
A Statistical Machine Learning
Perspective of Deep Learning:
Algorithm, Theory, Scalable Computing

Maruan Al-Shedivat, Zhiting Hu, Hao Zhang, and Eric Xing

Petuum Inc
&
Carnegie Mellon University

• Network
 switches
• Infiniband

• Stochastic Gradient
 Descent / Back
 propagation

• Graphical Models

• Regularized
 Bayesian Methods

• Deep Learning • Sparse Coding

• Sparse Structured
 I/O Regression

• Large-Margin

• Spectral/Matrix
 Methods

• Nonparametric
 Bayesian Models

• Coordinate
 Descent

• L-BFGS • Gibbs Sampling • Metropolis-
 Hastings

• Mahout
 (MapReduce)

• Mllib
 (BSP)

• CNTK • MxNet • Tensorflow
 (Async)

 …

• Network attached
 storage
• Flash storage

• Server machines
• Desktops/Laptops
• NUMA machines
• Mobile devices
• GPUs, CPUs, FPGA, TPU
• ARM-powered devices

• RAM
• Flash
• SSD

• Cloud compute
 (e.g. Amazon EC2)
• IoT networks
• Data centers

• Virtual
 machines

Hadoop Spark MPI RPC GraphLab …

Task

Model

Algorithm

Implementation

System

Platform
and Hardware

Element of AI/Machine Learning

© Petuum,Inc. 1

ML vs DL

© Petuum,Inc. 2

Plan
• Statistical And Algorithmic Foundation and Insight of Deep

Learning

• On Unified Framework of Deep Generative Models

• Computational Mechanisms: Distributed Deep Learning
Architectures

© Petuum,Inc. 3

Part-I
Basics

Outline
• Probabilistic Graphical Models: Basics
• An overview of DL components

• Historical remarks: early days of neural networks
• Modern building blocks: units, layers, activations functions, loss functions, etc.
• Reverse-mode automatic differentiation (aka backpropagation)

• Similarities and differences between GMs and NNs
• Graphical models vs. computational graphs
• Sigmoid Belief Networks as graphical models
• Deep Belief Networks and Boltzmann Machines

• Combining DL methods and GMs
• Using outputs of NNs as inputs to GMs
• GMs with potential functions represented by NNs
• NNs with structured outputs

• Bayesian Learning of NNs
• Bayesian learning of NN parameters
• Deep kernel learning

© Petuum,Inc. 5

Outline
• Probabilistic Graphical Models: Basics
• An overview of DL components

• Historical remarks: early days of neural networks
• Modern building blocks: units, layers, activations functions, loss functions, etc.
• Reverse-mode automatic differentiation (aka backpropagation)

• Similarities and differences between GMs and NNs
• Graphical models vs. computational graphs
• Sigmoid Belief Networks as graphical models
• Deep Belief Networks and Boltzmann Machines

• Combining DL methods and GMs
• Using outputs of NNs as inputs to GMs
• GMs with potential functions represented by NNs
• NNs with structured outputs

• Bayesian Learning of NNs
• Bayesian learning of NN parameters
• Deep kernel learning

© Petuum,Inc. 6

Fundamental questions of probabilistic modeling
• Representation: what is the joint probability distr. on multiple variables?

!(#$, #&, #', … , #))
• How many state configurations are there?
• Do they all need to be represented?
• Can we incorporate any domain-specific insights into the representation?

• Learning: where do we get the probabilities from?
• Maximum likelihood estimation? How much data do we need?
• Are there any other established principles?

• Inference: if not all variables are observable, how to compute the conditional
distribution of latent variables given evidence?

• Computing !(+|-) would require summing over 2/ configurations of the unobserved variables

© Petuum,Inc. 7

What is a graphical model?
• A possible world of cellular signal transduction

© Petuum,Inc. 8

GM: structure simplifies representation
• A possible world of cellular signal transduction

© Petuum,Inc. 9

Probabilistic Graphical Models
• If #0’s are conditionally independent (as described by a PGM), then

the joint can be factored into a product of simpler terms

• Why we may favor a PGM?
• Easy to incorporate domain knowledge and causal (logical) structures
• Significant reduction in representation cost (21 reduced down to 18)

! #$, #&, #', #2, #3, #/, #4, #1 =
! #$! #& ! #' #$! #2 #& ! #3 #&
!(#/|#', #2)!(#4|#/)!(#1|#3, #/)

© Petuum,Inc. 10

The two types of GMs
• Directed edges assign causal meaning to the relationships

(Bayesian Networks or Directed Graphical Models)

• Undirected edges represent correlations between the variables
(Markov Random Field or Undirected Graphical Models)

! #$, #&, #', #2, #3, #/, #4, #1 =

! #$! #& ! #' #$! #2 #& ! #3 #&
!(#/|#', #2)!(#4|#/)!(#1|#3, #/)

! #$, #&, #', #2, #3, #/, #4, #1 =
1
7 exp	{= #$ + = #& + = #$, #' + = #&, #2 + = #3, #& +
												= #', #2, #/ + = #/, #4	 + = #3, #/, #1 }

!(+|@)
q = argmaxq	!q(@)

© Petuum,Inc. 11

Outline
• Probabilistic Graphical Models: Basics
• An overview of DL components

• Historical remarks: early days of neural networks
• Modern building blocks: units, layers, activations functions, loss functions, etc.
• Reverse-mode automatic differentiation (aka backpropagation)

• Similarities and differences between GMs and NNs
• Graphical models vs. computational graphs
• Sigmoid Belief Networks as graphical models
• Deep Belief Networks and Boltzmann Machines

• Combining DL methods and GMs
• Using outputs of NNs as inputs to GMs
• GMs with potential functions represented by NNs
• NNs with structured outputs

• Bayesian Learning of NNs
• Bayesian learning of NN parameters
• Deep kernel learning

© Petuum,Inc. 12

Perceptron and Neural Nets
• From biological neuron to artificial neuron (perceptron)

• From biological neuron network to artificial neuron networks
Threshold

Inputs

x1

x2

Output
Yå

Hard
Limiter

w2

w1

Linear
Combiner

q

Soma Soma

Synapse

Synapse

Dendrites

Axon

Synapse

Dendrites
Axon

Input Layer Output Layer

Middle Layer

I n
 p

 u
 t

 S
 i g

 n
 a

 l
s

O
 u

 t
p

u
t

 S
 i g

 n
 a

 l
s

McCulloch & Pitts (1943)

© Petuum,Inc. 13

The perceptron learning algorithm

• Recall the nice property of sigmoid function

• Consider regression problem f: XàY, for scalar Y:

• We used to maximize the conditional data likelihood

• Here …

© Petuum,Inc. 14

xd = input

td = target output

od = observed output

wi = weight i

Batch mode:

Do until converge:

1. compute gradient ÑED[w]

2.

Incremental mode:

Do until converge:

§ For each training example d in D

1. compute gradient ÑEd[w]

2.

where

The perceptron learning algorithm

© Petuum,Inc. 15

Inputs

Weights

Output

Independent
variables

Dependent
variable

Prediction

Age 34

2Gende
r
Stage 4

.6

.5

.8

.2

.1

.3
.7

.2

WeightsHidden
Layer

“Probability of
beingAlive”

0.6
S

S

.
4

.2
S

Neural Network Model

© Petuum,Inc. 16

Inputs

Weights

Output

Independent
variables

Dependent
variable

Prediction

Age 34

2Gende
r
Stage 4

.6

.5

.8

.1

.7

WeightsHidden
Layer

“Probability of
beingAlive”

0.6
S

“Combined logistic models”

© Petuum,Inc. 17

Inputs

Weights

Output

Independent
variables

Dependent
variable

Prediction

Age 34

2Gende
r
Stage 4

.5

.8
.2

.3

.2

WeightsHidden
Layer

“Probability of
beingAlive”

0.6
S

“Combined logistic models”

© Petuum,Inc. 18

“Combined logistic models”

Inputs

Weights

Output

Independent
variables

Dependent
variable

Prediction

Age 34

1Gende
r
Stage 4

.6
.5

.8
.2

.1

.3
.7

.2

WeightsHidden
Layer

“Probability of
beingAlive”

0.6
S

© Petuum,Inc. 19

WeightsIndependent
variables

Dependent
variable

Prediction

Age 34

2Gende
r
Stage 4

.6

.5

.8

.2

.1

.3
.7

.2

WeightsHidden
Layer

“Probability of
beingAlive”

0.6
S

S

.
4

.2
S

Not really, no target for hidden units...

© Petuum,Inc. 20

Backpropagation:
Reverse-mode differentiation
• Artificial neural networks are nothing more than complex functional compositions that can be

represented by computation graphs:

1
2

3

4
5

Input
variables

x

f(x)
Outputs

Intermediate
computations

@fn

@x

=
X

i12⇡(n)

@fn

@fi1

@fi1

@x

© Petuum,Inc. 21

Backpropagation:
Reverse-mode differentiation
• Artificial neural networks are nothing more than complex functional compositions that can be

represented by computation graphs:

• By applying the chain rule and using reverse accumulation, we get

• The algorithm is commonly known as backpropagation
• What if some of the functions are stochastic?
• Then use stochastic backpropagation!

(to be covered in the next part)
• Modern packages can do this automatically (more later)

@fn

@x

=
X

i12⇡(n)

@fn

@fi1

@fi1

@x

=
X

i12⇡(n)

@fn

@fi1

X

i22⇡(i1)

@fi1

@fi2

@fi1

@x

= . . .

1
2

3

4
5x

f(x)
@fn

@x

=
X

i12⇡(n)

@fn

@fi1

@fi1

@x

© Petuum,Inc. 22

Modern building blocks of deep networks
• Activation functions

• Linear and ReLU
• Sigmoid and tanh
• Etc.

input

ou
tp

ut

input

ou
tp

ut

w1

w2

w3

f

x1

x2

x3

f(Wx + b)

Linear Rectified linear (ReLU)

© Petuum,Inc. 23

source: colah.github.io

Modern building blocks of deep networks
• Activation functions

• Linear and ReLU
• Sigmoid and tanh
• Etc.

• Layers
• Fully connected
• Convolutional & pooling
• Recurrent
• ResNets
• Etc.

fully connected
convolutional

recurrent

blocks with residual connections © Petuum,Inc. 24

Modern building blocks of deep networks

(a part of GoogleNet)

• Activation functions
• Linear and ReLU
• Sigmoid and tanh
• Etc.

• Layers
• Fully connected
• Convolutional & pooling
• Recurrent
• ResNets
• Etc.

• Loss functions
• Cross-entropy loss
• Mean squared error
• Etc.

Putting things together:

convolutional
avg& max
pooling

fully connected

concatenation

activationloss

© Petuum,Inc. 25

Modern building blocks of deep networks

(a part of GoogleNet)

l Arbitrary combinations of
the basic building blocks

l Multiple loss functions –
multi-target prediction,
transfer learning, and more

l Given enough data, deeper
architectures just keep
improving

l Representation learning:
the networks learn
increasingly more abstract
representations of the data
that are “disentangled,” i.e.,
amenable to linear
separation.

• Activation functions
• Linear and ReLU
• Sigmoid and tanh
• Etc.

• Layers
• Fully connected
• Convolutional & pooling
• Recurrent
• ResNets
• Etc.

• Loss functions
• Cross-entropy loss
• Mean squared error
• Etc.

Putting things together:

© Petuum,Inc. 26

Outline
• Probabilistic Graphical Models: Basics
• An overview of the DL components

• Historical remarks: early days of neural networks
• Modern building blocks: units, layers, activations functions, loss functions, etc.
• Reverse-mode automatic differentiation (aka backpropagation)

• Similarities and differences between GMs and NNs
• Graphical models vs. computational graphs
• Sigmoid Belief Networks as graphical models
• Deep Belief Networks and Boltzmann Machines

• Combining DL methods and GMs
• Using outputs of NNs as inputs to GMs
• GMs with potential functions represented by NNs
• NNs with structured outputs

• Bayesian Learning of NNs
• Bayesian learning of NN parameters
• Deep kernel learning

© Petuum,Inc. 27

Graphical models

• Representation for encoding
meaningful knowledge and the
associated uncertainty in a
graphical form

Deep neural networks

l Learn representations that
facilitate computation and
performance on the end-metric
(intermediate representations are
not guaranteed to be meaningful)

Graphical models vs. Deep nets

© Petuum,Inc. 28

Graphical models

• Representation for encoding
meaningful knowledge and the
associated uncertainty in a
graphical form

• Learning and inference are based
on a rich toolbox of well-studied
(structure-dependent) techniques
(e.g., EM, message passing, VI,
MCMC, etc.)

• Graphs represent models

Deep neural networks

l Learn representations that
facilitate computation and
performance on the end-metric
(intermediate representations are
not guaranteed to be meaningful)

l Learning is predominantly based
on the gradient descent method
(aka backpropagation);
Inference is often trivial and done
via a “forward pass”

l Graphs represent computation

Graphical models vs. Deep nets

© Petuum,Inc. 29

Graphical models

Utility of the graph
• A vehicle for synthesizing a global loss

function from local structure
• potential function, feature function, etc.

• A vehicle for designing sound and
efficient inference algorithms

• Sum-product, mean-field, etc.

• A vehicle to inspire approximation and
penalization

• Structured MF, Tree-approximation, etc.

• A vehicle for monitoring theoretical and
empirical behavior and accuracy of
inference

Utility of the loss function
• A major measure of quality of the

learning algorithm and the model

X1 X2

X3

X4X5

logP (X) =

X

i

log �(xi) +

X

i,j

log (xi, xj)

Graphical models vs. Deep nets

E + ~!(+|@)

q = argmaxq	!q(@) © Petuum,Inc. 30

Deep neural networks

Utility of the network
l A vehicle to conceptually synthesize

complex decision hypothesis
l stage-wise projection and aggregation

l A vehicle for organizing computational
operations

l stage-wise update of latent states

l A vehicle for designing processing steps
and computing modules

l Layer-wise parallelization

l No obvious utility in evaluating DL
inference algorithms

Utility of the Loss Function
l Global loss? Well it is complex and non-

convex...

Graphical models vs. Deep nets

Images from Distill.pub © Petuum,Inc. 31

Graphical models vs. Deep nets
Graphical models

Utility of the graph
• A vehicle for synthesizing a global loss

function from local structure
• potential function, feature function, etc.

• A vehicle for designing sound and
efficient inference algorithms

• Sum-product, mean-field, etc.

• A vehicle to inspire approximation and
penalization

• Structured MF, Tree-approximation, etc.

• A vehicle for monitoring theoretical and
empirical behavior and accuracy of
inference

Utility of the loss function
• A major measure of quality of the

learning algorithm and the model

Deep neural networks

Utility of the network
l A vehicle to conceptually synthesize

complex decision hypothesis
l stage-wise projection and aggregation

l A vehicle for organizing computational
operations

l stage-wise update of latent states

l A vehicle for designing processing steps
and computing modules

l Layer-wise parallelization

l No obvious utility in evaluating DL
inference algorithms

Utility of the Loss Function
l Global loss? Well it is complex and non-

convex... © Petuum,Inc. 32

Graphical models vs. Deep nets
DL ML (e.g., GM)

Empirical goal: e.g., classification, feature learning e.g., latent variable inference, transfer
learning

Structure: Graphical Graphical

Objective: Something aggregated from local functions Something aggregated from local functions

Vocabulary: Neuron, activation function, … Variable, potential function, …

Algorithm: A single, unchallenged, inference algorithm
–
Backpropagation (BP)

A major focus of open research, many
algorithms, and more to come

Evaluation: On a black-box score –
end performance

On almost every intermediate quantity

Implementation: Many tricks More or less standardized

Experiments: Massive, real data
(GT unknown)

Modest, often simulated data (GT known)

<= ?>

© Petuum,Inc. 33

• So far:
• Graphical models are representations of probability distributions
• Neural networks are function approximators (with no probabilistic meaning)

• Some of the neural nets are in fact proper graphical models
(i.e., units/neurons represent random variables):

• Boltzmann machines (Hinton & Sejnowsky, 1983)
• Restricted Boltzmann machines (Smolensky, 1986)
• Learning and Inference in sigmoid belief networks (Neal, 1992)
• Fast learning in deep belief networks (Hinton, Osindero, Teh, 2006)
• Deep Boltzmann machines (Salakhutdinov and Hinton, 2009)

• Let’s go through these models one-by-one

Graphical Models vs. Deep Nets

© Petuum,Inc. 34

I: Restricted Boltzmann Machines
• RBM is a Markov random field represented with a bi-partite graph
• All nodes in one layer/part of the graph are connected to all in the other;

no inter-layer connections

• Joint distribution:
! G, ℎ =

1
7 exp	 IJ0KG0ℎ0

�

0,K
+IM0G0

�

0
+INKℎK

�

K

Images from Marcus Frean, MLSS Tutorial 2010 © Petuum,Inc. 35

I: Restricted Boltzmann Machines
• Log-likelihood of a single data point (unobservables marginalized out):

log Q G = logIexp IJ0KG0ℎ0
�

0,K
+IM0G0

�

0
+INKℎK

�

K
− log	(7)

�

S

• Gradient of the log-likelihood w.r.t. the model parameters:
T

TJ0K
log Q G =I!(ℎ|G)

T
TJ0K

!(G, ℎ)
�

S
−I!(G, ℎ)

T
TJ0K

!(G, ℎ)
�

U,S

• where we have averaging over the posterior and over the joint.

Images from Marcus Frean, MLSS Tutorial 2010 © Petuum,Inc. 36

I: Restricted Boltzmann Machines
• Gradient of the log-likelihood w.r.t. the parameters (alternative form):

T
TJ0K

log Q G = VW(S|U)
T

TJ0K
!(G, ℎ) − VW(U,S)

T
TJ0K

!(G, ℎ)

• Both expectations can be approximated via sampling
• Sampling from the posterior is exact (RBM factorizes over ℎ given G)
• Sampling from the joint is done via MCMC (e.g., Gibbs sampling)
• In the neural networks literature:

• computing the first term is called the clamped / wake / positive phase
(the network is “awake” since it conditions on the visible variables)

• Computing the second term is called the unclamped / sleep / free / negative phase
(the network is “asleep” since it samples the visible variables from the joint;
metaphorically, it is ”dreaming” the visible inputs) © Petuum,Inc. 37

I: Restricted Boltzmann Machines
• Gradient of the log-likelihood w.r.t. the parameters (alternative form):

T
TJ0K

log Q G = VW(S|U)
T

TJ0K
!(G, ℎ) − VW(U,S)

T
TJ0K

!(G, ℎ)

• Learning is done by optimizing the log-likelihood of the model for a given
data via stochastic gradient descent (SGD)

• Estimation of the second term (the negative phase) heavily relies on the
mixing properties of the Markov chain

• This often causes slow convergence and requires extra computation

© Petuum,Inc. 38

• Sigmoid belief nets are simply Bayesian networks over binary variables with conditional
probabilities represented by sigmoid functions:

! X0 Y X0 = Z X0 I J0KXK
�

[\	∈	^ [_

• Bayesian networks exhibit a phenomenon called “explain away effect”

II: Sigmoid Belief Networks

If A correlates with C, then the chance of B correlating with C
decreases. � A and B become correlated given C.

from Neal, 1992

© Petuum,Inc. 39

• Sigmoid belief nets are simply Bayesian networks over binary variables with conditional
probabilities represented by sigmoid functions:

! X0 Y X0 = Z X0 I J0KXK
�

[\	∈	^ [_

• Bayesian networks exhibit a phenomenon called “explain away effect”

II: Sigmoid Belief Networks

from Neal, 1992

Note:
Due to the “explain away effect,” when we
condition on the visible layer in belief networks,
hidden variables all become dependent. © Petuum,Inc. 40

Sigmoid Belief Networks:
Learning and Inference
• Neal proposed Monte Carlo methods for learning and inference (Neal, 1992):

• Conditional distributions:

• No negative phase as in RBM!
• Convergence is very slow,

especially for large belief nets,
due to the intricate
“explain-away” effects…

Approximated with Gibbs sampling

log derivative

prob. of the visibles
via marginalization

Bayes rule +
rearrange sums

Plug-in the actual
sigmoid form of the
conditional prob.

Equations from Neal, 1992 © Petuum,Inc. 41

RBMs are infinite belief networks
• Recall the expression for the gradient of the log likelihood for RBM:

T
TJ0K

log Q G = VW(S|U)
T

TJ0K
!(G, ℎ) − VW(U,S)

T
TJ0K

!(G, ℎ)

• To make a gradient update of the model parameters, we need compute
the expectations via sampling.

• We can sample exactly from the posterior in the first term
• We run block Gibbs sampling to approximately sample from the joint distribution

images from Marcus Frean, MLSS Tutorial 2010 sampling steps © Petuum,Inc. 42

RBMs are infinite belief networks
• Gibbs sampling: alternate between sampling hidden and visible variables

• Conditional distributions !(G|ℎ) and ! ℎ G are represented by sigmoids
• Thus, we can think of Gibbs sampling from the joint distribution represented by

an RBM as a top-down propagation in an infinitely deep sigmoid belief network!

images from Marcus Frean, MLSS Tutorial 2010

sampling steps

© Petuum,Inc. 43

RBMs are infinite belief networks
• RBMs are equivalent to infinitely deep belief networks

• Sampling from this is the same as sampling from
the network on the right

images from Marcus Frean, MLSS Tutorial 2010 © Petuum,Inc. 44

RBMs are infinite belief networks
• RBMs are equivalent to infinitely deep belief networks

images from Marcus Frean, MLSS Tutorial 2010 © Petuum,Inc. 45

RBMs are infinite belief networks
• RBMs are equivalent to infinitely deep belief networks

• When we train an RBM, we are really training an infinitely deep brief net!
• It is just that the weights of all layers are tied.
• If the weights are “untied” to some extent, we get a Deep Belief Network.
images from Marcus Frean, MLSS Tutorial 2010 © Petuum,Inc. 46

III: Deep Belief Nets

• DBNs are hybrid graphical models (chain graphs):
• Exact inference in DBNs is problematic due to explaining away effect
• Training: greedy pre-training + ad-hoc fine-tuning; no proper joint training
• Approximate inference is feed-forward

© Petuum,Inc. 47

Deep Belief Networks
• DBNs represent a joint probability distribution

! G, ℎ$, ℎ&, ℎ' = ! ℎ&, ℎ' ! ℎ$ ℎ& !(G|ℎ$)
• Note that ! ℎ&, ℎ' is an RBM and the conditionals ! ℎ$ ℎ&

and !(G|ℎ$) are represented in the sigmoid form
• The model is trained by optimizing the log likelihood for a

given data log	! G

Challenges:
• Exact inference in DBNs is problematic due to explain away effect
• Training is done in two stages:

• greedy pre-training + ad-hoc fine-tuning; no proper joint training
• Approximate inference is feed-forward (bottom-up) © Petuum,Inc. 48

• Pre-train and freeze the 1st RBM
• Stack another RBM on top and train it

• The weights weights 2+ layers remain tied
• We repeat this procedure: pre-train and untie

the weights layer-by-layer…

DBN: Layer-wise pre-training

images from Marcus Frean, MLSS Tutorial 2010 © Petuum,Inc. 49

• We repeat this procedure: pre-train and untie
the weights layer-by-layer:

• The weights of 3+ layers remain tied

• and so forth
• From the optimization perspective, this procedure loosely corresponds

to an approximate block-coordinate accent on the log-likelihood

DBN: Layer-wise pre-training

images from Marcus Frean, MLSS Tutorial 2010 © Petuum,Inc. 50

• Pre-training is quite ad-hoc and is unlikely to lead to a good probabilistic
model per se

• However, the layers of representations could perhaps be
useful for some other downstream tasks!

• We can further “fine-tune” a pre-trained DBN for some other task

Setting A: Unsupervised learning (DBN → autoencoder)
1. Pre-train a stack of RBMs in a greedy layer-wise fashion
2. “Unroll” the RBMs to create an autoencoder
3. Fine-tune the parameters by optimizing the reconstruction error

DBN: Fine-tuning

images from Hinton & Salakhutdinov, 2006 © Petuum,Inc. 51

• Pre-training is quite ad-hoc and is unlikely to lead to a good probabilistic
model per se

• However, the layers of representations could perhaps be
useful for some other downstream tasks!

• We can further “fine-tune” a pre-trained DBN for some other task

Setting A: Unsupervised learning (DBN → autoencoder)
1. Pre-train a stack of RBMs in a greedy layer-wise fashion
2. “Unroll” the RBMs to create an autoencoder
3. Fine-tune the parameters by optimizing the reconstruction error

DBN: Fine-tuning

images from Hinton & Salakhutdinov, 2006 © Petuum,Inc. 52

• Pre-training is quite ad-hoc and is unlikely to lead to a good probabilistic
model per se

• However, the layers of representations could perhaps be
useful for some other downstream tasks!

• We can further “fine-tune” a pre-trained DBN for some other task

Setting A: Unsupervised learning (DBN → autoencoder)
1. Pre-train a stack of RBMs in a greedy layer-wise fashion
2. “Unroll” the RBMs to create an autoencoder
3. Fine-tune the parameters by optimizing the reconstruction error

DBN: Fine-tuning

images from Hinton & Salakhutdinov, 2006 © Petuum,Inc. 53

• Pre-training is quite ad-hoc and is unlikely to lead to a good probabilistic
model per se

• However, the layers of representations could perhaps be
useful for some other downstream tasks!

• We can further “fine-tune” a pre-trained DBN for some other task

Setting B: Supervised learning (DBN → classifier)
1. Pre-train a stack of RBMs in a greedy layer-wise fashion
2. “Unroll” the RBMs to create a feedforward classifier
3. Fine-tune the parameters by optimizing the reconstruction error

DBN: Fine-tuning

Some intuitions about how pre-training works:
Erhan et al.: Why Does Unsupervised Pre-training Help Deep Learning? JMLR, 2010 © Petuum,Inc. 54

Deep Belief Nets and Boltzmann Machines

• DBNs are hybrid graphical models (chain graphs):
• Inference in DBNs is problematic due to explaining away effect
• Training: greedy pre-training + ad-hoc fine-tuning; no proper joint training
• Approximate inference is feed-forward

© Petuum,Inc. 55

Deep Belief Nets and Boltzmann Machines

• DBMs are fully un-directed models (Markov random fields):
• Can be trained similarly as RBMs via MCMC (Hinton & Sejnowski, 1983)
• Use a variational approximation of the data distribution for faster training

(Salakhutdinov & Hinton, 2009)
• Similarly, can be used to initialize other networks for downstream tasks

© Petuum,Inc. 56

• A few critical points to note about all these models:
• The primary goal of deep generative models is to represent the

distribution of the observable variables. Adding layers of hidden
variables allows to represent increasingly more complex distributions.

• Hidden variables are secondary (auxiliary) elements used to facilitate
learning of complex dependencies between the observables.

• Training of the model is ad-hoc, but what matters is the quality of
learned hidden representations.

• Representations are judged by their usefulness on a downstream task
(the probabilistic meaning of the model is often discarded at the end).

• In contrast, classical graphical models are often concerned
with the correctness of learning and inference of all variables

Graphical models vs. Deep networks

© Petuum,Inc. 57

GMFr

GMFb

BP

An old study of belief networks
from the GM standpoint

Mean-field partitions of a sigmoid belief network for subsequent GMF inference

Study focused on only inference/learning accuracy, speed, and partition

[Xing, Russell, Jordan, UAI 2003]

© Petuum,Inc. 58

• Energy-based modeling of the structured output (CRF)

• Unroll the optimization algorithm for a fixed number of steps (Domke, 2012)

“Optimize” how to optimize via truncation & re-opt

`3

2̀

`'

`&
`a

`$
=

We can backprop through the optimization steps
since they are just a sequence of computations

Relevant recent paper:
Anrychowicz et al.: Learning to learn by gradient
descent by gradient descent. 2016.

© Petuum,Inc. 59

• Energy-based modeling of the structured output (CRF)

• Unroll the optimization algorithm for a fixed number of steps (Domke, 2012)

• We can think of y* as some non-linear differentiable function of the inputs and
weights → impose some loss and optimize it as any other standard computation
graph using backprop!

• Similarly, message passing based inference algorithms can be truncated and
converted into computational graphs (Domke, 2011; Stoyanov et al., 2011)

Dealing with structured prediction

© Petuum,Inc. 60

Outline
• Probabilistic Graphical Models: Basics
• An overview of DL components

• Historical remarks: early days of neural networks
• Modern building blocks: units, layers, activations functions, loss functions, etc.
• Reverse-mode automatic differentiation (aka backpropagation)

• Similarities and differences between GMs and NNs
• Graphical models vs. computational graphs
• Sigmoid Belief Networks as graphical models
• Deep Belief Networks and Boltzmann Machines

• Combining DL methods and GMs
• Using outputs of NNs as inputs to GMs
• GMs with potential functions represented by NNs
• NNs with structured outputs

• Bayesian Learning of NNs
• Bayesian learning of NN parameters
• Deep kernel learning

© Petuum,Inc. 61

Combining sequential NNs and GMs

slide courtesy: Matt Gormley
© Petuum,Inc. 62

Combining sequential NNs and GMs

slide courtesy: Matt Gormley
© Petuum,Inc. 63

Hybrid NNs + conditional GMs

slide courtesy: Matt Gormley

• In a standard CRF, each of the factor cells is a parameter.
• In a hybrid model, these values are computed by a neural network.

© Petuum,Inc. 64

Hybrid NNs + conditional GMs

slide courtesy: Matt Gormley
© Petuum,Inc. 65

Hybrid NNs + conditional GMs

slide courtesy: Matt Gormley
© Petuum,Inc. 66

Using GMs as Prediction Explanations

• Idea: Use deep neural nets to generate parameters of a graphical model for a
given context (e.g., specific instance or case)

• Produced GMs are used to make the final prediction
• GMs are built on top of interpretable variables (not deep embeddings!) and can

be used as contextual explanations for each prediction

Al-Shedivat, Dubey, Xing, arXiv, 2017 © Petuum,Inc. 67

Using GMs as Prediction Explanations

Attributes

XDictionary

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Y1 Y2 Y3 Y4

X1 X2 X3 X4

Y1 Y2 Y3 Y4

X1 X2 X3 X4

Y1 Y2 Y3 Y4

MoE

θ

X1 X2 X3 X4

Y1 Y2 Y3 Y4
CEN

Context

Context Encoder

Attention

dot

dot

A practical implementation:
• Maintain a (sparse) dictionary of GM parameters
• Process complex inputs (images, text, time series, etc.) using deep nets; use soft

attention to either select or combine models from the dictionary
• Use constructed GMs (e.g., CRFs) to make predictions
• Inspect GMs to understand the reasoning behind predictions
Al-Shedivat, Dubey, Xing, arXiv, 2017 © Petuum,Inc. 68

Outline
• An overview of the DL components

• Historical remarks: early days of neural networks
• Modern building blocks: units, layers, activations functions, loss functions, etc.
• Reverse-mode automatic differentiation (aka backpropagation)

• Similarities and differences between GMs and NNs
• Graphical models vs. computational graphs
• Sigmoid Belief Networks as graphical models
• Deep Belief Networks and Boltzmann Machines

• Combining DL methods and GMs
• Using outputs of NNs as inputs to GMs
• GMs with potential functions represented by NNs
• NNs with structured outputs

• Bayesian Learning of NNs
• Bayesian learning of NN parameters
• Deep kernel learning

© Petuum,Inc. 69

Bayesian learning of NNs
• A neural network as a probabilistic model:

• Likelihood: b ` X, c
• Categorical distribution for classification ⇒	cross-entropy loss
• Gaussian distribution for regression ⇒ squared loss

• Prior on parameters: b c

• Maximum a posteriori (MAP) solution:
• cefW = argmaxg	log	b ` X, c b(c)
• Gaussian prior ⇒ L2 regularization
• Laplace prior ⇒ L1 regularization

• Bayesian learning [MacKay 1992, Neal 1996, de Freitas 2003]

• Posterior: b c X, `
• Variational inference with approximate posterior h(c)

Weight Uncertainty in Neural Networks

H1 H2 H3 1

X 1

Y

0.5 0.1 0.7 1.3

1.40.3

1.2

0.10.1 0.2

H1 H2 H3 1

X 1

Y

Figure 1. Left: each weight has a fixed value, as provided by clas-
sical backpropagation. Right: each weight is assigned a distribu-
tion, as provided by Bayes by Backprop.

is related to recent methods in deep, generative modelling
(Kingma and Welling, 2014; Rezende et al., 2014; Gregor
et al., 2014), where variational inference has been applied
to stochastic hidden units of an autoencoder. Whilst the
number of stochastic hidden units might be in the order of
thousands, the number of weights in a neural network is
easily two orders of magnitude larger, making the optimisa-
tion problem much larger scale. Uncertainty in the hidden
units allows the expression of uncertainty about a particular
observation, uncertainty in the weights is complementary
in that it captures uncertainty about which neural network
is appropriate, leading to regularisation of the weights and
model averaging.

This uncertainty can be used to drive exploration in contex-
tual bandit problems using Thompson sampling (Thomp-
son, 1933; Chapelle and Li, 2011; Agrawal and Goyal,
2012; May et al., 2012). Weights with greater uncertainty
introduce more variability into the decisions made by the
network, leading naturally to exploration. As more data are
observed, the uncertainty can decrease, allowing the deci-
sions made by the network to become more deterministic
as the environment is better understood.

The remainder of the paper is organised as follows: Sec-
tion 2 introduces notation and standard learning in neural
networks, Section 3 describes variational Bayesian learn-
ing for neural networks and our contributions, Section 4
describes the application to contextual bandit problems,
whilst Section 5 contains empirical results on a classifica-
tion, a regression and a bandit problem. We conclude with
a brief discussion in Section 6.

2. Point Estimates of Neural Networks

We view a neural network as a probabilistic model
P (y|x,w): given an input x 2 Rp a neural network as-
signs a probability to each possible output y 2 Y , using
the set of parameters or weights w. For classification, Y is
a set of classes and P (y|x,w) is a categorical distribution –
this corresponds to the cross-entropy or softmax loss, when

the parameters of the categorical distribution are passed
through the exponential function then re-normalised. For
regression Y is R and P (y|x,w) is a Gaussian distribution
– this corresponds to a squared loss.

Inputs x are mapped onto the parameters of a distribu-
tion on Y by several successive layers of linear transforma-
tion (given by w) interleaved with element-wise non-linear
transforms.

The weights can be learnt by maximum likelihood estima-
tion (MLE): given a set of training examples D = (x

i

,y

i

)

i

,
the MLE weights wMLE are given by:

w

MLE
= argmax

w
logP (D|w)

= argmax

w

X

i

logP (y

i

|x
i

,w).

This is typically achieved by gradient descent (e.g., back-
propagation), where we assume that logP (D|w) is differ-
entiable in w.

Regularisation can be introduced by placing a prior upon
the weights w and finding the maximum a posteriori
(MAP) weights wMAP:

w

MAP
= argmax

w
logP (w|D)

= argmax

w
logP (D|w) + logP (w).

If w are given a Gaussian prior, this yields L2 regularisa-
tion (or weight decay). If w are given a Laplace prior, then
L1 regularisation is recovered.

3. Being Bayesian by Backpropagation

Bayesian inference for neural networks calculates the pos-
terior distribution of the weights given the training data,
P (w|D). This distribution answers predictive queries
about unseen data by taking expectations: the predictive
distribution of an unknown label ˆ

y of a test data item ˆ

x,
is given by P (

ˆ

y|ˆx) = E
P (w|D)[P (

ˆ

y|ˆx,w)]. Each pos-
sible configuration of the weights, weighted according to
the posterior distribution, makes a prediction about the un-
known label given the test data item ˆ

x. Thus taking an
expectation under the posterior distribution on weights is
equivalent to using an ensemble of an uncountably infi-
nite number of neural networks. Unfortunately, this is in-
tractable for neural networks of any practical size.

Previously Hinton and Van Camp (1993) and Graves
(2011) suggested finding a variational approximation to the
Bayesian posterior distribution on the weights. Variational
learning finds the parameters ✓ of a distribution on the
weights q(w|✓) that minimises the Kullback-Leibler (KL)

Figure courtesy: Blundell et al, 2016

© Petuum,Inc. 70

Bayesian learning of NNs
• Variational inference (in a nutshell):

where ci ∼ h(c); KL term can be approximated similarly

• We can define h c as a diagonal Gaussian or full-covariance Gaussian
• Alternatively, h c can be defined implicitly, e.g. via dropout [Gal & Ghahramani, 2016]

• Dropping out neurons is equivalent to zeroing out
columns of the parameter matrices (i.e., weights)

• k0 = 0 corresponds to m-th column of n being dropped out
⇒ the procedure is equivalent to dropout of unit m [Hinton et al., 2012]

• Variational parameters are {n, o}

minr	s t, c = KL h c ||	b c t − Er(c)[log	b(t|c)]

minr	s t, c = KL h c ||	b c t −I log	b(t|c0)
�

0

c = n ⋅ diag | ,
	| ∼ 	Bernoulli(b)

© Petuum,Inc. 71

“Infinitely Wide” Deep Models
• We have seen that an ”infinitely deep” network can be explained by a proper GM,

How about an “infinitely wide” one?
• Consider a neural network with a Gaussian prior on its weights an infinitely many hidden

neurons in the intermediate layer.
• Turns out, if we have a certain Gaussian prior on the

weights of such infinite network, it will be equivalent
to a Gaussian process [Neal 1996].

