. ¢ of g4 (z]x)
* Recap: gradient estimate with log-derivative trick:
VpEq,llogpe(x,2)| = Eg [log pe(x, z) Vplog qy)

« High variance: VoEq, [log pel = E,,_q,[log pe(x,2;) Vipqe(zi]%)]
 The scale factor log pg (x, z;) of the derivative Vylog q4 can have arbitrary large
magnitude

» gradient estimate with reparameterization trick
z~qep(zlx) & z=gu(€ex), € ~ p(€)
VoEqyzix) llog pg(x,2)] = Ec-p(e) [\7¢10g Do (x, Zy (e))]

» (Empirically) lower variance of the gradient estimate
- Eg., z~ N(u(x),L(x)L(x)T) & €~N(0,1), z=u(lx) + L(x)e
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VAEs: algorithm

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators in section 2.3 can be used. We use settings A/ — 100 and L — 1 in experiments,

0. ¢ « Initialize parameters
repeat
XM « Random minibatch of M datapoints (drawn from full dataset)
€ + Random samples from noise distribution p(€)
g Vool (0. ¢: XY, €) (Gradients of minibatch estimator (8))
0. ¢ « Update parameters using gradients g (e.g. SGD or Adagrad [DHS10])
until convergence of parameters (6, ¢)
return 6. ¢

[Kingma & Welling, 2014]
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VAEs: example results

* VAESs tend to generate blurred
images due to the mode covering
behavior (more later)

« Latent code interpolation and

sentences generation from VAEs
[Bowman et al., 2015].

(14 29

i want to talk to you .
“o want to be with you . ”
“o do n’t want to be with you .
1 do n’t want to be with you .
she did n’t want to be with him .

2

Celebrity faces [Radford 2015]
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Generative Adversarial Nets (GANS)

» [Goodfellow et al., 2014]

« Generative model x = Gg(z), z ~ p(2)
* Map noise variable z to data space x
» Define an implicit distribution over x: pg, (x)

* a stochastic process to simulate data x
 Intractable to evaluate likelihood

» Discriminator Dy (x)
« Qutput the probability that x came from the data rather than the generator
« No explicit inference model

« No obvious connection to previous models with inference networks like VAEs
« We will build formal connections between GANs and VAEs later
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Generative Adversarial Nets (GANS)

» Learning

* A minimax game between the generator and the discriminator

* Train D to maximize the probability of assigning the correct label to both
training examples and generated samples

* Train G to fool the discriminator
maxp Lp = ]Ewdiata(iB) [log D(ZB)] + ]EchG(z),sz(Z) [10g(1 o D(CC))]
minG EG = ]Ea:NG(z),sz(z) [log(l — D(w))] .

> 1(Real)

_ ‘ . ‘ ' o{fake)
(discnminatory~._
A
real image 1(real)

| — Discriminator training
Z: No — Generator training

fake image © Petuum,Inc. 112

[Figure courtesy: Kim'’s slides]
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Generative Adversarial Nets (GANS)

» Learning

 Train G to fool the discriminator
* The original loss suffers from vanishing gradients when D is too strong
 Instead use the following in practice

[Figure courtesy: Kim'’s slides]

r N0

(generator)

1(Real)
O(fake)

1(real)

— Discriminator training
— Generator training

fake image
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Generative Adversarial Nets (GANS)

» Learning
« Aim to achieve equilibrium of the game
« Optimal state:
* Dg (x) = Paata(X)

R _ Pdata(X) _ 1
D(x) = o @ 2

1(Real)
O(fake)

1(real)

— Discriminator training
o ks — Generator training

fake image

© Petuum,Inc. 114
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GANSs: example results

) “ - ' '
: - ’. an ‘"’ 3 3 4 ‘ .
¥’ : - .
\. : %
- . ) - -

Generated bedrooms [Radford et al., 2016]
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Alchemy Vs Modern Chemlstry

A vy 8 1)) podels wirk & dord perple comvr

I BB v
stcnmmator Network

Vi, iy o= e 8
R o
{ ‘-\ae e B
Generator Network |
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Outline

» Overview of advances in deep generative models

» Backgrounds of deep generative models
« Wake sleep algorithm
 VVariational autoencoders
« Generative adversarial networks

* A unified view of deep generative models
* new formulations of deep generative models
« Symmetric modeling of latent and visible variables

Z Hu, Z YANG, R Salakhutdinov, E Xing,
“On Unifying Deep Generative Models”, arxiv 1706.00550
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A unified view of deep generative models

* Literatures have viewed these DGM approaches as distinct
model training paradigms
* GANs: achieve an equilibrium between generator and discriminator
« VAEs: maximize lower bound of the data likelihood

* Let's study a new formulation for DGMs
 Connects GANSs, VAEs, and other variants, under a unified view

* Links them back to inference and learning of Graphical Models, and the
wake-sleep heuristic that approximates this

* Provides a tool to analyze many GAN-/VAE-based algorithms

« Encourages mutual exchange of ideas from each individual class of
models
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Adversarial domain adaptation (ADA)

o Let’s start from ADA

* The application of adversarial approach on domain adaptation
« We then show GANs can be seen as a special case of ADA

» Correspondence of elements:
Zgen —bmgen
Go \
Elements GANSs ADA GANs bl ¥
CBclata/
X data/generation features
code data/gen
Data from src/tgt
z code vector . Ztgt —»|Ttgt
domains Gy
S It t ADA A
L ource/targe Zorel—p|Tore
y Real/fake indicator domain indicator Gy

data feature
© Petuum,Inc. 119
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Adversarial domain adaptation (ADA)

» Data z from two domains indicated by y € {0,1}
« Source domain (y = 1)
» Target domain (y = 0)

* ADA transfers prediction knowledge learned from the
source domain to the target domain
« Learn a feature extractor Gg: x = Gg(2)
« Wants x to be indistinguishable by a domain discriminator:
Dy (x)
« Application in classification
* E.g., we have labels of the source domain data

 Train classifier over x of source domain data to predict the
labels

« x is domain invariant = x is predictive for target domain
data

Ztgt

—P»|Ltgt

ZS’T‘C

data

—p| L src

feature
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ADA: conventional formulation

* Train Dy to distinguish between domains
MaXdg £¢ = Ew:GQ(Z),sz(ZhJ:].) [log qu(w)] + IE:c:G(,-;(z),zwp(zly:O) [10g<1 o D¢(w))]
* Train Gy to fool Dy,

maXeg CO — Ew:GQ (2),z~p(z|ly=1) [log(l o D¢(m))] + ECBZGG (2),z~p(2z|y=0) [log D¢(CE)]
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ADA: new formulation

To reveal the connections to conventional variational approaches, let's rewrite
the objectives in a format that resembles variational EM

Implicit distribution over x ~ pg(x|y)
x = Gg(2), z ~ p(zly)

Discriminator distribution g4 (y|x)
qp(V|x) = qp(1 — y|x)

Rewrite the objective in the new form (up to constant scale factor)
maxg Lo = Ep, (aly)p(y) [108 4o (y|T)]
maxg Lo = Ep, ly)p(y) (108 7 (ylz)]

* z is encapsulated in the implicit distribution pg(x|y)

maXe [fqb — ]Epg (x|y=0)p(y=0) [log Q¢>(y — 0|$)] + ]Epe (z|ly=1)p(y=1) [log %(y = 1|:B)]

1 1
— iEm:GQ(z),sz(zw:O) [1Og(1 — DQS(m))] + EECBZGe(z),ZNP(ZWZU [lOg D¢($)]

» (Ignore the constant scale factor 1/2)

© Petuum,Inc. 122



~ PETUUM

ADA: new formulation

 New formulation

maxe Lo = Epg(a)y)p(y) 108 40 (y|2)]
maxg Lo = Ep, (z]y)p(y) [108 75 (y]x)]

* The only difference between 8 and ¢: q vs. q"
 This Is where the adversarial mechanism comes about
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ADA vs. Variational EM

Variational EM ADA

« Objectives « Objectives

maxyLye = Eqyzx)[log pe(x|2z)] + KL (Chp (le)llp(Z)) maxe Lo = Ep, (a|y)p(y) [108 45 (y[2)]
maxgLgyg = Eqp(zlx) [log pg(x]2)] + KL (q¢,(z|x)||p(z)) maxg Lo = Ep, (x)y)p(y) [log q;;(y|w)]
. L « Two objectives
» Single objective for both 8 and ¢ . .
_ o * Have global optimal state in the game
« Extra prior regularization by p(z)

theoretic view
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ADA vs. Variational EM

Variational EM ADA
« Objectives « Objectives
maxgLeye = Eqyzpxllogpe(x]2)] + KL (CI¢ (le)llp(Z)) maxg Lo = Ep, (z)y)p(y) 108 70 (y]2)]
maX9L¢’g = Eq¢(z|x) [lOg Do (XlZ)] + KL (Q¢(Z|X)||p(Z)) maxg Lg = Epg (x|y)p(y) [lOg q:b(y|w)]
. L » Two objectives
» Single objective for both 8 and ¢ . .
, S « Have global optimal state in the game
« Extra prior regularization by p(z) theoretic view
* The reconstruction term: maximize the conditional  « The objectives: maximize the conditional
log-likelihood of x with the generative dist_ribution log-likelihood of y (or 1 — y) with the
pe(x|z) conditioning on the latent code z inferred distribution g4 (y|x) conditioning on latent
by gy (zlx) feature x inferred by pg (x|y)

- -

* po(x|z) is the generative model - Interpret g4 (y|x) as the generative model
¢ q¢(Z|X) IS the inference model . |n’[erpre’[ Dg (\le) as the mf%rggcg mgge|
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ADA: graphical model

Define:

 Solid-line arrows (x — y):
e generative process

* Dashed-line arrows (y,z — x):
e inference

* Hollow arrows (z — x):
« deterministic transformation
* leading to implicit distributions
* Blue arrows (x — y):
» adversarial mechanism
» involves both g4 (y]x) and qg (y]x)

a5 (yz)
po(x|y)

maxep Lo = Ep,(z)y)py) 108 g6 (y[2)]
maxg Lo = Ep, (z|y)p(y) 108 45 (yl))
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GANSs: a variant of ADA

 Transfer the properties of source domain to target domain
e Source domain: e.g. real image, y =1
e Target domain: e.g. generated image, y = 0

Ztgt

—»|Ligt

Go

ZS’I"C

—p| L 51 c
Go

data

feature

ADA

Zgen

—P|Lgen

code

Ldata

data/gen
GANSs
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GANSs: a variant of ADA

e Implicit distribution over x ~ pg(x|y)

Pgo (az) y =20 (distribution of generated images)

p(aly) = {

Ddata(®) 1y = 1.  (distribution of real images)
X ~ g, (X) = x = Go(2), z ~ plaly = 0)
* X ~ Paata(X)

 the code space of z is degenerated
* sample directly from data
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GANSs: new formulation