• Gaussian process (GP) is a distribution over functions:

• When used for prediction, GPs account for correlations between the data points and can
output well-calibrated predictive uncertainty estimates.

Infinitely many
hidden units

© Petuum,Inc. 72

Gaussian Process and Deep Kernel Learning
• Consider a neural network with a Gaussian prior on its weights an infinitely many hidden neurons in

the intermediate layer.

• Certain classes of Gaussian priors for neural networks with infinitely many hidden units converge to
Gaussian processes [Neal 1996]

• Deep kernel [Wilson et al., 2016]
• Combines the inductive biases of deep model architectures with the non-parametric flexibility of Gaussian processes

where �0K = Ä(X0, 	XK)

• Starting from a base kernel Ä(X0, XK|Å), transform the inputs X as

• Learn both kernel and neural parameters Å, Ç jointly by optimizing marginal log-likelihood (or its variational lower-bound).
• Fast learning and inference with local kernel interpolation, structured inducing points, and Monte Carlo approximations

b ` É = Ñ(`|É, ÖÜ$)
b É Å = Ñ(É|á(X), �)

Ä X0, XK Å → Ä(â X0, Ç , â(XK, Ç)|Å, Ç)

Infinitely many
hidden units

© Petuum,Inc. 73

Gaussian Process and Deep Kernel Learning

• By adding GP as a layer to a deep neural net, we can think of it as adding
an infinite hidden layer with a particular prior on the weights

• Deep kernel learning [Wilson et al., 2016]
• Combines the inductive biases of

deep models with the non-parametric
flexibility of Gaussian processes

• GPs add powerful regularization to
the network

• Additionally, they provide predictive
uncertainty estimates

© Petuum,Inc. 74

Deep kernel learning on sequential data
What if we have data of
sequential nature?

Can we still apply the same
reasoning and build rich
nonparametric models on top
recurrent nets?

© Petuum,Inc. 75

The answer is YES!

By adding a GP layer to a recurrent
network, we effectively correlate
samples across time and get
predictions along with well calibrated
uncertainty estimates.

To train such model using stochastic
techniques however requires some
additional care (see our paper).

Al-Shedivat et al., JMLR, 2017

Deep kernel learning on sequential data

© Petuum,Inc. 76

Lane prediction: LSTM vs GP-LSTM

�5 0 50

10

20

30

40

50

Fr
on

td
is

ta
nc

e,
m

�5 0 5 �5 0 5
Side distance, m

�5 0 5 �5 0 5

Deep kernel learning on sequential data

�5 0 50

10

20

30

40

50

Fr
on

td
is

ta
nc

e,
m

�5 0 5 �5 0 5
Side distance, m

�5 0 5 �5 0 5

Al-Shedivat et al., JMLR, 2017 © Petuum,Inc. 77

Lead vehicle prediction: LSTM vs GP-LSTM

�5 0 50

20

40

60

80

100

Fr
on

td
is

ta
nc

e,
m

�5 0 5 �5 0 5
Side distance, m

�5 0 5 �5 0 5

�5 0 50

20

40

60

80

100

Fr
on

td
is

ta
nc

e,
m

�5 0 5 �5 0 5
Side distance, m

�5 0 5 �5 0 5

Deep kernel learning on sequential data

Al-Shedivat et al., JMLR, 2017 © Petuum,Inc. 78

Conclusion
• DL & GM: the fields are similar in the beginning (structure, energy, etc.), and then

diverge to their own signature pipelines
• DL: most effort is directed to comparing different architectures and their components

(models are driven by evaluating empirical performance on a downstream tasks)
• DL models are good at learning robust hierarchical representations from the data and suitable

for simple reasoning (call it “low-level cognition”)

• GM: the effort is directed towards improving inference accuracy and convergence
speed

• GMs are best for provably correct inference and suitable for high-level complex reasoning
tasks (call it “high-level cognition”)

• Convergence of both fields is very promising!
• Next part: a unified view of deep generative models in the GM interpretation

© Petuum,Inc. 79

Part-II
Deep Generative Models

Plan
• Statistical And Algorithmic Foundation and Insight of Deep

Learning

• On Unified Framework of Deep Generative Models

• Computational Mechanisms: Distributed Deep Learning
Architectures

© Petuum,Inc. 81

Outline
• Overview of advances in deep generative models
• Backgrounds of deep generative models

• Wake sleep algorithm
• Variational autoencoders
• Generative adversarial networks

• A unified view of deep generative models
• new formulations of deep generative models
• Symmetric modeling of latent and visible variables

© Petuum,Inc. 82

Outline
• Overview of advances in deep generative models
• Backgrounds of deep generative models

• Wake sleep algorithm
• Variational autoencoders
• Generative adversarial networks

• A unified view of deep generative models
• new formulations of deep generative models
• Symmetric modeling of latent and visible variables

© Petuum,Inc. 83

Deep generative models
• Define probabilistic distributions over a set of variables
• "Deep" means multiple layers of hidden variables!

#$

#%

&

...

© Petuum,Inc. 84

Early forms of deep generative models
• Hierarchical Bayesian models

• Sigmoid brief nets [Neal 1992] |ä
(&) = 0,1 ã

|ä
($) = 0,1 å

çä = 0,1 é

b Xèä = 1 cè, |ä
($)	 = Z cèê|ä

($)

b k0ä
($) = 1 c0, |ä

(&)	 = Z c0ê|ä
&

Ç0K

© Petuum,Inc. 85

Early forms of deep generative models
• Hierarchical Bayesian models

• Sigmoid brief nets [Neal 1992]

• Neural network models
• Helmholtz machines [Dayan et al.,1995]

inference
weights

[Dayan et al. 1995]

7$

7&

#

© Petuum,Inc. 86

Early forms of deep generative models
• Hierarchical Bayesian models

• Sigmoid brief nets [Neal 1992]

• Neural network models
• Helmholtz machines [Dayan et al.,1995]

• Predictability minimization [Schmidhuber 1995]

Figure courtesy: Schmidhuber 1996
DATA

© Petuum,Inc. 87

Early forms of deep generative models
• Training of DGMs via an EM style framework

• Sampling / data augmentation

• Variational inference

• Wake sleep

log	b ç ≥ Erí | ç log	bg ç, | 	− KL(hì | ç 	||	b(|)) ≔ ℒ(c,ñ; ç)	
maxc,ñℒ(c,ñ; ç)	

| = |$, |&
|$äòô~b |$ |&, ç
|&äòô~b |& |$äòô, ç

Wake: 	mingVrí(ö|[) log	bg X k
Sleep: 	minìVõú([|ö) log	hì k X

© Petuum,Inc. 88

Resurgence of deep generative models
• Restricted Boltzmann machines (RBMs) [Smolensky, 1986]

• Building blocks of deep probabilistic models

© Petuum,Inc. 89

Resurgence of deep generative models
• Restricted Boltzmann machines (RBMs) [Smolensky, 1986]

• Building blocks of deep probabilistic models
• Deep belief networks (DBNs) [Hinton et al., 2006]

• Hybrid graphical model
• Inference in DBNs is problematic due to explaining away

• Deep Boltzmann Machines (DBMs) [Salakhutdinov & Hinton, 2009]

• Undirected model

© Petuum,Inc. 90

Resurgence of deep generative models
• Variational autoencoders (VAEs) [Kingma & Welling, 2014]

/ Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 2014]

generative modelinference model

Figure courtesy: Kingma & Welling, 2014

bg(ç||)hì(||ç)

© Petuum,Inc. 91

Resurgence of deep generative models
• Variational autoencoders (VAEs) [Kingma & Welling, 2014]

/ Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 2014]

• Generative adversarial networks (GANs)

ùg: generative model
tì: discriminator

© Petuum,Inc. 92

Resurgence of deep generative models
• Variational autoencoders (VAEs) [Kingma & Welling, 2014]

/ Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 2014]

• Generative adversarial networks (GANs)
• Generative moment matching networks (GMMNs) [Li et al., 2015; Dziugaite et

al., 2015]

© Petuum,Inc. 93

Resurgence of deep generative models
• Variational autoencoders (VAEs) [Kingma & Welling, 2014]

/ Neural Variational Inference and Learning (NVIL) [Mnih & Gregor, 2014]

• Generative adversarial networks (GANs)
• Generative moment matching networks (GMMNs) [Li et al., 2015; Dziugaite et

al., 2015]

• Autoregressive neural networks

"$ "' "(")
© Petuum,Inc. 94

Outline
• Overview of advances in deep generative models
• Backgrounds of deep generative models

• Wake sleep algorithm
• Variational autoencoders
• Generative adversarial networks

• A unified view of deep generative models
• new formulations of deep generative models
• Symmetric modeling of latent and visible variables

© Petuum,Inc. 95

Synonyms in the literature

• Posterior Distribution -> Inference model
• Variational approximation
• Recognition model
• Inference network (if parameterized as neural networks)
• Recognition network (if parameterized as neural networks)
• (Probabilistic) encoder

• "The Model" (prior + conditional, or joint) -> Generative model
• The (data) likelihood model
• Generative network (if parameterized as neural networks)
• Generator
• (Probabilistic) decoder

© Petuum,Inc. 96

Recap: Variational Inference
• Consider a generative model bg ç|| , and prior b |

• Joint distribution: bg ç, | = bg ç|| b |
• Assume variational distribution hì ||ç
• Objective: Maximize lower bound for log likelihood

• Equivalently, minimize free energy

log	b ç

= �Q hì | ç 	||	bc | ç + ûhì	 | ç 	log
bg ç, |
hì | ç 	

�

|

≥ ûhì | ç 	log
bg ç, |
hì	 | ç

	
�

|
≔ ℒ(c,ñ; ç)	

s c, Å; ç = −log	b ç + �Q(hì | ç 	||	bc(||ç))
© Petuum,Inc. 97

Recap: Variational Inference
Maximize the variational lower bound ℒ(c,ñ; ç)	
• E-step: maximize ℒ wrt. Å with c	fixed

• If with closed form solutions

• M-step: maximize ℒ wrt. c with Å fixed

maxìℒ c,ñ; ç = Vrí(ö|[) log	bg X k + �Q(hì	 k X ||b(k))

maxgℒ c,ñ; ç = Vrí k X log	bg X k + �Q(hì k X ||b(k))

hì∗ (k|X) ∝ exp[log	bg(X, k)]

© Petuum,Inc. 98

Recap: Amortized Variational Inference
• Variational distribution as an inference model hì | ç with

parameters ñ
• Amortize the cost of inference by learning a single data-

dependent inference model
• The trained inference model can be used for quick inference

on new data
• Maximize the variational lower bound ℒ(c,ñ; ç)	

• E-step: maximize ℒ wrt. ñ with c	fixed
• M-step: maximize ℒ wrt. c with ñ fixed

© Petuum,Inc. 99

Deep generative models with amortized inference

• Helmholtz machines
• Variational autoencoders (VAEs) / Neural Variational Inference

and Learning (NVIL)

• We will see later that adversarial approaches are also included
in the list

• Predictability minimization (PM)
• Generative adversarial networks (GANs)

© Petuum,Inc. 100

Wake Sleep Algorithm
• [Hinton et al., Science 1995]
• Train a separate inference model along with the generative model

• Generally applicable to a wide range of generative models, e.g., Helmholtz machines
• Consider a generative model bg ç | and prior b |

• Joint distribution bg ç, | = bg ç | b |
• E.g., multi-layer brief nets

• Inference model hì | ç
• Maximize data log-likelihood with two steps of loss relaxation:

• Maximize the lower bound of log-likelihood, or equivalently, minimize the free
energy

• Minimize a different objective (reversed KLD) wrt 	Å	to ease the optimization
• Disconnect to the original variational lower bound loss

s c,ñ; ç = −log	b ç + �Q(hì | ç 	||	bc(||ç))

s′ c,ñ; ç = −log	b ç + �Q(bg | ç 	||	hì(||ç))
© Petuum,Inc. 101

Wake Sleep Algorithm
• Free energy:

• Minimize the free energy wrt. c of	bg à wake phase

• Get samples from hì(k|X) through inference on hidden variables
• Use the samples as targets for updating the generative model bg(||ç)
• Correspond to the variational M step

s c,ñ; ç = −log	b ç + �Q(hñ | ç 	||	bc(||ç))

maxc	Erí(||ç)	 log	bc(ç, |)

R1

R2

ç

[Figure courtesy: Maei’s slides] © Petuum,Inc. 102

Wake Sleep Algorithm
• Free energy:

• Minimize the free energy wrt. Å of	hì | ç
• Correspond to the variational E step
• Difficulties:

• Optimal intractable
• High variance of direct gradient estimate

• Gradient estimate with the log-derivative trick:

• Monte Carlo estimation:

• The scale factor log	bg of the derivative 	¢ìlog	hì can have arbitrary
large magnitude

¢ìs Ç, Å; X = ⋯+ ¢ìVrí(ö|[) log	bg(k, X) + ⋯

¢ìVrí log	bg = ∫ ¢ìhìlog	bg = ∫ hìlog	bg	¢ìlog	hì = Vrí[log	bg	¢ìlog	hì]

hñ∗ | ç =
oc(|, ç)

∫oc |, ç 	•|�
�

¢ìVrí log	bg ≈ Vö_∼rí[log	bg(X, k0)	¢ìhì k0|X]

s c,ñ; ç = −log	b ç + �Q(hñ | ç 	||	bc(||ç))

© Petuum,Inc. 103

Wake Sleep Algorithm
• Free energy:

• WS works around the difficulties with the sleep phase approximation
• Minimize the following objective à sleep phase

• “Dreaming” up samples from bg ç | through top-down pass
• Use the samples as targets for updating the inference model

• (Recent approaches other than sleep phase is to reduce the variance of
gradient estimate: slides later)

s′ c,ñ; ç = −log	b ç + �Q(bg | ç 	||	hì(||ç))
maxñ	Eõú(|,ç)	 log	hì | ç

G1

G2

R1

R2

ç

[Figure courtesy: Maei’s slides]

s c,ñ; ç = −log	b ç + �Q(hñ | ç 	||	bc(||ç))

© Petuum,Inc. 104

Wake Sleep Algorithm
Wake sleep
• Parametrized inference model hñ | ç
• Wake phase:

• minimize	�Q(hñ | ç 	||	bc(||ç)) wrt. Ç
• Erí(||ç)	 ¢glog	bc ç |

• Sleep phase:
• minimize �Q(bg | ç 	||	hì(||ç)) wrt. Å
• Eõú(|,ç)	 ¢ìlog	hì(|, ç)
• low variance
• Learning with generated samples of ç

• Two objective, not guaranteed to converge

Variational EM
• Variational distribution hì | ç
• Variational M step:

• minimize	�Q(hì | ç 	||	bc(||ç)) wrt. Ç
• Erñ(||ç)	 ¢glog	bc ç |

• Variational E step:
• minimize �Q(hì | ç 	||	bc(||ç)) wrt. Å
• hì∗ ∝ exp[log	bg] if with closed-form
• ¢ìVrí log	bg(k, X)

• need variance-reduce in practice
• Learning with real data ç

• Single objective, guaranteed to converge
© Petuum,Inc. 105

Variational Autoencoders (VAEs)
• [Kingma & Welling, 2014]

• Use variational inference with an inference model
• Enjoy similar applicability with wake-sleep algorithm

• Generative model bg ç | , and prior b(|)
• Joint distribution bg ç, | = bg ç | b |

• Inference model hì | ç generative modelinference model

Figure courtesy: Kingma & Welling, 2014

bg(ç||)hì(||ç)

© Petuum,Inc. 106

Variational Autoencoders (VAEs)
• Variational lower bound

• Optimize ℒ(c,ñ; ç)	wrt. Ç of bg ç |
• The same with the wake phase

• Optimize ℒ(c,ñ; ç)	wrt. Å of hì | ç

• Use reparameterization trick to reduce variance
• Alternatives: use control variates as in reinforcement learning [Mnih &

Gregor, 2014; Paisley et al., 2012]

ℒ c,ñ; ç = 	Erí | ç log	bg ç, | 	− KL(hì | ç 	||	b(|))

¢ìℒ Ç, Å; X = ⋯+ ¢ìVrí(ö|[) log	bg X k +⋯

© Petuum,Inc. 107

Reparametrized gradient
• Optimize ℒ c,ñ; ç wrt. Å of hì | ç

• Recap: gradient estimate with log-derivative trick:

• High variance:
• The scale factor log	bg(X, k0) of the derivative 	¢ìlog	hì can have arbitrary large

magnitude

• gradient estimate with reparameterization trick

• (Empirically) lower variance of the gradient estimate
• E.g., 	| ∼ ß ® ç , © ç © ç ™ 		⇔ 		¨ ∼ ß 0,1 , | = ® ç + ©(ç)¨

¢ìErí | ç log	bg ç, | = E¨∼õ(≠) ¢ìlog	bg ç, |ì ¨

| ∼ hì | ç 			⇔ 			Æ = gì ¨, ç , 	¨ ∼ b(¨)

¢ìVrí log	bg ç, | = Vrí[log	bg ç, | 	¢ìlog	hì]
¢ìVrí log	bg ≈ Vö_∼rí[log	bg(X, k0)	¢ìhì k0|X]

© Petuum,Inc. 108

VAEs: algorithm

[Kingma & Welling, 2014]

© Petuum,Inc. 109

VAEs: example results

Celebrity faces [Radford 2015]

• VAEs tend to generate blurred
images due to the mode covering
behavior (more later)

• Latent code interpolation and
sentences generation from VAEs
[Bowman et al., 2015].

input we looked out at the setting sun . i went to the kitchen . how are you doing ?

mean they were laughing at the same time . i went to the kitchen . what are you doing ?

samp. 1 ill see you in the early morning . i went to my apartment . “ are you sure ?

samp. 2 i looked up at the blue sky . i looked around the room . what are you doing ?

samp. 3 it was down on the dance floor . i turned back to the table . what are you doing ?

Table 7: Three sentences which were used as inputs to the vae, presented with greedy decodes from the
mean of the posterior distribution, and from three samples from that distribution.

“ i want to talk to you . ”

“i want to be with you . ”

“i do n’t want to be with you . ”

i do n’t want to be with you .

she did n’t want to be with him .

he was silent for a long moment .

he was silent for a moment .

it was quiet for a moment .

it was dark and cold .

there was a pause .

it was my turn .

Table 8: Paths between pairs of random points in
vae space: Note that intermediate sentences are
grammatical, and that topic and syntactic struc-
ture are usually locally consistent.

ments). Here we see that the sentences are far less
typical, but for the most part are grammatical and
maintain a clear topic, indicating that the latent
variable is capturing a rich variety of global fea-
tures even for rare sentences.

6.2 Sampling from the posterior

In addition to generating unconditional samples,
we can also examine the sentences decoded from
the posterior vectors p(z|x) for various sentences
x. Because the model is regularized to produce dis-
tributions rather than deterministic codes, it does
not exactly memorize and round-trip the input. In-
stead, we can see what the model considers to be
similar sentences by examining the posterior sam-
ples in Table 7. The codes appear to capture in-
formation about the number of tokens and parts
of speech for each token, as well as topic informa-
tion. As the sentences get longer, the fidelity of
the round-tripped sentences decreases.

6.3 Homotopies

The use of a variational autoencoder allows us to
generate sentences using greedy decoding on con-
tinuous samples from the space of codes. Addi-
tionally, the volume-filling and smooth nature of
the code space allows us to examine for the first
time a concept of homotopy (linear interpolation)
between sentences. In this context, a homotopy be-
tween two codes ~z1 and ~z2 is the set of points on the
line between them, inclusive, ~z(t) = ~z1⇤(1�t)+~z2⇤t
for t 2 [0, 1]. Similarly, the homotopy between two

sentences decoded (greedily) from codes ~z1 and ~z2
is the set of sentences decoded from the codes on
the line. Examining these homotopies allows us to
get a sense of what neighborhoods in code space
look like – how the autoencoder organizes infor-
mation and what it regards as a continuous defor-
mation between two sentences.
While a standard non-variational rnnlm does

not have a way to perform these homotopies, a
vanilla sequence autoencoder can do so. As men-
tioned earlier in the paper, if we examine the ho-
motopies created by the sequence autoencoder in
Table 1, though, we can see that the transition be-
tween sentences is sharp, and results in ungram-
matical intermediate sentences. This gives evi-
dence for our intuition that the vae learns repre-
sentations that are smooth and “fill up” the space.
In Table 8 (and in additional tables in the ap-

pendix) we can see that the codes mostly contain
syntactic information, such as the number of words
and the parts of speech of tokens, and that all in-
termediate sentences are grammatical. Some topic
information also remains consistent in neighbor-
hoods along the path. Additionally, sentences with
similar syntax and topic but flipped sentiment va-
lence, e.g. “the pain was unbearable” vs. “the
thought made me smile”, can have similar embed-
dings, a phenomenon which has been observed with
single-word embeddings (for example the vectors
for “bad” and “good” are often very similar due to
their similar distributional characteristics).

7 Conclusion

This paper introduces the use of a variational
autoencoder for natural language sentences. We
present novel techniques that allow us to train
our model successfully, and find that it can e↵ec-
tively impute missing words. We analyze the la-
tent space learned by our model, and find that it
is able to generate coherent and diverse sentences
through purely continuous sampling and provides
interpretable homotopies that smoothly interpo-
late between sentences.
We hope in future work to investigate factoriza-

tion of the latent variable into separate style and
content components, to generate sentences condi-
tioned on extrinsic features, to learn sentence em-
beddings in a semi-supervised fashion for language

© Petuum,Inc. 110

Generative Adversarial Nets (GANs)
• [Goodfellow et al., 2014]
• Generative model ç = ùg | , 	| ∼ b(|)

• Map noise variable | to data space ç
• Define an implicit distribution over ç: b∞ú(ç)

• a stochastic process to simulate data ç
• Intractable to evaluate likelihood

• Discriminator tì ç
• Output the probability that ç came from the data rather than the generator

• No explicit inference model
• No obvious connection to previous models with inference networks like VAEs

• We will build formal connections between GANs and VAEs later

© Petuum,Inc. 111

Generative Adversarial Nets (GANs)
• Learning

• A minimax game between the generator and the discriminator
• Train t to maximize the probability of assigning the correct label to both

training examples and generated samples
• Train ù to fool the discriminator

[Figure courtesy: Kim’s slides]

GAN plays the role of z1 as above. The space S0 is now implicit and we directly sample real image
x from data distribution pdata(x). The distribution in Eq.(1) is thus rewritten as:

p(x|z, y) =
⇢
pdata(x) y = 0

pg(x|z) y = 1,
(5)

where pg(x|z) = G(z) is the generative distribution. Note that pdata(x) is the empirical data
distribution which is free of parameters. The discriminator is defined in the same way as above, i.e.,
D(x) = p(y = 0|x). Then the objective of GAN is precisely defined in Eq.(2). To make this clearer,
we again transform the objective into its conventional form:

maxD LD = E
x⇠pdata(x) [logD(x)] + E

x⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG LG = E
x⇠pdata(x) [log(1�D(x))] + E

x⇠G(z),z⇠p(z) [logD(x)]

= E
x⇠G(z),z⇠p(z) [logD(x)] .

(6)

maxD LD = E
x⇠pdata(x) [logD(x)] + E

x⇠G(z),z⇠p(z) [log(1�D(x))] ,

minG LG = E
x⇠G(z),z⇠p(z) [log(1�D(x))] .

maxD LD = E
x⇠pdata(x) [logD(x)] + E

x⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG LG = E
x⇠G(z),z⇠p(z) [logD(x)] .

Note that for learning the generator we are using the adapted objective, i.e., maximizing
E
x⇠G(z),z⇠p(z) [logD(x)], as is usually used in practice (Goodfellow et al., 2014), rather than

minimizing E
x⇠G(z),z⇠p(z) [log(1�D(x))].

KL Divergence Interpretation
Now we take a closer look into Eq.(2). Assume uniform prior distribution p(y) where p(y = 0) =

p(y = 1) = 0.5. For optimizing p(x|z, y), we have
Theorem 1. Let p✓(x|z, y) be the conditional distribution in Eq.(1) parameterized with ✓. Denote

p✓0(x|z) = Ep(y)[p✓0(x|z, y)] with fixed parameter ✓0. Denote q0(x|z, y) / q(1� y|x)p✓0(x|z).
Therefore,

Ep(z,y)

⇥
�r✓Ep✓(x|z,y) [log q(1� y|x)] |✓=✓0

⇤
=

r✓Ep(z,y) [KL (p✓(x|z, y)kq0(x|z, y))� JSD (p✓(x|z, y = 0)kp✓(x|z, y = 1)) |✓=✓0]
(7)

Proof.

Ep(z,y)

⇥
�Ep✓(x|z,y) [log q(1� y|x)]

⇤
=

Ep(z,y) [KL (p✓(x|z, y)kq0(x|z, y))� KL(p✓(x|z, y)kp✓0(x|z))] ,
(8)

where
Ep(z,y) [KL(p✓(x|z, y)kp✓0(x|z))] =

Ep(z)


p(y = 0)KL

✓
p✓(x|z, y = 0)kp✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

◆
+

p(y = 1)KL
✓
p✓(x|z, y = 1)kp✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

◆�
.

(9)

Taking derivatives w.r.t ✓ at ✓0 we get
r✓Ep(z,y) [KL(p✓(x|z, y)kp✓0(x|z))] |✓=✓0

= Ep(z)


1

2

Z

x

r✓p✓(x|z, y = 0)

p✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

+

1

2

Z

x

r✓p✓(x|z, y = 1)

p✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

�
|✓=✓0

= Ep(z) [r✓JSD(p✓(x|z, y = 0)kp✓(x|z, y = 1)) |✓=✓0] .

(10)

Taking derivatives of the both sides of Eq.(8) at w.r.t ✓ at ✓0 and plugging the last equation of Eq.(10),
we obtain our desired result.

2

© Petuum,Inc. 112

Generative Adversarial Nets (GANs)
• Learning

• Train ù to fool the discriminator
• The original loss suffers from vanishing gradients when t is too strong
• Instead use the following in practice

[Figure courtesy: Kim’s slides]

GAN plays the role of z1 as above. The space S0 is now implicit and we directly sample real image
x from data distribution pdata(x). The distribution in Eq.(1) is thus rewritten as:

p(x|z, y) =
⇢
pdata(x) y = 0

pg(x|z) y = 1,
(5)

where pg(x|z) = G(z) is the generative distribution. Note that pdata(x) is the empirical data
distribution which is free of parameters. The discriminator is defined in the same way as above, i.e.,
D(x) = p(y = 0|x). Then the objective of GAN is precisely defined in Eq.(2). To make this clearer,
we again transform the objective into its conventional form:

maxD LD = E
x⇠pdata(x) [logD(x)] + E

x⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG LG = E
x⇠pdata(x) [log(1�D(x))] + E

x⇠G(z),z⇠p(z) [logD(x)]

= E
x⇠G(z),z⇠p(z) [logD(x)] .

(6)

maxD LD = E
x⇠pdata(x) [logD(x)] + E

x⇠G(z),z⇠p(z) [log(1�D(x))] ,

minG LG = E
x⇠G(z),z⇠p(z) [log(1�D(x))] .

maxD LD = E
x⇠pdata(x) [logD(x)] + E

x⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG LG = E
x⇠G(z),z⇠p(z) [logD(x)] .

Note that for learning the generator we are using the adapted objective, i.e., maximizing
E
x⇠G(z),z⇠p(z) [logD(x)], as is usually used in practice (Goodfellow et al., 2014), rather than

minimizing E
x⇠G(z),z⇠p(z) [log(1�D(x))].

KL Divergence Interpretation
Now we take a closer look into Eq.(2). Assume uniform prior distribution p(y) where p(y = 0) =

p(y = 1) = 0.5. For optimizing p(x|z, y), we have
Theorem 1. Let p✓(x|z, y) be the conditional distribution in Eq.(1) parameterized with ✓. Denote

p✓0(x|z) = Ep(y)[p✓0(x|z, y)] with fixed parameter ✓0. Denote q0(x|z, y) / q(1� y|x)p✓0(x|z).
Therefore,

Ep(z,y)

⇥
�r✓Ep✓(x|z,y) [log q(1� y|x)] |✓=✓0

⇤
=

r✓Ep(z,y) [KL (p✓(x|z, y)kq0(x|z, y))� JSD (p✓(x|z, y = 0)kp✓(x|z, y = 1)) |✓=✓0]
(7)

Proof.

Ep(z,y)

⇥
�Ep✓(x|z,y) [log q(1� y|x)]

⇤
=

Ep(z,y) [KL (p✓(x|z, y)kq0(x|z, y))� KL(p✓(x|z, y)kp✓0(x|z))] ,
(8)

where
Ep(z,y) [KL(p✓(x|z, y)kp✓0(x|z))] =

Ep(z)


p(y = 0)KL

✓
p✓(x|z, y = 0)kp✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

◆
+

p(y = 1)KL
✓
p✓(x|z, y = 1)kp✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

◆�
.

(9)

Taking derivatives w.r.t ✓ at ✓0 we get
r✓Ep(z,y) [KL(p✓(x|z, y)kp✓0(x|z))] |✓=✓0

= Ep(z)


1

2

Z

x

r✓p✓(x|z, y = 0)

p✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

+

1

2

Z

x

r✓p✓(x|z, y = 1)

p✓0(x|z, y = 0) + p✓0(x|z, y = 1)

2

�
|✓=✓0

= Ep(z) [r✓JSD(p✓(x|z, y = 0)kp✓(x|z, y = 1)) |✓=✓0] .

(10)

Taking derivatives of the both sides of Eq.(8) at w.r.t ✓ at ✓0 and plugging the last equation of Eq.(10),
we obtain our desired result.

2

© Petuum,Inc. 113

Generative Adversarial Nets (GANs)
• Learning

• Aim to achieve equilibrium of the game
• Optimal state:

• b∞ ç = b)±≤±(X)
• t ç = õ≥¥µ¥ [

õ≥¥µ¥ [∂õ∑ [= 	 $&

[Figure courtesy: Kim’s slides]
© Petuum,Inc. 114

GANs: example results

Generated bedrooms [Radford et al., 2016]
© Petuum,Inc. 115

Alchemy Vs Modern Chemistry

© Petuum,Inc. 116

Outline
• Overview of advances in deep generative models
• Backgrounds of deep generative models

• Wake sleep algorithm
• Variational autoencoders
• Generative adversarial networks

• A unified view of deep generative models
• new formulations of deep generative models
• Symmetric modeling of latent and visible variables

Z Hu, Z YANG, R Salakhutdinov, E Xing,
“On Unifying Deep Generative Models”, arxiv 1706.00550

© Petuum,Inc. 117

A unified view of deep generative models
• Literatures have viewed these DGM approaches as distinct

model training paradigms
• GANs: achieve an equilibrium between generator and discriminator
• VAEs: maximize lower bound of the data likelihood

• Let's study a new formulation for DGMs
• Connects GANs, VAEs, and other variants, under a unified view
• Links them back to inference and learning of Graphical Models, and the

wake-sleep heuristic that approximates this
• Provides a tool to analyze many GAN-/VAE-based algorithms
• Encourages mutual exchange of ideas from each individual class of

models

© Petuum,Inc. 118

Adversarial domain adaptation (ADA)
• Let’s start from ADA

• The application of adversarial approach on domain adaptation
• We then show GANs can be seen as a special case of ADA
• Correspondence of elements:

GANs

ADA

Elements GANs ADA

ç data/generation features

| code vector Data from src/tgt
domains

` Real/fake indicator Source/target
domain indicator

© Petuum,Inc. 119

Adversarial domain adaptation (ADA)
• Data k from two domains indicated by ` ∈ 0,1

• Source domain (` = 1)
• Target domain (` = 0),

• ADA transfers prediction knowledge learned from the
source domain to the target domain

• Learn a feature extractor ùg: ç = ùg(|)
• Wants ç to be indistinguishable by a domain discriminator:
tì ç

• Application in classification
• E.g., we have labels of the source domain data
• Train classifier over ç of source domain data to predict the

labels
• ç is domain invariant ⇒ ç is predictive for target domain

data
© Petuum,Inc. 120

ADA: conventional formulation
• Train tì to distinguish between domains

• Train ùg to fool tì

maximize the binary classification accuracy of recognizing the feature domains:
max

�

L� = E
x=G✓(z),z⇠p(z|y=1) [logD�(x)] + E

x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] . (1)
The feature extractor G✓ is then trained to fool the discriminator:

max

✓

L✓ = E
x=G✓(z),z⇠p(z|y=1) [log(1�D�(x))] + E

x=G✓(z),z⇠p(z|y=0) [logD�(x)] . (2)
Here we omit the additional loss on ✓ that fits the features to the data label pairs of source domain
(see the supplementary materials for the details).

With the background of the conventional formulation, we now frame our new interpretation of ADA.
The data distribution p(z|y) and deterministic transformation G✓ together form an implicit distribution
over x, denoted as p✓(x|y), which is intractable to evaluate likelihood but easy to sample from. Let
p(y) be the prior distribution of the domain indicator y, e.g., a uniform distribution as in Eqs.(1)-(2).
The discriminator defines a conditional distribution q�(y|x) = D�(x). Let qr�(y|x) = q�(1� y|x)
be the reversed distribution over domains. The objectives of ADA are therefore rewritten as (up to a
constant scale factor 2):

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y)
⇥
log q

r
�(y|x)

⇤
.

(3)

The above objectives can be interpreted as maximizing the log likelihood of y (or 1 � y) with the
“generative distribution” q�(y|x) conditioning on the latent code x inferred by p✓(x|y). Note that the
only (but critical) difference of the objectives of ✓ from � is the replacement of q(y|x) with q

r
(y|x).

This is where the adversarial mechanism comes about.

Graphical model representation Figure 1(c) illustrates the graphical model of the formulation
in Eq.(3), where, in the new view, solid-line arrows denote the generative process while dashed-
line arrows denote the inference process. We introduce new visual elements, e.g., hollow arrows
for expressing implicit distributions, and blue arrows for adversarial mechanism. As noted above,
adversarial modeling is achieved by swapping between q(y|x) and q

r
(y|x) when training respective

modules.

3.2 Generative Adversarial Networks (GANs)

GANs [16] can be seen as a special case of ADA. Taking image generation for example, intuitively,
we want to transfer the properties of the source domain (real images) to the target domain (generated
images), making them indistinguishable to the discriminator. Figure 1(b) shows the conventional
view of GANs.

Formally, x now denotes a real example or a generated sample, z is the respective latent code. For
the generated sample domain (y = 0), the implicit distribution p✓(x|y = 0) is defined by the prior of
z and the generator G✓(z), which is also denoted as pg✓ (x) in the literature. For the real example
domain (y = 1), the code space and generator are degenerated, and we are directly presented with a
fixed distribution p(x|y = 1), which is just the real data distribution pdata(x). Note that pdata(x) is
also an implicit distribution allowing efficient empirical sampling. In summary, the distribution over
x is constructed as

p✓(x|y) =
⇢
pg✓ (x) y = 0

pdata(x) y = 1.

(4)

Here, free parameters ✓ are only associated with pg✓ (x) of the generated sample domain, while
pdata(x) is constant. As in ADA, discriminator D� is simultaneously trained to infer the probability
that x comes from the real data domain. That is, q�(y = 1|x) = D�(x).

With the established correspondence between GANs and ADA, we can see that the objectives of
GANs are precisely expressed as Eq.(3) and as the graphical model in Figure 1(c). To make this
clearer, we recover the classical form by unfolding over y and plugging in conventional notations.
For instance, the objective of the generative parameters ✓ is translated into

max

✓

L✓ = Ep✓(x|y=0)p(y=0)

⇥
log q

r
�(y = 0|x)

⇤
+ Ep✓(x|y=1)p(y=1)

⇥
log q

r
�(y = 1|x)

⇤

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] +

1

2

E
x⇠pdata(x) [log(1�D�(x))]

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] + const,

(5)

4

maximize the binary classification accuracy of recognizing the feature domains:
max

�

L� = E
x=G✓(z),z⇠p(z|y=1) [logD�(x)] + E

x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] . (1)
The feature extractor G✓ is then trained to fool the discriminator:

max

✓

L✓ = E
x=G✓(z),z⇠p(z|y=1) [log(1�D�(x))] + E

x=G✓(z),z⇠p(z|y=0) [logD�(x)] . (2)
Here we omit the additional loss on ✓ that fits the features to the data label pairs of source domain
(see the supplementary materials for the details).