« Again, rewrite GAN objectives in the "variational-EM” format

» Recap: conventional formulation:
maxg Ly = Ea—gy(2),2~p(zly=0) 108(1 = Dy (®))] + Egrpyy, (@) [log Dy ()]
maxg Lo = Ep—G,(2),2~p(2ly=0) 108 Dy ()] + Earp,pya (x) 108(1 — Dy())]

— Ew:Ge (z),z~p(z|y=0) :10g D¢ (w)] (7“) ( ‘ )
« Rewrite in the new form Ay \YIL
maxg Lo = Ep (@]y)p(y) 108 g0 (y]2)] @
maxg Lo = Epy (@)y)p(y) 108 ¢4 (y|)] A L
pe(w\y)

« Exact the same with ADA |
* The same correspondence to variational EM !
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GANSs vs. Variational EM

Variational EM GAN

» Objectives « Objectives
maxgLeye = Eqyzpxllogpe(x]2)] + KL (CI¢ (le)llp(Z)) maxg Lo = Ep, (z)y)p(y) 108 70 (y]2)]
maX9L¢’g = Eq¢(z|x) [lOg Do (XlZ)] + KL (Q¢(Z|X)||p(Z)) maxg Lg = Epg (x|y)p(y) [lOg q:b(y|w)]

» Two objectives

* Single objective for both 6 and ¢ « Have global optimal state in the game

« Extra prior regularization by p(z) theoretic view
* The reconstruction term: maximize the conditional  « The objectives: maximize the conditional
log-likelihood of x with the generative distribution log-likelihood of y (or 1 — y) with the
pe (x|z) conditioning on the latent code z_ inferred distribution g (y|x) conditioning on
by qg(z]x) data/generation x inferred by pg (x|v)
* po(x|z) is the generative model - Interpret g4 (y|x) as the generative model

¢ q¢(Z|X) IS the inference model . |n’[erpre’[ Dg (\le) as the mf%rggcg mgge|
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1t * Int t latent variabl
GANSs vs. Variational EM ! et sevrsionixss

performing inference over latent

Variational EM GAN

» Objectives « Objectives
maxgLeye = Eqyzpxllogpe(x]2)] + KL (CI¢ (le)llp(Z)) maxg Lo = Ep, (z)y)p(y) 108 70 (y]2)]
max9£¢’g = Eq¢(z|x) [lOg Do (XlZ)] + KL (q(P(ZlX)”p(Z)) maxg Lg = Epg (x|y)p(y) [lOg q:b(y“c)}

» Two objectives

* Single objective for both 6 and ¢ « Have global optimal state in the game

« Extra prior regularization by p(z) theoretic view
* The reconstruction term: maximize the conditional  « The objectives: maximize the conditional
log-likelihood of x with the generative distribution log-likelihood of y (or 1 — y) with the
pe (x|z) conditioning on the latent code z_ inferred distribution g (y|x) conditioning on
Dy q4(z|x) data/generation x inferred by pa (x|y)
* po(x|z) is the generative model » Interpret q4(y|x) as the generative model

¢ q¢(Z|X) IS the inference model . |n’[erpre’[ Dg (\le) as the mf%rggcg mgge|
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GANSs: minimizing KLD

* As in Variational EM, we can further rewrite in the form of minimizing KLD
to reveal more insights into the optimization problem

» For each optimization step of pg(x|y) at point (6 = 8y, ¢ = ¢y), let
* p(y): uniform prior distribution

* Po=g,(®) = Epiyy|[Po=s, (x17)]
* " (xly) % qp=p (VIX)Po=g,(X)
« Lemma 1: The updates of 8 at 8, have

Vo | = Eps@lypy) log qj—g, (y])] ] ‘9:90 -

Vo Epy) KL (pa(@ly) 4" (@]y))] ~ ISD (po(ly = 0)[lpa(aly = 1)) |

« KL: KL divergence
« JSD: Jensen-shannon divergence

0—0,
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Proof of Lemma 1

Proof.
Epy (zly)p(y) log " (y])] = )
— Epy) [KL (po(x|y)llq" (x]y)) — KL(pg(x|y)||pe, ()],
where
Epy) [KL(pa(x|y)|Ipe, ())]
=p(y =0)-KL (pe(a:!y — )2y =0) +p90 i ) 4)
+p<y=1>-KL(pe<mry=1>||p9°("”'y_0)‘;p90( =),

g + ata
Note that pp(x|y = 0) = py, (), and pg(z|y = 1) = paara(x). Let prr, = 22274 Eq.(4) can
be simplified as:

1
SKL (Pdatallpas,, ) - (5)

Byp(y) [KL(po (2ly)lIpo, (2))] = %KL (Paollpass, ) + 5
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Proof of Lemma 1 (cont.)

On the other hand,

1 p 1 Pdata
JSD(pgo [Pdata) = §Epgg log Zﬁ] + E]Epdata llog d ]
]

1 Dg
= §Epg9 o

1 Pdata
+ -E log ——
2 Pdata [ g pMQO

1
+ §]Ep ot llog PMoy } (6)
PM,

1 D
= §Ep99 [1og Lgo

1
+ _Epdam log DPdata
DMy,

2 P Mo,

+E, M, [log

1 1
= KL (Pgo Pty ) + KL (PdatallPaze, ) — KL (D2, P01, ) -

Note that

VoKL (par, Ipasy, ) =6, = 0. (7)
Taking derivatives of Eq.(5) w.r.t 8 at 6y we get

VoEy(y) [KL(po([y)lpa, ()] [o=0,

1 1
=Vy <§KL (g lIPat6, ) lo=0, + SKL (pdata“ngO)) |l0=0, (8)

2
= VgJSD(pge ||pdata) |9=90 :

Taking derivatives of the both sides of Eq.(3) at w.r.t @ at 6, and plugging the last equation of Eq.(8),
we obtain the desired results. U
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GANSs: minimizing KLD

« Lemma 1: The updates of 8 at 8, have

Vo - Epe (x)y)p(y) [log =g (y\w)} } ‘9:90 -

Vo [Epuy KL (pa(@ly) " (2]))] — ISD (po(@ly = ) |po(aly = 1)) ||

« Connection to variational inference
« See x as latent variables, y as visible
* Pg=g,(x): prior distribution
e q"(x|y) « qu%(ylx)p@:go(x) . posterior distribution
* pg(x|y): variational distribution
« Amortized inference: updates model parameter

» Suggests relations to VAEs, as we will explore shortly

60=0,
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GANSs: minimizing KLD

 Lemma 1: The updates of 8 at 8, have

Vo - Epy (aly)p(y) 108 @o—g, (y]2)] ] |9:00 B

Vo [Epiy) KL (9o (ly) 4" (2]))] — ISD (poaly = 0) [pa(aly = 1)) ||

6=0,

* Minimizing the KLD drives pg, (x) 10 paqta (X)

+ By definition: py—g, () = By [Po=s, (19| = (Pgyge () + Paata ) / 2
« KL(pg(xly = D]Iq" (x|ly = 1)) = KL(paara (®)]1q" (x|ly = 1)) : constant, no free parameters
* KL(py(xly = 0)]lg" (x|y = 0)) = KL (pge(x)nq’”(xly = 0)) . parameter 6 to optimize
* q"(xly = 0) € qp_¢ (v = 0[X)pg=4, (x)
* seen as a mixture of pye:eo(x) and pgqea (x)
* mixing weights induced from qu(po(y = 0]x)
* Drives py,(x|y) to mixture of pge:eo(x) and pgqea ()
= Drives pg, () 10 Paata (%) © Petuum,Inc. 136
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GANS: minimizina KLD

Po=9, Xy = 1) = Paata (X)  Po=g, Xy = 0) = pg,_, ()

Po=gnew (xly = O) = pggzgnew (x)

PR

-
——————

* Minimizing the KLD drives pg, (x) 10 paqta (X)
+ By definition: py—g, () = By [Po=s, (19| = (Pgyge () + Paata ) / 2
« KL(pg(xly = D]Iq" (xly = 1)) = KL(paara (®)]1q" (x|ly = 1)) : constant, no free parameters
* KL(pg(xly = 0)]lg" (x|y = 0)) = KL (pge(x)nq’"(xly = 0)) . parameter 0 to optimize

* q"(xly = 0) < qg_p (v = 01X)pg=g,(x) 0§ (ylx)
* seen as a mixture of pge:eo(x) and pgqea (x) @
o . . ' T — \\ ,'
mixing weights induced from q¢=¢0(y 0]x) 4<a§9("’?/>

* Drives py,(x|y) to mixture of pg9=90(x) and pgqea ()
= Drives Py (x) to pdata(x) © Petuum,Inc. 137
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GANSs: minimizing KLD

Po=9, Xy = 1) = Paata (X)  Po=g, (Xly = 0) = pg,_, (x)

> _\ Pomgren (2ly = 0 =D, ()
missed mode ," N\ _/', R
= X_Z ___-- -’ S
» Missing mode phenomena of GANs KL (pg, COIlq” (xly = 0))
« Asymmetry of KLD Pg,(X)
=jpg6(x) log— ——dx
« Concentrates pg(x|y = 0) to large q" (x|ly = 0)

modes of " (x|y)
= (x) mi dJ f » Large positive contribution to the KLD in the
PgeX) MISSES MOAES O Pyqtq (x) regions of x space where g" (x|y = 0) is

* Symmetry of JSD small, unless p,, (x) is also small

» Does not affect the behavior of * = Py, (%) tends to avoid regions where
mode missing q"(x|y = 0) is small
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GANSs: minimizing KLD

. Lemmq 1. The updates of 8 at 8, have

Vo

Vo

—Ep i) 0805, 01)] || o =

:Ep<y> (KL (pe(z|y)|lq" (2|y))] — JSD (pg(x|y = 0)||pe(x|y = 1))} ‘9:90

« No assumption on optimal discriminator q},’,o(ylx)

» Previous results usually rely on (near) optimal discriminator
* ¢y = 1x) = Paata(*)/Paata(X) + Pg (%))
« Optimality assumption is impractical: limited expressiveness of Dy [Arora et al 2017]
« Qur result is a generalization of the previous theorem [Arjovsky & Bottou 2017]
» Plug the optimal discriminator into the above equation, we recover the theorem

Vo[ = Byycatnpin o8 i 012)] |

1
= Vo | 3KL (s [paaa) = 35D (g )|

0=0 0=0,

« Give insights on the generator training when discriminator is optimal
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GANSs: minimizing KLD

In summary:

* Reveal connection to variational inference
» Build connections to VAEs (slides soon)
* Inspire new model variants based on the connections

« Offer insights into the generator training
« Formal explanation of the missing mode behavior of GANSs

o Still hold when the discriminator does not achieve its optimum at each
iteration
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Variant of GAN: InfoGAN

« GANs don't offer the functionality of inferring code z given dat

e INfOGAN [Chen et al., 2016]
* Introduce inference model @, (z|x) with parameters n
« Augment the objectives of GANs by additionally inferring z
maxp Lp = Egp,.,.(z) 102 D(x)] + Epng(z),2~p(z) log(l — D(x))],
maxq,Q £6,Q = EznG(2),2~p(z) 108 D()+1og Q(z|x)] .