With the background of the conventional formulation, we now frame our new interpretation of ADA.
The data distribution p(z|y) and deterministic transformation G✓ together form an implicit distribution
over x, denoted as p✓(x|y), which is intractable to evaluate likelihood but easy to sample from. Let
p(y) be the prior distribution of the domain indicator y, e.g., a uniform distribution as in Eqs.(1)-(2).
The discriminator defines a conditional distribution q�(y|x) = D�(x). Let qr�(y|x) = q�(1� y|x)
be the reversed distribution over domains. The objectives of ADA are therefore rewritten as (up to a
constant scale factor 2):

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y)
⇥
log q

r
�(y|x)

⇤
.

(3)

The above objectives can be interpreted as maximizing the log likelihood of y (or 1 � y) with the
“generative distribution” q�(y|x) conditioning on the latent code x inferred by p✓(x|y). Note that the
only (but critical) difference of the objectives of ✓ from � is the replacement of q(y|x) with q

r
(y|x).

This is where the adversarial mechanism comes about.

Graphical model representation Figure 1(c) illustrates the graphical model of the formulation
in Eq.(3), where, in the new view, solid-line arrows denote the generative process while dashed-
line arrows denote the inference process. We introduce new visual elements, e.g., hollow arrows
for expressing implicit distributions, and blue arrows for adversarial mechanism. As noted above,
adversarial modeling is achieved by swapping between q(y|x) and q

r
(y|x) when training respective

modules.

3.2 Generative Adversarial Networks (GANs)

GANs [16] can be seen as a special case of ADA. Taking image generation for example, intuitively,
we want to transfer the properties of the source domain (real images) to the target domain (generated
images), making them indistinguishable to the discriminator. Figure 1(b) shows the conventional
view of GANs.

Formally, x now denotes a real example or a generated sample, z is the respective latent code. For
the generated sample domain (y = 0), the implicit distribution p✓(x|y = 0) is defined by the prior of
z and the generator G✓(z), which is also denoted as pg✓ (x) in the literature. For the real example
domain (y = 1), the code space and generator are degenerated, and we are directly presented with a
fixed distribution p(x|y = 1), which is just the real data distribution pdata(x). Note that pdata(x) is
also an implicit distribution allowing efficient empirical sampling. In summary, the distribution over
x is constructed as

p✓(x|y) =
⇢
pg✓ (x) y = 0

pdata(x) y = 1.

(4)

Here, free parameters ✓ are only associated with pg✓ (x) of the generated sample domain, while
pdata(x) is constant. As in ADA, discriminator D� is simultaneously trained to infer the probability
that x comes from the real data domain. That is, q�(y = 1|x) = D�(x).

With the established correspondence between GANs and ADA, we can see that the objectives of
GANs are precisely expressed as Eq.(3) and as the graphical model in Figure 1(c). To make this
clearer, we recover the classical form by unfolding over y and plugging in conventional notations.
For instance, the objective of the generative parameters ✓ is translated into

max

✓

L✓ = Ep✓(x|y=0)p(y=0)

⇥
log q

r
�(y = 0|x)

⇤
+ Ep✓(x|y=1)p(y=1)

⇥
log q

r
�(y = 1|x)

⇤

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] +

1

2

E
x⇠pdata(x) [log(1�D�(x))]

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] + const,

(5)

4

© Petuum,Inc. 121

ADA: new formulation
• To reveal the connections to conventional variational approaches, let’s rewrite

the objectives in a format that resembles variational EM
• Implicit distribution over ç ∼ bg(ç|`)

ç = ùg | , | ∼ b | `
• Discriminator distribution hì(`|ç)

hì∏ ` ç = hì(1 − `|ç)
• Rewrite the objective in the new form (up to constant scale factor)

• | is encapsulated in the implicit distribution bg(ç|`)

• (Ignore the constant scale factor 1/2)

ADA GANs VAEs

x features data/generations data/generations
y domain indicator real/fake indicator (degenerated) real/fake indicator
z data examples code vector code vector
p✓(x|y) feature distr. generation distr., Eq.2 p✓(x|z, y), generation distr., Eq.9
q�(y|x) discriminator discriminator q⇤(y|x), degenerated discriminator
p⌘(z|x, y) — infer net (InfoGAN) infer net
p✓0(x) = Ep(y)[p✓0(x|y)] — prior of x prior of x

Table 1: Correspondence between different approaches in the proposed formulation.

[Eric: There should be a quick description of the wake-sleep algorithm here to start the
section.] In GANs, the generative model is trained by passing generated samples to a discriminator
and minimizing the resulting error evaluated by the discriminator. Intuitively, the reliance on fake
samples for learning resembles the sleep phase in the wake-sleep algorithm. In contrast, VAEs train
the generative model by reconstructing observed real examples, sharing similarity to the wake phase.
This section formally explores these connections.

For ease of presentation and to establish a systematic notation for the paper, we start with a new
interpretation of Adversarial Domain Adaptation (ADA) [Eric: please add the earliest citation
for this name?] within our proposed formulation. We then show that GANs are a special case of
ADA with a degenerated source domain, and reveal close relations to VAEs and wake-sleep algorithm
through KL divergence interpretation of the objectives. Table 1 lists the correspondence of each
components in these approaches.

3.1 Adversarial Domain Adaptation (ADA)

ADA aims to transfer prediction knowledge learned from a source domain with labeled data to a
target domain without labels, by learning domain-invariant features [13, 42, 43, 7]. That is, it learns a
feature extractor whose output cannot be distinguished by a discriminator between the source and
target domains.

We frame our new interpretation of ADA, and review conventional formulations in the supplementary
materials. To make clear notational correspondence to other models in the sequel, [Eric: Please add
a figure drawing a graphical model here for ADA.] let z be a data example either in the source
or target domain, and y 2 {0, 1} be the domain indicator with y = 0 indicating the target domain
and y = 1 the source domain. The data distributions conditioning on the domain are then denoted
as p(z|y). Let p(y) be the prior distribution (e.g., uniform) of the domain indicator. The feature
extractor maps z to representations x = G✓(z) with parameters ✓. The data distributions over z and
deterministic transformation G✓ together form an implicit distribution over x, denoted as p✓(x|y),
which is intractable to evaluate likelihood but easy to sample from:

To enforce domain invariance of feature x, a discriminator is trained to adversarially distinguish
between the two domains, which defines a conditional distribution q�(y|x) with parameters �, and
the feature extractor is optimized to fool the discriminator. Let qr�(y|x) = q�(1�y|x) be the reversed
distribution over domains. The objectives of ADA are therefore given as:

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y)
⇥
log q

r
�(y|x)

⇤
,

(1)

where we omit the additional loss of ✓ to fit to the data label pairs of source domain (see supplements
for more details). In conventional view, the first equation minimizes the discriminator binary cross
entropy with respect to discriminative parameter �, while the second trains the feature extractor
to maximize the cross entropy with respect to the transformation parameter ✓. [Eric: I think for
self-containedness, it would be better to explain both of the cross-entropy notion above.]
Alternatively, we can interpret the objectives as optimizing the reconstruction of the domain variable
y conditioned on feature x. [Eric: I can not understand this point.] We explore this perspective
more in the next section. Note that the only (but critical) difference between the objective of ✓ from
� is the replacement of q(y|x) with q

r
(y|x). This is where the adversarial mechanism comes about.

3

Figure 2: One optimization step of the parameter ✓ through Eq.(7) at point ✓0. The posterior
q

r
(x|y) is a mixture of p✓0(x|y = 0) (blue) and p✓0(x|y = 1) (red in the left panel) with the

mixing weights induced from q

r
�0
(y|x). Minimizing the KL divergence of Eq.(7) w.r.t ✓ drives

p✓(x|y = 0) towards the respective mixture q

r
(x|y = 0) (green), resulting in a new state where

p✓new
(x|y = 0) = p

new
g (x) gets closer to p✓0(x|y = 1) = pdata(x). Due to the asymmetry of

KL divergence, pnewg (x) missed the smaller mode of the mixture q

r
(x|y = 0) which is a mode of

pdata(x).

where the prior p(y) is uniform as is widely set, resulting in the constant scale factor 1/2. Note that
here the generator is trained using the unsaturated objective [16] which is commonly used in practice.

max

�

L� = Ep✓(x|y=0)p(y=0) [log q�(y = 0|x)] + Ep✓(x|y=1)p(y=1) [log q�(y = 1|x)]

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] +

1

2

E
x=G✓(z),z⇠p(z|y=1) [logD�(x)]

(6)

We now take a closer look at the form of Eq.(3) which is essentially reconstructing the real/fake
indicator y (or its reverse 1� y) conditioned on x. Further, for each optimization step of p✓(x|y) at
point (✓0,�0) in the parameter space, we have

Lemma 1 Let p(y) be the uniform distribution. Let p✓0(x) = Ep(y)[p✓0(x|y)], and q

r
(x|y) /

q

r
�0
(y|x)p✓0(x). Therefore, the updates of ✓ at ✓0 have

Ep(y)

⇥
r✓Ep✓(x|y)

⇥
log q

r
�0
(y|x)

⇤
|
✓=✓0

⇤
=

� Ep(y) [r✓KL (p✓(x|y)kqr(x|y))� JSD (p✓(x|y = 0)kp✓(x|y = 1)) |
✓=✓0] ,

(7)

where KL(·k·) and JSD(·k·) are the KL and Jensen-Shannon Divergences, respectively.

We provide the proof in the supplement materials. Eq.(7) offers several insights into the generator
learning in GANs.

• Resemblance to variational inference. If we treat y as visible and x as latent (as in ADA), it is
straightforward to see the connections to the variational inference algorithm where q

r
(x|y) plays

the role of the posterior, p✓0(x) the prior, and p✓(x|y) the variational distribution that approximates
the posterior. Optimizing the generator G✓ is equivalent to minimizing the KL divergence between
the variational distribution and the posterior, minus a JSD between the distributions pg✓ (x) and
pdata(x). The Bayesian interpretation further reveals the connections to VAEs, as we discuss in
the next section.

• Training dynamics. By definition, p✓0(x) = (pg✓0
(x)+pdata(x))/2 is a mixture of pg✓0 (x) and

pdata(x) with uniform mixing weights, and the “posterior” qr(x|y) smooths p✓0(x) by combining
the uncertainty of discriminator qr�0

(y|x). Thus, minimizing the KL divergence between p✓(x|y)
and q

r
(x|y) in effect drives pg✓ (x) (i.e., p✓(x|y = 0)) to a mixture of pg✓0 (x) and pdata(x).

Since pdata(x) is fixed, pg✓ (x) gets closer to pdata(x). Figure 2 illustrates the training dynamics
schematically.

• Reasons of the missing mode issue. The negative JSD term is due to the introduction of the
“prior” p✓0(x) at current point ✓0. As JSD is symmetric, the missing mode phenomena widely
observed in GAN generator [37, 6] is explained by the asymmetry of the KL divergence which
tends to concentrate p✓(x|y) to large modes of qr(x|y) and ignore smaller ones. See Figure 2 for
the example.

5

© Petuum,Inc. 122

• New formulation

• The only difference between Ç and Å: 	h vs. h∏
• This is where the adversarial mechanism comes about

ADA GANs VAEs

x features data/generations data/generations
y domain indicator real/fake indicator (degenerated) real/fake indicator
z data examples code vector code vector
p✓(x|y) feature distr. generation distr., Eq.2 p✓(x|z, y), generation distr., Eq.9
q�(y|x) discriminator discriminator q⇤(y|x), degenerated discriminator
p⌘(z|x, y) — infer net (InfoGAN) infer net
p✓0(x) = Ep(y)[p✓0(x|y)] — prior of x prior of x

Table 1: Correspondence between different approaches in the proposed formulation.

[Eric: There should be a quick description of the wake-sleep algorithm here to start the
section.] In GANs, the generative model is trained by passing generated samples to a discriminator
and minimizing the resulting error evaluated by the discriminator. Intuitively, the reliance on fake
samples for learning resembles the sleep phase in the wake-sleep algorithm. In contrast, VAEs train
the generative model by reconstructing observed real examples, sharing similarity to the wake phase.
This section formally explores these connections.

For ease of presentation and to establish a systematic notation for the paper, we start with a new
interpretation of Adversarial Domain Adaptation (ADA) [Eric: please add the earliest citation
for this name?] within our proposed formulation. We then show that GANs are a special case of
ADA with a degenerated source domain, and reveal close relations to VAEs and wake-sleep algorithm
through KL divergence interpretation of the objectives. Table 1 lists the correspondence of each
components in these approaches.

3.1 Adversarial Domain Adaptation (ADA)

ADA aims to transfer prediction knowledge learned from a source domain with labeled data to a
target domain without labels, by learning domain-invariant features [13, 42, 43, 7]. That is, it learns a
feature extractor whose output cannot be distinguished by a discriminator between the source and
target domains.

We frame our new interpretation of ADA, and review conventional formulations in the supplementary
materials. To make clear notational correspondence to other models in the sequel, [Eric: Please add
a figure drawing a graphical model here for ADA.] let z be a data example either in the source
or target domain, and y 2 {0, 1} be the domain indicator with y = 0 indicating the target domain
and y = 1 the source domain. The data distributions conditioning on the domain are then denoted
as p(z|y). Let p(y) be the prior distribution (e.g., uniform) of the domain indicator. The feature
extractor maps z to representations x = G✓(z) with parameters ✓. The data distributions over z and
deterministic transformation G✓ together form an implicit distribution over x, denoted as p✓(x|y),
which is intractable to evaluate likelihood but easy to sample from:

To enforce domain invariance of feature x, a discriminator is trained to adversarially distinguish
between the two domains, which defines a conditional distribution q�(y|x) with parameters �, and
the feature extractor is optimized to fool the discriminator. Let qr�(y|x) = q�(1�y|x) be the reversed
distribution over domains. The objectives of ADA are therefore given as:

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y)
⇥
log q

r
�(y|x)

⇤
,

(1)

where we omit the additional loss of ✓ to fit to the data label pairs of source domain (see supplements
for more details). In conventional view, the first equation minimizes the discriminator binary cross
entropy with respect to discriminative parameter �, while the second trains the feature extractor
to maximize the cross entropy with respect to the transformation parameter ✓. [Eric: I think for
self-containedness, it would be better to explain both of the cross-entropy notion above.]
Alternatively, we can interpret the objectives as optimizing the reconstruction of the domain variable
y conditioned on feature x. [Eric: I can not understand this point.] We explore this perspective
more in the next section. Note that the only (but critical) difference between the objective of ✓ from
� is the replacement of q(y|x) with q

r
(y|x). This is where the adversarial mechanism comes about.

3

ADA: new formulation

© Petuum,Inc. 123

ADA
• Objectives

• Two objectives
• Have global optimal state in the game

theoretic view

ADA GANs VAEs

x features data/generations data/generations
y domain indicator real/fake indicator (degenerated) real/fake indicator
z data examples code vector code vector
p✓(x|y) feature distr. generation distr., Eq.2 p✓(x|z, y), generation distr., Eq.9
q�(y|x) discriminator discriminator q⇤(y|x), degenerated discriminator
p⌘(z|x, y) — infer net (InfoGAN) infer net
p✓0(x) = Ep(y)[p✓0(x|y)] — prior of x prior of x

Table 1: Correspondence between different approaches in the proposed formulation.

[Eric: There should be a quick description of the wake-sleep algorithm here to start the
section.] In GANs, the generative model is trained by passing generated samples to a discriminator
and minimizing the resulting error evaluated by the discriminator. Intuitively, the reliance on fake
samples for learning resembles the sleep phase in the wake-sleep algorithm. In contrast, VAEs train
the generative model by reconstructing observed real examples, sharing similarity to the wake phase.
This section formally explores these connections.

For ease of presentation and to establish a systematic notation for the paper, we start with a new
interpretation of Adversarial Domain Adaptation (ADA) [Eric: please add the earliest citation
for this name?] within our proposed formulation. We then show that GANs are a special case of
ADA with a degenerated source domain, and reveal close relations to VAEs and wake-sleep algorithm
through KL divergence interpretation of the objectives. Table 1 lists the correspondence of each
components in these approaches.

3.1 Adversarial Domain Adaptation (ADA)

ADA aims to transfer prediction knowledge learned from a source domain with labeled data to a
target domain without labels, by learning domain-invariant features [13, 42, 43, 7]. That is, it learns a
feature extractor whose output cannot be distinguished by a discriminator between the source and
target domains.

We frame our new interpretation of ADA, and review conventional formulations in the supplementary
materials. To make clear notational correspondence to other models in the sequel, [Eric: Please add
a figure drawing a graphical model here for ADA.] let z be a data example either in the source
or target domain, and y 2 {0, 1} be the domain indicator with y = 0 indicating the target domain
and y = 1 the source domain. The data distributions conditioning on the domain are then denoted
as p(z|y). Let p(y) be the prior distribution (e.g., uniform) of the domain indicator. The feature
extractor maps z to representations x = G✓(z) with parameters ✓. The data distributions over z and
deterministic transformation G✓ together form an implicit distribution over x, denoted as p✓(x|y),
which is intractable to evaluate likelihood but easy to sample from:

To enforce domain invariance of feature x, a discriminator is trained to adversarially distinguish
between the two domains, which defines a conditional distribution q�(y|x) with parameters �, and
the feature extractor is optimized to fool the discriminator. Let qr�(y|x) = q�(1�y|x) be the reversed
distribution over domains. The objectives of ADA are therefore given as:

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y)
⇥
log q

r
�(y|x)

⇤
,

(1)

where we omit the additional loss of ✓ to fit to the data label pairs of source domain (see supplements
for more details). In conventional view, the first equation minimizes the discriminator binary cross
entropy with respect to discriminative parameter �, while the second trains the feature extractor
to maximize the cross entropy with respect to the transformation parameter ✓. [Eric: I think for
self-containedness, it would be better to explain both of the cross-entropy notion above.]
Alternatively, we can interpret the objectives as optimizing the reconstruction of the domain variable
y conditioned on feature x. [Eric: I can not understand this point.] We explore this perspective
more in the next section. Note that the only (but critical) difference between the objective of ✓ from
� is the replacement of q(y|x) with q

r
(y|x). This is where the adversarial mechanism comes about.

3

ADA vs. Variational EM
Variational EM
• Objectives

• Single objective for both Ç and Å
• Extra prior regularization by b(k)

maxìℒñ,c = Vrí(ö|[) log	bg X k + �Q hì k X ||b k

maxgℒñ,c = Vrí(ö|[) log	bg X k + �Q hì k X ||b k

© Petuum,Inc. 124

ADA
• Objectives

• Two objectives
• Have global optimal state in the game

theoretic view
• The objectives: maximize the conditional

log-likelihood of	` (or 1 − `) with the
distribution hì(`|X) conditioning on latent
feature X inferred by bg(X|`)

• Interpret hì(`|X) as the generative model
• Interpret bg(X|`) as the inference model

ADA GANs VAEs

x features data/generations data/generations
y domain indicator real/fake indicator (degenerated) real/fake indicator
z data examples code vector code vector
p✓(x|y) feature distr. generation distr., Eq.2 p✓(x|z, y), generation distr., Eq.9
q�(y|x) discriminator discriminator q⇤(y|x), degenerated discriminator
p⌘(z|x, y) — infer net (InfoGAN) infer net
p✓0(x) = Ep(y)[p✓0(x|y)] — prior of x prior of x

Table 1: Correspondence between different approaches in the proposed formulation.

[Eric: There should be a quick description of the wake-sleep algorithm here to start the
section.] In GANs, the generative model is trained by passing generated samples to a discriminator
and minimizing the resulting error evaluated by the discriminator. Intuitively, the reliance on fake
samples for learning resembles the sleep phase in the wake-sleep algorithm. In contrast, VAEs train
the generative model by reconstructing observed real examples, sharing similarity to the wake phase.
This section formally explores these connections.

For ease of presentation and to establish a systematic notation for the paper, we start with a new
interpretation of Adversarial Domain Adaptation (ADA) [Eric: please add the earliest citation
for this name?] within our proposed formulation. We then show that GANs are a special case of
ADA with a degenerated source domain, and reveal close relations to VAEs and wake-sleep algorithm
through KL divergence interpretation of the objectives. Table 1 lists the correspondence of each
components in these approaches.

3.1 Adversarial Domain Adaptation (ADA)

ADA aims to transfer prediction knowledge learned from a source domain with labeled data to a
target domain without labels, by learning domain-invariant features [13, 42, 43, 7]. That is, it learns a
feature extractor whose output cannot be distinguished by a discriminator between the source and
target domains.

We frame our new interpretation of ADA, and review conventional formulations in the supplementary
materials. To make clear notational correspondence to other models in the sequel, [Eric: Please add
a figure drawing a graphical model here for ADA.] let z be a data example either in the source
or target domain, and y 2 {0, 1} be the domain indicator with y = 0 indicating the target domain
and y = 1 the source domain. The data distributions conditioning on the domain are then denoted
as p(z|y). Let p(y) be the prior distribution (e.g., uniform) of the domain indicator. The feature
extractor maps z to representations x = G✓(z) with parameters ✓. The data distributions over z and
deterministic transformation G✓ together form an implicit distribution over x, denoted as p✓(x|y),
which is intractable to evaluate likelihood but easy to sample from:

To enforce domain invariance of feature x, a discriminator is trained to adversarially distinguish
between the two domains, which defines a conditional distribution q�(y|x) with parameters �, and
the feature extractor is optimized to fool the discriminator. Let qr�(y|x) = q�(1�y|x) be the reversed
distribution over domains. The objectives of ADA are therefore given as:

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y)
⇥
log q

r
�(y|x)

⇤
,

(1)

where we omit the additional loss of ✓ to fit to the data label pairs of source domain (see supplements
for more details). In conventional view, the first equation minimizes the discriminator binary cross
entropy with respect to discriminative parameter �, while the second trains the feature extractor
to maximize the cross entropy with respect to the transformation parameter ✓. [Eric: I think for
self-containedness, it would be better to explain both of the cross-entropy notion above.]
Alternatively, we can interpret the objectives as optimizing the reconstruction of the domain variable
y conditioned on feature x. [Eric: I can not understand this point.] We explore this perspective
more in the next section. Note that the only (but critical) difference between the objective of ✓ from
� is the replacement of q(y|x) with q

r
(y|x). This is where the adversarial mechanism comes about.

3

ADA vs. Variational EM
Variational EM
• Objectives

• Single objective for both Ç and Å
• Extra prior regularization by b(k)

• The reconstruction term: maximize the conditional
log-likelihood of X with the generative distribution
bg(X|k) conditioning on the latent code k inferred
by hì(k|X)

• bg(X|k) is the generative model
• hì(k|X) is the inference model

maxìℒñ,c = Vrí(ö|[) log	bg X k + �Q hì k X ||b k

maxgℒñ,c = Vrí(ö|[) log	bg X k + �Q hì k X ||b k

© Petuum,Inc. 125

ADA: graphical model
Define:
• Solid-line arrows (X → `):

• generative process
• Dashed-line arrows (y, z → X):

• inference
• Hollow arrows (z → X):

• deterministic transformation
• leading to implicit distributions

• Blue arrows (X → `):
• adversarial mechanism
• involves both hì(`|ç) and hì∏ (`|ç)

ADA GANs VAEs

x features data/generations data/generations
y domain indicator real/fake indicator (degenerated) real/fake indicator
z data examples code vector code vector
p✓(x|y) feature distr. generation distr., Eq.2 p✓(x|z, y), generation distr., Eq.9
q�(y|x) discriminator discriminator q⇤(y|x), degenerated discriminator
p⌘(z|x, y) — infer net (InfoGAN) infer net
p✓0(x) = Ep(y)[p✓0(x|y)] — prior of x prior of x

Table 1: Correspondence between different approaches in the proposed formulation.

[Eric: There should be a quick description of the wake-sleep algorithm here to start the
section.] In GANs, the generative model is trained by passing generated samples to a discriminator
and minimizing the resulting error evaluated by the discriminator. Intuitively, the reliance on fake
samples for learning resembles the sleep phase in the wake-sleep algorithm. In contrast, VAEs train
the generative model by reconstructing observed real examples, sharing similarity to the wake phase.
This section formally explores these connections.

For ease of presentation and to establish a systematic notation for the paper, we start with a new
interpretation of Adversarial Domain Adaptation (ADA) [Eric: please add the earliest citation
for this name?] within our proposed formulation. We then show that GANs are a special case of
ADA with a degenerated source domain, and reveal close relations to VAEs and wake-sleep algorithm
through KL divergence interpretation of the objectives. Table 1 lists the correspondence of each
components in these approaches.

3.1 Adversarial Domain Adaptation (ADA)

ADA aims to transfer prediction knowledge learned from a source domain with labeled data to a
target domain without labels, by learning domain-invariant features [13, 42, 43, 7]. That is, it learns a
feature extractor whose output cannot be distinguished by a discriminator between the source and
target domains.

We frame our new interpretation of ADA, and review conventional formulations in the supplementary
materials. To make clear notational correspondence to other models in the sequel, [Eric: Please add
a figure drawing a graphical model here for ADA.] let z be a data example either in the source
or target domain, and y 2 {0, 1} be the domain indicator with y = 0 indicating the target domain
and y = 1 the source domain. The data distributions conditioning on the domain are then denoted
as p(z|y). Let p(y) be the prior distribution (e.g., uniform) of the domain indicator. The feature
extractor maps z to representations x = G✓(z) with parameters ✓. The data distributions over z and
deterministic transformation G✓ together form an implicit distribution over x, denoted as p✓(x|y),
which is intractable to evaluate likelihood but easy to sample from:

To enforce domain invariance of feature x, a discriminator is trained to adversarially distinguish
between the two domains, which defines a conditional distribution q�(y|x) with parameters �, and
the feature extractor is optimized to fool the discriminator. Let qr�(y|x) = q�(1�y|x) be the reversed
distribution over domains. The objectives of ADA are therefore given as:

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y)
⇥
log q

r
�(y|x)

⇤
,

(1)

where we omit the additional loss of ✓ to fit to the data label pairs of source domain (see supplements
for more details). In conventional view, the first equation minimizes the discriminator binary cross
entropy with respect to discriminative parameter �, while the second trains the feature extractor
to maximize the cross entropy with respect to the transformation parameter ✓. [Eric: I think for
self-containedness, it would be better to explain both of the cross-entropy notion above.]
Alternatively, we can interpret the objectives as optimizing the reconstruction of the domain variable
y conditioned on feature x. [Eric: I can not understand this point.] We explore this perspective
more in the next section. Note that the only (but critical) difference between the objective of ✓ from
� is the replacement of q(y|x) with q

r
(y|x). This is where the adversarial mechanism comes about.

3

© Petuum,Inc. 126

GANs: a variant of ADA
• Transfer the properties of source domain to target domain

• Source domain: e.g. real image, ` = 1
• Target domain: e.g. generated image, ` = 0

ADA GANs
© Petuum,Inc. 127

GANs: a variant of ADA
• Implicit distribution over ç ∼ bg(ç|`)

• ç ∼ b∞ú ç ⟺ ç = ùg | , | ∼ b | ` = 0

• ç ∼ b)±≤± ç 	
• the code space of | is degenerated
• sample directly from data

maximize the binary classification accuracy of recognizing the feature domains:

max

�

L� = E
x=G✓(z),z⇠p(z|y=1) [logD�(x)] + E

x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] . (1)

The feature extractor G✓ is then trained to fool the discriminator:

max

✓

L✓ = E
x=G✓(z),z⇠p(z|y=1) [log(1�D�(x))] + E

x=G✓(z),z⇠p(z|y=0) [logD�(x)] . (2)

Here we omit the additional loss on ✓ that fits the features to the data label pairs of source domain
(see the supplementary materials for the details).

With the background of the conventional formulation, we now frame our new interpretation of ADA.
The data distribution p(z|y) and deterministic transformation G✓ together form an implicit distribution
over x, denoted as p✓(x|y), which is intractable to evaluate likelihood but easy to sample from. Let
p(y) be the prior distribution of the domain indicator y, e.g., a uniform distribution as in Eqs.(1)-(2).
The discriminator defines a conditional distribution q�(y|x) = D�(x). Let qr�(y|x) = q�(1� y|x)
be the reversed distribution over domains. The objectives of ADA are therefore rewritten as (up to a
constant scale factor 2):

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y)
⇥
log q

r
�(y|x)

⇤
.

(3)

The above objectives can be interpreted as maximizing the log likelihood of y (or 1 � y) with the
“generative distribution” q�(y|x) conditioning on the latent code x inferred by p✓(x|y). Note that the
only (but critical) difference of the objectives of ✓ from � is the replacement of q(y|x) with q

r
(y|x).

This is where the adversarial mechanism comes about.

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y) [log q�(y|x)] .
(4)

Graphical model representation Figure 1(c) illustrates the graphical model of the formulation
in Eq.(4), where, in the new view, solid-line arrows denote the generative process while dashed-
line arrows denote the inference process. We introduce new visual elements, e.g., hollow arrows
for expressing implicit distributions, and blue arrows for adversarial mechanism. As noted above,
adversarial modeling is achieved by swapping between q(y|x) and q

r
(y|x) when training respective

modules.

3.2 Generative Adversarial Networks (GANs)

GANs [16] can be seen as a special case of ADA. Taking image generation for example, intuitively,
we want to transfer the properties of the source domain (real images) to the target domain (generated
images), making them indistinguishable to the discriminator. Figure 1(b) shows the conventional
view of GANs.

Formally, x now denotes a real example or a generated sample, z is the respective latent code. For
the generated sample domain (y = 0), the implicit distribution p✓(x|y = 0) is defined by the prior of
z and the generator G✓(z), which is also denoted as pg✓ (x) in the literature. For the real example
domain (y = 1), the code space and generator are degenerated, and we are directly presented with a
fixed distribution p(x|y = 1), which is just the real data distribution pdata(x). Note that pdata(x) is
also an implicit distribution allowing efficient empirical sampling. In summary, the distribution over
x is constructed as

p✓(x|y) =
⇢
pg✓ (x) y = 0

pdata(x) y = 1.

(5)

Here, free parameters ✓ are only associated with pg✓ (x) of the generated sample domain, while
pdata(x) is constant. As in ADA, discriminator D� is simultaneously trained to infer the probability
that x comes from the real data domain. That is, q�(y = 1|x) = D�(x).

With the established correspondence between GANs and ADA, we can see that the objectives of
GANs are precisely expressed as Eq.(4) and as the graphical model in Figure 1(c). To make this

4

(distribution of generated images)

(distribution of real images)

© Petuum,Inc. 128

GANs: new formulation
• Again, rewrite GAN objectives in the ”variational-EM” format
• Recap: conventional formulation:

• Rewrite in the new form

• Exact the same with ADA !
• The same correspondence to variational EM !

ADA GANs VAEs

x features data/generations data/generations
y domain indicator real/fake indicator (degenerated) real/fake indicator
z data examples code vector code vector
p✓(x|y) feature distr. generation distr., Eq.2 p✓(x|z, y), generation distr., Eq.9
q�(y|x) discriminator discriminator q⇤(y|x), degenerated discriminator
p⌘(z|x, y) — infer net (InfoGAN) infer net
p✓0(x) = Ep(y)[p✓0(x|y)] — prior of x prior of x

Table 1: Correspondence between different approaches in the proposed formulation.

[Eric: There should be a quick description of the wake-sleep algorithm here to start the
section.] In GANs, the generative model is trained by passing generated samples to a discriminator
and minimizing the resulting error evaluated by the discriminator. Intuitively, the reliance on fake
samples for learning resembles the sleep phase in the wake-sleep algorithm. In contrast, VAEs train
the generative model by reconstructing observed real examples, sharing similarity to the wake phase.
This section formally explores these connections.

For ease of presentation and to establish a systematic notation for the paper, we start with a new
interpretation of Adversarial Domain Adaptation (ADA) [Eric: please add the earliest citation
for this name?] within our proposed formulation. We then show that GANs are a special case of
ADA with a degenerated source domain, and reveal close relations to VAEs and wake-sleep algorithm
through KL divergence interpretation of the objectives. Table 1 lists the correspondence of each
components in these approaches.

3.1 Adversarial Domain Adaptation (ADA)

ADA aims to transfer prediction knowledge learned from a source domain with labeled data to a
target domain without labels, by learning domain-invariant features [13, 42, 43, 7]. That is, it learns a
feature extractor whose output cannot be distinguished by a discriminator between the source and
target domains.

We frame our new interpretation of ADA, and review conventional formulations in the supplementary
materials. To make clear notational correspondence to other models in the sequel, [Eric: Please add
a figure drawing a graphical model here for ADA.] let z be a data example either in the source
or target domain, and y 2 {0, 1} be the domain indicator with y = 0 indicating the target domain
and y = 1 the source domain. The data distributions conditioning on the domain are then denoted
as p(z|y). Let p(y) be the prior distribution (e.g., uniform) of the domain indicator. The feature
extractor maps z to representations x = G✓(z) with parameters ✓. The data distributions over z and
deterministic transformation G✓ together form an implicit distribution over x, denoted as p✓(x|y),
which is intractable to evaluate likelihood but easy to sample from:

To enforce domain invariance of feature x, a discriminator is trained to adversarially distinguish
between the two domains, which defines a conditional distribution q�(y|x) with parameters �, and
the feature extractor is optimized to fool the discriminator. Let qr�(y|x) = q�(1�y|x) be the reversed
distribution over domains. The objectives of ADA are therefore given as:

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y)
⇥
log q

r
�(y|x)

⇤
,

(1)

where we omit the additional loss of ✓ to fit to the data label pairs of source domain (see supplements
for more details). In conventional view, the first equation minimizes the discriminator binary cross
entropy with respect to discriminative parameter �, while the second trains the feature extractor
to maximize the cross entropy with respect to the transformation parameter ✓. [Eric: I think for
self-containedness, it would be better to explain both of the cross-entropy notion above.]
Alternatively, we can interpret the objectives as optimizing the reconstruction of the domain variable
y conditioned on feature x. [Eric: I can not understand this point.] We explore this perspective
more in the next section. Note that the only (but critical) difference between the objective of ✓ from
� is the replacement of q(y|x) with q

r
(y|x). This is where the adversarial mechanism comes about.

3

Figure 2: One optimization step of the parameter ✓ through Eq.(7) at point ✓0. The posterior
q

r
(x|y) is a mixture of p✓0(x|y = 0) (blue) and p✓0(x|y = 1) (red in the left panel) with the

mixing weights induced from q

r
�0
(y|x). Minimizing the KL divergence of Eq.(7) w.r.t ✓ drives

p✓(x|y = 0) towards the respective mixture q

r
(x|y = 0) (green), resulting in a new state where

p✓new
(x|y = 0) = p

new
g (x) gets closer to p✓0(x|y = 1) = pdata(x). Due to the asymmetry of

KL divergence, pnewg (x) missed the smaller mode of the mixture q

r
(x|y = 0) which is a mode of

pdata(x).

clearer, we recover the classical form by unfolding over y and plugging in conventional notations.
For instance, the objective of the generative parameters ✓ is translated into

max

✓

L✓ = Ep✓(x|y=0)p(y=0)

⇥
log q

r
�(y = 0|x)

⇤
+ Ep✓(x|y=1)p(y=1)

⇥
log q

r
�(y = 1|x)

⇤

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] +

1

2

E
x⇠pdata(x) [log(1�D�(x))]

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] + const,

(6)

where the prior p(y) is uniform as is widely set, resulting in the constant scale factor 1/2. Note that
here the generator is trained using the unsaturated objective [16] which is commonly used in practice.

max

�

L� = Ep✓(x|y=0)p(y=0) [log q�(y = 0|x)] + Ep✓(x|y=1)p(y=1) [log q�(y = 1|x)]

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] +

1

2

E
x=G✓(z),z⇠p(z|y=1) [logD�(x)]

max

�

L� = E
x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] + E

x⇠pdata(x) [logD�(x)]

max

✓

L✓ = E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] + E

x⇠pdata(x) [log(1�D�(x))]

= E
x=G✓(z),z⇠p(z|y=0) [logD�(x)]

We now take a closer look at the form of Eq.(4) which is essentially reconstructing the real/fake
indicator y (or its reverse 1� y) conditioned on x. Further, for each optimization step of p✓(x|y) at
point (✓0,�0) in the parameter space, we have

Lemma 1 Let p(y) be the uniform distribution. Let p✓0(x) = Ep(y)[p✓0(x|y)], and q

r
(x|y) /

q

r
�0
(y|x)p✓0(x). Therefore, the updates of ✓ at ✓0 have

r✓

h
� Ep✓(x|y)p(y)

⇥
log q

r
�0
(y|x)

⇤ i���
✓=✓0

=

r✓

h
Ep(y) [KL (p✓(x|y)kqr(x|y))]� JSD (p✓(x|y = 0)kp✓(x|y = 1))

i���
✓=✓0

,

(7)

where KL(·k·) and JSD(·k·) are the KL and Jensen-Shannon Divergences, respectively.

We provide the proof in the supplement materials. Eq.(7) offers several insights into the generator
learning in GANs.

• Resemblance to variational inference. If we treat y as visible and x as latent (as in ADA), it is
straightforward to see the connections to the variational inference algorithm where q

r
(x|y) plays

the role of the posterior, p✓0(x) the prior, and p✓(x|y) the variational distribution that approximates
the posterior. Optimizing the generator G✓ is equivalent to minimizing the KL divergence between
the variational distribution and the posterior, minus a JSD between the distributions pg✓ (x) and
pdata(x). The Bayesian interpretation further reveals the connections to VAEs, as we discuss in
the next section.