Cn
<+
Zgen F—P|Lgen
g G@ g den Ge’ wgen
D¢ Yy D¢ Y
GANs InfoGAN
Ldata T data

code data/gen code data/gen

w(zlz,y) ¢ (ylz)
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INfoGAN: new formulation

w(zlz,y) ¢ (ylz)

- Defines conditional g, (z|x, y)

* qn(z|x,y = 1) is fixed without free parameters to learn
« As GANs assume the code space of real data is degenerated

 Parameters n are only associated with q,(z|x,y = 0)

 Rewrite in the new form:

maxg Lo = Ep, (w)y)p(y) [108 ¢y (2], y)ge (y|)]
maxe.n Lo, = Epy(zly)pey) 1108 ¢, (2|2, y)d} (y|x)]
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GANSs vs InfoGAN

Cn
<
Zgen G »|Lgen Zgen ?wgen
0 0
Ldata

Ldata

code data/gen code data/gen

¢\ (y|)

: w(zlz,y) ¢ (ylz)

O
qé‘;@y)

maxg Lo = Ep, (zy)p(y) 108 as(yle)]  maxe Lo =By, (@)y)p(y) 108 ¢, (2], 1) g0 (y] )]
maxg Lo = Epg (|y)p(y) 108 q;’;(y\az)] maxe,n Lo,y = Epy(aly)py) [log dn (@%Lfﬁ;n nzq;%(y’w)}
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INfoGAN: new formulation

w(zle,y) ¢ (ylz)

e Similar results as in GANs hold:
* Let q"(x|z,y) o« qy=n, (21X, ¥)qp=¢ , (¥ |X)Do =6, ()
 \We have:

po(x|y)

Vo | = Epy@iypw) [108 @ (212, 9)g5, (y]z)] ] ’0:90 B

\ :Ep@) KL (po(z|y)|lq" (x|2,y))] — ISD (po(x|y = 0)||pe(x|y = 1))} )

0=0,

* Next we show correspondences between GANs/InfoGAN and
VAES

© Petuum,Inc. 144



PETUUM

Relates VAEs with GANs

« Resemblance of GAN generator learning to variational
inference
« Suggest strong relations between VAEs and GANs

* Indeed, VAEs are basically minimizing KLD with an opposite
direction, and with a degenerated adversarial discriminator

an(zle,y)  a (yl2) m(zz.y) " WE) _ gegenerated
swap the generation (solid-line) discriminator
and inference (dashed-line)
processes of InfoGAN
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Recap: conventional formulation of VAES

* Objective:
maxg n L3y = Ep,o.o(@) [Ba, (2|2) 108 Do (x]2)] — KL(G, (2]2)||5(2))]

* p(z): prior over z

* Dg(x|z): generative model

* dn(z|x): inference model

* Only uses real examples from pg,4:4 (%), lacks adversarial mechanism

 To align with GANSs, let’s introduce the real/fake indicator y and
adversarial discriminator
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VAES: new formulation

« Assume a perfect discriminator q.(y|x)
« q.(y =1|x) = 1if x is real examples
* q.(y =0|x) = 1 if x is generated samples

* gt (ylx) :=q.(1 —y|x)
 Generative distribution

e L

 Let pg(z,y|x) < pg(x|z, V)p(z|y)p(y)
 Lemma 2

vae

o =2 Ep, (@) Eq, (zl2y)q (yle) 108 Po (2|2, y)] — KL(qn (2|2, y)q (y]z) Ip(2]y)p(y))]
=2-E —KL (q,(z|z,y)q; (y|x)||pe (2, y|z))] .

Pog (CB)
© Petuum,Inc. 147
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Lemma 2: sketch of proof

e Lemma 2
Ly'y =2-Bpy (@) |Eq, (z]2y)q" (y]2) 108 Do (2] 2, y)] — KL(qy (2|2, y)q: (y|2) Ip(2]y)p(y)))
=2-E —KL (q, (2|, y)q. (y|x)||pe(2, y|z))] -

Pog () [
* Proof
1 1
1) Expand Epy xnl-] =5 Epy xiy=1)l-1 +5Epy xly=0)l- ]

1 :
2) EEPQO(xW:O) [] IS constant

* Due to the perfect discriminator q; (y|x)
» Blocks out generated samples in the training loss

1 1
3) SEpy xiy=nl-1 =3 Epgaraol-]
 Recovers the conventional formulation © Petuum, Inc. 148
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Proof of Lemma 2

Proof. For the reconstruction term:

]Epeo(w) [Eqn(ZIw,y)QI(ylw) [logpe(ﬂi\z,y)]]
1
— iEpeo (xz|y=1) [Eqn(z\a:,y:()),y:()wq:(y‘w) [logpg(m|z, y= O)H

1 (25)
+ 5 Epsy @ly=0) [, (z1.9=1) y=1~aZ (s} [l08 Po(@|2,y = 1)]]

1 ~
= 5Bpiera(@) [Ea,(zl) 108 Do (w]2)]] + const,

where y = 0 ~ ¢} (y|x) means ¢ (y|x) predicts y = 0 with probability 1. Note that both ¢, (z|x,y =
1) and pg(x|2,y = 1) are constant distributions without free parameters to learn; g, (2|z,y = 0) =
gn(z|x), and pp(x|z,y = 0) = po(x|2).
For the KL prior regularization term:
Epe, () [KL(qy (2|2, y)q; (y]z)Ip(2]y)p(y))]
=Epy () U g (y|x)KL (g, (z|z, y)[|p(2]y)) dy + KL (g; (y|=)|p(y))
1 1 (26)
= 5Bpo, (ely=1) [KL (a5 (2], y = 0)||p(2]y = 0)) + const] + S By, (ajy=1) [const]
1

= 5 Bpaara (@) [KL(Gn (2]2)[[p(2))]
Combining Eq.(25) and Eq.(26) we recover the conventional VAE objective in Eq.(7) in the paper. [
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GANSs vs VAEs side by side

GANs (InfoGAN) VAEs
Generative gy () y=20 _ [pe(xlz) y=0
distribution po(z|y) = {pdaw(m) = 1. po(@|2,y) = {pdam(m) y=1
D(;?;Tig‘;?iitr?r qp(¥|%) q.(y|x), perfect, degenerated
#interence g, (z|x,y) of INfoGAN qn (2%, )
bt | Mine KL @e(xly) |1 4" (x12,¥)) | mingKL (g, (zlx,y)a (/Ix) || po (2, y12),
minimize

~ mingKL(Pg || Q) ~mingKL(Q || Py)
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Link back to wake sleep algorithm

 Denote
o | atent variables h
« Parameters 4

* Recap: wake sleep algorithm
Wake :  maxg By, (h|z)paaca (@) 108 o (2]R)]

Sleep : maxy Ep9 (x|h)p(h) [log q>\(h|a:)]
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VAEs vs. Wake-sleep

» Wake sleep algorithm
Wake :  maxg EC]A(h|w)pdata<w) [logpg (w‘h’)]

Sleep :  maxx E,, (z|n)pn) 10g qx(h|T)]
e Llethbez and Aben

= maxg By, (z|z)paas (@) [108Pa(x|2)], recovers VAE objective of optimizing 8
« VAEs extend wake phase by also learning the inference model (n)
maxe.n Ly = Eq, (2(2)paara (@) 108 Po(2|2)] =Ky, () [KL(q,(2z]2)][p(2))]

Minimize the KLD in the original variational free energy wrt. n

Stick to minimizing the wake-phase KLD wrt. both 8 and n

Do not involve sleep-phase objective

Recall: sleep phase minimizes the reverse KLD in the variational free energy
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GANSs vs. Wake-sleep

» Wake sleep algorithm
Wake :  maxg ]EQA(hlw)pdata(w) [logpg (w|h)]

Sleep . maxy Epg(w|h)p(h) [log qA(h\a})]
 Let hbe y, and A be ¢

= maxg K, (zly)py) 108 g6 (y|x)], recovers GAN objective of optimizing ¢

« GANs extend sleep phase by also learning the generative model (0)
Directly extending sleep phase: maxg Lg = Ep, (z(4)p(y) 108 ¢4 (y| )]

GANS: maxg Lo = Bp, @jy)p(y) [l0g 7 (y]z)]

The only difference is replacing q¢ with qg

This is where adversarial mechanism come about !

GANSs stick to minimizing the sleep-phase KLD

Do not involve wake-phase objective
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Mutual exchanges of ideas: augment the loss functions

GANSs (InfoGAN) VAEs
KLD to ming KL (pg(x|y) || " (x|z,y)) | mingKL(q,(z|x,y)q:(y|x) || pe(z, y[x))
minimize ~ mingKL(Pg || Q) ~mingKL(Q || Pg)

« Asymmetry of KLDs inspires combination of GANs and VAEs
 GANs: mingKL(Pg||Q) tends to missing mode
* VAEs: mingKL(Q||Pg) tends to cover regions with small values of pi4t4

N N
/.

[Figure courtesy: PRML] Mode covering Mode missing
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Mutual exchanges of ideas: augment the loss functions

GANSs (InfoGAN) VAEs
KLD to ming KL (pg(x|y) || " (x|z,y)) | mingKL(q,(z|x,y)q:(y|x) || pe(z, y[x))
minimize ~ mingKL(Pg || Q) ~mingKL(Q || Pg)

« Asymmetry of KLDs inspires combination of GANs and VAEs
 GANs: mingKL(Pg||Q) tends to missing mode
* VAEs: mingKL(Q||Pg) tends to cover regions with small values of pi4t4
« Augment VAEs with GAN 0SS [Larsen et al., 2016]
 Alleviate the mode covering issue of VAEs
* Improve the sharpness of VAE generated images
« Augment GANs with VAE 10SS [Che et al., 2017]
* Alleviate the mode missing issue of GANs
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Mutual exchanges of ideas: augment the graphical model

GANSs (InfoGAN) VAEs

Discriminator

distribution qe(yV[x) q.(y|x), perfect, degenerated

» Activate the adversarial mechanism in VAEs
« Enable adaptive incorporation of fake samples for learning
 Straightforward derivation by making symbolic analog to GANs

w(zley) o7 (ylz)

I
Po (33 ‘ Zz y)
Vanilla VAEs Adversary Activated VAEs
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Adversary Activated VAEs (AAVAE)

e Vanilla VAEs:

maXe.n Liy = Ep, @) [Eq, (21z,9)07 (1) 108 Po (@2, 9)] — KL (g, (2], y)q: (y]) [ p(z]y)p(y))]

* Replace q.(y|x) with learnable one q4 (y|x) with parameters ¢
- As usual, denote reversed distribution qg (y[x) = q4(y[x)

maxe.n Lo, = Epy (a) [Eqn(z|w,y)q£(y|w) log pe(x|2,y)] — KL(qn(zIw,y)qé(y\w)Ilp(ZIy)p(y))}
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AAVAE: adaptive data selection

maxe,n 222\;;16 — Epgo () [Eqn(zm,y)qg(ym) [10gp9 (ZL‘|Z, y)] o KL(q77 (Z|CB, y)qg(y|w)||p(z|y)p(y))]

* An effective data selection mechanism:
« Both generated samples and real examples are weighted by

qp(y = 0|x) = q4(y = 1[x)
« Only samples that resembles real data and fool the discriminator will be used
for training

- A real example receiving large weight g4 (y|x)

= Easily recognized by the discriminator as real
= Hard to be simulated from the generator
= Hard examples get larger weights
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AAVAE: discriminator learning

« Use the binary classification objective as in GAN

maxey L4 = Epy(a|z,y)p(zlv)p(y) 108 26 (y]T)]
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AAVAE: empirical results

* Applied the adversary activating method on
 vanilla VAEs
* class-conditional VAEs (CVAE)
« semi-supervised VAEs (SVAE)
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AAVAE: empirical results

e Evaluated test-set variational lower bound on MNIST
* The higher the better

-90 -90 -90

« VAE A +—= CVAE , +—« SVAE
« -+ AA-VAE P » -+ AA-CVAE A » -+ AA-SVAE

=108 -~ -100 - -95
-110 ! -100

-110 ,
-120 -105

-120} -

.01 1 1. ~13%7 ] 1. 1%y A

« X-axis: the ratio of training data for learning (0.01, 0.1, 1.)
 Y-axis: value of test-set lower bound
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AAVAE: empirical results

« Evaluated classification accuracy of SVAE and AA-SVAE

1% 10%

SVAE 0.9412+.0039 0.9768+.0009
AASVAE 0.9425+.0045 0.9797+.0010

 Used 1% and 10% data labels in MNIST
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Mutual exchanges of ideas

 AAVAE enhances VAEs with ideas from GANSs

* \We can also enhance GANs with ideas from VAESs

« VAES maximize a variational lower bound of log likelihood
* Importance weighted VAE (IWAE) Bucaetal. 2016

* Maximizes a tighter lower bound through importance sampling

* The variational inference interpretation of GANs allows the
importance weighting method to be straightforwardly applied

to GANs
 Just copy the derivations of IWAE side by side with little adaptions!
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Importance weighted GANs (IWGAN)

» Generator learning in vanilla GANs

maxe Bgepg (@ly)p(y) 108 @, (U] )]

« Generator learning in IWGAN

ko g (ylxi) r
maxg Ky, xy~peo(x|y)p(y) [Z¢_1 %O (y|x;) log 9, (ylz:)
0 (/

 Assigns higher weights to samples that are more realistic and fool the
discriminator better
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IWGAN: empirical results

* Applied the importance weighting method to
e vanilla GANs
* class-conditional GANs (CGAN)

« CGAN adds one dimension to code z to represent the class label
» The derivations of the IW extension remain the same as in vanilla GANs
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IWGAN: empirical results

 Evaluated on MNIST and SVHN

« Used pretrained NN to evaluate:

* Inception scores of samples from GANs and IW-GAN

« Confidence of a pre-trained classifier on generated samples + diversity of
generated samples

MNIST SVHN

GAN 8.34+.03 5.18%.03
IWGAN  8.45+.04 5.34+.03

 Classification accuracy of samples from CGAN and IW-CGAN

MNIST SVHN

CGAN 0.985+.002 0.797x.005
IWCGAN  0.987£.002 0.798+.006

© Petuum,Inc. 166



~ PETUUM

Recap: Variational Inference

Maximize the variational lower bound L(0, ¢; x), or equivalently,
minimize free energy

F(0,¢;x) = —logp(x) + KL(q4(2|x) || pe(z]x))

» E-step: maximize £ wrt. ¢ with 8 fixed
maxyL(0, §; X) = Eg, (z1x)[log pe(x|2)] + KL(qy (z|x)||p(2))
* |f with closed form solutions
qe(z|x) o exp[log pg(x,z)]
* M-step: maximize L wrt. 8 with ¢ fixed

maxgL(0, ¢; x) = Eg (z)x)[log pe(x]2)] + KL(q4(z]x)||p(2))
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Discussion: Modeling latent vs. visible variables

» Latent and visible variables are traditionally distinguished
clearly and modeled in very different ways

* A key thought in the new formulation:

* Not necessary to make clear boundary between latent and visible
variables,

* And between inference and generation

* Instead treat them as a symmetric pair
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Symmetric modeling of latent & visible variables

* Help with modeling and understanding:

 Treating the generation space x in GANs as latent
* reveals the connection between GANs and ADA
 provides an variational inference interpretation of generation

Inference on features Treat generation of x
-l ™ ( ™ as performing
tat P LtgtN’ Zgemk T gen, S
TG 1----1 _’Ge._ _____ inference
Dol ¥ Dy |y
Zsrcp—P| Lsrc T
G9 data

data  feature code data/gen

ADA GANS © Petuum,Inc. 169
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Symmetric modeling of latent & visible variables

* Help with modeling and understanding:

 Treating the generation space x in GANs as latent
* reveals the connection between GANs and ADA
 provides an variational inference interpretation of generation

» Wake sleep algorithm
» wake phase reconstructs visible variables based on latents
 sleep phase reconstructs latent variables based on visibles

* latent and visible variables are treated in a completely symmetric
way
Wake: maxg Eqezin) log pe(x,2z)

Sleep: maX¢ Epe(z,x) 108 q¢ (le) © Petuum,Inc. 170
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Symmetric modeling of latent & visible variables

* New modeling approaches narrow the gap

Empirical distributions over visible  Prior distributions over latent variables
variables

- Impossible to be explicit distribution » Traditionally defined as explicit distributions, e.g.,

. . . Gaussian prior distribution
* The only information we have is . Amiable for likelihood uat
the observe data examples miable Tor fikelinood evaiuation

- We can assume the parametric form
according to our prior knowledge

* Do not know the true parametric
form of data distribution

- Naturally an implicit distribution * New tools to allow implicit priors and models

* GANS, density ratio estimation, approximate
Bayesian computations

« E.g., adversarial autoencoder [Makhzani et al., 2015]
replaces the Gaussian prior of vanilla VAEs
with implicit priors

« Easy to sample from, hard to
evaluate likelihood
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Symmetric modeling of latent & visible variables

* No difference in terms of formulations
« with implicit distributions and black-box NN models
* just swap the symbols x and z

Z ~ Pprior (2) X ~ Paata(X)
/

X ~ fblack—box(z) zZ~ f black—box(x)

prior distr.
X ~ pdata(x)
Z ~ f'piack—box (%)
Generation Inference
model model

Z ~ Pprior (Z)
X ~ foiack—box(2)
data distr. © Petuum,Inc. 172
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Symmetric modeling of latent & visible variables

 No difference in terms of formulations
« with implicit distributions and black-box NN models

 Difference in terms of space complexity
» depend on the problem at hand

* choose appropriate tools:
« implicit/explicit distribution, adversarial/maximume-likelihood optimization, ...

orior distr orior distr. adversarial loss 0 maximum likelihood loss
maxg logp(zprior|¢)

prior distr.

Generation Generation
model data di model Inference Inference
ata distr. model model

maxg logp(Xyeq|6) @ @
. ) . . ) ] um,Inc. 173
adversarial loss ° maximum likelihood loss data distr. data distr.
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Part-l I : ConCI USIOnS Z Hu, Z YANG, R Salakhutdinov, E Xing,

“On Unifying Deep Generative Models”, arxiv 1706.00550

* Deep generative models research have a long history
» Deep blief nets / Helmholtz machines / Predictability Minimization / ...

 Unification of deep generative models
 GANs and VAEs are essentially minimizing KLD in opposite directions
» Extends two phases of classic wake sleep algorithm, respectively
* A general formulation framework useful for
« Analyzing broad class of existing DGM and variants: ADA/InfoGAN/Joint-models/...
* Inspiring new models and algorithms by borrowing ideas across research fields

« Symmetric view of latent/visible variables

» No difference in formulation with implicit prior distributions and black-box NN
transformations

» Difference in space complexity: choose appropriate tools
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Plan

» Statistical And Algorithmic Foundation and Insight of Deep
Learning

* On Unified Framework of Deep Generative Models

« Computational Mechanisms: Distributed Deep Learning
Architectures
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Outline

» Deep Learning as Dataflow Graphs
» Auto-differentiable Libraries
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Outline

* Deep Learning as Dataflow Graphs
« Auto-differentiable Libraries
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A Computational Layer in DL

* A layer in a neural network is composed of a few finer
computational operations

« A layer [ has input x and output z, and transforms x into z following:
y=Wx+b,z=ReLU(y)

« Denote the transformation of layer [ as f;, which can be represented
as a dataflow graphs: the input x flow though the layer

—[ |- >
fi

e

|
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From Layers to Networks

* A neural network is thus a few stacked layers | =1, ..., L, where
every layer represents a function transform f;
« The forward computation proceeds by sequentially executing

fl!f2'f3' '"ifL

 Training the neural network involves deriving the gradient of its
parameters with a backward pass (next slides)
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A Computational Layer in DL

* Denote the backward pass through a layer [ as b,
 b; derives the gradients of the input x(dx),given the gradient of z as

dz, as well as the gradients of the parameters W, b

* dx will be the backward input of its previous layer [ — 1
« Backward pass can be thought as a backward dataflow where the

gradient flow through the layer

dx

—

dz

—

>

—

>—>@_‘§@

@5—?
T -
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Backpropagation through a NN

* The backward computation proceeds by sequentially
executing by, b;_1,b;_>, ..., by

nl] e b

A eee —
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A Layer as a Dataflow Graph

 Give the forward computation flow, gradients can be computed
by auto differentiation

« Automatically derive the backward gradient flow graph from the forward
dataflow graph
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A Network as a Dataflow Graph

» Gradients can be computed by auto differentiation

« Automatically derive the gradient flow graph from the forward dataflow

graph
O D B R/ S
[ JR———
by | | b, b, o)
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Gradient Descent via Backpropagation

« The computational workflow of deep learning
« Forward, which we usually also call inference: forward dataflow
« Backward, which derives the gradients: backward gradient flow
« Apply/update gradients and repeat

Backward
« Mathematically,

00 — o= 4 ¢.v,.(9~1) p)

Model parameters Forward Data
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Program a neural network

* Define a neural network
» Define operations and layers: fully-connected? Convolution”? Recurrent?
* Define the data I/O: read what data from where?

« Define a loss function/optimization objective: L2 loss? Softmax?
Ranking Loss?

« Define an optimization algorithm: SGD? Momentum SGD? etc

« Auto-differential Libraries will then take over
« Connect operations, data I/O, loss functions and trainer.
 Build forward dataflow graph and backward gradient flow graphs.
« Perform training and apply updates
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Outline

» Deep Learning as Dataflow Graphs
- Auto-differentiable Libraries
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Auto-differential Libraries

« Auto-differential Library automatically derives the gradients following the back-
propagation rule.