5

© Petuum,Inc. 129

GAN
• Objectives

• Two objectives
• Have global optimal state in the game

theoretic view
• The objectives: maximize the conditional

log-likelihood of	` (or 1 − `) with the
distribution hì(`|X) conditioning on
data/generation X inferred by bg(X|`)

• Interpret hì(`|X) as the generative model
• Interpret bg(X|`) as the inference model

ADA GANs VAEs

x features data/generations data/generations
y domain indicator real/fake indicator (degenerated) real/fake indicator
z data examples code vector code vector
p✓(x|y) feature distr. generation distr., Eq.2 p✓(x|z, y), generation distr., Eq.9
q�(y|x) discriminator discriminator q⇤(y|x), degenerated discriminator
p⌘(z|x, y) — infer net (InfoGAN) infer net
p✓0(x) = Ep(y)[p✓0(x|y)] — prior of x prior of x

Table 1: Correspondence between different approaches in the proposed formulation.

[Eric: There should be a quick description of the wake-sleep algorithm here to start the
section.] In GANs, the generative model is trained by passing generated samples to a discriminator
and minimizing the resulting error evaluated by the discriminator. Intuitively, the reliance on fake
samples for learning resembles the sleep phase in the wake-sleep algorithm. In contrast, VAEs train
the generative model by reconstructing observed real examples, sharing similarity to the wake phase.
This section formally explores these connections.

For ease of presentation and to establish a systematic notation for the paper, we start with a new
interpretation of Adversarial Domain Adaptation (ADA) [Eric: please add the earliest citation
for this name?] within our proposed formulation. We then show that GANs are a special case of
ADA with a degenerated source domain, and reveal close relations to VAEs and wake-sleep algorithm
through KL divergence interpretation of the objectives. Table 1 lists the correspondence of each
components in these approaches.

3.1 Adversarial Domain Adaptation (ADA)

ADA aims to transfer prediction knowledge learned from a source domain with labeled data to a
target domain without labels, by learning domain-invariant features [13, 42, 43, 7]. That is, it learns a
feature extractor whose output cannot be distinguished by a discriminator between the source and
target domains.

We frame our new interpretation of ADA, and review conventional formulations in the supplementary
materials. To make clear notational correspondence to other models in the sequel, [Eric: Please add
a figure drawing a graphical model here for ADA.] let z be a data example either in the source
or target domain, and y 2 {0, 1} be the domain indicator with y = 0 indicating the target domain
and y = 1 the source domain. The data distributions conditioning on the domain are then denoted
as p(z|y). Let p(y) be the prior distribution (e.g., uniform) of the domain indicator. The feature
extractor maps z to representations x = G✓(z) with parameters ✓. The data distributions over z and
deterministic transformation G✓ together form an implicit distribution over x, denoted as p✓(x|y),
which is intractable to evaluate likelihood but easy to sample from:

To enforce domain invariance of feature x, a discriminator is trained to adversarially distinguish
between the two domains, which defines a conditional distribution q�(y|x) with parameters �, and
the feature extractor is optimized to fool the discriminator. Let qr�(y|x) = q�(1�y|x) be the reversed
distribution over domains. The objectives of ADA are therefore given as:

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y)
⇥
log q

r
�(y|x)

⇤
,

(1)

where we omit the additional loss of ✓ to fit to the data label pairs of source domain (see supplements
for more details). In conventional view, the first equation minimizes the discriminator binary cross
entropy with respect to discriminative parameter �, while the second trains the feature extractor
to maximize the cross entropy with respect to the transformation parameter ✓. [Eric: I think for
self-containedness, it would be better to explain both of the cross-entropy notion above.]
Alternatively, we can interpret the objectives as optimizing the reconstruction of the domain variable
y conditioned on feature x. [Eric: I can not understand this point.] We explore this perspective
more in the next section. Note that the only (but critical) difference between the objective of ✓ from
� is the replacement of q(y|x) with q

r
(y|x). This is where the adversarial mechanism comes about.

3

GANs vs. Variational EM
Variational EM
• Objectives

• Single objective for both Ç and Å
• Extra prior regularization by b(k)

• The reconstruction term: maximize the conditional
log-likelihood of X with the generative distribution
bg(X|k) conditioning on the latent code k inferred
by hì(k|X)

• bg(X|k) is the generative model
• hì(k|X) is the inference model

maxìℒñ,c = Vrí(ö|[) log	bg X k + �Q hì k X ||b k

maxgℒñ,c = Vrí(ö|[) log	bg X k + �Q hì k X ||b k

© Petuum,Inc. 130

GAN
• Objectives

• Two objectives
• Have global optimal state in the game

theoretic view
• The objectives: maximize the conditional

log-likelihood of	` (or 1 − `) with the
distribution hì(`|X) conditioning on
data/generation X inferred by bg(X|`)

• Interpret hì(`|X) as the generative model
• Interpret bg(X|`) as the inference model

ADA GANs VAEs

x features data/generations data/generations
y domain indicator real/fake indicator (degenerated) real/fake indicator
z data examples code vector code vector
p✓(x|y) feature distr. generation distr., Eq.2 p✓(x|z, y), generation distr., Eq.9
q�(y|x) discriminator discriminator q⇤(y|x), degenerated discriminator
p⌘(z|x, y) — infer net (InfoGAN) infer net
p✓0(x) = Ep(y)[p✓0(x|y)] — prior of x prior of x

Table 1: Correspondence between different approaches in the proposed formulation.

[Eric: There should be a quick description of the wake-sleep algorithm here to start the
section.] In GANs, the generative model is trained by passing generated samples to a discriminator
and minimizing the resulting error evaluated by the discriminator. Intuitively, the reliance on fake
samples for learning resembles the sleep phase in the wake-sleep algorithm. In contrast, VAEs train
the generative model by reconstructing observed real examples, sharing similarity to the wake phase.
This section formally explores these connections.

For ease of presentation and to establish a systematic notation for the paper, we start with a new
interpretation of Adversarial Domain Adaptation (ADA) [Eric: please add the earliest citation
for this name?] within our proposed formulation. We then show that GANs are a special case of
ADA with a degenerated source domain, and reveal close relations to VAEs and wake-sleep algorithm
through KL divergence interpretation of the objectives. Table 1 lists the correspondence of each
components in these approaches.

3.1 Adversarial Domain Adaptation (ADA)

ADA aims to transfer prediction knowledge learned from a source domain with labeled data to a
target domain without labels, by learning domain-invariant features [13, 42, 43, 7]. That is, it learns a
feature extractor whose output cannot be distinguished by a discriminator between the source and
target domains.

We frame our new interpretation of ADA, and review conventional formulations in the supplementary
materials. To make clear notational correspondence to other models in the sequel, [Eric: Please add
a figure drawing a graphical model here for ADA.] let z be a data example either in the source
or target domain, and y 2 {0, 1} be the domain indicator with y = 0 indicating the target domain
and y = 1 the source domain. The data distributions conditioning on the domain are then denoted
as p(z|y). Let p(y) be the prior distribution (e.g., uniform) of the domain indicator. The feature
extractor maps z to representations x = G✓(z) with parameters ✓. The data distributions over z and
deterministic transformation G✓ together form an implicit distribution over x, denoted as p✓(x|y),
which is intractable to evaluate likelihood but easy to sample from:

To enforce domain invariance of feature x, a discriminator is trained to adversarially distinguish
between the two domains, which defines a conditional distribution q�(y|x) with parameters �, and
the feature extractor is optimized to fool the discriminator. Let qr�(y|x) = q�(1�y|x) be the reversed
distribution over domains. The objectives of ADA are therefore given as:

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y)
⇥
log q

r
�(y|x)

⇤
,

(1)

where we omit the additional loss of ✓ to fit to the data label pairs of source domain (see supplements
for more details). In conventional view, the first equation minimizes the discriminator binary cross
entropy with respect to discriminative parameter �, while the second trains the feature extractor
to maximize the cross entropy with respect to the transformation parameter ✓. [Eric: I think for
self-containedness, it would be better to explain both of the cross-entropy notion above.]
Alternatively, we can interpret the objectives as optimizing the reconstruction of the domain variable
y conditioned on feature x. [Eric: I can not understand this point.] We explore this perspective
more in the next section. Note that the only (but critical) difference between the objective of ✓ from
� is the replacement of q(y|x) with q

r
(y|x). This is where the adversarial mechanism comes about.

3

GANs vs. Variational EM
Variational EM
• Objectives

• Single objective for both Ç and Å
• Extra prior regularization by b(k)

• The reconstruction term: maximize the conditional
log-likelihood of X with the generative distribution
bg(X|k) conditioning on the latent code k inferred
by hì(k|X)

• bg(X|k) is the generative model
• hì(k|X) is the inference model

maxìℒñ,c = Vrí(ö|[) log	bg X k + �Q hì k X ||b k

maxgℒñ,c = Vrí(ö|[) log	bg X k + �Q hì k X ||b k

• Interpret ç as latent variables
• Interpret generation of ç as

performing inference over latent

© Petuum,Inc. 131

GANs: minimizing KLD
• As in Variational EM, we can further rewrite in the form of minimizing KLD

to reveal more insights into the optimization problem
• For each optimization step of bg(ç|`) at point Ç = Ça, Å = Åa , let

• b ` : uniform prior distribution
• bgºgΩ ç = Eõ(æ) bgºgΩ ç `
• h∏ ç ` ∝ hìºì∏

a
` ç bgºgΩ(ç)

• Lemma 1: The updates of c at ca have

• KL: KL divergence
• JSD: Jensen-shannon divergence

Figure 2: One optimization step of the parameter ✓ through Eq.(7) at point ✓0. The posterior
q

r
(x|y) is a mixture of p✓0(x|y = 0) (blue) and p✓0(x|y = 1) (red in the left panel) with the

mixing weights induced from q

r
�0
(y|x). Minimizing the KL divergence of Eq.(7) w.r.t ✓ drives

p✓(x|y = 0) towards the respective mixture q

r
(x|y = 0) (green), resulting in a new state where

p✓new
(x|y = 0) = p

new
g (x) gets closer to p✓0(x|y = 1) = pdata(x). Due to the asymmetry of

KL divergence, pnewg (x) missed the smaller mode of the mixture q

r
(x|y = 0) which is a mode of

pdata(x).

clearer, we recover the classical form by unfolding over y and plugging in conventional notations.
For instance, the objective of the generative parameters ✓ is translated into

max

✓

L✓ = Ep✓(x|y=0)p(y=0)

⇥
log q

r
�(y = 0|x)

⇤
+ Ep✓(x|y=1)p(y=1)

⇥
log q

r
�(y = 1|x)

⇤

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] +

1

2

E
x⇠pdata(x) [log(1�D�(x))]

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] + const,

(6)

where the prior p(y) is uniform as is widely set, resulting in the constant scale factor 1/2. Note that
here the generator is trained using the unsaturated objective [16] which is commonly used in practice.

max

�

L� = Ep✓(x|y=0)p(y=0) [log q�(y = 0|x)] + Ep✓(x|y=1)p(y=1) [log q�(y = 1|x)]

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] +

1

2

E
x=G✓(z),z⇠p(z|y=1) [logD�(x)]

max

�

L� = E
x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] + E

x⇠pdata(x) [logD�(x)]

max

✓

L✓ = E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] + E

x⇠pdata(x) [log(1�D�(x))]

= E
x=G✓(z),z⇠p(z|y=0) [logD�(x)]

We now take a closer look at the form of Eq.(4) which is essentially reconstructing the real/fake
indicator y (or its reverse 1� y) conditioned on x. Further, for each optimization step of p✓(x|y) at
point (✓0,�0) in the parameter space, we have

Lemma 1 Let p(y) be the uniform distribution. Let p✓0(x) = Ep(y)[p✓0(x|y)], and q

r
(x|y) /

q

r
�0
(y|x)p✓0(x). Therefore, the updates of ✓ at ✓0 have

r✓

h
� Ep✓(x|y)p(y)

⇥
log q

r
�=�0

(y|x)
⇤ i���

✓=✓0

=

r✓

h
Ep(y) [KL (p✓(x|y)kqr(x|y))]� JSD (p✓(x|y = 0)kp✓(x|y = 1))

i���
✓=✓0

,

(7)

where KL(·k·) and JSD(·k·) are the KL and Jensen-Shannon Divergences, respectively.

We provide the proof in the supplement materials. Eq.(7) offers several insights into the generator
learning in GANs.

r✓

h
� Ep✓(x|y)p(y)

⇥
log q

r
�=�0

(y|x)
⇤ i���

✓=✓0

=

r✓

h
Ep(y) [KL (p✓(x|y)kqr(x|y))]� JSD (p✓(x|y = 0)kp✓(x|y = 1))

i���
✓=✓0

,

5

© Petuum,Inc. 132

Proof of Lemma 1

On Unifying Deep Generative Models:
Supplementary Materials

1 Adversarial Domain Adaptation (ADA)

ADA aims to transfer prediction knowledge learned from a source domain with labeled data to a
target domain without labels, by learning domain-invariant features. Let D�(x) = q�(y|x) be the
domain discriminator. The conventional formulation of ADA is as following:

maxD LD = E
x=G(z),z⇠p(z|y=1) [logD(x)] + E

x=G(z),z⇠p(z|y=0) [log(1�D(x))] ,

maxG LG = E
x=G(z),z⇠p(z|y=1) [log(1�D(x))] + E

x=G(z),z⇠p(z|y=0) [logD(x)] .

(1)

Further add the supervision objective of predicting label t in the source domain with a classifier
u(t|x):

maxu,G Lu,G = E(z,t) [log u(t|G(x))] . (2)

We then obtain the conventional formulation of adversarial domain adaptation used or similar
in [3, 4, 5, 2].

2 Lemma 1

Proof.

Ep✓(x|y)p(y) [log q
r
(y|x)] =

� Ep(y) [KL (p✓(x|y)kqr(x|y))� KL(p✓(x|y)kp✓0(x))] ,
(3)

where

Ep(y) [KL(p✓(x|y)kp✓0(x))]

= p(y = 0) · KL
✓
p✓(x|y = 0)kp✓0(x|y = 0) + p✓0(x|y = 1)

2

◆

+ p(y = 1) · KL
✓
p✓(x|y = 1)kp✓0(x|y = 0) + p✓0(x|y = 1)

2

◆
.

(4)

Note that p✓(x|y = 0) = pg✓ (x), and p✓(x|y = 1) = pdata(x). Let pM✓ =

pg✓
+pdata

2 . Eq.(4) can
be simplified as:

Ep(y) [KL(p✓(x|y)kp✓0(x))] =
1

2

KL
�
pg✓kpM✓0

�
+

1

2

KL
�
pdatakpM✓0

�
.

(5)

© Petuum,Inc. 133

Proof of Lemma 1 (cont.)
On the other hand,

JSD(pg✓kpdata) =
1

2

Epg✓


log

pg✓

pM✓

�
+

1

2

Epdata


log

pdata

pM✓

�

=

1

2

Epg✓

"
log

pg✓

pM✓0

#
+

1

2

Epg✓


log

pM✓0

pM✓

�

+

1

2

Epdata

"
log

pdata

pM✓0

#
+

1

2

Epdata


log

pM✓0

pM✓

�

=

1

2

Epg✓

"
log

pg✓

pM✓0

#
+

1

2

Epdata

"
log

pdata

pM✓0

#
+ EpM✓


log

pM✓0

pM✓

�

=

1

2

KL
�
pg✓kpM✓0

�
+

1

2

KL
�
pdatakpM✓0

�
� KL

�
pM✓kpM✓0

�
.

(6)

Note that

r✓KL
�
pM✓kpM✓0

�
|✓=✓0 = 0. (7)

Taking derivatives of Eq.(5) w.r.t ✓ at ✓0 we get

r✓Ep(y) [KL(p✓(x|y)kp✓0(x))] |✓=✓0

= r✓

✓
1

2

KL
�
pg✓kpM✓0

�
|✓=✓0 +

1

2

KL
�
pdatakpM✓0

�◆
|✓=✓0

= r✓JSD(pg✓kpdata) |✓=✓0 .

(8)

Taking derivatives of the both sides of Eq.(3) at w.r.t ✓ at ✓0 and plugging the last equation of Eq.(8),
we obtain the desired results.

3 Lemme 2

Proof. For the reconstruction term:

Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]

⇤

=

1

2

Ep✓0 (x|y=1)

⇥
Eq⌘(z|x,y=0),y=0⇠qr⇤(y|x) [log p✓(x|z, y = 0)]

⇤

+

1

2

Ep✓0 (x|y=0)

⇥
Eq⌘(z|x,y=1),y=1⇠qr⇤(y|x) [log p✓(x|z, y = 1)]

⇤

=

1

2

Epdata(x)

⇥
Eq̃⌘(z|x) [log p̃✓(x|z)]

⇤
+ const,

(9)

where y = 0 ⇠ q

r
⇤(y|x) means qr⇤(y|x) predicts y = 0 with probability 1. Note that both q⌘(z|x, y =

1) and p✓(x|z, y = 1) are constant distributions without free parameters to learn; q⌘(z|x, y = 0) =

q̃⌘(z|x), and p✓(x|z, y = 0) = p̃✓(x|z).
For the KL prior regularization term:

Ep✓0 (x)
[KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))]

= Ep✓0 (x)

Z
q

r
⇤(y|x)KL (q⌘(z|x, y)kp(z|y)) dy + KL (q

r
⇤(y|x)kp(y))

�

=

1

2

Ep✓0 (x|y=1) [KL (q⌘(z|x, y = 0)kp(z|y = 0)) + const] +

1

2

Ep✓0 (x|y=1) [const]

=

1

2

Epdata(x) [KL(q̃⌘(z|x)kp̃(z))] .

(10)

Combining Eq.(9) and Eq.(10) we recover the conventional VAE objective in Eq.(7) in the paper.

2

© Petuum,Inc. 134

GANs: minimizing KLD
• Lemma 1: The updates of c at ca have

• Connection to variational inference
• See ç as latent variables, ` as visible
• bgºgΩ ç : prior distribution
• h∏ ç ` ∝ hìºì∏

a
` ç bgºgΩ(ç) : posterior distribution

• bg(ç|`): variational distribution
• Amortized inference: updates model parameter c

• Suggests relations to VAEs, as we will explore shortly

Figure 2: One optimization step of the parameter ✓ through Eq.(7) at point ✓0. The posterior
q

r
(x|y) is a mixture of p✓0(x|y = 0) (blue) and p✓0(x|y = 1) (red in the left panel) with the

mixing weights induced from q

r
�0
(y|x). Minimizing the KL divergence of Eq.(7) w.r.t ✓ drives

p✓(x|y = 0) towards the respective mixture q

r
(x|y = 0) (green), resulting in a new state where

p✓new
(x|y = 0) = p

new
g (x) gets closer to p✓0(x|y = 1) = pdata(x). Due to the asymmetry of

KL divergence, pnewg (x) missed the smaller mode of the mixture q

r
(x|y = 0) which is a mode of

pdata(x).

clearer, we recover the classical form by unfolding over y and plugging in conventional notations.
For instance, the objective of the generative parameters ✓ is translated into

max

✓

L✓ = Ep✓(x|y=0)p(y=0)

⇥
log q

r
�(y = 0|x)

⇤
+ Ep✓(x|y=1)p(y=1)

⇥
log q

r
�(y = 1|x)

⇤

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] +

1

2

E
x⇠pdata(x) [log(1�D�(x))]

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] + const,

(6)

where the prior p(y) is uniform as is widely set, resulting in the constant scale factor 1/2. Note that
here the generator is trained using the unsaturated objective [16] which is commonly used in practice.

max

�

L� = Ep✓(x|y=0)p(y=0) [log q�(y = 0|x)] + Ep✓(x|y=1)p(y=1) [log q�(y = 1|x)]

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] +

1

2

E
x=G✓(z),z⇠p(z|y=1) [logD�(x)]

max

�

L� = E
x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] + E

x⇠pdata(x) [logD�(x)]

max

✓

L✓ = E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] + E

x⇠pdata(x) [log(1�D�(x))]

= E
x=G✓(z),z⇠p(z|y=0) [logD�(x)]

We now take a closer look at the form of Eq.(4) which is essentially reconstructing the real/fake
indicator y (or its reverse 1� y) conditioned on x. Further, for each optimization step of p✓(x|y) at
point (✓0,�0) in the parameter space, we have

Lemma 1 Let p(y) be the uniform distribution. Let p✓0(x) = Ep(y)[p✓0(x|y)], and q

r
(x|y) /

q

r
�0
(y|x)p✓0(x). Therefore, the updates of ✓ at ✓0 have

r✓

h
� Ep✓(x|y)p(y)

⇥
log q

r
�=�0

(y|x)
⇤ i���

✓=✓0

=

r✓

h
Ep(y) [KL (p✓(x|y)kqr(x|y))]� JSD (p✓(x|y = 0)kp✓(x|y = 1))

i���
✓=✓0

,

(7)

where KL(·k·) and JSD(·k·) are the KL and Jensen-Shannon Divergences, respectively.

We provide the proof in the supplement materials. Eq.(7) offers several insights into the generator
learning in GANs.

r✓

h
� Ep✓(x|y)p(y)

⇥
log q

r
�=�0

(y|x)
⇤ i���

✓=✓0

=

r✓

h
Ep(y) [KL (p✓(x|y)kqr(x|y))]� JSD (p✓(x|y = 0)kp✓(x|y = 1))

i���
✓=✓0

,

5

© Petuum,Inc. 135

GANs: minimizing KLD
• Lemma 1: The updates of c at ca have

• Minimizing the KLD drives b∞ú(ç) to b)±≤±(ç)
• By definition: bgºgΩ ç = Eõ(æ) bgºgΩ ç ` = b∞úøúΩ ç + b)±≤± ç /	2
• KL bg X ` = 1 ||h∏ X ` = 1 = KL b)±≤±(X)||h∏ X ` = 1 : constant, no free parameters
• KL bg X ` = 0 ||h∏ X ` = 0 = KL b∞ú(X)||h

∏ X ` = 0 : parameter Ç to optimize
• h∏ ç ` = 0 ∝ hìºì∏

a
` = 0 ç bgºgΩ ç

• seen as a mixture of b∞úøúΩ(ç) and b)±≤± ç
• mixing weights induced from hìºì∏

a
` = 0 ç

• Drives b∞ú ç ` to mixture of b∞úøúΩ(ç) and b)±≤±(ç)
									⇒ Drives b∞ú ç to b)±≤±(ç)

Figure 2: One optimization step of the parameter ✓ through Eq.(7) at point ✓0. The posterior
q

r
(x|y) is a mixture of p✓0(x|y = 0) (blue) and p✓0(x|y = 1) (red in the left panel) with the

mixing weights induced from q

r
�0
(y|x). Minimizing the KL divergence of Eq.(7) w.r.t ✓ drives

p✓(x|y = 0) towards the respective mixture q

r
(x|y = 0) (green), resulting in a new state where

p✓new
(x|y = 0) = p

new
g (x) gets closer to p✓0(x|y = 1) = pdata(x). Due to the asymmetry of

KL divergence, pnewg (x) missed the smaller mode of the mixture q

r
(x|y = 0) which is a mode of

pdata(x).

clearer, we recover the classical form by unfolding over y and plugging in conventional notations.
For instance, the objective of the generative parameters ✓ is translated into

max

✓

L✓ = Ep✓(x|y=0)p(y=0)

⇥
log q

r
�(y = 0|x)

⇤
+ Ep✓(x|y=1)p(y=1)

⇥
log q

r
�(y = 1|x)

⇤

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] +

1

2

E
x⇠pdata(x) [log(1�D�(x))]

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] + const,

(6)

where the prior p(y) is uniform as is widely set, resulting in the constant scale factor 1/2. Note that
here the generator is trained using the unsaturated objective [16] which is commonly used in practice.

max

�

L� = Ep✓(x|y=0)p(y=0) [log q�(y = 0|x)] + Ep✓(x|y=1)p(y=1) [log q�(y = 1|x)]

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] +

1

2

E
x=G✓(z),z⇠p(z|y=1) [logD�(x)]

max

�

L� = E
x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] + E

x⇠pdata(x) [logD�(x)]

max

✓

L✓ = E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] + E

x⇠pdata(x) [log(1�D�(x))]

= E
x=G✓(z),z⇠p(z|y=0) [logD�(x)]

We now take a closer look at the form of Eq.(4) which is essentially reconstructing the real/fake
indicator y (or its reverse 1� y) conditioned on x. Further, for each optimization step of p✓(x|y) at
point (✓0,�0) in the parameter space, we have

Lemma 1 Let p(y) be the uniform distribution. Let p✓0(x) = Ep(y)[p✓0(x|y)], and q

r
(x|y) /

q

r
�0
(y|x)p✓0(x). Therefore, the updates of ✓ at ✓0 have

r✓

h
� Ep✓(x|y)p(y)

⇥
log q

r
�=�0

(y|x)
⇤ i���

✓=✓0

=

r✓

h
Ep(y) [KL (p✓(x|y)kqr(x|y))]� JSD (p✓(x|y = 0)kp✓(x|y = 1))

i���
✓=✓0

,

(7)

where KL(·k·) and JSD(·k·) are the KL and Jensen-Shannon Divergences, respectively.

We provide the proof in the supplement materials. Eq.(7) offers several insights into the generator
learning in GANs.

r✓

h
� Ep✓(x|y)p(y)

⇥
log q

r
�=�0

(y|x)
⇤ i���

✓=✓0

=

r✓

h
Ep(y) [KL (p✓(x|y)kqr(x|y))]� JSD (p✓(x|y = 0)kp✓(x|y = 1))

i���
✓=✓0

,

5

© Petuum,Inc. 136

GANs: minimizing KLD

Figure 2: One optimization step of the parameter ✓ through Eq.(7) at point ✓0. The posterior
q

r
(x|y) is a mixture of p✓0(x|y = 0) (blue) and p✓0(x|y = 1) (red in the left panel) with the

mixing weights induced from q

r
�0
(y|x). Minimizing the KL divergence of Eq.(7) w.r.t ✓ drives

p✓(x|y = 0) towards the respective mixture q

r
(x|y = 0) (green), resulting in a new state where

p✓new
(x|y = 0) = p

new
g (x) gets closer to p✓0(x|y = 1) = pdata(x). Due to the asymmetry of

KL divergence, pnewg (x) missed the smaller mode of the mixture q

r
(x|y = 0) which is a mode of

pdata(x).

clearer, we recover the classical form by unfolding over y and plugging in conventional notations.
For instance, the objective of the generative parameters ✓ is translated into

max

✓

L✓ = Ep✓(x|y=0)p(y=0)

⇥
log q

r
�(y = 0|x)

⇤
+ Ep✓(x|y=1)p(y=1)

⇥
log q

r
�(y = 1|x)

⇤

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] +

1

2

E
x⇠pdata(x) [log(1�D�(x))]

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] + const,

(6)

where the prior p(y) is uniform as is widely set, resulting in the constant scale factor 1/2. Note that
here the generator is trained using the unsaturated objective [16] which is commonly used in practice.

max

�

L� = Ep✓(x|y=0)p(y=0) [log q�(y = 0|x)] + Ep✓(x|y=1)p(y=1) [log q�(y = 1|x)]

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] +

1

2

E
x=G✓(z),z⇠p(z|y=1) [logD�(x)]

max

�

L� = E
x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] + E

x⇠pdata(x) [logD�(x)]

max

✓

L✓ = E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] + E

x⇠pdata(x) [log(1�D�(x))]

= E
x=G✓(z),z⇠p(z|y=0) [logD�(x)]

We now take a closer look at the form of Eq.(4) which is essentially reconstructing the real/fake
indicator y (or its reverse 1� y) conditioned on x. Further, for each optimization step of p✓(x|y) at
point (✓0,�0) in the parameter space, we have

Lemma 1 Let p(y) be the uniform distribution. Let p✓0(x) = Ep(y)[p✓0(x|y)], and q

r
(x|y) /

q

r
�0
(y|x)p✓0(x). Therefore, the updates of ✓ at ✓0 have

r✓

h
� Ep✓(x|y)p(y)

⇥
log q

r
�=�0

(y|x)
⇤ i���

✓=✓0

=

r✓

h
Ep(y) [KL (p✓(x|y)kqr(x|y))]� JSD (p✓(x|y = 0)kp✓(x|y = 1))

i���
✓=✓0

,

(7)

where KL(·k·) and JSD(·k·) are the KL and Jensen-Shannon Divergences, respectively.

We provide the proof in the supplement materials. Eq.(7) offers several insights into the generator
learning in GANs.

r✓

h
� Ep✓(x|y)p(y)

⇥
log q

r
�=�0

(y|x)
⇤ i���

✓=✓0

=

r✓

h
Ep(y) [KL (p✓(x|y)kqr(x|y))]� JSD (p✓(x|y = 0)kp✓(x|y = 1))

i���
✓=✓0

,

5

• Lemma 1: The updates of c at ca have

• Minimizing the KLD drives b∞ú(ç) to b)±≤±(ç)
• By definition: bgºgΩ ç = Eõ(æ) bgºgΩ ç ` = b∞úøúΩ ç + b)±≤± ç /	2
• KL bg X ` = 1 ||h∏ X ` = 1 = KL b)±≤±(X)||h∏ X ` = 1 : constant, no free parameters
• KL bg X ` = 0 ||h∏ X ` = 0 = KL b∞ú(X)||h

∏ X ` = 0 : parameter Ç to optimize
• h∏ ç ` = 0 ∝ hìºì∏

a
` = 0 ç bgºgΩ ç

• seen as a mixture of b∞úøúΩ(ç) and b)±≤± ç
• mixing weights induced from hìºì∏

a
` = 0 ç

• Drives b∞ú ç ` to mixture of b∞úøúΩ(ç) and b)±≤±(ç)
									⇒ Drives b∞ú ç to b)±≤±(ç)

!"7"# $ % = 1 = !()*)($) !"7"# $ % = 0 = !./8/# ($)

01($|% = 0) !"7"345 $ % = 0 = !./8/345	($)

$$

© Petuum,Inc. 137

GANs: minimizing KLD
• Lemma 1

• Missing mode phenomena of GANs
• Asymmetry of KLD

• Concentrates bg ç ` = 0 to large
modes of h∏ ç `
⇒ b∞ú ç misses modes of b)±≤±(ç)

• Symmetry of JSD
• Does not affect the behavior of

mode missing

Figure 2: One optimization step of the parameter ✓ through Eq.(7) at point ✓0. The posterior
q

r
(x|y) is a mixture of p✓0(x|y = 0) (blue) and p✓0(x|y = 1) (red in the left panel) with the

mixing weights induced from q

r
�0
(y|x). Minimizing the KL divergence of Eq.(7) w.r.t ✓ drives

p✓(x|y = 0) towards the respective mixture q

r
(x|y = 0) (green), resulting in a new state where

p✓new
(x|y = 0) = p

new
g (x) gets closer to p✓0(x|y = 1) = pdata(x). Due to the asymmetry of

KL divergence, pnewg (x) missed the smaller mode of the mixture q

r
(x|y = 0) which is a mode of

pdata(x).

where the prior p(y) is uniform as is widely set, resulting in the constant scale factor 1/2. Note that
here the generator is trained using the unsaturated objective [16] which is commonly used in practice.

max

�

L� = Ep✓(x|y=0)p(y=0) [log q�(y = 0|x)] + Ep✓(x|y=1)p(y=1) [log q�(y = 1|x)]

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] +

1

2

E
x=G✓(z),z⇠p(z|y=1) [logD�(x)]

(6)

We now take a closer look at the form of Eq.(3) which is essentially reconstructing the real/fake
indicator y (or its reverse 1� y) conditioned on x. Further, for each optimization step of p✓(x|y) at
point (✓0,�0) in the parameter space, we have

Lemma 1 Let p(y) be the uniform distribution. Let p✓0(x) = Ep(y)[p✓0(x|y)], and q

r
(x|y) /

q

r
�0
(y|x)p✓0(x). Therefore, the updates of ✓ at ✓0 have

r✓

h
� Ep✓(x|y)p(y)

⇥
log q

r
�0
(y|x)

⇤ i���
✓=✓0

=

r✓

h
Ep(y) [KL (p✓(x|y)kqr(x|y))]� JSD (p✓(x|y = 0)kp✓(x|y = 1))

i���
✓=✓0

,

(7)

where KL(·k·) and JSD(·k·) are the KL and Jensen-Shannon Divergences, respectively.

We provide the proof in the supplement materials. Eq.(7) offers several insights into the generator
learning in GANs.

• Resemblance to variational inference. If we treat y as visible and x as latent (as in ADA), it is
straightforward to see the connections to the variational inference algorithm where q

r
(x|y) plays

the role of the posterior, p✓0(x) the prior, and p✓(x|y) the variational distribution that approximates
the posterior. Optimizing the generator G✓ is equivalent to minimizing the KL divergence between
the variational distribution and the posterior, minus a JSD between the distributions pg✓ (x) and
pdata(x). The Bayesian interpretation further reveals the connections to VAEs, as we discuss in
the next section.

• Training dynamics. By definition, p✓0(x) = (pg✓0
(x)+pdata(x))/2 is a mixture of pg✓0 (x) and

pdata(x) with uniform mixing weights, and the “posterior” qr(x|y) smooths p✓0(x) by combining
the uncertainty of discriminator qr�0

(y|x). Thus, minimizing the KL divergence between p✓(x|y)
and q

r
(x|y) in effect drives pg✓ (x) (i.e., p✓(x|y = 0)) to a mixture of pg✓0 (x) and pdata(x).

Since pdata(x) is fixed, pg✓ (x) gets closer to pdata(x). Figure 2 illustrates the training dynamics
schematically.

• Reasons of the missing mode issue. The negative JSD term is due to the introduction of the
“prior” p✓0(x) at current point ✓0. As JSD is symmetric, the missing mode phenomena widely
observed in GAN generator [37, 6] is explained by the asymmetry of the KL divergence which
tends to concentrate p✓(x|y) to large modes of qr(x|y) and ignore smaller ones. See Figure 2 for
the example.

5

!"7"# $ % = 1 = !()*)($) !"7"# $ % = 0 = !./8/# ($)

01($|% = 0) !"7"345 $ % = 0 = !./8/345	($)

$$
missed	mode

KL b∞ú(X)||h
∏ X ` = 0

= ûb∞ú X 	log
b∞ú X

h∏ X ` = 0

�

�
¡X

• Large positive contribution to the KLD in the
regions of X space where h∏ X ` = 0 is
small, unless b∞ú X is also small

• ⇒ b∞ú X tends to avoid regions where
h∏ X ` = 0 is small

© Petuum,Inc. 138

GANs: minimizing KLD
• Lemma 1: The updates of c at ca have

• No assumption on optimal discriminator hì∏ a ` ç
• Previous results usually rely on (near) optimal discriminator

• h∗ ` = 1 ç = b)±≤± ç /(b)±≤± ç + b∞(ç))
• Optimality assumption is impractical: limited expressiveness of tì [Arora et al 2017]
• Our result is a generalization of the previous theorem [Arjovsky & Bottou 2017]

• Plug the optimal discriminator into the above equation, we recover the theorem

• Give insights on the generator training when discriminator is optimal

Figure 2: One optimization step of the parameter ✓ through Eq.(7) at point ✓0. The posterior
q

r
(x|y) is a mixture of p✓0(x|y = 0) (blue) and p✓0(x|y = 1) (red in the left panel) with the

mixing weights induced from q

r
�0
(y|x). Minimizing the KL divergence of Eq.(7) w.r.t ✓ drives

p✓(x|y = 0) towards the respective mixture q

r
(x|y = 0) (green), resulting in a new state where

p✓new
(x|y = 0) = p

new
g (x) gets closer to p✓0(x|y = 1) = pdata(x). Due to the asymmetry of

KL divergence, pnewg (x) missed the smaller mode of the mixture q

r
(x|y = 0) which is a mode of

pdata(x).

where the prior p(y) is uniform as is widely set, resulting in the constant scale factor 1/2. Note that
here the generator is trained using the unsaturated objective [16] which is commonly used in practice.

max

�

L� = Ep✓(x|y=0)p(y=0) [log q�(y = 0|x)] + Ep✓(x|y=1)p(y=1) [log q�(y = 1|x)]

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] +

1

2

E
x=G✓(z),z⇠p(z|y=1) [logD�(x)]

(6)

We now take a closer look at the form of Eq.(3) which is essentially reconstructing the real/fake
indicator y (or its reverse 1� y) conditioned on x. Further, for each optimization step of p✓(x|y) at
point (✓0,�0) in the parameter space, we have

Lemma 1 Let p(y) be the uniform distribution. Let p✓0(x) = Ep(y)[p✓0(x|y)], and q

r
(x|y) /

q

r
�0
(y|x)p✓0(x). Therefore, the updates of ✓ at ✓0 have

r✓

h
� Ep✓(x|y)p(y)

⇥
log q

r
�0
(y|x)

⇤ i���
✓=✓0

=

r✓

h
Ep(y) [KL (p✓(x|y)kqr(x|y))]� JSD (p✓(x|y = 0)kp✓(x|y = 1))

i���
✓=✓0

,

(7)

where KL(·k·) and JSD(·k·) are the KL and Jensen-Shannon Divergences, respectively.