» A lot of auto-differentiation libraries have been developed:
« So-called Deep Learning toolkits

B® Microsoft
Caffe & caffe2 L2 CNTK

TensorFlow

‘rctomh PYTORCH
DyNet theano

‘o

Chainer

dmlc
mxnet
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Deep Learning Toolkits

* They are adopted differently in different domains

¢ FOI’ example B Microsoft
Caffe & Caffe2 L

TesorFon CNTK

.T‘mh PYTORCH
DyNet theano

<o

Chainer

dmlc
mxnet

—
Vision NLP
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Deep Learning Toolkits

* They are also designed ditferently

« Symbolic v.s. imperative programming

Caffe f'
TensorFlow
DyNet +Q+’ Caffe2
I torch
:\:. theano
Chainer
. dmlc
PYTORCH mxnet
—
Imperative Symbolic
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Deep Learning Toolkits

« Symbolic vs. imperative programming

« Symbolic: write symbols to assemble the networks first, evaluate later

» Imperative: immediate evaluation

Variable('A')

Variable('B")

B * A

C + Constant(1)

compiles the function

f = compile(D)

d = f(A=np.ones(18), B=np.ones(10)*2)

*t OO e

Symbolic

import numpy as np
a = np.ones(10)

b = np.ones(18) * 2

c =b*a

d=c+1
Imperative
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Deep Learning Toolkits

« Symbolic

+ Good
« easy to optimize (e.qg. distributed, batching, parallelization) for developers
* More efficient

* Bad
« The way of programming might be counter-intuitive
« Hard to debug for user programs
» Less flexible: you need to write symbols before actually doing anything

* Imperative:
« Good

« More flexible: write one line, evaluate one line
» Easy to program and easy to debug: because it matches the way we use C++ or python

+ Bad

» Less efficient
» More difficult to optimize
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Deep Learning Toolkits

* They are also designed ditferently
« For another example, dataflow graphs v.s. layer-by-layer construction

C a ffe Te n:E‘ﬂ ow
Q Caffe2
! torch DyNet theano
PYTHRCH Lo
Chainer dmlc
mxnet
—
Layer-by-layer Dataflow graphs

construction © Petuum,Inc. 193
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Good and Bad of Dataflow Graphs

 Dataflow graphs seems to be a dominant choice for representing
deep learning models

« What's good for dataflow graphs
» Good for static workflows: define once, run for arbitrary batches/data
* Programming convenience: easy to program once you get used to it.
» Easy to parallelize/batching for a fixed graph
« Easy to optimize: a lot of off-the-shelf optimization techniques for graph

« What's bad for dataflow graphs

Not good for dynamic workflows: need to define a graph for every training sample -
> overheads

« Hard to program dynamic neural networks: how can you define dynamic graphs
using a language for static graphs? (e.g. LSTM, tree-LSTM).

* Not easy for debugging.

« Difficult to parallelize/batching across multiple graphs: every graph is different, no
natural batching.
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Static vs. Dynamic Dataflow Graphs

» Static Dataflow graphs

» Define once, execute many times
» For example: convolutional neural networks
« Execution: Once defined, all following computation will follow the
defined computation
« Advantages
» No extra effort for batching optimization, because it can be by nature batched

* |t is always easy to handle a static computational dataflow graphs in all aspects,
because of its fixed structure

« Node placement, distributed runtime, memory management, etc.
» Benefit the developers
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Static vs. Dynamic Dataflow Graphs

* Dynamic Dataflow graphs

* When do we need?
 In all cases that static dataflow graphs do not work well

 Variably sized inputs
 Variably structured inputs

« Nontrivial inference algorithms
 Variably structured outputs

* Etc.
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Static vs. Dynamic Dataflow Graphs

« Can we handle dynamic dataflow graphs” Using static
methods (or declaration) will have a lot of problems
e Difficulty in expressing complex flow-control logic
« Complexity of the computation graph implementation
« Difficulty in debugging
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Introducing DyNet

» Designed for dynamic deep learning workflow, e.g.
Tree-LSTM for neural machine translation, where each sentence defines a structure that

corresponds to the computational flow

Graph-LSTM for image parsing, where each image has a specific connection between

segments
etc.

Words

word |
| ot
tedsng

- f \
LSTWowrroat | Ll o) |-
|

WST™Mow ™) ol Vol Jof oY
- L J J

Phrases

ooooooo
ooooooo
ccccccc

Sentences

o
&> o
/\X" S

Alice gave a message to Bob
R o >

o <& g

o <> <> > > >

<> ) e > £ <>
Documents

DO G- This film was completely unbelievable.
oéo« The characters were wooden and the plot was absurd.

.
000+ That being said, 1 liked it.
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Key Ingredients in DyNet

« Concept
« Separate parameter declaration and graph construction

» Declare trainable parameters and construct models first
« Parameters, e.g. the weight matrices in an LSTM unit.
« Construct a model as a collection of trainable parameters

« Construct computation graphs
« Allocate a few nodes for our computation (node can be seen as layers in NN)
« Specify the dataflow graph by connecting nodes together
» If necessary, different graphs for different input samples

« Conclusion: Define parameter once, but define graphs dynamically depending on inputs
model = dy.Model ()

pW = model.add parameters((20,4))
pb = model.add parameters (20)

dy.renew_cg()

x = dy.inputVector([1,2,3,4])

W = dy.parameter (pW) # convert params 't
b = dy.parameter (pb) # and add t

y=W?*x+Db
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Key Ingredients in DyNet

« Backend and programing model

« Graph construction
* In TensorFlow, constructing a graph has a considerable overhead.
» TensorFlow users avoid defining graphs repeatedly

« DyNet: highly optimized graph definition
« Little overhead defining a graph: good for dynamic neural networks.

« Easy to write recursive programs to define graphs (very effective for many
dynamic networks, such as tree-LSTM or graph-LSTM).
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Key Ingredients in DyNet

A visual comparison

class TreeRNNBuilder(object):
def __init__ (self, model, word vocab, hdim):

)

i

' self ¥ = model.add parameters((bdim, 2+hdis))

‘. solf E ~ model. add_lookup_parameters((lea(word_vocab) hdim))
’ solf w24 = word_vocadb

.

v dof encode(sel?, tree):

. if tree. isleaf():

' returs self Elself vw2i. get(tree. ladel,0))

" elif lez(troe.children) == 1: # snary nmode, skip
0 expr = self encode(tree.childrea(0))

" returs expr

] else:

" assert(len(tree. children) == 2)

" el = self encode(tree. children(0])

" ©2 ~ self encede(tree.children(i])

" W = dy parasetor(self W)

" expr ~ dy.tanh(¥Wedy.concatenate([el,e2])))

" returs expr

n sodel = dy.Model()
U_p = model.add_parameters((2,50))
tree_builder ~ TreoRNNBuilder(model, word. bulary, 50)
trainer ~ dy AdasTrainer(model)
for epoch in xrasge(10):
for ia_tree, out_label in read_examples():
dy renev_cg()
U = dy.parameter(U_p)
loss = dy.pickneglogsoftaax(Ustree_builder. escode(in_tree), ocut_label)
loss. forvard()
loss backvard()
trainer.update()

(20 0 B IR I I N I

DyNet TreeLSTM (30 LoC) TensorFlow TreeLSTM (200 LoC)
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Outline

* Overview: Distributed Deep Learning on GPUs
» Challenges 1: Addressing the communication bottleneck
« Challenges 2: Handling the limited GPU memory
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Review — DL toolkits on single machine

» Using GPU is a must

* A small number of GPU-equipped machines could achieve satisfactory

speedup compared to CPU clusters with thousands of cores

A cluster of 8 GPU-equipped machines
* A cluster of 2000 CPU cores

More readily
available to
researchers
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Review — DL toolkits on single machine

« However, using a single GPU is far from sufficient

« average-sized deep networks can take days to train on a single GPU when
faced with 100s of GBs to TBs of data

« Demand faster training of neural networks on ever-larger datasets

i 3

. g

X7 1 1 gigad

N\ 1 1 1,2 maasmﬂggﬂﬂmciun”‘
Bigndg auggodnatnatoy W9 BE

al 1258 gty U9 B9 TITIE

\“ i1 I8 §E4 TITLL

GooglLeNet, 10+ days

« However, current distributed DL implementations (e.g. in TensorFlow) can
scale poorly due to substantial parameter synchronization over the network
(we will show later)
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Outline

» Overview: Distributed Deep Learning on GPUs

* Challenges 1: Addressing the communication bottleneck
« Challenges 2: Handling the limited GPU memory
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Challenges

« Communication challenges
« GPUs are at least one order of magnitude faster than CPUs

GPU are faster High Comm
Load bottleneck

* High communication load raises the network commmunication as the main bottleneck
given limited bandwidth of commodity Ethernet

« Managing the computation and communication in a distributed GPU cluster often
complicates the algorithm design
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Let’s see what causes the problem

* Deep Learning on a single node — an iterative-convergent
formulation

0¥ =t~V te.v, (6"~ D)

Model parameters Forward Data

Apply gradients
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Let’s see what causes the problem

* Deep Learning on a single node — an iterative-convergent
formulation

Backward

91 —

Forward

Forward and backward are the main computation (99%) workload of deep
learning programs.
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Distributed Deep Learning

* Distributed DL: parallelize DL training using multiple machines.

* .. we want to accelerate the heaviest workload (in the box) to
multiple machines Backward

Forward

Forward and backward are the main computation (99%) workload of deep
learning programs.
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Data parallelism with stochastic gradient
descent

* We usually seek a parallelization strategy called data parallelism, based
on SGD

« We partition data into different parts
» |et different machines compute the gradient updates on different data partitions
» Then aggregate/sync.

Data @ UWorkeH Workerz' @Data
(one or more
machines)
Data
@ Worker 3 Worker?‘ @ bata
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Data Parallel SGD

» Data parallel stochastic gradient descent

» Data-parallelism requires every worker to have read and write
access to the shared model parameters 8, which causes
communication among workers; In total P workers

P
o+l — g() 4 ¢ Z Vﬁ(g(l‘),pg))
p=1

Data partition p

Collect and aggregate Happening locally on each worker
before application, where

communication is required
© Petuum,Inc. 212
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How to communicate

» Parameter server, e.g. Bosen, SSP
» A parameter server (PS) is a shared memory system that provides a
shared access for the global model parameters 6
* Deep learning can be trivially data-parallelized over distributed
workers using PS by 3 steps:

« Each worker computes the gradients (VL) on their own data partition
(D,,) and send them to remote servers;

* servers receive the updates and apply (+) them on globally shared
parameters;

« Each worker pulls back the updated parameters (6_t)
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How PS works

\791 \792
88

PS
0 0
Vo, Vo,
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Parameter Server

« Parameter server has been successful for CPU-based deep
learning

« Google Distbelief, Dean et al. 2012
« Scale up to thousands of CPU machines and 16000 CPU cores
« SSPTable, Ho et al, 2013
» Stale-synchronous parallel consistency model
* Microsoft Adam, Chilimbi et al. 2014
* 63 machines, state-of-art results on ImageNet 22K
« Bosen, Wei et al. 2015
« Managed communication
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Parameter Server on GPUs

 Directly applying parameter server for GPU-based distributed deep
learning will underperform (as will show later).
« GPU is too fast
» Ethernet bandwidth is limited, and has latency

« For example

* AlexNet: 61.5M float parameters, 0.25s/iteration on Geforce Titan X
(batchsize = 256)
« Gradient generation rate: 240M float/(s*GPU)
 Parallelize it over 8 machines each w/ one GPU using PS.