We provide the proof in the supplement materials. Eq.(7) offers several insights into the generator
learning in GANs.

• Resemblance to variational inference. If we treat y as visible and x as latent (as in ADA), it is
straightforward to see the connections to the variational inference algorithm where q

r
(x|y) plays

the role of the posterior, p✓0(x) the prior, and p✓(x|y) the variational distribution that approximates
the posterior. Optimizing the generator G✓ is equivalent to minimizing the KL divergence between
the variational distribution and the posterior, minus a JSD between the distributions pg✓ (x) and
pdata(x). The Bayesian interpretation further reveals the connections to VAEs, as we discuss in
the next section.

• Training dynamics. By definition, p✓0(x) = (pg✓0
(x)+pdata(x))/2 is a mixture of pg✓0 (x) and

pdata(x) with uniform mixing weights, and the “posterior” qr(x|y) smooths p✓0(x) by combining
the uncertainty of discriminator qr�0

(y|x). Thus, minimizing the KL divergence between p✓(x|y)
and q

r
(x|y) in effect drives pg✓ (x) (i.e., p✓(x|y = 0)) to a mixture of pg✓0 (x) and pdata(x).

Since pdata(x) is fixed, pg✓ (x) gets closer to pdata(x). Figure 2 illustrates the training dynamics
schematically.

• Reasons of the missing mode issue. The negative JSD term is due to the introduction of the
“prior” p✓0(x) at current point ✓0. As JSD is symmetric, the missing mode phenomena widely
observed in GAN generator [37, 6] is explained by the asymmetry of the KL divergence which
tends to concentrate p✓(x|y) to large modes of qr(x|y) and ignore smaller ones. See Figure 2 for
the example.

5

Figure 3: (a) Graphical model of InfoGAN (Eq.9), which, compared to GANs (Figure 1(c)), adds
conditional generation of code z with distribution q⌘(z|x, y). See the captions of Figure 1 for the
meaning of different types of arrows. (b) VAEs (Eq.12), which is obtained by swapping the generation
and inference processes of InfoGAN, i.e., in terms of the graphical model, swapping solid-line arrows
(generative process) and dashed-line arrows (inference) of (a). (c) Adversarial Autoencoder (AAE),
which is obtained by swapping data x and code z in InfoGAN (see the supplements for more details).

generalization of the previous theorem [1]: plugging Eq.(7) into Eq.(6) we obtain

r✓

h
� Ep✓(x|y)p(y)

⇥
log qr�0

(y|x)
⇤ i���

✓=✓0

= r✓


1

2

KL (pg✓kpdata)� JSD (pg✓kpdata)
� ���

✓=✓0

, (8)

which gives simplified explanations of the training dynamics and the missing mode issue only when
the discriminator meets certain optimality criteria. Our generalized result enables understanding
of broader situations. For instance, when the discriminator distribution q�0(y|x) gives uniform
guesses, or when pg✓ = pdata that is indistinguishable by the discriminator, the gradients of the
KL and JSD terms in Eq.(6) cancel out, which stops the generator learning.

InfoGAN Chen et al. [8] developed InfoGAN for disentangled representation learning which
additionally recovers (part of) the latent code z given example x. This can be straightforwardly
formulated in our framework by introducing an extra conditional q⌘(z|x, y) parameterized by ⌘. As
discussed above, GANs assume a degenerated code space for real examples, thus q⌘(z|x, y = 1)

is fixed without free parameters to learn, and ⌘ is only associated to y = 0. The InfoGAN is then
recovered by combining q⌘(z|x, y) with q(y|x) in Eq.(3) to perform full reconstruction of both z

and y:
max

�

L� = Ep✓(x|y)p(y) [log q⌘(z|x, y)q�(y|x)]
max

✓,⌘ L✓,⌘ = Ep✓(x|y)p(y)
⇥
log q⌘(z|x, y)qr�(y|x)

⇤
,

(9)

where the ground-truth z to reconstruct is sampled from the prior p(z|y) and encapsulated in the
implicit distribution p✓(x|y). The model is expressed as graphical model in Figure 3(a). Let
q

r
(x|z, y) / q⌘0(z|x, y)qr�0

(y|x)p✓0(x), the result in the form of Eq.(6) still holds by replacing
q

r
�0
(y|x) with q⌘0(z|x, y)qr�0

(y|x), and q

r
(x|y) with q

r
(x|z, y):

Ep(y)

⇥
r✓Ep✓(x|y)

⇥
log q⌘0(z|x, y)qr�0

(y|x)
⇤
|
✓=✓0

⇤
=

� Ep(y) [r✓KL (p✓(x|y)kqr(x|z, y))� JSD (p✓(x|y = 0)kp✓(x|y = 1)) |
✓=✓0] ,

(10)

AAE/PM/CycleGAN As a side result, the idea of interpreting data space x as latent immediately
discovers relations between InfoGAN with Adversarial Autoencoder (AAE) [35] and Predictability
Minimization (PM) [50]. That is, InfoGAN is precisely an AAE that treats the data space x as
latent and to be adversarially regularized while the code space z as visible. Figure 3(c) shows the
graphical model of AAE obtained by simply swapping x and z in InfoGAN. We defer the detailed
formulations of AAE to the supplementary materials. Further, instead of considering x and z as data
and code spaces respectively, if we instantiate x and z as data spaces of two modalities, and combine
the objectives of InfoGAN and AAE as a joint model, we recover the cycleGAN model [56] which
performs transformation between the two modalities. More details are provided in the supplements.

3.3 Variational Autoencoders (VAEs)

We next explore the second family of deep generative model learning algorithms. The resemblance of
GAN generator learning to variational inference as shown in Eq.(6) suggests strong relations between

6

© Petuum,Inc. 139

GANs: minimizing KLD
In summary:
• Reveal connection to variational inference

• Build connections to VAEs (slides soon)
• Inspire new model variants based on the connections

• Offer insights into the generator training
• Formal explanation of the missing mode behavior of GANs
• Still hold when the discriminator does not achieve its optimum at each

iteration

© Petuum,Inc. 140

Variant of GAN: InfoGAN
• GANs don’t offer the functionality of inferring code | given data ç
• InfoGAN [Chen et al., 2016]

• Introduce inference model E¬(||ç) with parameters √
• Augment the objectives of GANs by additionally inferring |

Parameterized p✓(x|z, y) generator
q�(y|x) discriminator

Priors
p(y) uniform
p(x|z) = Ep(y) [p✓0(x|z, y)]
p(z) observed or pre-defined
q0(x|z, y) / q(1� y|x)p✓0(x|z)
Table 1: Notations.

2. If the discriminator distinguishes x uniformly at random, we can see the derivatives of
the KL and JSD terms cancel out and become zero. Also, when the system achieves its
optima, i.e., p(x|z, y = 0) = p(x|z, y = 1)) and q(y|x) = p(x|z,y=0)+p(x|z,y=1))

2 , then
the gradient equals zero.

3. Minimizing the KL divergence makes p✓(x|z, y) tend to miss the modes of q0(x|z, y).

Wake-sleep Algorithm
For notational simplicity, in the following we will omit the variable z.

The objective of the wake-sleep algorithm is

Wake : max

p
Eq�(y|x) [log p✓(x|y)]

Sleep : max

q
Ep✓(x|y) [log q�(y|x)]

(11)

The wake phase can be seen as minimizing the following alternative KL divergence w.r.t ✓:

KL (q�(y|x)kp✓(y|x)) , (12)

where p✓(y|x) / p✓(x|y)p(y); or

KL (q�(x|y)kp✓(x|y)) , (13)

where q�(x|y) = q�(y|x)p(x).
Similarly, the sleep phase can be seen as minimizing the following alternative KL divergence w.r.t
q�:

KL (p✓(y|x)kq�(y|x)) , (14)

or

KL (p✓(x|y)kq�(x|y)) . (15)

We can see GANs and VAEs (Variational Auto-encoders Kingma & Welling (2013)) as extending
the sleep and wake phases, respectively. In particular, VAEs extend the wake phase by minimizing
Eq. (12) w.r.t both � and ✓. GANs extend the sleep phase by minimizing Eq.(15) w.r.t �, and
minimizing the y-switched objective KL

⇣
p✓(x|y)kq0�(x|y)

⌘
� JSD in Eq.(7) w.r.t ✓.

1 InfoGAN

maxD LD = E
x⇠pdata(x) [logD(x)] + E

x⇠G(z),z⇠p(z) [log(1�D(x))] ,

maxG,Q LG,Q = E
x⇠G(z),z⇠p(z) [logD(x)+ logQ(z|x)] .

(16)

3

!"

InfoGANGANs

© Petuum,Inc. 141

InfoGAN: new formulation
• Defines conditional h¬ | ç, `

• h¬(||ç, ` = 1) is fixed without free parameters to learn
• As GANs assume the code space of real data is degenerated

• Parameters ƒ are only associated with h¬(||ç, ` = 0)

• Rewrite in the new form:

mixed distribution mixture of pg(x) and pdata(x). Since pdata(x) is fixed, pg(x) gets close to
pdata(x).

• The negative JSD term is due to the extra prior regularization [Eric: what does prior regulariza-
tion mean?] in the KL divergence. As JSD is symmetric, the missing mode phenomena widely
observed in GAN generator [34, 5] is explained by the asymmetry of the KL divergence which
tends to concentrate p✓(x|y) to large modes of qr(x|y) and ignore smaller ones.

Arjovsky and Bottou [1] derive a similar result of minimizing the KL divergence between pg(x) and
pdata(x). Our result does not rely on assumptions of (near) optimal discriminator, thus is more close
to the practice [2]. Indeed, when the discriminator distribution q�0(y|x) gives uniform guesses, the
gradients of the KL and JSD terms in Eq.(4) cancel out, disabling the learning of generator. Moreover,
the Bayesian interpretation [Eric: In earlier explanations, you never say it was a "Bayesian
interpretation", and now you suddenly say it was. Please claim Bayesian interpretation
earlier where you provided some interpretation.] of our result enables us to discover connections
to VAEs, as we discuss in the next section.

InfoGAN Chen et al. [6] developed InfoGAN for disentangled representation learning which
additionally recovers (part of) the latent code z given example x. This can be straightforwardly
formulated in our framework by introducing an extra conditional q⌘(z|x, y) parameterized by ⌘. As
discussed above, GANs assume a degenerated code space for real examples, thus q⌘(z|x, y = 1)

is fixed without free parameters to learn, and ⌘ is only associated to y = 0. The InfoGAN is then
recovered by combining q⌘(z|x, y) with q(y|x) in Eq.(1) to perform full reconstruction of both z

and y:
max

�

L� = Ep✓(x|y)p(y) [log q⌘(z|x, y)q�(y|x)]
max

✓,⌘ L✓,⌘ = Ep✓(x|y)p(y)
⇥
log q⌘(z|x, y)qr�(y|x)

⇤
,

(5)

where the ground-truth z to reconstruct is sampled from the prior p(z|y) and encapsulated in the
implicit distribution p✓(x|y). Let qr(x|z, y) / q⌘0(z|x, y)qr�0

(y|x)p✓0(x), the result in the form of
Eq.(4) still holds by replacing q

r
�0
(y|x) with q⌘0(z|x, y)qr�0

(y|x), and q

r
(x|y) with q

r
(x|z, y):

Ep(y)

⇥
r✓Ep✓(x|y)

⇥
log q⌘0(z|x, y)qr�0

(y|x)
⇤
|
✓=✓0

⇤
=

� Ep(y) [r✓KL (p✓(x|y)kqr(x|z, y))� JSD (p✓(x|y = 0)kp✓(x|y = 1)) |
✓=✓0] ,

(6)

As a side result, the idea of interpreting x as latent variables immediately discovers relations between
InfoGAN with Adversarial Autoencoder (AAE) [32] and Predictability Minimization [46]. That
is, InfoGAN is precisely an AAE which treats x as latents and z as visibles. [Eric: I feel such
swapping of latent and visible can be best illustrated in a graphical model alongside with the
GM for AAE.]

3.3 Variational Autoencoders (VAEs)

We next explore the second class [Eric: "second class" sounds bad, how about say "another
family" or "second family"?] of deep generative model learning algorithms. The resemblance of
GAN generator learning to variational inference as shown in Eq.(4) suggests strong relations between
VAEs [25] and GANs. We build correspondence between the two approaches, and show that VAEs
are basically minimizing a KL divergence with an opposite direction, with a degenerated adversarial
discriminator.

The conventional definition of VAEs is written as:

max

✓,⌘ Lvae
✓,⌘ = Epdata(x)

⇥
Eq̃⌘(z|x) [log p̃✓(x|z)]� KL(q̃⌘(z|x)kp̃(z))

⇤
, (7)

where p̃✓(x|z) is the generator, q̃⌘(z|x) the inference network, and p̃(z) the prior over z. The
parameters to learn are intentionally denoted with the notations of corresponding modules in GANs.
At first glance, VAEs appear to differ from GANs greatly as they use only real examples and lack
adversarial mechanism. However, our interpretation shows VAEs indeed include a degenerated
adversarial discriminator that blocks out generated samples from contributing to training.

Specifically, we again introduce the real/fake variable y, and assume a perfect discriminator q⇤(y|x)
which always predicts y = 1 with probability 1 given real examples, and y = 0 given generated
samples. Again, for notational simplicity, let qr⇤(y|x) = q⇤(1� y|x) be the reversed distribution.

5

© Petuum,Inc. 142

GANs vs InfoGAN

mixed distribution mixture of pg(x) and pdata(x). Since pdata(x) is fixed, pg(x) gets close to
pdata(x).

• The negative JSD term is due to the extra prior regularization [Eric: what does prior regulariza-
tion mean?] in the KL divergence. As JSD is symmetric, the missing mode phenomena widely
observed in GAN generator [34, 5] is explained by the asymmetry of the KL divergence which
tends to concentrate p✓(x|y) to large modes of qr(x|y) and ignore smaller ones.

Arjovsky and Bottou [1] derive a similar result of minimizing the KL divergence between pg(x) and
pdata(x). Our result does not rely on assumptions of (near) optimal discriminator, thus is more close
to the practice [2]. Indeed, when the discriminator distribution q�0(y|x) gives uniform guesses, the
gradients of the KL and JSD terms in Eq.(4) cancel out, disabling the learning of generator. Moreover,
the Bayesian interpretation [Eric: In earlier explanations, you never say it was a "Bayesian
interpretation", and now you suddenly say it was. Please claim Bayesian interpretation
earlier where you provided some interpretation.] of our result enables us to discover connections
to VAEs, as we discuss in the next section.

InfoGAN Chen et al. [6] developed InfoGAN for disentangled representation learning which
additionally recovers (part of) the latent code z given example x. This can be straightforwardly
formulated in our framework by introducing an extra conditional q⌘(z|x, y) parameterized by ⌘. As
discussed above, GANs assume a degenerated code space for real examples, thus q⌘(z|x, y = 1)

is fixed without free parameters to learn, and ⌘ is only associated to y = 0. The InfoGAN is then
recovered by combining q⌘(z|x, y) with q(y|x) in Eq.(1) to perform full reconstruction of both z

and y:
max

�

L� = Ep✓(x|y)p(y) [log q⌘(z|x, y)q�(y|x)]
max

✓,⌘ L✓,⌘ = Ep✓(x|y)p(y)
⇥
log q⌘(z|x, y)qr�(y|x)

⇤
,

(5)

where the ground-truth z to reconstruct is sampled from the prior p(z|y) and encapsulated in the
implicit distribution p✓(x|y). Let qr(x|z, y) / q⌘0(z|x, y)qr�0

(y|x)p✓0(x), the result in the form of
Eq.(4) still holds by replacing q

r
�0
(y|x) with q⌘0(z|x, y)qr�0

(y|x), and q

r
(x|y) with q

r
(x|z, y):

Ep(y)

⇥
r✓Ep✓(x|y)

⇥
log q⌘0(z|x, y)qr�0

(y|x)
⇤
|
✓=✓0

⇤
=

� Ep(y) [r✓KL (p✓(x|y)kqr(x|z, y))� JSD (p✓(x|y = 0)kp✓(x|y = 1)) |
✓=✓0] ,

(6)

As a side result, the idea of interpreting x as latent variables immediately discovers relations between
InfoGAN with Adversarial Autoencoder (AAE) [32] and Predictability Minimization [46]. That
is, InfoGAN is precisely an AAE which treats x as latents and z as visibles. [Eric: I feel such
swapping of latent and visible can be best illustrated in a graphical model alongside with the
GM for AAE.]

3.3 Variational Autoencoders (VAEs)

We next explore the second class [Eric: "second class" sounds bad, how about say "another
family" or "second family"?] of deep generative model learning algorithms. The resemblance of
GAN generator learning to variational inference as shown in Eq.(4) suggests strong relations between
VAEs [25] and GANs. We build correspondence between the two approaches, and show that VAEs
are basically minimizing a KL divergence with an opposite direction, with a degenerated adversarial
discriminator.

The conventional definition of VAEs is written as:

max

✓,⌘ Lvae
✓,⌘ = Epdata(x)

⇥
Eq̃⌘(z|x) [log p̃✓(x|z)]� KL(q̃⌘(z|x)kp̃(z))

⇤
, (7)

where p̃✓(x|z) is the generator, q̃⌘(z|x) the inference network, and p̃(z) the prior over z. The
parameters to learn are intentionally denoted with the notations of corresponding modules in GANs.
At first glance, VAEs appear to differ from GANs greatly as they use only real examples and lack
adversarial mechanism. However, our interpretation shows VAEs indeed include a degenerated
adversarial discriminator that blocks out generated samples from contributing to training.

Specifically, we again introduce the real/fake variable y, and assume a perfect discriminator q⇤(y|x)
which always predicts y = 1 with probability 1 given real examples, and y = 0 given generated
samples. Again, for notational simplicity, let qr⇤(y|x) = q⇤(1� y|x) be the reversed distribution.

5

ADA GANs VAEs

x features data/generations data/generations
y domain indicator real/fake indicator (degenerated) real/fake indicator
z data examples code vector code vector
p✓(x|y) feature distr. generation distr., Eq.2 p✓(x|z, y), generation distr., Eq.9
q�(y|x) discriminator discriminator q⇤(y|x), degenerated discriminator
p⌘(z|x, y) — infer net (InfoGAN) infer net
p✓0(x) = Ep(y)[p✓0(x|y)] — prior of x prior of x

Table 1: Correspondence between different approaches in the proposed formulation.

[Eric: There should be a quick description of the wake-sleep algorithm here to start the
section.] In GANs, the generative model is trained by passing generated samples to a discriminator
and minimizing the resulting error evaluated by the discriminator. Intuitively, the reliance on fake
samples for learning resembles the sleep phase in the wake-sleep algorithm. In contrast, VAEs train
the generative model by reconstructing observed real examples, sharing similarity to the wake phase.
This section formally explores these connections.

For ease of presentation and to establish a systematic notation for the paper, we start with a new
interpretation of Adversarial Domain Adaptation (ADA) [Eric: please add the earliest citation
for this name?] within our proposed formulation. We then show that GANs are a special case of
ADA with a degenerated source domain, and reveal close relations to VAEs and wake-sleep algorithm
through KL divergence interpretation of the objectives. Table 1 lists the correspondence of each
components in these approaches.

3.1 Adversarial Domain Adaptation (ADA)

ADA aims to transfer prediction knowledge learned from a source domain with labeled data to a
target domain without labels, by learning domain-invariant features [13, 42, 43, 7]. That is, it learns a
feature extractor whose output cannot be distinguished by a discriminator between the source and
target domains.

We frame our new interpretation of ADA, and review conventional formulations in the supplementary
materials. To make clear notational correspondence to other models in the sequel, [Eric: Please add
a figure drawing a graphical model here for ADA.] let z be a data example either in the source
or target domain, and y 2 {0, 1} be the domain indicator with y = 0 indicating the target domain
and y = 1 the source domain. The data distributions conditioning on the domain are then denoted
as p(z|y). Let p(y) be the prior distribution (e.g., uniform) of the domain indicator. The feature
extractor maps z to representations x = G✓(z) with parameters ✓. The data distributions over z and
deterministic transformation G✓ together form an implicit distribution over x, denoted as p✓(x|y),
which is intractable to evaluate likelihood but easy to sample from:

To enforce domain invariance of feature x, a discriminator is trained to adversarially distinguish
between the two domains, which defines a conditional distribution q�(y|x) with parameters �, and
the feature extractor is optimized to fool the discriminator. Let qr�(y|x) = q�(1�y|x) be the reversed
distribution over domains. The objectives of ADA are therefore given as:

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y)
⇥
log q

r
�(y|x)

⇤
,

(1)

where we omit the additional loss of ✓ to fit to the data label pairs of source domain (see supplements
for more details). In conventional view, the first equation minimizes the discriminator binary cross
entropy with respect to discriminative parameter �, while the second trains the feature extractor
to maximize the cross entropy with respect to the transformation parameter ✓. [Eric: I think for
self-containedness, it would be better to explain both of the cross-entropy notion above.]
Alternatively, we can interpret the objectives as optimizing the reconstruction of the domain variable
y conditioned on feature x. [Eric: I can not understand this point.] We explore this perspective
more in the next section. Note that the only (but critical) difference between the objective of ✓ from
� is the replacement of q(y|x) with q

r
(y|x). This is where the adversarial mechanism comes about.

3

!"

© Petuum,Inc. 143

InfoGAN: new formulation
• Similar results as in GANs hold:

• Let h∏ ç |, ` ∝ h¬º¬Ω(||ç, `)hìºì
∏

a
` ç bgºgΩ ç

• We have:

• Next we show correspondences between GANs/InfoGAN and
VAEs

Figure 3: (a) Graphical model of InfoGAN (Eq.9), which, compared to GANs (Figure 1(c)), adds
conditional generation of code z with distribution q⌘(z|x, y). See the captions of Figure 1 for the
meaning of different types of arrows. (b) VAEs (Eq.12), which is obtained by swapping the generation
and inference processes of InfoGAN, i.e., in terms of the graphical model, swapping solid-line arrows
(generative process) and dashed-line arrows (inference) of (a). (c) Adversarial Autoencoder (AAE),
which is obtained by swapping data x and code z in InfoGAN (see the supplements for more details).

generalization of the previous theorem [1]: plugging Eq.(7) into Eq.(6) we obtain

r✓

h
� Ep✓(x|y)p(y)

⇥
log qr�0

(y|x)
⇤ i���

✓=✓0

= r✓


1

2

KL (pg✓kpdata)� JSD (pg✓kpdata)
� ���

✓=✓0

, (8)

which gives simplified explanations of the training dynamics and the missing mode issue only when
the discriminator meets certain optimality criteria. Our generalized result enables understanding
of broader situations. For instance, when the discriminator distribution q�0(y|x) gives uniform
guesses, or when pg✓ = pdata that is indistinguishable by the discriminator, the gradients of the
KL and JSD terms in Eq.(6) cancel out, which stops the generator learning.

InfoGAN Chen et al. [8] developed InfoGAN for disentangled representation learning which
additionally recovers (part of) the latent code z given example x. This can be straightforwardly
formulated in our framework by introducing an extra conditional q⌘(z|x, y) parameterized by ⌘. As
discussed above, GANs assume a degenerated code space for real examples, thus q⌘(z|x, y = 1)

is fixed without free parameters to learn, and ⌘ is only associated to y = 0. The InfoGAN is then
recovered by combining q⌘(z|x, y) with q(y|x) in Eq.(3) to perform full reconstruction of both z

and y:

max

�

L� = Ep✓(x|y)p(y) [log q⌘(z|x, y)q�(y|x)]
max

✓,⌘ L✓,⌘ = Ep✓(x|y)p(y)
⇥
log q⌘(z|x, y)qr�(y|x)

⇤
,

(9)

where the ground-truth z to reconstruct is sampled from the prior p(z|y) and encapsulated in the
implicit distribution p✓(x|y). The model is expressed as graphical model in Figure 3(a). Let
q

r
(x|z, y) / q⌘0(z|x, y)qr�0

(y|x)p✓0(x), the result in the form of Eq.(6) still holds by replacing
q

r
�0
(y|x) with q⌘0(z|x, y)qr�0

(y|x), and q

r
(x|y) with q

r
(x|z, y):

r✓

h
� Ep✓(x|y)p(y)

⇥
log q⌘0(z|x, y)qr�0

(y|x)
⇤ i���

✓=✓0

=

r✓

h
Ep(y) [KL (p✓(x|y)kqr(x|z, y))]� JSD (p✓(x|y = 0)kp✓(x|y = 1))

i���
✓=✓0

,

(10)

AAE/PM/CycleGAN As a side result, the idea of interpreting data space x as latent immediately
discovers relations between InfoGAN with Adversarial Autoencoder (AAE) [35] and Predictability
Minimization (PM) [50]. That is, InfoGAN is precisely an AAE that treats the data space x as
latent and to be adversarially regularized while the code space z as visible. Figure 3(c) shows the
graphical model of AAE obtained by simply swapping x and z in InfoGAN. We defer the detailed
formulations of AAE to the supplementary materials. Further, instead of considering x and z as data
and code spaces respectively, if we instantiate x and z as data spaces of two modalities, and combine
the objectives of InfoGAN and AAE as a joint model, we recover the cycleGAN model [56] which
performs transformation between the two modalities. More details are provided in the supplements.

6

© Petuum,Inc. 144

Relates VAEs with GANs
• Resemblance of GAN generator learning to variational

inference
• Suggest strong relations between VAEs and GANs

• Indeed, VAEs are basically minimizing KLD with an opposite
direction, and with a degenerated adversarial discriminator

Figure 3: (a) Graphical model of InfoGAN (Eq.10), which, compared to GANs (Figure 1(c)), adds
conditional generation of code z with distribution q⌘(z|x, y). See the captions of Figure 1 for the
meaning of different types of arrows. (b) VAEs (Eq.13), which is obtained by swapping the generation
and inference processes of InfoGAN, i.e., in terms of the graphical model, swapping solid-line arrows
(generative process) and dashed-line arrows (inference) of (a). (c) Adversarial Autoencoder (AAE),
which is obtained by swapping data x and code z in InfoGAN (see the supplements for more details).

latent and to be adversarially regularized while the code space z as visible. Figure 3(c) shows the
graphical model of AAE obtained by simply swapping x and z in InfoGAN. We defer the detailed
formulations of AAE to the supplementary materials. Further, instead of considering x and z as data
and code spaces respectively, if we instantiate x and z as data spaces of two modalities, and combine
the objectives of InfoGAN and AAE as a joint model, we recover the cycleGAN model [56] which
performs transformation between the two modalities. More details are provided in the supplements.

3.3 Variational Autoencoders (VAEs)

We next explore the second family of deep generative model learning algorithms. The resemblance of
GAN generator learning to variational inference as shown in Eq.(7) suggests strong relations between
VAEs [28] and GANs. We build correspondence between the two approaches, and show that VAEs
are basically minimizing a KL divergence in an opposite direction, with a degenerated adversarial
discriminator.

max

✓,⌘ Lvae
✓,⌘ = Eq⌘(z|x)pdata(x) [log p✓(x|z)]�Epdata(x) [KL(q⌘(z|x)kp(z))]

The conventional definition of VAEs is written as:

max

✓,⌘ Lvae
✓,⌘ = Epdata(x)

⇥
Eq̃⌘(z|x) [log p̃✓(x|z)]� KL(q̃⌘(z|x)kp̃(z))

⇤
, (12)

where p̃✓(x|z) is the generator, q̃⌘(z|x) the inference model, and p̃(z) the prior over z. The
parameters to learn are intentionally denoted with the notations of corresponding modules in GANs.
At first glance, VAEs appear to differ from GANs greatly as they use only real examples and lack
adversarial mechanism. However, our interpretation shows VAEs indeed include a degenerated
adversarial discriminator that blocks out generated samples from contributing to training.

Specifically, we again introduce the real/fake variable y. Further assume a perfect discriminator
q⇤(y|x) which always predicts y = 1 with probability 1 given real examples, and y = 0 given
generated samples. Again, for notational simplicity, let qr⇤(y|x) = q⇤(1 � y|x) be the reversed
distribution.

Lemma 2 Let p✓(z, y|x) / p✓(x|z, y)p(z|y)p(y). Therefore,

Lvae

✓,⌘ = 2 · Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))

⇤

= 2 · Ep✓0 (x)
[�KL (q⌘(z|x, y)qr⇤(y|x)kp✓(z, y|x))] .

(13)

Here most of the components have exact correspondences (and the same definitions) in GANs and
InfoGAN, except that the generation distribution p✓(x|z, y) differs slightly from its counterpart
p✓(x|y) in Eq.(5) to additionally account for the uncertainty of generating x given z:

p✓(x|z, y) =
⇢
p✓(x|z) y = 0

pdata(x) y = 1.

(14)

7

VAEsInfoGAN

degenerated
discriminatorswap the generation (solid-line)

and inference (dashed-line)
processes of InfoGAN

© Petuum,Inc. 145

Recap: conventional formulation of VAEs
• Objective:

• b≈(|): prior over |
• b≈g(ç||): generative model
• h≈¬(||ç): inference model
• Only uses real examples from b)±≤±(ç), lacks adversarial mechanism

• To align with GANs, let’s introduce the real/fake indicator ` and
adversarial discriminator

mixed distribution mixture of pg(x) and pdata(x). Since pdata(x) is fixed, pg(x) gets close to
pdata(x).

• The negative JSD term is due to the extra prior regularization [Eric: what does prior regulariza-
tion mean?] in the KL divergence. As JSD is symmetric, the missing mode phenomena widely
observed in GAN generator [34, 5] is explained by the asymmetry of the KL divergence which
tends to concentrate p✓(x|y) to large modes of qr(x|y) and ignore smaller ones.

Arjovsky and Bottou [1] derive a similar result of minimizing the KL divergence between pg(x) and
pdata(x). Our result does not rely on assumptions of (near) optimal discriminator, thus is more close
to the practice [2]. Indeed, when the discriminator distribution q�0(y|x) gives uniform guesses, the
gradients of the KL and JSD terms in Eq.(4) cancel out, disabling the learning of generator. Moreover,
the Bayesian interpretation [Eric: In earlier explanations, you never say it was a "Bayesian
interpretation", and now you suddenly say it was. Please claim Bayesian interpretation
earlier where you provided some interpretation.] of our result enables us to discover connections
to VAEs, as we discuss in the next section.

InfoGAN Chen et al. [6] developed InfoGAN for disentangled representation learning which
additionally recovers (part of) the latent code z given example x. This can be straightforwardly
formulated in our framework by introducing an extra conditional q⌘(z|x, y) parameterized by ⌘. As
discussed above, GANs assume a degenerated code space for real examples, thus q⌘(z|x, y = 1)

is fixed without free parameters to learn, and ⌘ is only associated to y = 0. The InfoGAN is then
recovered by combining q⌘(z|x, y) with q(y|x) in Eq.(1) to perform full reconstruction of both z

and y:
max

�

L� = Ep✓(x|y)p(y) [log q⌘(z|x, y)q�(y|x)]
max

✓,⌘ L✓,⌘ = Ep✓(x|y)p(y)
⇥
log q⌘(z|x, y)qr�(y|x)

⇤
,

(5)

where the ground-truth z to reconstruct is sampled from the prior p(z|y) and encapsulated in the
implicit distribution p✓(x|y). Let qr(x|z, y) / q⌘0(z|x, y)qr�0

(y|x)p✓0(x), the result in the form of
Eq.(4) still holds by replacing q

r
�0
(y|x) with q⌘0(z|x, y)qr�0

(y|x), and q

r
(x|y) with q

r
(x|z, y):

Ep(y)

⇥
r✓Ep✓(x|y)

⇥
log q⌘0(z|x, y)qr�0

(y|x)
⇤
|
✓=✓0

⇤
=

� Ep(y) [r✓KL (p✓(x|y)kqr(x|z, y))� JSD (p✓(x|y = 0)kp✓(x|y = 1)) |
✓=✓0] ,

(6)

As a side result, the idea of interpreting x as latent variables immediately discovers relations between
InfoGAN with Adversarial Autoencoder (AAE) [32] and Predictability Minimization [46]. That
is, InfoGAN is precisely an AAE which treats x as latents and z as visibles. [Eric: I feel such
swapping of latent and visible can be best illustrated in a graphical model alongside with the
GM for AAE.]

3.3 Variational Autoencoders (VAEs)

We next explore the second class [Eric: "second class" sounds bad, how about say "another
family" or "second family"?] of deep generative model learning algorithms. The resemblance of
GAN generator learning to variational inference as shown in Eq.(4) suggests strong relations between
VAEs [25] and GANs. We build correspondence between the two approaches, and show that VAEs
are basically minimizing a KL divergence with an opposite direction, with a degenerated adversarial
discriminator.

The conventional definition of VAEs is written as:

max

✓,⌘ Lvae
✓,⌘ = Epdata(x)

⇥
Eq̃⌘(z|x) [log p̃✓(x|z)]� KL(q̃⌘(z|x)kp̃(z))

⇤
, (7)

where p̃✓(x|z) is the generator, q̃⌘(z|x) the inference network, and p̃(z) the prior over z. The
parameters to learn are intentionally denoted with the notations of corresponding modules in GANs.
At first glance, VAEs appear to differ from GANs greatly as they use only real examples and lack
adversarial mechanism. However, our interpretation shows VAEs indeed include a degenerated
adversarial discriminator that blocks out generated samples from contributing to training.

Specifically, we again introduce the real/fake variable y, and assume a perfect discriminator q⇤(y|x)
which always predicts y = 1 with probability 1 given real examples, and y = 0 given generated
samples. Again, for notational simplicity, let qr⇤(y|x) = q⇤(1� y|x) be the reversed distribution.

5

© Petuum,Inc. 146

VAEs: new formulation
• Assume a perfect discriminator h∗(`|ç)

• h∗ ` = 1 ç = 1 if ç is real examples
• h∗ ` = 0 ç = 1 if ç is generated samples
• h∗∏ ` ç ∶= h∗(1 − `|ç)

• Generative distribution

• Let bg |, ` ç ∝ bg ç |, ` b | ` b(`)
• Lemma 2Lemma 2. Let p✓(z, y|x) / p✓(x|z, y)p(z|y)p(y). Therefore,

Lvae

✓,⌘ = 2 · Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))

⇤

= 2 · Ep✓0 (x)
[�KL (q⌘(z|x, y)qr⇤(y|x)kp✓(z, y|x))] .

(8)

Here most of the components have exact correspondences (and the same definitions) in GANs
and InfoGAN (Table 1), except that the generation distribution p✓(x|z, y) differs slightly from its
counterpart p✓(x|y) in Eq.(2) to additionally account for the uncertainty of generating x given z:

p✓(x|z, y) =
⇢
p✓(x|z) y = 0

pdata(x) y = 1.

(9)

The resulting KL divergence closely relates to that in GANs (Eq.4) and InfoGAN (Eq.6), with
the generative module p✓(x|z, y) and inference networks q⌘(z|x, y)qr(y|x) placed in the opposite
directions, and with inverted hidden/visible treatments of (z, y) and x. In section 6, we give a general
discussion that the difference between GANs and VAEs in hidden/visible treatments is relatively
minor.

The proof is provided in the supplementary materials. Intuitively, recall that for the real example
domain with y = 1, both q⌘(z|x, y = 1) and p✓(x|z, y = 1) are constant distributions. Therefore,
with fake sample x generated from p✓0(x), the reversed perfect discriminator qr⇤(y|x) always gives
prediction y = 1, making the reconstruction loss on fake samples degenerated to a constant. Hence
only real examples, where q

r
⇤ predicts y = 0 with probability 1, are effective for learning, which is

identical to Eq.(7). We extend VAEs to also leverage fake samples in section 4.

VAE/GAN Joint Models Previous work has explored combination of VAEs and GANs for im-
proved generation. This can be naturally motivated by the asymmetric behaviors of the KL divergences
that the two algorithms aim to optimize respectively. Specifically, the VAE/GAN model [29] that
improves the sharpness of VAE generated images can be alternatively motivated by remedying the
mode covering behavior of the KL in VAEs. That is, the KL tends to drive the generative model
to cover all modes of the data distribution as well as regions with small values of pdata, resulting
in implausible samples. Incorporation of GAN objectives alleviates the issue as the inverted KL
enforces the generator to focus on meaningful data modes. From the other perspective, augmenting
GANs with VAE objectives helps addressing the mode missing problem, which justifies the intuition
of [5].

3.4 Wake Sleep Algorithm (WS)

We next discuss the connections of GANs and VAEs to the classic wake-sleep algorithm [18] which
was proposed for learning deep generative models such as Helmholtz machines [9]. WS consists of
wake phase and sleep phase, which optimize the generative network and inference network [Eric:
you have been using "model" and "network" interchangeably earlier, please stay consistent,
maybe just call both "model".], respectively. We follow the above notations, and introduce new
notations h to denote general latents [Eric: what do you mean by "latents", latent variables?]
and � for general parameters. The wake-sleep algorithm is thus written as:

Wake : max

✓

Eq�(h|x)pdata(x) [log p✓(x|h)]
Sleep : max

�

Ep✓(x|h)p(h) [log q�(h|x)]
(10)

The relations between VAEs and WS are clear in previous discussions [3, 25]. Indeed, WS was
originally proposed to minimize the variational lower bound as in VAEs (Eq.7) with sleep phase
approximation [18]. Alternatively, VAEs can be seen as extending the wake phase. Specifically, if
we instantiate h with z and � with ⌘, the wake phase objective recovers VAEs (Eq.7) in terms of
generator optimization (i.e., optimizing ✓). Therefore, we can see VAEs as generalizing the wake
phase by also optimizing the inference network q⌘ , with additional prior regularization on latents z.

On the other hand, our interpretation of GANs reveals close resemblance to the sleep phase. To
make this clearer, we instantiate h with y and � with �, resulting in a sleep phase objective identical
to that of optimizing the discriminator q� in Eq.(1), which is to reconstruct y given sample x. We
thus can view GANs as generalizing the sleep phase by also optimizing the generative network p✓

6

Lemma 2. Let p✓(z, y|x) / p✓(x|z, y)p(z|y)p(y). Therefore,

Lvae

✓,⌘ = 2 · Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))

⇤

= 2 · Ep✓0 (x)
[�KL (q⌘(z|x, y)qr⇤(y|x)kp✓(z, y|x))] .

(8)

Here most of the components have exact correspondences (and the same definitions) in GANs
and InfoGAN (Table 1), except that the generation distribution p✓(x|z, y) differs slightly from its
counterpart p✓(x|y) in Eq.(2) to additionally account for the uncertainty of generating x given z:

p✓(x|z, y) =
⇢
p✓(x|z) y = 0

pdata(x) y = 1.

(9)

The resulting KL divergence closely relates to that in GANs (Eq.4) and InfoGAN (Eq.6), with
the generative module p✓(x|z, y) and inference networks q⌘(z|x, y)qr(y|x) placed in the opposite
directions, and with inverted hidden/visible treatments of (z, y) and x. In section 6, we give a general
discussion that the difference between GANs and VAEs in hidden/visible treatments is relatively
minor.

The proof is provided in the supplementary materials. Intuitively, recall that for the real example
domain with y = 1, both q⌘(z|x, y = 1) and p✓(x|z, y = 1) are constant distributions. Therefore,
with fake sample x generated from p✓0(x), the reversed perfect discriminator qr⇤(y|x) always gives
prediction y = 1, making the reconstruction loss on fake samples degenerated to a constant. Hence
only real examples, where q

r
⇤ predicts y = 0 with probability 1, are effective for learning, which is

identical to Eq.(7). We extend VAEs to also leverage fake samples in section 4.

VAE/GAN Joint Models Previous work has explored combination of VAEs and GANs for im-
proved generation. This can be naturally motivated by the asymmetric behaviors of the KL divergences
that the two algorithms aim to optimize respectively. Specifically, the VAE/GAN model [29] that
improves the sharpness of VAE generated images can be alternatively motivated by remedying the
mode covering behavior of the KL in VAEs. That is, the KL tends to drive the generative model
to cover all modes of the data distribution as well as regions with small values of pdata, resulting
in implausible samples. Incorporation of GAN objectives alleviates the issue as the inverted KL
enforces the generator to focus on meaningful data modes. From the other perspective, augmenting
GANs with VAE objectives helps addressing the mode missing problem, which justifies the intuition
of [5].

3.4 Wake Sleep Algorithm (WS)

We next discuss the connections of GANs and VAEs to the classic wake-sleep algorithm [18] which
was proposed for learning deep generative models such as Helmholtz machines [9]. WS consists of
wake phase and sleep phase, which optimize the generative network and inference network [Eric:
you have been using "model" and "network" interchangeably earlier, please stay consistent,
maybe just call both "model".], respectively. We follow the above notations, and introduce new
notations h to denote general latents [Eric: what do you mean by "latents", latent variables?]
and � for general parameters. The wake-sleep algorithm is thus written as:

Wake : max

✓

Eq�(h|x)pdata(x) [log p✓(x|h)]
Sleep : max

�

Ep✓(x|h)p(h) [log q�(h|x)]
(10)

The relations between VAEs and WS are clear in previous discussions [3, 25]. Indeed, WS was
originally proposed to minimize the variational lower bound as in VAEs (Eq.7) with sleep phase
approximation [18]. Alternatively, VAEs can be seen as extending the wake phase. Specifically, if
we instantiate h with z and � with ⌘, the wake phase objective recovers VAEs (Eq.7) in terms of
generator optimization (i.e., optimizing ✓). Therefore, we can see VAEs as generalizing the wake
phase by also optimizing the inference network q⌘ , with additional prior regularization on latents z.

On the other hand, our interpretation of GANs reveals close resemblance to the sleep phase. To
make this clearer, we instantiate h with y and � with �, resulting in a sleep phase objective identical
to that of optimizing the discriminator q� in Eq.(1), which is to reconstruct y given sample x. We
thus can view GANs as generalizing the sleep phase by also optimizing the generative network p✓

6

Figure 3: (a) Graphical model of InfoGAN (Eq.10), which, compared to GANs (Figure 1(c)), adds
conditional generation of code z with distribution q⌘(z|x, y). See the captions of Figure 1 for the
meaning of different types of arrows. (b) VAEs (Eq.13), which is obtained by swapping the generation
and inference processes of InfoGAN, i.e., in terms of the graphical model, swapping solid-line arrows
(generative process) and dashed-line arrows (inference) of (a). (c) Adversarial Autoencoder (AAE),
which is obtained by swapping data x and code z in InfoGAN (see the supplements for more details).

latent and to be adversarially regularized while the code space z as visible. Figure 3(c) shows the
graphical model of AAE obtained by simply swapping x and z in InfoGAN. We defer the detailed
formulations of AAE to the supplementary materials. Further, instead of considering x and z as data
and code spaces respectively, if we instantiate x and z as data spaces of two modalities, and combine
the objectives of InfoGAN and AAE as a joint model, we recover the cycleGAN model [56] which
performs transformation between the two modalities. More details are provided in the supplements.

3.3 Variational Autoencoders (VAEs)

We next explore the second family of deep generative model learning algorithms. The resemblance of
GAN generator learning to variational inference as shown in Eq.(7) suggests strong relations between
VAEs [28] and GANs. We build correspondence between the two approaches, and show that VAEs
are basically minimizing a KL divergence in an opposite direction, with a degenerated adversarial
discriminator.

max

✓,⌘ Lvae
✓,⌘ = Eq⌘(z|x)pdata(x) [log p✓(x|z)]�Epdata(x) [KL(q⌘(z|x)kp(z))]

The conventional definition of VAEs is written as:

max

✓,⌘ Lvae
✓,⌘ = Epdata(x)

⇥
Eq̃⌘(z|x) [log p̃✓(x|z)]� KL(q̃⌘(z|x)kp̃(z))

⇤
, (12)

where p̃✓(x|z) is the generator, q̃⌘(z|x) the inference model, and p̃(z) the prior over z. The
parameters to learn are intentionally denoted with the notations of corresponding modules in GANs.
At first glance, VAEs appear to differ from GANs greatly as they use only real examples and lack
adversarial mechanism. However, our interpretation shows VAEs indeed include a degenerated
adversarial discriminator that blocks out generated samples from contributing to training.

Specifically, we again introduce the real/fake variable y. Further assume a perfect discriminator
q⇤(y|x) which always predicts y = 1 with probability 1 given real examples, and y = 0 given
generated samples. Again, for notational simplicity, let qr⇤(y|x) = q⇤(1 � y|x) be the reversed
distribution.

Lemma 2 Let p✓(z, y|x) / p✓(x|z, y)p(z|y)p(y). Therefore,

Lvae

✓,⌘ = 2 · Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))

⇤

= 2 · Ep✓0 (x)
[�KL (q⌘(z|x, y)qr⇤(y|x)kp✓(z, y|x))] .

(13)

Here most of the components have exact correspondences (and the same definitions) in GANs and
InfoGAN, except that the generation distribution p✓(x|z, y) differs slightly from its counterpart
p✓(x|y) in Eq.(5) to additionally account for the uncertainty of generating x given z:

p✓(x|z, y) =
⇢
p✓(x|z) y = 0

pdata(x) y = 1.

(14)

7

© Petuum,Inc. 147

Lemma 2: sketch of proof
• Lemma 2

• Proof
1) Expand VõúΩ(ç) . = $

&VõúΩ(ç|æº$) . +
$
&VõúΩ(ç|æºa) .

2) $
& VõúΩ(ç|æºa) . is constant

• Due to the perfect discriminator h∗∏ ` ç
• Blocks out generated samples in the training loss

3) $
& VõúΩ(ç|æº$) . = $& Võ≥¥µ¥([) .

• Recovers the conventional formulation

Lemma 2. Let p✓(z, y|x) / p✓(x|z, y)p(z|y)p(y). Therefore,

Lvae

✓,⌘ = 2 · Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))

⇤

= 2 · Ep✓0 (x)
[�KL (q⌘(z|x, y)qr⇤(y|x)kp✓(z, y|x))] .

(8)

Here most of the components have exact correspondences (and the same definitions) in GANs
and InfoGAN (Table 1), except that the generation distribution p✓(x|z, y) differs slightly from its
counterpart p✓(x|y) in Eq.(2) to additionally account for the uncertainty of generating x given z:

p✓(x|z, y) =
⇢
p✓(x|z) y = 0

pdata(x) y = 1.

(9)

The resulting KL divergence closely relates to that in GANs (Eq.4) and InfoGAN (Eq.6), with
the generative module p✓(x|z, y) and inference networks q⌘(z|x, y)qr(y|x) placed in the opposite
directions, and with inverted hidden/visible treatments of (z, y) and x. In section 6, we give a general
discussion that the difference between GANs and VAEs in hidden/visible treatments is relatively
minor.

The proof is provided in the supplementary materials. Intuitively, recall that for the real example
domain with y = 1, both q⌘(z|x, y = 1) and p✓(x|z, y = 1) are constant distributions. Therefore,
with fake sample x generated from p✓0(x), the reversed perfect discriminator qr⇤(y|x) always gives
prediction y = 1, making the reconstruction loss on fake samples degenerated to a constant. Hence
only real examples, where q

r
⇤ predicts y = 0 with probability 1, are effective for learning, which is

identical to Eq.(7). We extend VAEs to also leverage fake samples in section 4.

VAE/GAN Joint Models Previous work has explored combination of VAEs and GANs for im-
proved generation. This can be naturally motivated by the asymmetric behaviors of the KL divergences
that the two algorithms aim to optimize respectively. Specifically, the VAE/GAN model [29] that
improves the sharpness of VAE generated images can be alternatively motivated by remedying the
mode covering behavior of the KL in VAEs. That is, the KL tends to drive the generative model
to cover all modes of the data distribution as well as regions with small values of pdata, resulting
in implausible samples. Incorporation of GAN objectives alleviates the issue as the inverted KL
enforces the generator to focus on meaningful data modes. From the other perspective, augmenting
GANs with VAE objectives helps addressing the mode missing problem, which justifies the intuition
of [5].

3.4 Wake Sleep Algorithm (WS)

We next discuss the connections of GANs and VAEs to the classic wake-sleep algorithm [18] which
was proposed for learning deep generative models such as Helmholtz machines [9]. WS consists of
wake phase and sleep phase, which optimize the generative network and inference network [Eric:
you have been using "model" and "network" interchangeably earlier, please stay consistent,
maybe just call both "model".], respectively. We follow the above notations, and introduce new
notations h to denote general latents [Eric: what do you mean by "latents", latent variables?]
and � for general parameters. The wake-sleep algorithm is thus written as:

Wake : max

✓

Eq�(h|x)pdata(x) [log p✓(x|h)]
Sleep : max

�

Ep✓(x|h)p(h) [log q�(h|x)]
(10)

The relations between VAEs and WS are clear in previous discussions [3, 25]. Indeed, WS was
originally proposed to minimize the variational lower bound as in VAEs (Eq.7) with sleep phase
approximation [18]. Alternatively, VAEs can be seen as extending the wake phase. Specifically, if
we instantiate h with z and � with ⌘, the wake phase objective recovers VAEs (Eq.7) in terms of
generator optimization (i.e., optimizing ✓). Therefore, we can see VAEs as generalizing the wake
phase by also optimizing the inference network q⌘ , with additional prior regularization on latents z.

On the other hand, our interpretation of GANs reveals close resemblance to the sleep phase. To
make this clearer, we instantiate h with y and � with �, resulting in a sleep phase objective identical
to that of optimizing the discriminator q� in Eq.(1), which is to reconstruct y given sample x. We
thus can view GANs as generalizing the sleep phase by also optimizing the generative network p✓

6

© Petuum,Inc. 148

Proof of Lemma 2C Lemme 2

Proof. For the reconstruction term:
Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]

⇤

=

1

2

Ep✓0 (x|y=1)

⇥
Eq⌘(z|x,y=0),y=0⇠qr⇤(y|x) [log p✓(x|z, y = 0)]

⇤

+

1

2

Ep✓0 (x|y=0)

⇥
Eq⌘(z|x,y=1),y=1⇠qr⇤(y|x) [log p✓(x|z, y = 1)]

⇤

=

1

2

Epdata(x)

⇥
Eq̃⌘(z|x) [log p̃✓(x|z)]

⇤
+ const,

(25)

where y = 0 ⇠ q

r
⇤(y|x) means qr⇤(y|x) predicts y = 0 with probability 1. Note that both q⌘(z|x, y =

1) and p✓(x|z, y = 1) are constant distributions without free parameters to learn; q⌘(z|x, y = 0) =

q̃⌘(z|x), and p✓(x|z, y = 0) = p̃✓(x|z).
For the KL prior regularization term:

Ep✓0 (x)
[KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))]

= Ep✓0 (x)

Z
q

r
⇤(y|x)KL (q⌘(z|x, y)kp(z|y)) dy + KL (q

r
⇤(y|x)kp(y))

�

=

1

2

Ep✓0 (x|y=1) [KL (q⌘(z|x, y = 0)kp(z|y = 0)) + const] +

1

2

Ep✓0 (x|y=1) [const]

=

1

2

Epdata(x) [KL(q̃⌘(z|x)kp̃(z))] .

(26)

Combining Eq.(25) and Eq.(26) we recover the conventional VAE objective in Eq.(7) in the paper.

D Importance Weighted GANs (IWGAN)

From Eq.(4) in the paper, we can view GANs as maximizing a lower bound of the “marginal
log-likelihood”:

log q(y) = log

Z
p✓(x|y)

q

r
(y|x)p✓0(x)
p✓(x|y)

dx

�
Z

p✓(x|y) log
q

r
(y|x)p✓0(x)
p✓(x|y)

dx

= �KL(p✓(x|y)kqr(x|y)) + const.

(27)

We can apply the same importance weighting method as in IWAE [4] to derive a tighter bound.

log q(y) = logE
"
1

k

kX

i=1

q

r
(y|xi)p✓0(xi)

p✓(xi|y)

#

� E
"
log

1

k

kX

i=1

q

r
(y|xi)p✓0(xi)

p✓(xi|y)

#

= E
"
log

1

k

kX

i=1

wi

#

:= Lk(y)

(28)

where we have denoted wi =
qr(y|xi)p✓0 (xi)

p✓(xi|y) . We recover the lower bound of Eq.(27) when setting
k = 1.

To maximize the importance weighted lower bound, we compute the gradient:

r✓Lk(y) = r✓Ex1,...,xk

"
log

1

k

kX

i=1

wi

#
= E

z1,...,zk

"
r✓ log

1

k

kX

i=1

w(y,x(zi,✓))

#

= E
z1,...,zk

"
kX

i=1

fwir✓ logw(y,x(zi,✓))

#
,

(29)

14

© Petuum,Inc. 149

GANs vs VAEs side by side
GANs (InfoGAN) VAEs

Generative
distribution

Discriminator
distribution hì(`|ç) h∗(`|ç), perfect, degenerated

|-inference
model h¬ | ç, ` of InfoGAN h¬(||ç, `)

KLD to
minimize

ming	KL	(bg ç ` 	||	h∏ ç |, `)

~	mingKL(!g	||	E)

mingKL h¬ | ç, ` h∗∏ ` ç 	||	bg |, ` ç

~mingKL(E	||	!g)

Lemma 2. Let p✓(z, y|x) / p✓(x|z, y)p(z|y)p(y). Therefore,

Lvae

✓,⌘ = 2 · Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))

⇤

= 2 · Ep✓0 (x)
[�KL (q⌘(z|x, y)qr⇤(y|x)kp✓(z, y|x))] .

(8)

Here most of the components have exact correspondences (and the same definitions) in GANs
and InfoGAN (Table 1), except that the generation distribution p✓(x|z, y) differs slightly from its
counterpart p✓(x|y) in Eq.(2) to additionally account for the uncertainty of generating x given z:

p✓(x|z, y) =
⇢
p✓(x|z) y = 0

pdata(x) y = 1.

(9)

The resulting KL divergence closely relates to that in GANs (Eq.4) and InfoGAN (Eq.6), with
the generative module p✓(x|z, y) and inference networks q⌘(z|x, y)qr(y|x) placed in the opposite
directions, and with inverted hidden/visible treatments of (z, y) and x. In section 6, we give a general
discussion that the difference between GANs and VAEs in hidden/visible treatments is relatively
minor.

The proof is provided in the supplementary materials. Intuitively, recall that for the real example
domain with y = 1, both q⌘(z|x, y = 1) and p✓(x|z, y = 1) are constant distributions. Therefore,
with fake sample x generated from p✓0(x), the reversed perfect discriminator qr⇤(y|x) always gives
prediction y = 1, making the reconstruction loss on fake samples degenerated to a constant. Hence
only real examples, where q

r
⇤ predicts y = 0 with probability 1, are effective for learning, which is

identical to Eq.(7). We extend VAEs to also leverage fake samples in section 4.

VAE/GAN Joint Models Previous work has explored combination of VAEs and GANs for im-
proved generation. This can be naturally motivated by the asymmetric behaviors of the KL divergences
that the two algorithms aim to optimize respectively. Specifically, the VAE/GAN model [29] that
improves the sharpness of VAE generated images can be alternatively motivated by remedying the
mode covering behavior of the KL in VAEs. That is, the KL tends to drive the generative model
to cover all modes of the data distribution as well as regions with small values of pdata, resulting
in implausible samples. Incorporation of GAN objectives alleviates the issue as the inverted KL
enforces the generator to focus on meaningful data modes. From the other perspective, augmenting
GANs with VAE objectives helps addressing the mode missing problem, which justifies the intuition
of [5].

3.4 Wake Sleep Algorithm (WS)

We next discuss the connections of GANs and VAEs to the classic wake-sleep algorithm [18] which
was proposed for learning deep generative models such as Helmholtz machines [9]. WS consists of
wake phase and sleep phase, which optimize the generative network and inference network [Eric:
you have been using "model" and "network" interchangeably earlier, please stay consistent,
maybe just call both "model".], respectively. We follow the above notations, and introduce new
notations h to denote general latents [Eric: what do you mean by "latents", latent variables?]
and � for general parameters. The wake-sleep algorithm is thus written as:

Wake : max

✓

Eq�(h|x)pdata(x) [log p✓(x|h)]
Sleep : max

�

Ep✓(x|h)p(h) [log q�(h|x)]
(10)

The relations between VAEs and WS are clear in previous discussions [3, 25]. Indeed, WS was
originally proposed to minimize the variational lower bound as in VAEs (Eq.7) with sleep phase
approximation [18]. Alternatively, VAEs can be seen as extending the wake phase. Specifically, if
we instantiate h with z and � with ⌘, the wake phase objective recovers VAEs (Eq.7) in terms of
generator optimization (i.e., optimizing ✓). Therefore, we can see VAEs as generalizing the wake
phase by also optimizing the inference network q⌘ , with additional prior regularization on latents z.

On the other hand, our interpretation of GANs reveals close resemblance to the sleep phase. To
make this clearer, we instantiate h with y and � with �, resulting in a sleep phase objective identical
to that of optimizing the discriminator q� in Eq.(1), which is to reconstruct y given sample x. We
thus can view GANs as generalizing the sleep phase by also optimizing the generative network p✓

6

maximize the binary classification accuracy of recognizing the feature domains:

max

�

L� = E
x=G✓(z),z⇠p(z|y=1) [logD�(x)] + E

x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] . (1)

The feature extractor G✓ is then trained to fool the discriminator:

max

✓

L✓ = E
x=G✓(z),z⇠p(z|y=1) [log(1�D�(x))] + E

x=G✓(z),z⇠p(z|y=0) [logD�(x)] . (2)

Here we omit the additional loss on ✓ that fits the features to the data label pairs of source domain
(see the supplementary materials for the details).

With the background of the conventional formulation, we now frame our new interpretation of ADA.
The data distribution p(z|y) and deterministic transformation G✓ together form an implicit distribution
over x, denoted as p✓(x|y), which is intractable to evaluate likelihood but easy to sample from. Let
p(y) be the prior distribution of the domain indicator y, e.g., a uniform distribution as in Eqs.(1)-(2).
The discriminator defines a conditional distribution q�(y|x) = D�(x). Let qr�(y|x) = q�(1� y|x)
be the reversed distribution over domains. The objectives of ADA are therefore rewritten as (up to a
constant scale factor 2):

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y)
⇥
log q

r
�(y|x)

⇤
.

(3)

The above objectives can be interpreted as maximizing the log likelihood of y (or 1 � y) with the
“generative distribution” q�(y|x) conditioning on the latent code x inferred by p✓(x|y). Note that the
only (but critical) difference of the objectives of ✓ from � is the replacement of q(y|x) with q

r
(y|x).

This is where the adversarial mechanism comes about.

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y) [log q�(y|x)] .
(4)

Graphical model representation Figure 1(c) illustrates the graphical model of the formulation
in Eq.(4), where, in the new view, solid-line arrows denote the generative process while dashed-
line arrows denote the inference process. We introduce new visual elements, e.g., hollow arrows
for expressing implicit distributions, and blue arrows for adversarial mechanism. As noted above,
adversarial modeling is achieved by swapping between q(y|x) and q

r
(y|x) when training respective

modules.

3.2 Generative Adversarial Networks (GANs)

GANs [16] can be seen as a special case of ADA. Taking image generation for example, intuitively,
we want to transfer the properties of the source domain (real images) to the target domain (generated
images), making them indistinguishable to the discriminator. Figure 1(b) shows the conventional
view of GANs.

Formally, x now denotes a real example or a generated sample, z is the respective latent code. For
the generated sample domain (y = 0), the implicit distribution p✓(x|y = 0) is defined by the prior of
z and the generator G✓(z), which is also denoted as pg✓ (x) in the literature. For the real example
domain (y = 1), the code space and generator are degenerated, and we are directly presented with a
fixed distribution p(x|y = 1), which is just the real data distribution pdata(x). Note that pdata(x) is
also an implicit distribution allowing efficient empirical sampling. In summary, the distribution over
x is constructed as

p✓(x|y) =
⇢
pg✓ (x) y = 0

pdata(x) y = 1.

(5)

Here, free parameters ✓ are only associated with pg✓ (x) of the generated sample domain, while
pdata(x) is constant. As in ADA, discriminator D� is simultaneously trained to infer the probability
that x comes from the real data domain. That is, q�(y = 1|x) = D�(x).

With the established correspondence between GANs and ADA, we can see that the objectives of
GANs are precisely expressed as Eq.(4) and as the graphical model in Figure 1(c). To make this

4

© Petuum,Inc. 150

Link back to wake sleep algorithm
• Denote

• Latent variables »
• Parameters …

• Recap: wake sleep algorithm

Lemma 2. Let p✓(z, y|x) / p✓(x|z, y)p(z|y)p(y). Therefore,

Lvae

✓,⌘ = 2 · Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))

⇤

= 2 · Ep✓0 (x)
[�KL (q⌘(z|x, y)qr⇤(y|x)kp✓(z, y|x))] .

(8)

Here most of the components have exact correspondences (and the same definitions) in GANs
and InfoGAN (Table 1), except that the generation distribution p✓(x|z, y) differs slightly from its
counterpart p✓(x|y) in Eq.(2) to additionally account for the uncertainty of generating x given z:

p✓(x|z, y) =
⇢
p✓(x|z) y = 0

pdata(x) y = 1.

(9)

The resulting KL divergence closely relates to that in GANs (Eq.4) and InfoGAN (Eq.6), with
the generative module p✓(x|z, y) and inference networks q⌘(z|x, y)qr(y|x) placed in the opposite
directions, and with inverted hidden/visible treatments of (z, y) and x. In section 6, we give a general
discussion that the difference between GANs and VAEs in hidden/visible treatments is relatively
minor.

The proof is provided in the supplementary materials. Intuitively, recall that for the real example
domain with y = 1, both q⌘(z|x, y = 1) and p✓(x|z, y = 1) are constant distributions. Therefore,
with fake sample x generated from p✓0(x), the reversed perfect discriminator qr⇤(y|x) always gives
prediction y = 1, making the reconstruction loss on fake samples degenerated to a constant. Hence
only real examples, where q

r
⇤ predicts y = 0 with probability 1, are effective for learning, which is

identical to Eq.(7). We extend VAEs to also leverage fake samples in section 4.

VAE/GAN Joint Models Previous work has explored combination of VAEs and GANs for im-
proved generation. This can be naturally motivated by the asymmetric behaviors of the KL divergences
that the two algorithms aim to optimize respectively. Specifically, the VAE/GAN model [29] that
improves the sharpness of VAE generated images can be alternatively motivated by remedying the
mode covering behavior of the KL in VAEs. That is, the KL tends to drive the generative model
to cover all modes of the data distribution as well as regions with small values of pdata, resulting
in implausible samples. Incorporation of GAN objectives alleviates the issue as the inverted KL
enforces the generator to focus on meaningful data modes. From the other perspective, augmenting
GANs with VAE objectives helps addressing the mode missing problem, which justifies the intuition
of [5].

3.4 Wake Sleep Algorithm (WS)

We next discuss the connections of GANs and VAEs to the classic wake-sleep algorithm [18] which
was proposed for learning deep generative models such as Helmholtz machines [9]. WS consists of
wake phase and sleep phase, which optimize the generative network and inference network [Eric:
you have been using "model" and "network" interchangeably earlier, please stay consistent,
maybe just call both "model".], respectively. We follow the above notations, and introduce new
notations h to denote general latents [Eric: what do you mean by "latents", latent variables?]
and � for general parameters. The wake-sleep algorithm is thus written as:

Wake : max

✓

Eq�(h|x)pdata(x) [log p✓(x|h)]
Sleep : max

�

Ep✓(x|h)p(h) [log q�(h|x)]
(10)

The relations between VAEs and WS are clear in previous discussions [3, 25]. Indeed, WS was
originally proposed to minimize the variational lower bound as in VAEs (Eq.7) with sleep phase
approximation [18]. Alternatively, VAEs can be seen as extending the wake phase. Specifically, if
we instantiate h with z and � with ⌘, the wake phase objective recovers VAEs (Eq.7) in terms of
generator optimization (i.e., optimizing ✓). Therefore, we can see VAEs as generalizing the wake
phase by also optimizing the inference network q⌘ , with additional prior regularization on latents z.

On the other hand, our interpretation of GANs reveals close resemblance to the sleep phase. To
make this clearer, we instantiate h with y and � with �, resulting in a sleep phase objective identical
to that of optimizing the discriminator q� in Eq.(1), which is to reconstruct y given sample x. We
thus can view GANs as generalizing the sleep phase by also optimizing the generative network p✓

6

© Petuum,Inc. 151

VAEs vs. Wake-sleep
• Wake sleep algorithm

• Let » be |, and … be √
⇒ , recovers VAE objective of optimizing c

• VAEs extend wake phase by also learning the inference model (ƒ)

• Minimize the KLD in the original variational free energy wrt. √
• Stick to minimizing the wake-phase KLD wrt. both c and √
• Do not involve sleep-phase objective
• Recall: sleep phase minimizes the reverse KLD in the variational free energy

Lemma 2. Let p✓(z, y|x) / p✓(x|z, y)p(z|y)p(y). Therefore,

Lvae

✓,⌘ = 2 · Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))

⇤

= 2 · Ep✓0 (x)
[�KL (q⌘(z|x, y)qr⇤(y|x)kp✓(z, y|x))] .

(8)

Here most of the components have exact correspondences (and the same definitions) in GANs
and InfoGAN (Table 1), except that the generation distribution p✓(x|z, y) differs slightly from its
counterpart p✓(x|y) in Eq.(2) to additionally account for the uncertainty of generating x given z:

p✓(x|z, y) =
⇢
p✓(x|z) y = 0

pdata(x) y = 1.

(9)

The resulting KL divergence closely relates to that in GANs (Eq.4) and InfoGAN (Eq.6), with
the generative module p✓(x|z, y) and inference networks q⌘(z|x, y)qr(y|x) placed in the opposite
directions, and with inverted hidden/visible treatments of (z, y) and x. In section 6, we give a general
discussion that the difference between GANs and VAEs in hidden/visible treatments is relatively
minor.

The proof is provided in the supplementary materials. Intuitively, recall that for the real example
domain with y = 1, both q⌘(z|x, y = 1) and p✓(x|z, y = 1) are constant distributions. Therefore,
with fake sample x generated from p✓0(x), the reversed perfect discriminator qr⇤(y|x) always gives
prediction y = 1, making the reconstruction loss on fake samples degenerated to a constant. Hence
only real examples, where q

r
⇤ predicts y = 0 with probability 1, are effective for learning, which is

identical to Eq.(7). We extend VAEs to also leverage fake samples in section 4.

VAE/GAN Joint Models Previous work has explored combination of VAEs and GANs for im-
proved generation. This can be naturally motivated by the asymmetric behaviors of the KL divergences
that the two algorithms aim to optimize respectively. Specifically, the VAE/GAN model [29] that
improves the sharpness of VAE generated images can be alternatively motivated by remedying the
mode covering behavior of the KL in VAEs. That is, the KL tends to drive the generative model
to cover all modes of the data distribution as well as regions with small values of pdata, resulting
in implausible samples. Incorporation of GAN objectives alleviates the issue as the inverted KL
enforces the generator to focus on meaningful data modes. From the other perspective, augmenting
GANs with VAE objectives helps addressing the mode missing problem, which justifies the intuition
of [5].

3.4 Wake Sleep Algorithm (WS)

We next discuss the connections of GANs and VAEs to the classic wake-sleep algorithm [18] which
was proposed for learning deep generative models such as Helmholtz machines [9]. WS consists of
wake phase and sleep phase, which optimize the generative network and inference network [Eric:
you have been using "model" and "network" interchangeably earlier, please stay consistent,
maybe just call both "model".], respectively. We follow the above notations, and introduce new
notations h to denote general latents [Eric: what do you mean by "latents", latent variables?]
and � for general parameters. The wake-sleep algorithm is thus written as:

Wake : max

✓

Eq�(h|x)pdata(x) [log p✓(x|h)]
Sleep : max

�

Ep✓(x|h)p(h) [log q�(h|x)]
(10)

max

✓

Eq⌘(z|x)pdata(x) [log p✓(x|z)]

The relations between VAEs and WS are clear in previous discussions [3, 25]. Indeed, WS was
originally proposed to minimize the variational lower bound as in VAEs (Eq.7) with sleep phase
approximation [18]. Alternatively, VAEs can be seen as extending the wake phase. Specifically, if
we instantiate h with z and � with ⌘, the wake phase objective recovers VAEs (Eq.7) in terms of
generator optimization (i.e., optimizing ✓). Therefore, we can see VAEs as generalizing the wake
phase by also optimizing the inference network q⌘ , with additional prior regularization on latents z.

On the other hand, our interpretation of GANs reveals close resemblance to the sleep phase. To
make this clearer, we instantiate h with y and � with �, resulting in a sleep phase objective identical

6

Lemma 2. Let p✓(z, y|x) / p✓(x|z, y)p(z|y)p(y). Therefore,

Lvae

✓,⌘ = 2 · Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))

⇤

= 2 · Ep✓0 (x)
[�KL (q⌘(z|x, y)qr⇤(y|x)kp✓(z, y|x))] .

(8)

Here most of the components have exact correspondences (and the same definitions) in GANs
and InfoGAN (Table 1), except that the generation distribution p✓(x|z, y) differs slightly from its
counterpart p✓(x|y) in Eq.(2) to additionally account for the uncertainty of generating x given z:

p✓(x|z, y) =
⇢
p✓(x|z) y = 0

pdata(x) y = 1.

(9)

The resulting KL divergence closely relates to that in GANs (Eq.4) and InfoGAN (Eq.6), with
the generative module p✓(x|z, y) and inference networks q⌘(z|x, y)qr(y|x) placed in the opposite
directions, and with inverted hidden/visible treatments of (z, y) and x. In section 6, we give a general
discussion that the difference between GANs and VAEs in hidden/visible treatments is relatively
minor.

The proof is provided in the supplementary materials. Intuitively, recall that for the real example
domain with y = 1, both q⌘(z|x, y = 1) and p✓(x|z, y = 1) are constant distributions. Therefore,
with fake sample x generated from p✓0(x), the reversed perfect discriminator qr⇤(y|x) always gives
prediction y = 1, making the reconstruction loss on fake samples degenerated to a constant. Hence
only real examples, where q

r
⇤ predicts y = 0 with probability 1, are effective for learning, which is

identical to Eq.(7). We extend VAEs to also leverage fake samples in section 4.

VAE/GAN Joint Models Previous work has explored combination of VAEs and GANs for im-
proved generation. This can be naturally motivated by the asymmetric behaviors of the KL divergences
that the two algorithms aim to optimize respectively. Specifically, the VAE/GAN model [29] that
improves the sharpness of VAE generated images can be alternatively motivated by remedying the
mode covering behavior of the KL in VAEs. That is, the KL tends to drive the generative model
to cover all modes of the data distribution as well as regions with small values of pdata, resulting
in implausible samples. Incorporation of GAN objectives alleviates the issue as the inverted KL
enforces the generator to focus on meaningful data modes. From the other perspective, augmenting
GANs with VAE objectives helps addressing the mode missing problem, which justifies the intuition
of [5].

3.4 Wake Sleep Algorithm (WS)

We next discuss the connections of GANs and VAEs to the classic wake-sleep algorithm [18] which
was proposed for learning deep generative models such as Helmholtz machines [9]. WS consists of
wake phase and sleep phase, which optimize the generative network and inference network [Eric:
you have been using "model" and "network" interchangeably earlier, please stay consistent,
maybe just call both "model".], respectively. We follow the above notations, and introduce new
notations h to denote general latents [Eric: what do you mean by "latents", latent variables?]
and � for general parameters. The wake-sleep algorithm is thus written as:

Wake : max

✓

Eq�(h|x)pdata(x) [log p✓(x|h)]
Sleep : max

�

Ep✓(x|h)p(h) [log q�(h|x)]
(10)

max

✓

Eq⌘(z|x)pdata(x) [log p✓(x|z)]

The relations between VAEs and WS are clear in previous discussions [3, 25]. Indeed, WS was
originally proposed to minimize the variational lower bound as in VAEs (Eq.7) with sleep phase
approximation [18]. Alternatively, VAEs can be seen as extending the wake phase. Specifically, if
we instantiate h with z and � with ⌘, the wake phase objective recovers VAEs (Eq.7) in terms of
generator optimization (i.e., optimizing ✓). Therefore, we can see VAEs as generalizing the wake
phase by also optimizing the inference network q⌘ , with additional prior regularization on latents z.

On the other hand, our interpretation of GANs reveals close resemblance to the sleep phase. To
make this clearer, we instantiate h with y and � with �, resulting in a sleep phase objective identical

6

Figure 3: (a) Graphical model of InfoGAN (Eq.10), which, compared to GANs (Figure 1(c)), adds
conditional generation of code z with distribution q⌘(z|x, y). See the captions of Figure 1 for the
meaning of different types of arrows. (b) VAEs (Eq.13), which is obtained by swapping the generation
and inference processes of InfoGAN, i.e., in terms of the graphical model, swapping solid-line arrows
(generative process) and dashed-line arrows (inference) of (a). (c) Adversarial Autoencoder (AAE),
which is obtained by swapping data x and code z in InfoGAN (see the supplements for more details).

latent and to be adversarially regularized while the code space z as visible. Figure 3(c) shows the
graphical model of AAE obtained by simply swapping x and z in InfoGAN. We defer the detailed
formulations of AAE to the supplementary materials. Further, instead of considering x and z as data
and code spaces respectively, if we instantiate x and z as data spaces of two modalities, and combine
the objectives of InfoGAN and AAE as a joint model, we recover the cycleGAN model [56] which
performs transformation between the two modalities. More details are provided in the supplements.