* To ensure the computation not blocked on GPU (i.e. linear speed-up with
additional nodes)
» As a worker: send 240M floats/s and pull back 240M floats/s (at least)
* As a server: receive 240M * 8 floats/s and send back 240M * 8/s (at least)
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Parameter Server on GPUs

e | et’'s see where we are

This is what the GPU
workstation in you lab has

Ethernet standards

Ethernet Rate(GBit/s) | Rate (Mb/s) | Rate (# floats/s)
1 GbE 1 125 31.25M

10 GbE 10 1250 312.5M

Infiband 40 5000 1250M

One of the most expensive instances

AWS could provide you (18%/h?)

Specialized hardware! Non-
commodity anymore, inaffordable
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Parameter Server on GPUs

The problem is more severe than described above
« We only use 8 nodes (which is small). How about 32,128, or even 2567

* We haven'’t considered other issues (which might be also
troublesome), e.g.

« Memory copy between DRAM and GPU will have a non-trivial cost

* The Ethernet might be shared with other tasks, i.e. available bandwidth is even
less.

« Burst communication happens very often on GPUs (which will explain later).
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Address the Communication Bottleneck

* A simple tact:
« Communication time may be reduced, but cannot be eliminated (of
course)

* Therefore, possible ideas to address the communication
bottleneck

* Hide the communication time by overlapping it with the computation
time
« Reduce the size of messages needed to be communications
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Address the Communication Bottleneck

* A simple tact:
« Communication time may be reduced, but cannot be eliminated (of
course).

* Therefore, possible ideas to address the communication
bottleneck

* Hide the communication time by overlapping it with the
computation time

« Reduce the size of messages needed to be communications
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Overlap Computation and Communication

 Revisit on a single node the computation flow of BP
* b;: backpropagation computational through layer |
* C;: forward and backward computation at iteration t

| =
=
S
N
S
h
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Overlap Computation and Communication

« On multiple nodes, when communication is involved

 Introduce two communication operations

* 0;: send out the gradients in layer [ to the remote
 i;: pull back the globally shared parameters of layer [ from the remote

* 0,: the set {o;}i_, at iteration t

« I,: the set {i;}{_, at iteration t

{01}1L=1

{il}zL=1/

b,

Ct

O

00 — gl=1) L g.v ,(9l=1) p))

ba . iz
P Cran [ 0 T

/

Computation and communication
happen sequentially!
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Overlap Computation and Communication

* Note the following independency
* The send-out operation o; is independent of backward operations

* The read-in operation i; could update the layer parameters as long as
b; was finished, without blocking the subsequent backward operations
b; (i <)

* |dea: overlap computation and communication by utilizing
concurrency

 Pipelining the updates and computation operations

o) =9t~ ye.v, (9" pi))
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WFBP: Wait-free backpropagation

 |dea: overlap computation and communication by utilizing concurrency
* Pipelining the updates and computation operations

L
{Ol}lzl b, b, b,
{il}lL=1/
ﬂ reschedule
01 0, 0 or
b, by,

e cee e e

by
G—
/i; /l; is i
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WFBP: Wait-free backpropagation

* |dea: overlap computation and communication by utilizing

concurrency

« Communication overhead is hidden under computation
* Results: more computations in unit time

C: || 0. |EN(Ciry || O, | ED
ﬂ pipelining
Ct Cit1 Ciy Cit3

Ot+1

Ot+2

Ot43

t

T
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1

WFBP: Distributed Wait-free backpropagation

« How does WFBP perform?

« Using Caffe as an engine:

VGG19-22K (40 GbE)

GoogleNet (40 GbE) : VGGI9 (40 GhE)
- { 3 ne
B o= Linesr Lo ~@- Liocar
~@~ Poseidon - Posesdon - Postvdon
& CaffesWrnp . & CaffesWrnp 4 CaffosWroe
o Caffesrs = o CalferP$ o Caflesrs
£ : & £
Exo- % comms = zm ‘g_m-
] 4 v

bottleneck ;. 7

%1 reduction— ’ sl
——
f"' g < 4 at -
1 : it
124 4 * ] ’nc ' " r_' " T
# of Nodes # of Nodes # of Nodes
« Using TensorFlow as engine:
& Inception-V3 (40 GbE) VGG (40 GBE) VGGI9-22K (40 GHE)
| = Linear | = Linew 8- Linear
- Posesdon @~ Posesdon - Poseidon
o TReWEBP o o TReWFBP N o TPeWrne
- 4 n i - > 11} - - 1
s, P -
 : Z A
ee Eg v
] L ] .
‘ 4 .
; Pl s
4

=t

113
# of Nodes

Zhang et al. 2017
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WFBP: Distributed Wait-free backpropagation

* Observation: Why DWBP would be effective

 More statistics of modern CNNs

Params/FLOP distribution of modern CNNs

Parameters

CONV Layers (#% ) | FC Layers (#/% )

* 90% computation happens at bottom layers
* 90% communication happens at top layers
« WFBP overlaps 90% and 90%

AlexNet 2.3M/3.75 59M /96.25
VGG-16 7.15M /5.58 121.1M / 94.42
FLOPs CONYV Layers (#/% ) | FC Layers (#/% )
AlexNet 1,352M /92.0 117M /8.0
VGG-16 10,937M/91.3 121.1M /8.7
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WFBP: Wait-free Backpropagation

* Does overlapping communication and computation solve all the
problems?
« When communication time is longer than computation, no (see the figure below).

« Say, if communication and computation are perfectly overlapped, how many
scalability we can achieve?

= VGGIY (40 GbE) iz VGG19-22K (40 GbE)
| —a— Lncar | &= Lisear
) . . ~& Poseidon -~ Poscidon .
Single node Distributed o CaffcrWFBP A o CaffcrWFBP : | 9ap
g i
16 ?J 16
| C: | | C! ' 7
| 0 ) - ]
L ] — » e B — I
D e Holba— ]
12 4 M P 12 12 4 M ' i3

(]
# of Nodes
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Address the communication bottleneck

« Note a simple fact:
« Communication time may be reduced, but cannot be eliminated (of
course).

* Therefore, possible ideas to address the communication
bottleneck

* Hide the communication time by overlapping it with the computation
time — which we have described before.

* Reduce the size of messages needed to be communications
* While without compromising statistical convergence
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Introducing Sufficient Factor Broadcasting

* Matrix-parametrized models

Multiclass Logistic

Regression Distance Metric Learning
Feature dim. Feature dim.
A A
{ \ { \
} #classes } Latent dim.
Sparse Coding Neural Network
Feature dim. #neurons in layer 1 — 1
A \
{ \ ( \
Dictionary #neurons in
size layer 1

© Petuum,Inc. 230
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Distributed Learning of MPMs

* Learning MPMs by communicating parameter matrices between server
and workers

 Dean and Ghemawat, 2008; Dean et al, 2012; Sindhwani and Ghoting, 2012; Gopal
and Yang, 2013; Chilimbi et al, 2014, Li et al, 2015

« High communication cost and large synchronization delays

Multiclass Logistic
Neural Network (AlexNet)

Regression
Feature dim. = 20K #neurons in layer
\ fc6:ﬁ096
( \ : | |
#neurons in
266 1» #classes=325K 200M } layer fc7
=4096
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Contents:
Sufficient Factor (SF) Updates

Full parameter matrix update AW can be computed as outer product of two
vectors uv! (called sufficient factors)
Example: Primal stochastic gradient descent (SGD)

1 N
min — (Wa.;b)+h(W
i S (Waisb) + hOv)

of Wa,,b,) veg

AW =uv' u= ;
o(Wa,)

Example: Stochastic dual coordinate ascent (SDCA)
1 & . .1
min — Y £ (=z)+h (—ZA"
in 2 (2 ZAT)

AW =w'" u=Az, v=a,

Send lightweight SF updates (u,v), instead of expensive full-matrix AW updates!
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Sufficient Factor Broadcasting:
P2P Topology + SF Updates

I
uzavz\ ) |

Uy, Vi W —> U,V
u, v,”” U
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A computing & communication tradeoft

— — —
.. 101 101 101 101
Training examples on on on on
Full update: 1 I
individual update  [1} 22 ::: z;: i:;z I EE R N
matrices £ P n 4
aml amZ Lk aml am2 aml am2 =t Amn aml Am2  *** Qmn
Aggregated_ B S
update matrix an @z -
am1  Am2

Pre-update N —
Training 101 101 | 101 | 101 |
examples on on on on
Sufficient

vectors Uy, 11 Uz, V2 Uz, U3 Uy, Uy

\ J
Y
Cannot be aggregated

Stochastic algorithms
* Mini-batch: C samples
Matrix 0(UK)
Representation
SV Representation 0((J +K)C) © Petuum,Inc. 234
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Synchronization of Parameter Replicas

parameter server Transfer SVs instead of AW

Model Model |

) ) Model Model
Replica 1 Replica 2 Replica 1 Replica 2
g Uy, vy
W, 2 wy w2
AW, Uz, V2
Shared W AW, =u, ®v,
States AW, AW, w1, @y, Uy, g AW, =u, ®y,
w W W0 4 AW, + AW, Uz, V3 AW, =u, ®v,
w Uz, V3 Uy, Uy W) e W 4 AW, + AW,
Model
AW3| JW w3 Replica 3
Model
W3 Replica 3 AW, =u, By,
AW, =u,®v,

W™ e W) & AW, + AW,

« A Cost Comparison

Size of one message | Number of messages Network Traffic

P2P SV-Transfer 0(J +K) 0(P?) 0((J + K)P?)

Parameter Server 0(JK) 0(P) O(JKP)
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Convergence Speedup

iSpark :Gopal :PS m SFB (PSS m SFB “1PS m SFB

i 40 30

30 2 h

. : B 3 20

£ 20 l - £ 20 - £

@ - v VA @ 10

E 10 ’ "j-'if'ft-iil E 10 b E -

o . F B =, N =1

28 12 28 12 28

Multiclass Logistic Regression (MLR) Distance Metric Learning (DML) Sparse Coding (SC)

« 3 Benchmark ML Programs
» Big parameter matrices with 6.5-8.6b entries (30+GB), running on 12- & 28-
machine clusters

» 28-machine SFB finished in 2-7 hours
« Up to 5.6x faster than 28-machine PS, 12.3x faster than 28-machine Spark

» PS cannot support SF communication, which requires decentralized
storage

© Petuum,Inc. 236



~“ PETUUM

Convergence Guarantee

« Assumptions
« Bridging model

« Staleness Synchronous Parallel (SSP) with staleness
parameter s

» Bulk Synchronous Parallel is a special case of SSP when
s=0

« Communication methods

 Partial broadcast (PB): sending messages to a subset of
Q (Q < P —1) machines

Assumption 1. (/) For all j, f; is continuously differentiable and F' is bounded from below; (2)
: : : ; . P
VF, VF, are Lipschitz continuous with constants L and L,, respectively, and let L = ] Ly;

(3) There exists G, o such that for all p and ¢, we have (almost surely) |Up(W5, I5)|| < Gn and
El 1Sp| Zjer, VIi(W) = VE(W) |13 < 0.
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Convergence Guarantee

 Results

Theorem 1. Let Assumption 1 hold, and let {W3}, p = 1,.... P, {W*} be the local sequences
and the auxiliary sequence, respectively.