3.3 Variational Autoencoders (VAEs)

We next explore the second family of deep generative model learning algorithms. The resemblance of
GAN generator learning to variational inference as shown in Eq.(7) suggests strong relations between
VAEs [28] and GANs. We build correspondence between the two approaches, and show that VAEs
are basically minimizing a KL divergence in an opposite direction, with a degenerated adversarial
discriminator.

max

✓,⌘ Lvae
✓,⌘ = Eq⌘(z|x)pdata(x) [log p✓(x|z)]�Epdata(x) [KL(q⌘(z|x)kp(z))]

The conventional definition of VAEs is written as:

max

✓,⌘ Lvae
✓,⌘ = Epdata(x)

⇥
Eq̃⌘(z|x) [log p̃✓(x|z)]� KL(q̃⌘(z|x)kp̃(z))

⇤
, (12)

where p̃✓(x|z) is the generator, q̃⌘(z|x) the inference model, and p̃(z) the prior over z. The
parameters to learn are intentionally denoted with the notations of corresponding modules in GANs.
At first glance, VAEs appear to differ from GANs greatly as they use only real examples and lack
adversarial mechanism. However, our interpretation shows VAEs indeed include a degenerated
adversarial discriminator that blocks out generated samples from contributing to training.

Specifically, we again introduce the real/fake variable y. Further assume a perfect discriminator
q⇤(y|x) which always predicts y = 1 with probability 1 given real examples, and y = 0 given
generated samples. Again, for notational simplicity, let qr⇤(y|x) = q⇤(1 � y|x) be the reversed
distribution.

Lemma 2 Let p✓(z, y|x) / p✓(x|z, y)p(z|y)p(y). Therefore,

Lvae

✓,⌘ = 2 · Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))

⇤

= 2 · Ep✓0 (x)
[�KL (q⌘(z|x, y)qr⇤(y|x)kp✓(z, y|x))] .

(13)

Here most of the components have exact correspondences (and the same definitions) in GANs and
InfoGAN, except that the generation distribution p✓(x|z, y) differs slightly from its counterpart
p✓(x|y) in Eq.(5) to additionally account for the uncertainty of generating x given z:

p✓(x|z, y) =
⇢
p✓(x|z) y = 0

pdata(x) y = 1.

(14)

7

© Petuum,Inc. 152

Lemma 2. Let p✓(z, y|x) / p✓(x|z, y)p(z|y)p(y). Therefore,

Lvae

✓,⌘ = 2 · Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))

⇤

= 2 · Ep✓0 (x)
[�KL (q⌘(z|x, y)qr⇤(y|x)kp✓(z, y|x))] .

(8)

Here most of the components have exact correspondences (and the same definitions) in GANs
and InfoGAN (Table 1), except that the generation distribution p✓(x|z, y) differs slightly from its
counterpart p✓(x|y) in Eq.(2) to additionally account for the uncertainty of generating x given z:

p✓(x|z, y) =
⇢
p✓(x|z) y = 0

pdata(x) y = 1.

(9)

The resulting KL divergence closely relates to that in GANs (Eq.4) and InfoGAN (Eq.6), with
the generative module p✓(x|z, y) and inference networks q⌘(z|x, y)qr(y|x) placed in the opposite
directions, and with inverted hidden/visible treatments of (z, y) and x. In section 6, we give a general
discussion that the difference between GANs and VAEs in hidden/visible treatments is relatively
minor.

The proof is provided in the supplementary materials. Intuitively, recall that for the real example
domain with y = 1, both q⌘(z|x, y = 1) and p✓(x|z, y = 1) are constant distributions. Therefore,
with fake sample x generated from p✓0(x), the reversed perfect discriminator qr⇤(y|x) always gives
prediction y = 1, making the reconstruction loss on fake samples degenerated to a constant. Hence
only real examples, where q

r
⇤ predicts y = 0 with probability 1, are effective for learning, which is

identical to Eq.(7). We extend VAEs to also leverage fake samples in section 4.

VAE/GAN Joint Models Previous work has explored combination of VAEs and GANs for im-
proved generation. This can be naturally motivated by the asymmetric behaviors of the KL divergences
that the two algorithms aim to optimize respectively. Specifically, the VAE/GAN model [29] that
improves the sharpness of VAE generated images can be alternatively motivated by remedying the
mode covering behavior of the KL in VAEs. That is, the KL tends to drive the generative model
to cover all modes of the data distribution as well as regions with small values of pdata, resulting
in implausible samples. Incorporation of GAN objectives alleviates the issue as the inverted KL
enforces the generator to focus on meaningful data modes. From the other perspective, augmenting
GANs with VAE objectives helps addressing the mode missing problem, which justifies the intuition
of [5].

3.4 Wake Sleep Algorithm (WS)

We next discuss the connections of GANs and VAEs to the classic wake-sleep algorithm [18] which
was proposed for learning deep generative models such as Helmholtz machines [9]. WS consists of
wake phase and sleep phase, which optimize the generative network and inference network [Eric:
you have been using "model" and "network" interchangeably earlier, please stay consistent,
maybe just call both "model".], respectively. We follow the above notations, and introduce new
notations h to denote general latents [Eric: what do you mean by "latents", latent variables?]
and � for general parameters. The wake-sleep algorithm is thus written as:

Wake : max

✓

Eq�(h|x)pdata(x) [log p✓(x|h)]
Sleep : max

�

Ep✓(x|h)p(h) [log q�(h|x)]
(10)

max

✓

Eq⌘(z|x)pdata(x) [log p✓(x|z)]

The relations between VAEs and WS are clear in previous discussions [3, 25]. Indeed, WS was
originally proposed to minimize the variational lower bound as in VAEs (Eq.7) with sleep phase
approximation [18]. Alternatively, VAEs can be seen as extending the wake phase. Specifically, if
we instantiate h with z and � with ⌘, the wake phase objective recovers VAEs (Eq.7) in terms of
generator optimization (i.e., optimizing ✓). Therefore, we can see VAEs as generalizing the wake
phase by also optimizing the inference network q⌘ , with additional prior regularization on latents z.

On the other hand, our interpretation of GANs reveals close resemblance to the sleep phase. To
make this clearer, we instantiate h with y and � with �, resulting in a sleep phase objective identical

6

GANs vs. Wake-sleep
• Wake sleep algorithm

• Let » be `, and … be ñ
⇒ , recovers GAN objective of optimizing ñ

• GANs extend sleep phase by also learning the generative model (c)
• Directly extending sleep phase:
• GANs:
• The only difference is replacing hì with hì∏
• This is where adversarial mechanism come about !
• GANs stick to minimizing the sleep-phase KLD
• Do not involve wake-phase objective

Lemma 2. Let p✓(z, y|x) / p✓(x|z, y)p(z|y)p(y). Therefore,

Lvae

✓,⌘ = 2 · Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))

⇤

= 2 · Ep✓0 (x)
[�KL (q⌘(z|x, y)qr⇤(y|x)kp✓(z, y|x))] .

(8)

Here most of the components have exact correspondences (and the same definitions) in GANs
and InfoGAN (Table 1), except that the generation distribution p✓(x|z, y) differs slightly from its
counterpart p✓(x|y) in Eq.(2) to additionally account for the uncertainty of generating x given z:

p✓(x|z, y) =
⇢
p✓(x|z) y = 0

pdata(x) y = 1.

(9)

The resulting KL divergence closely relates to that in GANs (Eq.4) and InfoGAN (Eq.6), with
the generative module p✓(x|z, y) and inference networks q⌘(z|x, y)qr(y|x) placed in the opposite
directions, and with inverted hidden/visible treatments of (z, y) and x. In section 6, we give a general
discussion that the difference between GANs and VAEs in hidden/visible treatments is relatively
minor.

The proof is provided in the supplementary materials. Intuitively, recall that for the real example
domain with y = 1, both q⌘(z|x, y = 1) and p✓(x|z, y = 1) are constant distributions. Therefore,
with fake sample x generated from p✓0(x), the reversed perfect discriminator qr⇤(y|x) always gives
prediction y = 1, making the reconstruction loss on fake samples degenerated to a constant. Hence
only real examples, where q

r
⇤ predicts y = 0 with probability 1, are effective for learning, which is

identical to Eq.(7). We extend VAEs to also leverage fake samples in section 4.

VAE/GAN Joint Models Previous work has explored combination of VAEs and GANs for im-
proved generation. This can be naturally motivated by the asymmetric behaviors of the KL divergences
that the two algorithms aim to optimize respectively. Specifically, the VAE/GAN model [29] that
improves the sharpness of VAE generated images can be alternatively motivated by remedying the
mode covering behavior of the KL in VAEs. That is, the KL tends to drive the generative model
to cover all modes of the data distribution as well as regions with small values of pdata, resulting
in implausible samples. Incorporation of GAN objectives alleviates the issue as the inverted KL
enforces the generator to focus on meaningful data modes. From the other perspective, augmenting
GANs with VAE objectives helps addressing the mode missing problem, which justifies the intuition
of [5].

3.4 Wake Sleep Algorithm (WS)

We next discuss the connections of GANs and VAEs to the classic wake-sleep algorithm [18] which
was proposed for learning deep generative models such as Helmholtz machines [9]. WS consists of
wake phase and sleep phase, which optimize the generative network and inference network [Eric:
you have been using "model" and "network" interchangeably earlier, please stay consistent,
maybe just call both "model".], respectively. We follow the above notations, and introduce new
notations h to denote general latents [Eric: what do you mean by "latents", latent variables?]
and � for general parameters. The wake-sleep algorithm is thus written as:

Wake : max

✓

Eq�(h|x)pdata(x) [log p✓(x|h)]
Sleep : max

�

Ep✓(x|h)p(h) [log q�(h|x)]
(10)

max

✓

Eq⌘(z|x)pdata(x) [log p✓(x|z)]

max

�

Ep✓(x|y)p(y) [log q�(y|x)]

The relations between VAEs and WS are clear in previous discussions [3, 25]. Indeed, WS was
originally proposed to minimize the variational lower bound as in VAEs (Eq.7) with sleep phase
approximation [18]. Alternatively, VAEs can be seen as extending the wake phase. Specifically, if
we instantiate h with z and � with ⌘, the wake phase objective recovers VAEs (Eq.7) in terms of
generator optimization (i.e., optimizing ✓). Therefore, we can see VAEs as generalizing the wake
phase by also optimizing the inference network q⌘ , with additional prior regularization on latents z.

6

maximize the binary classification accuracy of recognizing the feature domains:
max

�

L� = E
x=G✓(z),z⇠p(z|y=1) [logD�(x)] + E

x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] . (1)
The feature extractor G✓ is then trained to fool the discriminator:

max

✓

L✓ = E
x=G✓(z),z⇠p(z|y=1) [log(1�D�(x))] + E

x=G✓(z),z⇠p(z|y=0) [logD�(x)] . (2)
Here we omit the additional loss on ✓ that fits the features to the data label pairs of source domain
(see the supplementary materials for the details).

With the background of the conventional formulation, we now frame our new interpretation of ADA.
The data distribution p(z|y) and deterministic transformation G✓ together form an implicit distribution
over x, denoted as p✓(x|y), which is intractable to evaluate likelihood but easy to sample from. Let
p(y) be the prior distribution of the domain indicator y, e.g., a uniform distribution as in Eqs.(1)-(2).
The discriminator defines a conditional distribution q�(y|x) = D�(x). Let qr�(y|x) = q�(1� y|x)
be the reversed distribution over domains. The objectives of ADA are therefore rewritten as (up to a
constant scale factor 2):

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y)
⇥
log q

r
�(y|x)

⇤
.

(3)

The above objectives can be interpreted as maximizing the log likelihood of y (or 1 � y) with the
“generative distribution” q�(y|x) conditioning on the latent code x inferred by p✓(x|y). Note that the
only (but critical) difference of the objectives of ✓ from � is the replacement of q(y|x) with q

r
(y|x).

This is where the adversarial mechanism comes about.

Graphical model representation Figure 1(c) illustrates the graphical model of the formulation
in Eq.(3), where, in the new view, solid-line arrows denote the generative process while dashed-
line arrows denote the inference process. We introduce new visual elements, e.g., hollow arrows
for expressing implicit distributions, and blue arrows for adversarial mechanism. As noted above,
adversarial modeling is achieved by swapping between q(y|x) and q

r
(y|x) when training respective

modules.

3.2 Generative Adversarial Networks (GANs)

GANs [16] can be seen as a special case of ADA. Taking image generation for example, intuitively,
we want to transfer the properties of the source domain (real images) to the target domain (generated
images), making them indistinguishable to the discriminator. Figure 1(b) shows the conventional
view of GANs.

Formally, x now denotes a real example or a generated sample, z is the respective latent code. For
the generated sample domain (y = 0), the implicit distribution p✓(x|y = 0) is defined by the prior of
z and the generator G✓(z), which is also denoted as pg✓ (x) in the literature. For the real example
domain (y = 1), the code space and generator are degenerated, and we are directly presented with a
fixed distribution p(x|y = 1), which is just the real data distribution pdata(x). Note that pdata(x) is
also an implicit distribution allowing efficient empirical sampling. In summary, the distribution over
x is constructed as

p✓(x|y) =
⇢
pg✓ (x) y = 0

pdata(x) y = 1.

(4)

Here, free parameters ✓ are only associated with pg✓ (x) of the generated sample domain, while
pdata(x) is constant. As in ADA, discriminator D� is simultaneously trained to infer the probability
that x comes from the real data domain. That is, q�(y = 1|x) = D�(x).

With the established correspondence between GANs and ADA, we can see that the objectives of
GANs are precisely expressed as Eq.(3) and as the graphical model in Figure 1(c). To make this
clearer, we recover the classical form by unfolding over y and plugging in conventional notations.
For instance, the objective of the generative parameters ✓ is translated into

max

✓

L✓ = Ep✓(x|y=0)p(y=0)

⇥
log q

r
�(y = 0|x)

⇤
+ Ep✓(x|y=1)p(y=1)

⇥
log q

r
�(y = 1|x)

⇤

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] +

1

2

E
x⇠pdata(x) [log(1�D�(x))]

=

1

2

E
x=G✓(z),z⇠p(z|y=0) [logD�(x)] + const,

(5)

4

maximize the binary classification accuracy of recognizing the feature domains:

max

�

L� = E
x=G✓(z),z⇠p(z|y=1) [logD�(x)] + E

x=G✓(z),z⇠p(z|y=0) [log(1�D�(x))] . (1)

The feature extractor G✓ is then trained to fool the discriminator:

max

✓

L✓ = E
x=G✓(z),z⇠p(z|y=1) [log(1�D�(x))] + E

x=G✓(z),z⇠p(z|y=0) [logD�(x)] . (2)

Here we omit the additional loss on ✓ that fits the features to the data label pairs of source domain
(see the supplementary materials for the details).

With the background of the conventional formulation, we now frame our new interpretation of ADA.
The data distribution p(z|y) and deterministic transformation G✓ together form an implicit distribution
over x, denoted as p✓(x|y), which is intractable to evaluate likelihood but easy to sample from. Let
p(y) be the prior distribution of the domain indicator y, e.g., a uniform distribution as in Eqs.(1)-(2).
The discriminator defines a conditional distribution q�(y|x) = D�(x). Let qr�(y|x) = q�(1� y|x)
be the reversed distribution over domains. The objectives of ADA are therefore rewritten as (up to a
constant scale factor 2):

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y)
⇥
log q

r
�(y|x)

⇤
.

(3)

The above objectives can be interpreted as maximizing the log likelihood of y (or 1 � y) with the
“generative distribution” q�(y|x) conditioning on the latent code x inferred by p✓(x|y). Note that the
only (but critical) difference of the objectives of ✓ from � is the replacement of q(y|x) with q

r
(y|x).

This is where the adversarial mechanism comes about.

max

�

L� = Ep✓(x|y)p(y) [log q�(y|x)]
max

✓

L✓ = Ep✓(x|y)p(y) [log q�(y|x)] .
(4)

Graphical model representation Figure 1(c) illustrates the graphical model of the formulation
in Eq.(4), where, in the new view, solid-line arrows denote the generative process while dashed-
line arrows denote the inference process. We introduce new visual elements, e.g., hollow arrows
for expressing implicit distributions, and blue arrows for adversarial mechanism. As noted above,
adversarial modeling is achieved by swapping between q(y|x) and q

r
(y|x) when training respective

modules.

3.2 Generative Adversarial Networks (GANs)

GANs [16] can be seen as a special case of ADA. Taking image generation for example, intuitively,
we want to transfer the properties of the source domain (real images) to the target domain (generated
images), making them indistinguishable to the discriminator. Figure 1(b) shows the conventional
view of GANs.

Formally, x now denotes a real example or a generated sample, z is the respective latent code. For
the generated sample domain (y = 0), the implicit distribution p✓(x|y = 0) is defined by the prior of
z and the generator G✓(z), which is also denoted as pg✓ (x) in the literature. For the real example
domain (y = 1), the code space and generator are degenerated, and we are directly presented with a
fixed distribution p(x|y = 1), which is just the real data distribution pdata(x). Note that pdata(x) is
also an implicit distribution allowing efficient empirical sampling. In summary, the distribution over
x is constructed as

p✓(x|y) =
⇢
pg✓ (x) y = 0

pdata(x) y = 1.

(5)

Here, free parameters ✓ are only associated with pg✓ (x) of the generated sample domain, while
pdata(x) is constant. As in ADA, discriminator D� is simultaneously trained to infer the probability
that x comes from the real data domain. That is, q�(y = 1|x) = D�(x).

With the established correspondence between GANs and ADA, we can see that the objectives of
GANs are precisely expressed as Eq.(4) and as the graphical model in Figure 1(c). To make this

4

© Petuum,Inc. 153

• Asymmetry of KLDs inspires combination of GANs and VAEs
• GANs: mingKL(!g||E) tends to missing mode
• VAEs: mingKL(E||!g) tends to cover regions with small values of b)±≤±
• Augment VAEs with GAN loss [Larsen et al., 2016]

• Alleviate the mode covering issue of VAEs
• Improve the sharpness of VAE generated images

• Augment GANs with VAE loss [Che et al., 2017]
• Alleviate the mode missing issue of GANs

Mutual exchanges of ideas: augment the loss functions
GANs (InfoGAN) VAEs

KLD to
minimize

ming	KL	(bg ç ` 	||	h∏ ç |, `)
~	mingKL(!g	||	E)

mingKL(h¬ | ç, ` h∗∏ ` ç 	||	bg(|, `|ç))
~mingKL(E	||	!g)

10.1. Variational Inference 469

(a) (b) (c)

Figure 10.3 Another comparison of the two alternative forms for the Kullback-Leibler divergence. (a) The blue
contours show a bimodal distribution p(Z) given by a mixture of two Gaussians, and the red contours correspond
to the single Gaussian distribution q(Z) that best approximates p(Z) in the sense of minimizing the Kullback-
Leibler divergence KL(p∥q). (b) As in (a) but now the red contours correspond to a Gaussian distribution q(Z)
found by numerical minimization of the Kullback-Leibler divergence KL(q∥p). (c) As in (b) but showing a different
local minimum of the Kullback-Leibler divergence.

from regions of Z space in which p(Z) is near zero unless q(Z) is also close to
zero. Thus minimizing this form of KL divergence leads to distributions q(Z) that
avoid regions in which p(Z) is small. Conversely, the Kullback-Leibler divergence
KL(p∥q) is minimized by distributions q(Z) that are nonzero in regions where p(Z)
is nonzero.

We can gain further insight into the different behaviour of the two KL diver-
gences if we consider approximating a multimodal distribution by a unimodal one,
as illustrated in Figure 10.3. In practical applications, the true posterior distri-
bution will often be multimodal, with most of the posterior mass concentrated in
some number of relatively small regions of parameter space. These multiple modes
may arise through nonidentifiability in the latent space or through complex nonlin-
ear dependence on the parameters. Both types of multimodality were encountered in
Chapter 9 in the context of Gaussian mixtures, where they manifested themselves as
multiple maxima in the likelihood function, and a variational treatment based on the
minimization of KL(q∥p) will tend to find one of these modes. By contrast, if we
were to minimize KL(p∥q), the resulting approximations would average across all
of the modes and, in the context of the mixture model, would lead to poor predictive
distributions (because the average of two good parameter values is typically itself
not a good parameter value). It is possible to make use of KL(p∥q) to define a useful
inference procedure, but this requires a rather different approach to the one discussed
here, and will be considered in detail when we discuss expectation propagation.Section 10.7

The two forms of Kullback-Leibler divergence are members of the alpha family

Mode covering Mode missing[Figure courtesy: PRML]
© Petuum,Inc. 154

• Asymmetry of KLDs inspires combination of GANs and VAEs
• GANs: mingKL(!g||E) tends to missing mode
• VAEs: mingKL(E||!g) tends to cover regions with small values of b)±≤±
• Augment VAEs with GAN loss [Larsen et al., 2016]

• Alleviate the mode covering issue of VAEs
• Improve the sharpness of VAE generated images

• Augment GANs with VAE loss [Che et al., 2017]
• Alleviate the mode missing issue of GANs

Mutual exchanges of ideas: augment the loss functions
GANs (InfoGAN) VAEs

KLD to
minimize

ming	KL	(bg ç ` 	||	h∏ ç |, `)
~	mingKL(!g	||	E)

mingKL(h¬ | ç, ` h∗∏ ` ç 	||	bg(|, `|ç))
~mingKL(E	||	!g)

© Petuum,Inc. 155

• Activate the adversarial mechanism in VAEs
• Enable adaptive incorporation of fake samples for learning
• Straightforward derivation by making symbolic analog to GANs

Mutual exchanges of ideas: augment the graphical model
GANs (InfoGAN) VAEs

Discriminator
distribution hì(`|ç) h∗(`|ç), perfect, degenerated

Figure 3: (a) Graphical model of InfoGAN (Eq.10), which, compared to GANs (Figure 1(c)), adds
conditional generation of code z with distribution q⌘(z|x, y). See the captions of Figure 1 for the
meaning of different types of arrows. (b) VAEs (Eq.13), which is obtained by swapping the generation
and inference processes of InfoGAN, i.e., in terms of the graphical model, swapping solid-line arrows
(generative process) and dashed-line arrows (inference) of (a). (c) Adversarial Autoencoder (AAE),
which is obtained by swapping data x and code z in InfoGAN (see the supplements for more details).

latent and to be adversarially regularized while the code space z as visible. Figure 3(c) shows the
graphical model of AAE obtained by simply swapping x and z in InfoGAN. We defer the detailed
formulations of AAE to the supplementary materials. Further, instead of considering x and z as data
and code spaces respectively, if we instantiate x and z as data spaces of two modalities, and combine
the objectives of InfoGAN and AAE as a joint model, we recover the cycleGAN model [56] which
performs transformation between the two modalities. More details are provided in the supplements.

3.3 Variational Autoencoders (VAEs)

We next explore the second family of deep generative model learning algorithms. The resemblance of
GAN generator learning to variational inference as shown in Eq.(7) suggests strong relations between
VAEs [28] and GANs. We build correspondence between the two approaches, and show that VAEs
are basically minimizing a KL divergence in an opposite direction, with a degenerated adversarial
discriminator.

max

✓,⌘ Lvae
✓,⌘ = Eq⌘(z|x)pdata(x) [log p✓(x|z)]�Epdata(x) [KL(q⌘(z|x)kp(z))]

The conventional definition of VAEs is written as:

max

✓,⌘ Lvae
✓,⌘ = Epdata(x)

⇥
Eq̃⌘(z|x) [log p̃✓(x|z)]� KL(q̃⌘(z|x)kp̃(z))

⇤
, (12)

where p̃✓(x|z) is the generator, q̃⌘(z|x) the inference model, and p̃(z) the prior over z. The
parameters to learn are intentionally denoted with the notations of corresponding modules in GANs.
At first glance, VAEs appear to differ from GANs greatly as they use only real examples and lack
adversarial mechanism. However, our interpretation shows VAEs indeed include a degenerated
adversarial discriminator that blocks out generated samples from contributing to training.

Specifically, we again introduce the real/fake variable y. Further assume a perfect discriminator
q⇤(y|x) which always predicts y = 1 with probability 1 given real examples, and y = 0 given
generated samples. Again, for notational simplicity, let qr⇤(y|x) = q⇤(1 � y|x) be the reversed
distribution.

Lemma 2 Let p✓(z, y|x) / p✓(x|z, y)p(z|y)p(y). Therefore,

Lvae

✓,⌘ = 2 · Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))

⇤

= 2 · Ep✓0 (x)
[�KL (q⌘(z|x, y)qr⇤(y|x)kp✓(z, y|x))] .

(13)

Here most of the components have exact correspondences (and the same definitions) in GANs and
InfoGAN, except that the generation distribution p✓(x|z, y) differs slightly from its counterpart
p✓(x|y) in Eq.(5) to additionally account for the uncertainty of generating x given z:

p✓(x|z, y) =
⇢
p✓(x|z) y = 0

pdata(x) y = 1.

(14)

7

!

Vanilla VAEs Adversary Activated VAEs
© Petuum,Inc. 156

Adversary Activated VAEs (AAVAE)
• Vanilla VAEs:

• Replace h∗(`|ç) with learnable one hì(`|ç) with parameters ñ
• As usual, denote reversed distribution hì∏ ` X = hì ` X

a general discussion that the difference between GANs and VAEs in latent/visible treatments is
relatively minor.

max

✓,⌘ Lvae
✓,⌘ = Ep✓0 (x)

⇥
Eq⌘(z|x,y)qr⇤(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr⇤(y|x)kp(z|y)p(y))

⇤

The proof of Lemma 2 is provided in the supplementary materials. Intuitively, recall that for the
real example domain with y = 1, both q⌘(z|x, y = 1) and p✓(x|z, y = 1) are constant distributions.
Therefore, with fake sample x generated from p✓0(x), the reversed perfect discriminator qr⇤(y|x)
always gives prediction y = 1, making the reconstruction loss on fake samples degenerated to a
constant. Hence only real examples, where q

r
⇤ predicts y = 0 with probability 1, are effective for

learning, which is identical to Eq.(12). We extend VAEs to also leverage fake samples in section 4.

VAE/GAN Joint Models Previous works have explored combination of VAEs and GANs. This can
be naturally motivated by the asymmetric behaviors of the KL divergences that the two algorithms
aim to optimize respectively. Specifically, the VAE/GAN model [32] that improves the sharpness of
VAE generated images can be alternatively motivated by remedying the mode covering behavior of
the KL in VAEs. That is, the KL tends to drive the generative model to cover all modes of the data
distribution as well as regions with small values of pdata, resulting in blurred, implausible samples.
Incorporation of GAN objectives alleviates the issue as the inverted KL enforces the generator to
focus on meaningful data modes. From the other perspective, augmenting GANs with VAE objectives
helps addressing the mode missing problem, which justifies the intuition of [6].

3.4 Wake Sleep Algorithm (WS)

We next discuss the connections of GANs and VAEs to the classic wake-sleep algorithm [21] which
was proposed for learning deep generative models such as Helmholtz machines [11]. WS consists of
wake phase and sleep phase, which optimize the generative model and inference model, respectively.
We follow the above notations, and introduce new notations h to denote general latent variables and
� for general parameters. The wake-sleep algorithm is thus written as:

Wake : max

✓

Eq�(h|x)pdata(x) [log p✓(x|h)]
Sleep : max

�

Ep✓(x|h)p(h) [log q�(h|x)] .
(15)

The wake phase updates the generator parameters ✓ by fitting p✓(x|h) to the real data and hidden
code inferred by the inference model q�(h|x). On the other hand, the sleep phase updates the
parameters � based on the generated samples from the generator.

The relations between WS and VAEs are clear in previous discussions [4, 28]. Indeed, WS was
originally proposed to minimize the variational lower bound as in VAEs (Eq.12) with sleep phase
approximation [21]. Alternatively, VAEs can be seen as extending the wake phase. Specifically, if
we instantiate h with z and � with ⌘, the wake phase objective recovers VAEs (Eq.12) in terms of
generator optimization (i.e., optimizing ✓). Therefore, we can see VAEs as generalizing the wake
phase by also optimizing the inference model q⌘ , with additional prior regularization on code z.

On the other hand, our interpretation of GANs reveals close resemblance to the sleep phase. To make
this clearer, we instantiate h with y and � with �, resulting in a sleep phase objective identical to that
of optimizing the discriminator q� in Eq.(4), which is to reconstruct y given sample x. We thus can
view GANs as generalizing the sleep phase by also optimizing the generative model p✓ to reconstruct
reversed y. InfoGAN (Eq.10) further extends the correspondence to reconstruction of latents z.

3.5 Summary

We have established close relations between ADA, GANs, VAEs, WS, and many model variants
through the proposed formulations. Table 1 summarizes the correspondence of each components
in the approaches. In particular, the symmetry of GANs and VAEs in terms of minimizing KL
divergences in opposite directions strongly relates to the symmetry of the sleep and wake phases
in the wake-sleep algorithm. Besides, the opposite KL divergences formally explain common
observations when training GANs and VAEs, such as the mode missing and mode covering behaviors
that have led to different practical issues and motivated various model extensions. Also, our analysis

8

In analog to the standard GANs which omit priors by subtracting the JSD term (Eq.7), we also
omit the second term in the derivative relevant to the prior p✓0(x). The resulting update rule for the
generator is thus of the following form:

r✓Lk(y) = E
z1,...,zk⇠p(z|y)

Xk

i=1
fwir✓ log q

r
�0
(y|x(zi,✓))

�
. (21)

As in GANs, only y = 0 (i.e., generated samples) is effective for learning the parameters ✓. Intu-
itively, the algorithm assigns higher weights to those samples that are more realistic and fool the
discriminator better, which is consistent to IWAE that emphasizes more on code states providing
better reconstructions. Hjelm et al. [22], Che et al. [7] developed a similar sample weighting scheme
for maximum likelihood training of the generator. In practice, the k samples in Eq.(21) correspond
to a minibatch of samples in standard GAN update. Thus the only computational cost added by the
importance weighting method is evaluating the weight for each sample, which is generally negligible.
The discriminator is trained in the same way as in the standard GANs.

4.2 Adversary Activated VAEs (AAVAE)

In our formulation, VAEs include a degenerated adversarial discriminator which blocks out generated
samples from contributing to model learning. We enable adaptive incorporation of fake samples by
activating the adversarial mechanism. Again, derivations are straightforward by making symbolic
analog to GANs.

We replace the perfect discriminator q⇤(y|x) in vanilla VAEs with the discriminator network q�(y|x)
parameterized with � as in GANs, resulting in an adapted objective of Eq.(13):

max

✓,⌘ Laavae
✓,⌘ = Ep✓0 (x)

h
Eq⌘(z|x,y)qr�(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr�(y|x)kp(z|y)p(y))

i
.

(22)

The form of Eq.(22) is precisely symmetric to the objective of InfoGAN in Eq.(10) with the additional
KL prior regularization. Before analyzing the effect of adding the learnable discriminator, we first
look at how the discriminator is learned. In analog to GANs as in Eqs.(4) and (10), the objective of
optimizing � is obtained by simply replacing the inverted distribution q

r
�(y|x) with q�(y|x):

max

�

Laavae
� = Ep✓0 (x)

h
Eq⌘(z|x,y)q�(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)q�(y|x)kp(z|y)p(y))

i
. (23)

Intuitively, the discriminator is trained to distinguish between real and fake instances by predicting
appropriate y that selects the components of q⌘(z|x, y) and p✓(x|z, y) to best reconstruct x. The
difficulty of Eq.(23) is that p✓(x|z, y = 1) = pdata(x) is an implicit distribution which is intractable
for likelihood evaluation. We thus use the alternative objective as in GANs to train a binary classifier:

max

�

Laavae
� = Ep✓(x|z,y)p(z|y)p(y) [log q�(y|x)] . (24)

The activated discriminator enables an effective data selection mechanism. First, AAVAE uses not
only real examples, but also generated samples for training. Each sample is weighted by the inverted
discriminator qr�(y|x), so that only those samples that resemble real data and successfully fool the
discriminator will be incorporated for training. This is consistent with the importance weighting
strategy in IWGAN. Second, real examples are also weighted by q

r
�(y|x). An example receiving

large weight indicates it is easily recognized by the discriminator, which further indicates the example
is hard to be simulated from the generator. That is, AAVAE emphasizes more on harder examples.

5 Experiments

We perform extensive quantitative experiments to evaluate the importance weighting method for
GANs and the adversary activating method for VAEs. To show the generality of the imported ideas,
we apply the extensions to vanilla models as well as several popular variants, and obtain greatly
improved results.

10

© Petuum,Inc. 157

AAVAE: adaptive data selection

• An effective data selection mechanism:
• Both generated samples and real examples are weighted by
hì∏ ` = 0 ç = hì ` = 1 ç

• Only samples that resembles real data and fool the discriminator will be used
for training

• A real example receiving large weight hì∏ ` ç 	
⇒ Easily recognized by the discriminator as real
⇒ Hard to be simulated from the generator
⇒ Hard examples get larger weights

As in GANs, only y = 0 (i.e., generated samples) is effective for learning the parameters ✓. Intu-
itively, the algorithm assigns higher weights to those samples that are more realistic and fool the
discriminator better, which is consistent to IWAE that emphasizes more on code states providing
better reconstructions. In practice, the k samples in Eq.(15) correspond to a minibatch of samples in
standard GAN update. Thus the only computational cost added by the importance weighting method
is evaluating the weight for each sample, which is generally negligible. The discriminator is trained
in the same way as in the standard GANs.

4.2 Adversary Activated VAEs (AAVAE)

In our formulation, VAEs include a degenerated adversarial discriminator which blocks out generated
samples from contributing to model learning. We enable adaptive incorporation of fake samples by
activating the adversarial mechanism. Again, derivations are straightforward by making literal [Eric:
maybe the word "symbolic" is better here?] analog to GANs.

We replace the perfect discriminator q⇤(y|x) in vanilla VAEs with the discriminator network q�(y|x)
parameterized with � as in GANs, resulting in an adapted objective of Eq.(8):

max

✓,⌘ Laavae
✓,⌘ = Ep✓0 (x)

h
Eq⌘(z|x,y)qr�(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr�(y|x)kp(z|y)p(y))

i
.

(16)

The form of Eq.(16) is precisely symmetric to the objective of InfoGAN in Eq.(5) with the additional
KL prior regularization. Before analyzing the effect of adding the learnable discriminator, we first
look at how the discriminator is learned. In analog to GANs as in Eqs.(1) and (5), the objective of
optimizing � is obtained by simply replacing the inverted distribution q

r
�(y|x) with q�(y|x):

max

�

Laavae
� = Ep✓0 (x)

h
Eq⌘(z|x,y)q�(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)q�(y|x)kp(z|y)p(y))

i
. (17)

Intuitively, the discriminator is trained to distinguish between real and fake instances by predicting
appropriate y that selects the components of q⌘(z|x, y) and p✓(x|z, y) to best reconstruct x. The
difficulty of Eq.(17) is that p✓(x|z, y = 1) = pdata(x) is an implicit distribution which is intractable
for likelihood evaluation. We thus use the alternative objective as in GANs to train a binary classifier:

max

�

Laavae
� = Ep✓(x|z,y)p(z|y)p(y) [log q�(y|x)] . (18)

The activated discriminator enables an effective data selection mechanism. First, AAVAE uses not
only real examples, but also generated samples for training. Each sample is weighted by the inverted
discriminator qr�(y|x), so that only those samples that resemble real data and successfully fool the
discriminator will be incorporated for training. This is consistent with the importance weighting
strategy in IWGAN. Second, real examples are also weighted by q

r
�(y|x). An example receiving

large weight indicates it is easily recognized by the discriminator, which further indicates the example
is hard to be simulated from the generator. That is, AAVAE emphasizes more on harder examples.

5 Experiments

We perform extensive quantitative experiments to evaluate the importance weighting method for
GANs and the adversary activating method for VAEs. To show the generality of the imported ideas,
we apply the extensions to vanilla models as well as several popular variants, and obtain greatly
improved results.

5.1 Importance Weighted GANs

We extend both vanilla GANs and class-conditional GANs (CGAN) with the importance weighting
method. The base GAN model is implemented with the DCGAN architecture and hyperparameter
setting [44]. We do not tune the hyperparameters for the importance weighted extensions. We use
MNIST and SVHN for evaluation. For vanilla GANs and its IW extension, we measure inception
scores [45] on the generated samples. We train deep residual networks [16] provided in the tensorflow
library as evaluation networks, which achieve inception scores of 9.09 and 6.55 on the test sets of
MNIST and SVHN, respectively. For conditional GANs we evaluate the accuracy of conditional
generation [21]. That is, we generate samples given class labels, and then use the pre-trained classifier

8

© Petuum,Inc. 158

AAVAE: discriminator learning

• Use the binary classification objective as in GAN

As in GANs, only y = 0 (i.e., generated samples) is effective for learning the parameters ✓. Intu-
itively, the algorithm assigns higher weights to those samples that are more realistic and fool the
discriminator better, which is consistent to IWAE that emphasizes more on code states providing
better reconstructions. In practice, the k samples in Eq.(15) correspond to a minibatch of samples in
standard GAN update. Thus the only computational cost added by the importance weighting method
is evaluating the weight for each sample, which is generally negligible. The discriminator is trained
in the same way as in the standard GANs.