Under full broadcasting (i.e., Q = P — 1) and set the learning rate 1 := 1. = O( \/ m). we
have

- llcll_l. gall' E|VF(W*)|| = 0, hence there exists a subsequence of VF(W¢) that almost surely

vanishes;
e lim max, |[W® -~ W{|| = 0, ie, the maximal disagreement between all local sequences and
C—=x

the auxiliary sequence converges to 0 (almost surely);
o There exists a common subsequence of {Wy,} and {W*} that converges almost surely to a sta-

. - .- . P (-~ L 2P8
tionary point of I, with the rate Llélg Ell > VE (Wl <0 (‘ / _dz,_)
1

Under partial broadcasting (i.e., Q < P — 1) and set a constant learning rate 1) = CLGP=0)"
where C' is the total number of iterations. Then we have

P 2
mink [I S5, VEWiIE] <0 (16(P- @)+ 2ot ).

Hence, the algorithm converges to a O(LG(P — Q)) neighbourhood if C — .
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Convergence Guarantee

» Take-home message:

« Under full broadcasting, given a properly-chosen
learning rate, all local worker parameters Wy
eventually converge to stationary points (i.e. local
minima) of the objective function, despite the fact
that SV transmission can be delayed by up to s
iterations.

« Under partial broadcasting, the algorithm
converges to a O(LG(P — Q)) neighbourhood if

C — oo,
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Parameter Storage and
Communication Paradigms

Centralized Storage Decentralized Storage
Server E Worker }
Send change . Send change Send change
AW Send W itself AW AW 9

E Worker } E Worker }

» Centralized: send parameter W itself from server to worker
« Advantage: allows compact comms topology, e.g. bipartite

* Decentralized: always send changes AW between workers
« Advantage: more robust, homogeneous code, low communication (?)

© Petuum,Inc. 240



Topologies:
Master-Slave versus P2P?

worker 1 worker 2

worker 1 worker 2

ML App

worker 3 worker 4

Master-slave P2P

« Used with centralized storage paradigm « Used with decentralized storage

- Disadvantage: need to code/manage clients « Disadvantage (?): high comms volume for
and servers separately large # of workers

« Advantage: bipartite topology is comms- - Advantage: same code for all workers; no
efficient single point of failure, high elasticity to

« Popular for Parameter Servers: Yahoo LDA, resource adjustment
Google DistBelief, Petuum PS, Project Adam, » Less well-explored due to perception of high
Li&Smola PS, ... communication overhead?
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Hybrid Updates: PS + SFB
« Hybrid communications:
Parameter Server + WP 76,
Sufficient Factor g% &
Broadcasting , ;
« Parameter Server: Master- DN
Slave topology
« Sufficient factor
broadcasting: P2P topology *
* For problems with a mix of ?
large and small matrices,

« Send small matrices via PS ) v”u Uz vy ”
(LR | R Uy, Uyl Uy, Vy

V3
Uz, Vy

« Send large matrices via SFB
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Hybrid example: CNN

Hao Zhang, Zhiting Hu, Jinliang Wei, Pengtao Xie, Gunhee Kim, Qirong Ho, Eric P. Xing. Poseidon: A
System Architecture for Efficient GPU-based Deep Learning on Multiple Machines. USENIX ATC 2016.

« Example: AlexNet CNN model
* Final layers = 4096 * 30000 matrix (120M parameters)

« Use SFB to communicate
* 1. Decouple into two 4096 vectors: u, v
e 2. Transmit two vectors
» 3. Reconstruct the gradient matrix

Figure from
Krizhevsky et al. 2012
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Hybrid example: CNN

Hao Zhang, Zhiting Hu, Jinliang Wei, Pengtao Xie, Gunhee Kim, Qirong Ho, Eric P. Xing. Poseidon: A
System Architecture for Efficient GPU-based Deep Learning on Multiple Machines. USENIX ATC 2016.

« Example: AlexNet CNN model
« Convolutional layers = e.g. 11 * 11 matrix (121 parameters)

» Use Full-matrix updates to communicate
* 1. Send/receive using Master-Slave PS topology

B

T -~

Figure from
Krizhevsky et al. 2012
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Hybrid Communication

ve, VO, .
* |dea '-
« Sync FC layers using SFB
« Sync Conv layer using PS

» Effectiveness

|t directly reduces the size
of messages in many
sifuations

 |s SFB always optimal?

* No, its communication
load increases
quadratically

* The right strategy: choose " Il

PS

v, v,

Uy, 1y

ﬂz, FZ

U4, Vg

U, v,
Uz, UVl Uy, Vy
Uy, Vg

PS whenever it results in
less communication

Uz, vz

Ugs Vy
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Hybrid Communication

» A best of both worlds strategy
* For example, AlexNet parameters between FC6 and FC7
 Tradeoff between PS and SFB communication

700 300

(a) (b)
600 ~ 250
< 500 > g
s o~ n N
& an - o
A 400 /_,-‘/ T B — ]
= = 2150 ——
g 300 st -8
= > =100
= 200 ~g” =
e T e PS5+ Matraoes ® %0 PS+Matrsoes
100 J_-"J e PSS AMamces . “PSOSE s Masnoes
r e SFB SFB
0 [}
2 4 8 12 16 64 128 256 s$12
# of Nodes Batch Size
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Hybrid Communication

« How to choose”? Where is the threshold?

» Determine the best strategy depending on

 Layer type: CONV or FC?
» Layer size

» Batch size

« # of Cluster nodes

Method Server Worker Server & Worker
: MNP, + P -
> > &
BT 2K~
SFB N/A s 1) N/A
Adam PMN + K(M+N)+ (P, —1)(MN +
(rmax) PFK(M+N) MN KM +KN)

Table 1: Estimated communication cost of PS, SFB and Adam
for synchrnizing the parameters of a M x N FC layer on a clus-
ter with P workers and / servers, when batchsize is K.
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Hybrid Communication

* Hybrid communication algorithm

Algorithm 1 Get the best comm method of layer /

I: function BESTSCHEME(/)
laver_property = Query(/.name)
Py A K = Query(‘'n.worker’, *n_server’, *batchsize’)
if laver_property.type == ‘FC’ then
M = laver_property.width
N = laver_property.height
if 2K(P, = 1)(M +N) < 2MBER"2) then
return ‘SFB’ ‘
end if
10 end if
11: returmn ‘PS’
12: end function

Determine the best strategy depending on
« Layertype: CONV or FC?
 Layersize: M, N
« Batch size: K
« # of Cluster nodes: Py, P,

e QUMW
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Hybrid Communication

* Results: achieve linear scalability across different models/data with 40GbE bandwidth
« Using Caffe as an engine:

Googl.eNet (40 GbE) 2 VGGIY (40 GhE) = VGGI9-22K (40 GbE)
i 3 3
~8~ Lincat ~8- Lincsr -8~ Linca
@~ Poseidon @~ Posesdon &~ Posawdon
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Hybrid Communication

* Linear scalability on throughput, even with limited bandwidth!
« Make distributed deep learning affordable

GooglLeNet VGG19 VGG19-22K

167 @ Linew 167 @ tmewr
o Pasedon (100 e Postvdon (LG
& Poseidon 2000E) & Possdon (20G0)
= Poseidon | D0GRR) -~ Powscon | 02GeE)

16 @ Loww
- Posedon (260
& Posedion (3GE)
“- Posscion |10G0E)

W —a- Calfos WFRP [2G0L) @ —= Calte +WIRP (10GDT) L PN ca= Caffes WTRP (LOGI)
- A CafferWPEP (5008) = A Cale s AFRP COGM ) = A Cates PP (2500)
g - CaVes WrE" (1000 - 8 B Calle s Wrar (500t - g B Calfes TP 000
i Ly i ’ 8 .
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12 4 Bl 16 12 a4 v 16 1'% & " 16
# of Nodes # of Nodes # of Nodes
# parameters 5M 143M 229M
Ethernet Rate(GBit/s) | Rate (Mb/s) | Rate (# floats/s)
1 GbE 1 125 31.25M
10 GbE 10 1250 312.5M
Infiband 40 5000 1250M
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Hybrid Communication

 Discussion: Utilizing SFs is not a new idea, actually
« Microsoft Adam uses the third strategy (c)

(a) Centralured: Matnces (b) Decentralzzed SFB () Cemtralized: Matrces + SFs

I Server Workers I Server
VA. A uv uv u,v[ A
Workers Workers Workers

PS SFB push: SFs

Pull: full matrices
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Hybrid Communication

« Adam'’s strategy leads to communication bottleneck

« Pushing SFs to server is fine
 Pulling full matrices back will create a bottleneck on the server node.

~

[
=
i

Traffic (Gb/iter)

0-

TF-WFBP Adam Poseidon
Figure 10: Averaged communication load when training

VGGI19 using TF-WFBP, Adam and Poseidon with TensorFlow
engine. Each bar represents the network traffic on a node.

* Hybrid communication yields communication load balancing
« Which is important to address the problem of burst communication.
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Introducing Poseidon

 Poseidon: An efficient communication architecture
A distributed platform to amplity existing DL toolkits

/C P & Caffer ‘? B Microsoft \\
affe &
' ane TensorFlow C N T K |
: .
| Tmh PYTHORCH :
toolkits | DyNet theano |
| :\:\.
| : |
, Chainer :
| ]

platform

© Petuum,Inc. 253



~  PETUUM

Poseidon’s position

* Design principles
« Efficient distributed platform for amplitying any DL toolkits

* Preserve the programming interface for any high-level toolkits
* |.e. distribute the DL program without changing any line of code

« Easy deployment, easy adoption.
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Poseidon System Architecture

data flow
----- allocation
—— instruction

O
OCO00O

OCO00O

GPU

CPU (KV Store

OO0

% 3

Stream Pool

Thread Pool

(Coordinator )
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Poseidon APls

« KV Store, Syncer and Coordinator

« Standard APIls similar to parameter server
« Push/Pull APl for parameter synchronization
« BestScheme method to return the best communication method

Method Owner Arguments Description
BestScheme | Coordinator| A layer name or index Get the best communication scheme of a layer
Query Coordinator| A list of property names Query information from coordinators” information book
Send Syncer None Send out the parameter updates of the corresponding layer
Receive Syncer None Receive parameter updates from either parameter server or peer workers
Move Syncer A GPU stream and an indicator Move contents between GPU and CPU, do transformations and
of move direction application of updates if needed
Send KV store updated parameters Send out the updated parameters
Receive KV store parameter buffer of KV stores Receive gradient updates from workers
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Amplify DL toolboxes Using Poseidon

* For developers: plug Poseidon API into the backpropagation

COd e y al | yo U nee d tO d @) | S. Algorithm 2 Parallelize a DL library using Poseidon
1: function TRAIN(net)
« Back propagate through layer [ 2 e nd,
: sync_count =
° : net . Forward()
Sync parameters of layer [ S < .
° " 1N I net.BackwardThrough(/)
Wa lt for fl nis h In g : th:ead-pool.Schcdl. le(sync(/))
. . : end for
® Am p | Ifyl N g G OO g | e Te N SO I F | OW 9: wait_until(sync_count == net.num_layers)
10: end for
® i : end functi
250 line of code e
. . 13: stream = stream_pool.Allocate()
o Am p | |fy| N g C affe 14:  syncers|l].Move(stream, GPU2CPU)
. 15: syncers(l).method = coordinator.BestScheme(!)
» 150 line of code ls  prelledl)
. syncers|l].Receive()
18:  syncers|l].Move(stream, CPU2GPU)
19: sync_count++

20: end function
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Using Poseidon

 Poseidon: An efficient communication architecture

* Preserve the programming interface for any high-level toolkits
* |.e. distribute the DL program without changing any line of application code

-7, r=& - B Microsoft S
' Caffe IS caffe2 :
poreRen 1 Z.r  CNTK
I ‘\I"torch.____P_YIIbRCH I
toolkits | :ay/r]ﬁ‘t I theano |
I ______
i |
I Chainer
| dmlc I
mxnet J
N e e e e e e e e = = — -

o {4 (N @)
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Outline

» Overview: Distributed Deep Learning on GPUs
» Challenges 1: Addressing the communication bottleneck
« Challenges 2: Handling the limited GPU memory
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What is the Issue

* Memory
» GPUs have dedicate memory

« For a DL training program to be efficient, its data must be placed on
GPU memory

« GPU memory is limited, compared to CPU, e.g. maximally 12Gb
 Memcpy between CPU and GPU is expensive — a memcpy takes the
same time as launching a GPU computation kernel
* Problems to be answered
* How to Avoid memcpy overhead between CPU and GPU?

« How to proceed the training of a gigantic network with very limited
available memory?
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A Machine w/o GPU

Network
CPU cores | Local
storage
! ! ‘ NIC ‘ — ‘ —

DRAM
(CPU memory)
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A Machine w/ GPU

Network [~ —

CPU cores | Local
storage
‘ NIC ‘ T—

GPU device
GPU cores
DRAM OOE000
(CPU memory) 500000 o | o
memory
(a few GB)

Small GPU memory
. Expensive to copy between GPU/CPU mem
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Machine Learning on GPU
-l A

Staging memnory Input data file
for input data|batch (training data)

— e

a mini-batch of training data

Input| Intermediate

data data

Parameter data

CPU memory GPU memory
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Deep Learning on GPU

Class probabilities

Training batch

parameters

GPU memory

Eagle :
g Vulture Intermediate states

B

*- Osprey Accipiter
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Numbers

parameters

GPU memory

Max available GPU memory: 12G

Intermediate states

Batch size Parameters | Intermediat
+ grads e states

AlexNet 150MB <500M 4.5G
GoogLeNet 64 19MB <40M 10G
VGG19 16 10MB <1.2G 10.8G
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Why Memory is an Issue?

* Intermediate states occupy 90% of the GPU memory
* Intermediate states is proportional to input batch size

 However,

* |f you want high throughput, you must have large batch size (because
of the SIMD nature of GPUS)

* If you have large batch size, your GPU will be occupied by
intermediate states, which thereby limits your model size/depth
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Saving Memory: A Simple Trick

« Basic idea
* The fact: intermediate states are proportional to the batch size K

» |dea: achieve large batch size by accumulating gradients generated by smaller batch sizes
which are affordable in the GPU memory

 Solution:
« Parition K into M parts, every part has K/M samples
« Foriter = 1:M
 Train with mini-batchsize K/M
« Accumulate the gradient on GPU w/o updating model parameters

» Update the model parameter all together when all M parts finished

* Drawbacks
« What if the GPU still cannot afford the intermediate states even if K=17
« Small batch size usually leads to insufficient use of GPUs’ computational capability
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Memory Management using CPU Memory

e Core ideas

* If the memory is limited, trade something for memory

» Trade extra computations for memory

« Trade other cost (e.g. memory exchange) for more available memory
* If the memory is limited, then get more

* model parallel

« CPU memory
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Memory Management using CPU Memory

Class probabilities . . o
" * For each iteration (mini-

batch)
« A forward pass
* Then a backward pass

« Each time only data of two
layers are used

Training images
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Memory Management using CPU Memory

Class probabilities . . .
" » For each iteration (mini-

S K X > batch)

¢ » A forward pass
< \ * Then a backward pass

« Each time only data of two
layers are used

Training images
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Memory Management using CPU Memory

batch)

« A forward pass
* Then a backward pass

X < ¥ >

Class probabilities . . .
P I e For each iteration (mini-

« Each time only data of two
layers are used

£ 3 £ 3

Training images

© Petuum,Inc. 271



~ PETUUM

Memory Management using CPU Memory

Class probabilities » For each iteration (mini-

batch)
« A forward pass
* Then a backward pass

) \ l « Each time only data of two
A\ layers are used

Training images
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Memory Management using CPU Memory

Class probabilities : : .
? * For each iteration (mini-

S KNI .7 batch)
— + Aforward pass
 Then a backward pass

— « Each time only data of two
< 2 l layers are used

Training images
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Memory Management using CPU Memory

Class probabilities _ _ o
» For each iteration (mini-

NN\1.7 batch)
- » A forward pass
W * Then a backward pass

« Each time only data of
two layers are used

Training images

The idea
* Use GPU mem as a cache to keep actively used data

» Store the remaining in CPU memory
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Memory Management using CPU Memory

Staging mefnory

Very expensive, for input data

_J

B Input data file
(training data)

sometimes more
expensive than
computation

CPU/GPU
data transfer

e

Intermediate
data

CPU memory

parameters

GPU memory
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Memory Management using CPU Memory

Staging memory

for input data
Controller/Scheduler

_J

" Input data file
(training data)

to alleviate/hide this
overhead

CPU/GPU
data transfer

e

Intermediate
data

CPU memory

parameters

GPU memory
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Memory Management using CPU Memory

e Controller

« The fact: the memory access order is deterministic and can be exactly
known by a single forward and backward pass

* |dea:
» Obtain the memory access order by a virtual iteration
» Pre-fetch memory blocks from CPU to GPU
« Overlap memory swap overhead with computation
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Memory Management using CPU Memory

« \WWhat's the best we can do with this strategy
* We only need 3 memory blocks (peak size) on GPU for:

* Input, Parameters, Output

« The whole training can process with ONLY these three blocks by
« Scheduling memcpy between CPU and GPU to be overlapped with computation

« Move in and out for each layer’'s computation as training proceeds

R ¢ |
0

2
o) 0-8"

—

0.6}
©

()]

2 0.4}

e

1e9

1
[0 Input data
[ Intermediate states
[ Parameter data

WHHWHHWH%HP wﬂﬂﬂﬂ”

peqk:
]

i

0 10 20 20 10

forward backward
Neural network layers

0
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Throughput vs memory budget

o 800
O
wn
© 600 | . |
© : .
= TTiTo] E— - T _______________ ‘_ AII data in GPU memory
e | _ '
0 2001 Onlly buffer pool i'n GPU memory |
D Twice the peak size for double buffering
= ; ; : :
- 0 L L 1 | |

GPU memory per machine (GB)

» Only 27% reduction in throughput with 35% memory
« Can do 3x bigger problems with little overhead
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Larger models

lel?2
o . ; ! 1 '
S ——8—a——%—=8
%% 08,_.,/". ............................... il
0 2 : 5
ga 04_ ............................ ............................... 2
Sb E
| | | |
O'OO 5 10 15 20

Model parameter size (GB)

* Models up to 20 GB
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Summary

* Deep learning as dataflow graphs

* A lot of auto-differentiation libraries have been developed to train NNs

 Different adoption, advantages, disadvantages
« DyNet is a new framework for next-wave dynamic NNs

« Difficulties arise when scaling up DL using distributed GPUs
« Communication bottleneck
* Memory limit

» Poseidon as a platform to support and amplify different kinds of DL
toolboxes
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Elements of Modern Al

Data

Task

Model

Algorithm

Implementation

System

Platform
and Hardware

010101010101

l7\ 110101010110

2 101010111010
[ - | 101010101010

101010191011

e
+ Graphical Models

» Nonparametric
Bayesian Models

+ Stochastic Gradient
Descent / Back
propagation

» Mahout
(MapReduce)

Hadoop

 Network switches
* Infiniband

+ Large-Margin * Deep Learning

* Regularized + Spectral/Matrix

» Sparse Coding

+ Sparse Structured

Bayesian Methods Methods 1/0O Regression

+ Coordinate + L-BFGS + Gibbs Sampling * Metropolis-
Descent Hastings

» Mllib » MxNet + Tensorflow

(BSP) (Async)

Spark MPI RPC GraphLab

» Network attached < Server machines < RAM - loT device * Virtual
storage » Desktops/Laptops + Flash networks (e.g. machines
* Flash storage * ARM-powered +SSD  Amazon EC2)

devices
» Mobile devices
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Sys-Alg Co-design Inside!

bgr=—w e
Fan e o b 3
Model e N "
Our “VML” Algorithm
Software Layer
Implementation [l
\ AN
System =) + . | -;;;;
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Better Performance

Time taken (minutes)

 Fast and Real-Time

* Orders of magnitude
faster than Spark and
TensorFlow

» As fast as hand-crafted
systems

Speedup vs  SPark”
10 - 822
. Up to 200x faster on some ML
8 ‘ . algorithms
6 o 9.8
4k : " 3.58
2 -
. e
and-
Spark Crafted PetuumQOS
System

« Any Scale

* Perfect straight-line
speedup with more
computing devices

» Spark, TensorFlow can
slow down with more
devices

Up to 20x faster deep learning f

vs TensorFlow TensorFlow

i
8- Lincar
Poscidon

O TensorFlow
%
) //
2 g
t c”

- —a

Speedup

<
12 4 L} 16

Number of GPU computers

 Low Resource

 Turning a regular
cluster into a super
computer:

« Achieve Al results with much
more data, but using fewer
computing devices

» Google brain uses ~1000
machines whereas Petuum
uses ~10 for the same job
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A Petuum Vision

Model

Algorithm

Implementation

System

010101010101
110101010110
101070111010
101010101010
101010191011

7

* Omni-Source
(Any Data)

* Omni-Lingual
(Any Programming Language)

PETUUM

» Network switches  + Network attached
* Infiniband storage
+ Flash storage

+ Omni-Mount
(Any Hardware)

» Server machines + RAM -« loT device * Virtual
» Desktops/Laptops + Flash networks (e.g. machines
* ARM-powered +SSD  Amazon EC2)

devices

» Mobile devices
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