4.2 Adversary Activated VAEs (AAVAE)

In our formulation, VAEs include a degenerated adversarial discriminator which blocks out generated
samples from contributing to model learning. We enable adaptive incorporation of fake samples by
activating the adversarial mechanism. Again, derivations are straightforward by making literal [Eric:
maybe the word "symbolic" is better here?] analog to GANs.

We replace the perfect discriminator q⇤(y|x) in vanilla VAEs with the discriminator network q�(y|x)
parameterized with � as in GANs, resulting in an adapted objective of Eq.(8):

max

✓,⌘ Laavae
✓,⌘ = Ep✓0 (x)

h
Eq⌘(z|x,y)qr�(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr�(y|x)kp(z|y)p(y))

i
.

(16)

The form of Eq.(16) is precisely symmetric to the objective of InfoGAN in Eq.(5) with the additional
KL prior regularization. Before analyzing the effect of adding the learnable discriminator, we first
look at how the discriminator is learned. In analog to GANs as in Eqs.(1) and (5), the objective of
optimizing � is obtained by simply replacing the inverted distribution q

r
�(y|x) with q�(y|x):

max

�

Laavae
� = Ep✓0 (x)

h
Eq⌘(z|x,y)q�(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)q�(y|x)kp(z|y)p(y))

i
. (17)

Intuitively, the discriminator is trained to distinguish between real and fake instances by predicting
appropriate y that selects the components of q⌘(z|x, y) and p✓(x|z, y) to best reconstruct x. The
difficulty of Eq.(17) is that p✓(x|z, y = 1) = pdata(x) is an implicit distribution which is intractable
for likelihood evaluation. We thus use the alternative objective as in GANs to train a binary classifier:

max

�

Laavae
� = Ep✓(x|z,y)p(z|y)p(y) [log q�(y|x)] . (18)

The activated discriminator enables an effective data selection mechanism. First, AAVAE uses not
only real examples, but also generated samples for training. Each sample is weighted by the inverted
discriminator qr�(y|x), so that only those samples that resemble real data and successfully fool the
discriminator will be incorporated for training. This is consistent with the importance weighting
strategy in IWGAN. Second, real examples are also weighted by q

r
�(y|x). An example receiving

large weight indicates it is easily recognized by the discriminator, which further indicates the example
is hard to be simulated from the generator. That is, AAVAE emphasizes more on harder examples.

5 Experiments

We perform extensive quantitative experiments to evaluate the importance weighting method for
GANs and the adversary activating method for VAEs. To show the generality of the imported ideas,
we apply the extensions to vanilla models as well as several popular variants, and obtain greatly
improved results.

5.1 Importance Weighted GANs

We extend both vanilla GANs and class-conditional GANs (CGAN) with the importance weighting
method. The base GAN model is implemented with the DCGAN architecture and hyperparameter
setting [44]. We do not tune the hyperparameters for the importance weighted extensions. We use
MNIST and SVHN for evaluation. For vanilla GANs and its IW extension, we measure inception
scores [45] on the generated samples. We train deep residual networks [16] provided in the tensorflow
library as evaluation networks, which achieve inception scores of 9.09 and 6.55 on the test sets of
MNIST and SVHN, respectively. For conditional GANs we evaluate the accuracy of conditional
generation [21]. That is, we generate samples given class labels, and then use the pre-trained classifier

8

© Petuum,Inc. 159

AAVAE: empirical results
• Applied the adversary activating method on

• vanilla VAEs
• class-conditional VAEs (CVAE)
• semi-supervised VAEs (SVAE)

© Petuum,Inc. 160

AAVAE: empirical results
• Evaluated test-set variational lower bound on MNIST

• The higher the better

• X-axis: the ratio of training data for learning (0.01, 0.1, 1.)
• Y-axis: value of test-set lower bound

MNIST SVHN

GAN 8.34±.03 5.18±.03
IWGAN 8.45±.04 5.34±.03

MNIST SVHN

CGAN 0.985±.002 0.797±.005
IWCGAN 0.987±.002 0.798±.006

1% 10%

SVAE 0.9412 0.9768
AASVAE 0.9425 0.9797

Table 2: Left: Inception scores of vanilla GANs and the importance weighted extension. Middle:
Classification accuracy of the generations by class-conditional GANs and the IW extension. Right:
Classification accuracy of semi-supervised VAEs and the adversary activated extension on the MNIST
test set, with varying size of real labeled training examples.

Figure 1: Lower bound values on the MNIST test set. X-axis represents the ratio of training data
used for learning (0.01, 0.1, and 1.). Y-axis represents the value of lower bound. Solid lines represent
the base models; dashed lines represent the adversary activated models. Left: VAE vs. AA-VAE.
Middle: CVAE vs. AA-CVAE. Right: SVAE vs. AA-SVAE, where remaining training data are used
as unsupervised data.

to predict class labels of the generated samples. The accuracy is calculated as the percentage of the
predictions that match the conditional labels. The evaluation networks achieve accuracy of 0.990 and
0.902 on the test sets of MNIST and SVHN, respectively.

Table 2, left panel, shows the inception scores of GANs and IW-GAN, and the middle panel gives the
classification accuracy of the conditional GANs and its importance weighted extension IW-CGAN.
We report the averaged results ± one standard deviation over 5 runs. We see that the importance
weighting strategy gives consistent improvements over the base models.

5.2 Adversary Activated VAEs

We apply the adversary activating method on vanilla VAEs, class-conditional VAEs (CVAE), and
semi-supervised VAEs (SVAE) [26]. We evaluate on the MNIST data. The generative networks have
the same architecture as the generators in GANs in the above experiments, with sigmoid activation
functions on the last layer to compute the means of Bernoulli distributions over pixels. The inference
networks, discriminators, and the classifier in SVAE share the same architecture as the discriminators
in the GAN experiments.

We evaluate the lower bound value on the test set, with varying number of real training examples.
For each minibatch of real examples we generate equal number of fake samples for training. In the
experiments we found it is generally helpful to smooth the discriminator distributions by setting the
temperature of the output sigmoid function larger than 1. This basically encourages the use of fake
data for learning. We select the best temperature from {1, 1.5, 3, 5} through cross-validation. We do
not tune other hyperparameters for the adversary activated extensions. Figure 1 shows the results of
activating the adversary mechanism on the VAE models. We see that the adversary activated models
consistently outperform their respective base models. Generally, larger improvement can be obtained
with smaller set of real training data. Table 2, right panel, further shows the classification accuracy
of semi-supervised VAE and its adversary activated variants with different size of labeled training
data. We can observe improved performance of the AA-SVAE model. The full results of standard
deviations are reported in the supplementary materials.

9

© Petuum,Inc. 161

AAVAE: empirical results
• Evaluated classification accuracy of SVAE and AA-SVAE

• Used 1% and 10% data labels in MNIST

where we have denoted wi =
qr(y|xi)p✓0 (xi)

p✓(xi|y) . We recover the lower bound of Eq.(27) when setting
k = 1.

To maximize the importance weighted lower bound, we compute the gradient:

r✓Lk(y) = r✓Ex1,...,xk

"
log

1

k

kX

i=1

wi

#
= E

z1,...,zk

"
r✓ log

1

k

kX

i=1

w(y,x(zi,✓))

#

= E
z1,...,zk

"
kX

i=1

fwir✓ logw(y,x(zi,✓))

#
,

(29)

where fwi = wi/
Pk

i=1 wi are the normalized importance weights. We expand the weight at ✓ = ✓0

wi|✓=✓0 =

qr(y|xi)p✓0(xi)

p✓(xi|y)
= qr(y|xi)

1
2p✓0(xi|y = 0) +

1
2p✓0(xi|y = 1)

p✓0(xi|y)
|✓=✓0 . (30)

The ratio of p✓0(xi|y = 0) and p✓0(xi|y = 1) is intractable. Using the Bayes’ rule and approximating
with the discriminator distribution, we have

p(x|y = 0)

p(x|y = 1)

=

p(y = 0|x)p(y = 1)

p(y = 1|x)p(y = 0)

⇡ q(y = 0|x)
q(y = 1|x) . (31)

Plug Eq.(31) into the above we have

wi|✓=✓0 ⇡ qr(y|xi)

q(y|xi)
. (32)

In Eq.(29), the derivative r✓ logwi is

r✓ logw(y,x(zi,✓)) = r✓ log q
r
(y|x(zi,✓)) +r✓ log

p✓0(xi)

p✓(xi|y)
. (33)

Similar to GAN, we omit the second term on the RHS of the equation. Therefore, the resulting update
rule of p✓(x|y) is

r✓Lk(y) = E
z1,...,zk

"
kX

i=1

qr(y|xi)

q(y|xi)
r✓ log q

r
(y|x(zi,✓))

#
(34)

E Experimental Results of SVAE

Table 3 shows the results.

1% 10%
SVAE 0.9412±.0039 0.9768±.0009

AASVAE 0.9425±.0045 0.9797±.0010
Table 3: Classification accuracy of semi-supervised VAEs and the adversary activated extension on
the MNIST test set, with varying size of real labeled training examples.

15

© Petuum,Inc. 162

Mutual exchanges of ideas
• AAVAE enhances VAEs with ideas from GANs
• We can also enhance GANs with ideas from VAEs
• VAEs maximize a variational lower bound of log likelihood
• Importance weighted VAE (IWAE) [Burda et al., 2016]

• Maximizes a tighter lower bound through importance sampling
• The variational inference interpretation of GANs allows the

importance weighting method to be straightforwardly applied
to GANs

• Just copy the derivations of IWAE side by side with little adaptions!

© Petuum,Inc. 163

Importance weighted GANs (IWGAN)
• Generator learning in vanilla GANs

• Generator learning in IWGAN

• Assigns higher weights to samples that are more realistic and fool the
discriminator better

max

✓

E
x⇠p✓(x|y)p(y)

⇥
log q

r
�0
(y|x)

⇤
.

max

✓

E
x1,...,xk⇠p✓(x|y)p(y)

Xk

i=1

q

r
�0
(y|xi)

q�0(y|xi)
log q

r
�0
(y|xi)

�
.

As in GANs, only y = 0 (i.e., generated samples) is effective for learning the parameters ✓. Intu-
itively, the algorithm assigns higher weights to those samples that are more realistic and fool the
discriminator better, which is consistent to IWAE that emphasizes more on code states providing
better reconstructions. In practice, the k samples in Eq.(15) correspond to a minibatch of samples in
standard GAN update. Thus the only computational cost added by the importance weighting method
is evaluating the weight for each sample, which is generally negligible. The discriminator is trained
in the same way as in the standard GANs.

4.2 Adversary Activated VAEs (AAVAE)

In our formulation, VAEs include a degenerated adversarial discriminator which blocks out generated
samples from contributing to model learning. We enable adaptive incorporation of fake samples by
activating the adversarial mechanism. Again, derivations are straightforward by making literal [Eric:
maybe the word "symbolic" is better here?] analog to GANs.

We replace the perfect discriminator q⇤(y|x) in vanilla VAEs with the discriminator network q�(y|x)
parameterized with � as in GANs, resulting in an adapted objective of Eq.(8):

max

✓,⌘ Laavae
✓,⌘ = Ep✓0 (x)

h
Eq⌘(z|x,y)qr�(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr�(y|x)kp(z|y)p(y))

i
.

(16)

The form of Eq.(16) is precisely symmetric to the objective of InfoGAN in Eq.(5) with the additional
KL prior regularization. Before analyzing the effect of adding the learnable discriminator, we first
look at how the discriminator is learned. In analog to GANs as in Eqs.(1) and (5), the objective of
optimizing � is obtained by simply replacing the inverted distribution q

r
�(y|x) with q�(y|x):

max

�

Laavae
� = Ep✓0 (x)

h
Eq⌘(z|x,y)q�(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)q�(y|x)kp(z|y)p(y))

i
. (17)

Intuitively, the discriminator is trained to distinguish between real and fake instances by predicting
appropriate y that selects the components of q⌘(z|x, y) and p✓(x|z, y) to best reconstruct x. The
difficulty of Eq.(17) is that p✓(x|z, y = 1) = pdata(x) is an implicit distribution which is intractable
for likelihood evaluation. We thus use the alternative objective as in GANs to train a binary classifier:

max

�

Laavae
� = Ep✓(x|z,y)p(z|y)p(y) [log q�(y|x)] . (18)

The activated discriminator enables an effective data selection mechanism. First, AAVAE uses not
only real examples, but also generated samples for training. Each sample is weighted by the inverted
discriminator qr�(y|x), so that only those samples that resemble real data and successfully fool the
discriminator will be incorporated for training. This is consistent with the importance weighting
strategy in IWGAN. Second, real examples are also weighted by q

r
�(y|x). An example receiving

large weight indicates it is easily recognized by the discriminator, which further indicates the example
is hard to be simulated from the generator. That is, AAVAE emphasizes more on harder examples.

5 Experiments

We perform extensive quantitative experiments to evaluate the importance weighting method for
GANs and the adversary activating method for VAEs. To show the generality of the imported ideas,
we apply the extensions to vanilla models as well as several popular variants, and obtain greatly
improved results.

8

max

✓

E
x⇠p✓(x|y)p(y)

⇥
log q

r
�0
(y|x)

⇤
.

max

✓

E
x1,...,xk⇠p✓(x|y)p(y)

Xk

i=1

q

r
�0
(y|xi)

q�0(y|xi)
log q

r
�0
(y|xi)

�
.

As in GANs, only y = 0 (i.e., generated samples) is effective for learning the parameters ✓. Intu-
itively, the algorithm assigns higher weights to those samples that are more realistic and fool the
discriminator better, which is consistent to IWAE that emphasizes more on code states providing
better reconstructions. In practice, the k samples in Eq.(15) correspond to a minibatch of samples in
standard GAN update. Thus the only computational cost added by the importance weighting method
is evaluating the weight for each sample, which is generally negligible. The discriminator is trained
in the same way as in the standard GANs.

4.2 Adversary Activated VAEs (AAVAE)

In our formulation, VAEs include a degenerated adversarial discriminator which blocks out generated
samples from contributing to model learning. We enable adaptive incorporation of fake samples by
activating the adversarial mechanism. Again, derivations are straightforward by making literal [Eric:
maybe the word "symbolic" is better here?] analog to GANs.

We replace the perfect discriminator q⇤(y|x) in vanilla VAEs with the discriminator network q�(y|x)
parameterized with � as in GANs, resulting in an adapted objective of Eq.(8):

max

✓,⌘ Laavae
✓,⌘ = Ep✓0 (x)

h
Eq⌘(z|x,y)qr�(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)qr�(y|x)kp(z|y)p(y))

i
.

(16)

The form of Eq.(16) is precisely symmetric to the objective of InfoGAN in Eq.(5) with the additional
KL prior regularization. Before analyzing the effect of adding the learnable discriminator, we first
look at how the discriminator is learned. In analog to GANs as in Eqs.(1) and (5), the objective of
optimizing � is obtained by simply replacing the inverted distribution q

r
�(y|x) with q�(y|x):

max

�

Laavae
� = Ep✓0 (x)

h
Eq⌘(z|x,y)q�(y|x) [log p✓(x|z, y)]� KL(q⌘(z|x, y)q�(y|x)kp(z|y)p(y))

i
. (17)

Intuitively, the discriminator is trained to distinguish between real and fake instances by predicting
appropriate y that selects the components of q⌘(z|x, y) and p✓(x|z, y) to best reconstruct x. The
difficulty of Eq.(17) is that p✓(x|z, y = 1) = pdata(x) is an implicit distribution which is intractable
for likelihood evaluation. We thus use the alternative objective as in GANs to train a binary classifier:

max

�

Laavae
� = Ep✓(x|z,y)p(z|y)p(y) [log q�(y|x)] . (18)

The activated discriminator enables an effective data selection mechanism. First, AAVAE uses not
only real examples, but also generated samples for training. Each sample is weighted by the inverted
discriminator qr�(y|x), so that only those samples that resemble real data and successfully fool the
discriminator will be incorporated for training. This is consistent with the importance weighting
strategy in IWGAN. Second, real examples are also weighted by q

r
�(y|x). An example receiving

large weight indicates it is easily recognized by the discriminator, which further indicates the example
is hard to be simulated from the generator. That is, AAVAE emphasizes more on harder examples.

5 Experiments

We perform extensive quantitative experiments to evaluate the importance weighting method for
GANs and the adversary activating method for VAEs. To show the generality of the imported ideas,
we apply the extensions to vanilla models as well as several popular variants, and obtain greatly
improved results.

8

© Petuum,Inc. 164

IWGAN: empirical results
• Applied the importance weighting method to

• vanilla GANs
• class-conditional GANs (CGAN)

• CGAN adds one dimension to code k to represent the class label
• The derivations of the IW extension remain the same as in vanilla GANs

© Petuum,Inc. 165

IWGAN: empirical results
• Evaluated on MNIST and SVHN
• Used pretrained NN to evaluate:

• Inception scores of samples from GANs and IW-GAN
• Confidence of a pre-trained classifier on generated samples + diversity of

generated samples

• Classification accuracy of samples from CGAN and IW-CGAN

MNIST SVHN

GAN 8.34±.03 5.18±.03
IWGAN 8.45±.04 5.34±.03

MNIST SVHN

CGAN 0.985±.002 0.797±.005
IWCGAN 0.987±.002 0.798±.006

1% 10%

SVAE 0.9412 0.9768
AASVAE 0.9425 0.9797

Table 2: Left: Inception scores of vanilla GANs and the importance weighted extension. Middle:
Classification accuracy of the generations by class-conditional GANs and the IW extension. Right:
Classification accuracy of semi-supervised VAEs and the adversary activated extension on the MNIST
test set, with varying size of real labeled training examples.

Figure 1: Lower bound values on the MNIST test set. X-axis represents the ratio of training data
used for learning (0.01, 0.1, and 1.). Y-axis represents the value of lower bound. Solid lines represent
the base models; dashed lines represent the adversary activated models. Left: VAE vs. AA-VAE.
Middle: CVAE vs. AA-CVAE. Right: SVAE vs. AA-SVAE, where remaining training data are used
as unsupervised data.

5.1 Importance Weighted GANs

We extend both vanilla GANs and class-conditional GANs (CGAN) with the importance weighting
method. The base GAN model is implemented with the DCGAN architecture and hyperparameter
setting [44]. We do not tune the hyperparameters for the importance weighted extensions. We use
MNIST and SVHN for evaluation. For vanilla GANs and its IW extension, we measure inception
scores [45] on the generated samples. We train deep residual networks [16] provided in the tensorflow
library as evaluation networks, which achieve inception scores of 9.09 and 6.55 on the test sets of
MNIST and SVHN, respectively. For conditional GANs we evaluate the accuracy of conditional
generation [21]. That is, we generate samples given class labels, and then use the pre-trained classifier
to predict class labels of the generated samples. The accuracy is calculated as the percentage of the
predictions that match the conditional labels. The evaluation networks achieve accuracy of 0.990 and
0.902 on the test sets of MNIST and SVHN, respectively.

Table 2, left panel, shows the inception scores of GANs and IW-GAN, and the middle panel gives the
classification accuracy of the conditional GANs and its importance weighted extension IW-CGAN.
We report the averaged results ± one standard deviation over 5 runs. We see that the importance
weighting strategy gives consistent improvements over the base models.

5.2 Adversary Activated VAEs

We apply the adversary activating method on vanilla VAEs, class-conditional VAEs (CVAE), and
semi-supervised VAEs (SVAE) [26]. We evaluate on the MNIST data. The generative networks have
the same architecture as the generators in GANs in the above experiments, with sigmoid activation
functions on the last layer to compute the means of Bernoulli distributions over pixels. The inference
networks, discriminators, and the classifier in SVAE share the same architecture as the discriminators
in the GAN experiments.

We evaluate the lower bound value on the test set, with varying number of real training examples.
For each minibatch of real examples we generate equal number of fake samples for training. In the
experiments we found it is generally helpful to smooth the discriminator distributions by setting the
temperature of the output sigmoid function larger than 1. This basically encourages the use of fake
data for learning. We select the best temperature from {1, 1.5, 3, 5} through cross-validation. We do
not tune other hyperparameters for the adversary activated extensions. Figure 1 shows the results of

9

MNIST SVHN

GAN 8.34±.03 5.18±.03
IWGAN 8.45±.04 5.34±.03

MNIST SVHN

CGAN 0.985±.002 0.797±.005
IWCGAN 0.987±.002 0.798±.006

1% 10%

SVAE 0.9412 0.9768
AASVAE 0.9425 0.9797

Table 2: Left: Inception scores of vanilla GANs and the importance weighted extension. Middle:
Classification accuracy of the generations by class-conditional GANs and the IW extension. Right:
Classification accuracy of semi-supervised VAEs and the adversary activated extension on the MNIST
test set, with varying size of real labeled training examples.

Figure 1: Lower bound values on the MNIST test set. X-axis represents the ratio of training data
used for learning (0.01, 0.1, and 1.). Y-axis represents the value of lower bound. Solid lines represent
the base models; dashed lines represent the adversary activated models. Left: VAE vs. AA-VAE.
Middle: CVAE vs. AA-CVAE. Right: SVAE vs. AA-SVAE, where remaining training data are used
as unsupervised data.

5.1 Importance Weighted GANs

We extend both vanilla GANs and class-conditional GANs (CGAN) with the importance weighting
method. The base GAN model is implemented with the DCGAN architecture and hyperparameter
setting [44]. We do not tune the hyperparameters for the importance weighted extensions. We use
MNIST and SVHN for evaluation. For vanilla GANs and its IW extension, we measure inception
scores [45] on the generated samples. We train deep residual networks [16] provided in the tensorflow
library as evaluation networks, which achieve inception scores of 9.09 and 6.55 on the test sets of
MNIST and SVHN, respectively. For conditional GANs we evaluate the accuracy of conditional
generation [21]. That is, we generate samples given class labels, and then use the pre-trained classifier
to predict class labels of the generated samples. The accuracy is calculated as the percentage of the
predictions that match the conditional labels. The evaluation networks achieve accuracy of 0.990 and
0.902 on the test sets of MNIST and SVHN, respectively.

Table 2, left panel, shows the inception scores of GANs and IW-GAN, and the middle panel gives the
classification accuracy of the conditional GANs and its importance weighted extension IW-CGAN.
We report the averaged results ± one standard deviation over 5 runs. We see that the importance
weighting strategy gives consistent improvements over the base models.

5.2 Adversary Activated VAEs

We apply the adversary activating method on vanilla VAEs, class-conditional VAEs (CVAE), and
semi-supervised VAEs (SVAE) [26]. We evaluate on the MNIST data. The generative networks have
the same architecture as the generators in GANs in the above experiments, with sigmoid activation
functions on the last layer to compute the means of Bernoulli distributions over pixels. The inference
networks, discriminators, and the classifier in SVAE share the same architecture as the discriminators
in the GAN experiments.

We evaluate the lower bound value on the test set, with varying number of real training examples.
For each minibatch of real examples we generate equal number of fake samples for training. In the
experiments we found it is generally helpful to smooth the discriminator distributions by setting the
temperature of the output sigmoid function larger than 1. This basically encourages the use of fake
data for learning. We select the best temperature from {1, 1.5, 3, 5} through cross-validation. We do
not tune other hyperparameters for the adversary activated extensions. Figure 1 shows the results of

9

© Petuum,Inc. 166

Recap: Variational Inference
Maximize the variational lower bound ℒ c,ñ; ç , or equivalently,
minimize free energy

• E-step: maximize ℒ wrt. Å with c	fixed

• If with closed form solutions

• M-step: maximize ℒ wrt. c with Å fixed

maxìℒ c,ñ; ç = Vrí(ö|[) log	bg X k + �Q(hì	 k X ||b(k))

maxgℒ c,ñ; ç = Vrí k X log	bg X k + �Q(hì k X ||b(k))

hì∗ (k|X) ∝ exp[log	bg(X, k)]

s c, Å; ç = −log	b ç + �Q(hì | ç 	||	bc(||ç))

© Petuum,Inc. 167

Discussion: Modeling latent vs. visible variables

• Latent and visible variables are traditionally distinguished
clearly and modeled in very different ways

• A key thought in the new formulation:

• Not necessary to make clear boundary between latent and visible
variables,

• And between inference and generation

• Instead treat them as a symmetric pair

© Petuum,Inc. 168

Symmetric modeling of latent & visible variables

• Help with modeling and understanding:
• Treating the generation space ç in GANs as latent

• reveals the connection between GANs and ADA
• provides an variational inference interpretation of generation

ADA GANs

Inference on features Treat generation of X
as performing
inference

© Petuum,Inc. 169

Symmetric modeling of latent & visible variables

• Help with modeling and understanding:
• Treating the generation space ç in GANs as latent

• reveals the connection between GANs and ADA
• provides an variational inference interpretation of generation

• Wake sleep algorithm
• wake phase reconstructs visible variables based on latents
• sleep phase reconstructs latent variables based on visibles
• latent and visible variables are treated in a completely symmetric

way
Wake: maxc	Erí(||ç)	 log	bc(ç, |)

Sleep: maxñ	Eõú(|,ç)	 log	hì | ç © Petuum,Inc. 170

Symmetric modeling of latent & visible variables

• New modeling approaches narrow the gap
Empirical distributions over visible
variables

• Impossible to be explicit distribution
• The only information we have is

the observe data examples
• Do not know the true parametric

form of data distribution

• Naturally an implicit distribution
• Easy to sample from, hard to

evaluate likelihood

Prior distributions over latent variables

• Traditionally defined as explicit distributions, e.g.,
Gaussian prior distribution

• Amiable for likelihood evaluation
• We can assume the parametric form

according to our prior knowledge

• New tools to allow implicit priors and models
• GANs, density ratio estimation, approximate

Bayesian computations
• E.g., adversarial autoencoder [Makhzani et al., 2015]

replaces the Gaussian prior of vanilla VAEs
with implicit priors

© Petuum,Inc. 171

Symmetric modeling of latent & visible variables

• No difference in terms of formulations
• with implicit distributions and black-box NN models
• just swap the symbols X and k

Generation
model

prior	distr.

Inference
model

data	distr.

	" ∼ $%&'(&(")
+ ∼ ,-./012-(3 " 	

	+ ∼ $4/5/(+)
	" ∼ ,′-./012-(3 + 	

Figure 5: Symmetric view of generation and inference. There is little difference of the two processes
in terms of formulation: with implicit distribution modeling, both processes only need to perform
simulation through black-box neural transformations between the latent and visible spaces.

signals for student networks of interest. It will be intriguing to build formal connections between
these approaches and enable incorporation of structured knowledge in deep generative modeling.

Symmetric view of generation and inference Traditional modeling approaches usually distin-
guish between latent and visible variables clearly and treat them in very different ways. One of the
key thoughts in our formulation is that it is not necessary to make clear boundary between the two
types of variables (and between generation and inference), but instead, treating them as a symmetric
pair helps with modeling and understanding. For instance, we treat the generation space x in GANs as
latent, which immediately reveals the connection between GANs and adversarial domain adaptation,
and provides a variational inference interpretation of the generation. A second example is the classic
wake-sleep algorithm, where the wake phase reconstructs visibles conditioned on latents, while the
sleep phase reconstructs latents conditioned on visibles (i.e., generated samples). Hence, visible and
latent variables are treated in a completely symmetric manner.

Furthermore, the newly emerging tools such as implicit distribution modeling and black-box neural
transformations have enabled undifferentiated formulation of generation and inference (Figure 5).
Generally, we have prior distributions over latent space, and empirical data distributions over visible
space. Both are pre-defined and can be easily sampled from. There are two major differences.

• Empirical data distributions are usually implicit, i.e., easy to sample from but intractable for
evaluating likelihood. In contrast, priors are usually defined as explicit distributions, amiable for
likelihood evaluation.

• The complexity of the two distributions are different. Visible space is usually complex while latent
space tends (or is designed) to be simpler.

However, the adversarial approach in GANs and other techniques such as density ratio estimation [39]
and approximate Bayesian computation [3] have provided useful tools to bridge the gap in the first
point. For instance, implicit generative models such as GANs require only simulation of the generative
process without explicit likelihood evaluation, hence the prior distributions over latent variables
are used in the same way as the empirical data distributions, namely, generating samples from the
distributions. For explicit likelihood-based models, adversarial autoencoder (AAE) leverages the
adversarial approach to allow implicit prior distributions over latent space. Besides, a few most recent
work [36, 53, 26, 48] extends VAEs by using implicit variational distributions as the inference model.
Indeed, the reparameterization trick in VAEs already resembles construction of implicit variational
distributions (as also seen in the derivations of IWGANs in Eq.19). In these algorithms, adversarial
approach is used to replace intractable minimization of the KL divergence between implicit variational
distributions and priors.

The second difference in terms of space complexity guides us to choose appropriate tools (e.g., adver-
sarial approach v.s. reconstruction optimization, etc) to minimize the distance between distributions to
learn and their targets. However, the tools chosen do not affect the underlying modeling mechanism.
For instance, VAEs and adversarial autoencoder both regularize the model by minimizing the distance
between the variational posterior and certain prior, though VAEs choose KL divergence loss while
AAE selects adversarial loss.

We can further extend the symmetric treatment of visible/latent x/z pair to data/label x/t pair, leading
to a unified view of the generative and discriminative paradigms for unsupervised and semi-supervised

12

	| ∼ bõ∏0À∏(|)
ç ∼ ÉÃÕ±ŒèÜÃÀ[| 	

	ç ∼ b)±≤±(ç)
| ∼ É′ÃÕ±ŒèÜÃÀ[ç 	

© Petuum,Inc. 172

Generation
model

prior	distr.

+789 +&8/.

:

Generation
model

prior	distr.

+
max>	log$ +&8/. B 	

data	distr.

Symmetric modeling of latent & visible variables

• No difference in terms of formulations
• with implicit distributions and black-box NN models

• Difference in terms of space complexity
• depend on the problem at hand
• choose appropriate tools:

• implicit/explicit distribution, adversarial/maximum-likelihood optimization, …

adversarial loss maximum likelihood loss

Inference
model

data	distr.

maxC	log$ "%&'(& D 	

Inference
model

data	distr.

:

prior	distr.

Figure 5: Symmetric view of generation and inference. There is little difference of the two processes
in terms of formulation: with implicit distribution modeling, both processes only need to perform
simulation through black-box neural transformations between the latent and visible spaces.

activating the adversary mechanism on the VAE models. We see that the adversary activated models
consistently outperform their respective base models. Generally, larger improvement can be obtained
with smaller set of real training data. Table 2, right panel, further shows the classification accuracy
of semi-supervised VAE and its adversary activated variants with different size of labeled training
data. We can observe improved performance of the AA-SVAE model. The full results of standard
deviations are reported in the supplementary materials.

6 Discussions

Our new interpretations of GANs and VAEs have revealed strong connections between them, and
linked the emerging new approaches to the classic wake-sleep algorithm. The generality of the
proposed formulation offers a unified statistical insight of the broad landscape of deep generative
modeling, and encourages mutual exchange of improvement ideas across research lines. It is
interesting to further generalize the framework to connect to other learning paradigms such as
reinforcement learning as previous works have started exploration [14, 44]. GANs simultaneously
learn a metric (defined by the discriminator) to guide the generator learning, which resembles the
iterative teacher-student distillation framework [23, 24] where a teacher network is simultaneously
learned from structured knowledge (e.g., logic rules) and provides knowledge-informed learning
signals for student networks of interest. It will be intriguing to build formal connections between
these approaches and enable incorporation of structured knowledge in deep generative modeling.

z

prior

Symmetric view of generation and inference Traditional modeling approaches usually distin-
guish between latent and visible variables clearly and treat them in very different ways. One of the
key thoughts in our formulation is that it is not necessary to make clear boundary between the two
types of variables (and between generation and inference), but instead, treating them as a symmetric
pair helps with modeling and understanding. For instance, we treat the generation space x in GANs as
latent, which immediately reveals the connection between GANs and adversarial domain adaptation,
and provides a variational inference interpretation of the generation. A second example is the classic
wake-sleep algorithm, where the wake phase reconstructs visibles conditioned on latents, while the
sleep phase reconstructs latents conditioned on visibles (i.e., generated samples). Hence, visible and
latent variables are treated in a completely symmetric manner.

Furthermore, the newly emerging tools such as implicit distribution modeling and black-box neural
transformations have enabled undifferentiated formulation of generation and inference (Figure 5).
Generally, we have prior distributions over latent space, and empirical data distributions over visible
space. Both are pre-defined and can be easily sampled from. There are two major differences.

• Empirical data distributions are usually implicit, i.e., easy to sample from but intractable for
evaluating likelihood. In contrast, priors are usually defined as explicit distributions, amiable for
likelihood evaluation.

• The complexity of the two distributions are different. Visible space is usually complex while latent
space tends (or is designed) to be simpler.

12

maximum likelihood lossadversarial loss

© Petuum,Inc. 173

Part-II: Conclusions
• Deep generative models research have a long history

• Deep blief nets / Helmholtz machines / Predictability Minimization / …
• Unification of deep generative models

• GANs and VAEs are essentially minimizing KLD in opposite directions
• Extends two phases of classic wake sleep algorithm, respectively

• A general formulation framework useful for
• Analyzing broad class of existing DGM and variants: ADA/InfoGAN/Joint-models/…
• Inspiring new models and algorithms by borrowing ideas across research fields

• Symmetric view of latent/visible variables
• No difference in formulation with implicit prior distributions and black-box NN

transformations
• Difference in space complexity: choose appropriate tools

Z Hu, Z YANG, R Salakhutdinov, E Xing,
“On Unifying Deep Generative Models”, arxiv 1706.00550

© Petuum,Inc. 174

Plan
• Statistical And Algorithmic Foundation and Insight of Deep

Learning

• On Unified Framework of Deep Generative Models

• Computational Mechanisms: Distributed Deep Learning
Architectures

© Petuum,Inc. 175

Part-III (1)
Inference and Learning

© Petuum,Inc. 176

Outline
• Deep Learning as Dataflow Graphs
• Auto-differentiable Libraries

© Petuum,Inc. 177

Outline
• Deep Learning as Dataflow Graphs
• Auto-differentiable Libraries

© Petuum,Inc. 178

A Computational Layer in DL
• A layer in a neural network is composed of a few finer

computational operations
• A layer œ has input X and output k, and transforms X into k following:
` = –X + M, k = —“Q”(`)

• Denote the transformation of layer œ as ÉÕ, which can be represented
as a dataflow graphs: the input X flow though the layer

ÉÕ

X k

© Petuum,Inc. 179

From Layers to Networks
• A neural network is thus a few stacked layers œ = 1,… , Q, where

every layer represents a function transform ÉÕ
• The forward computation proceeds by sequentially executing
É$, É&, É', … , É‘

• Training the neural network involves deriving the gradient of its
parameters with a backward pass (next slides)

⋯
É'É&É$ É‘

© Petuum,Inc. 180

A Computational Layer in DL
• Denote the backward pass through a layer œ as MÕ

• MÕ derives the gradients of the input X(dX),given the gradient of k as
dk, as well as the gradients of the parameters W,b

• dX will be the backward input of its previous layer œ − 1
• Backward pass can be thought as a backward dataflow where the

gradient flow through the layer

MÕ

¡X ¡k

© Petuum,Inc. 181

Backpropagation through a NN
• The backward computation proceeds by sequentially

executing M‘, M‘Ü$, M‘Ü&, … , M$

⋯
M‘M&M$

© Petuum,Inc. 182

A Layer as a Dataflow Graph
•Give the forward computation flow, gradients can be computed
by auto differentiation

• Automatically derive the backward gradient flow graph from the forward
dataflow graph

Photo from TensorFlow website

© Petuum,Inc. 183

•Gradients can be computed by auto differentiation
• Automatically derive the gradient flow graph from the forward dataflow

graph

A Network as a Dataflow Graph

⋯
É‘É&É$

⋯
M‘M&M$

Photo from TensorFlow website

© Petuum,Inc. 184

Gradient Descent via Backpropagation

Model parameters Forward

Backward

Data

• The computational workflow of deep learning
• Forward, which we usually also call inference: forward dataflow
• Backward, which derives the gradients: backward gradient flow
• Apply/update gradients and repeat

• Mathematically,

© Petuum,Inc. 185

Program a neural network
• Define a neural network

• Define operations and layers: fully-connected? Convolution? Recurrent?
• Define the data I/O: read what data from where?
• Define a loss function/optimization objective: L2 loss? Softmax?

Ranking Loss?
• Define an optimization algorithm: SGD? Momentum SGD? etc

• Auto-differential Libraries will then take over
• Connect operations, data I/O, loss functions and trainer.
• Build forward dataflow graph and backward gradient flow graphs.
• Perform training and apply updates

© Petuum,Inc. 186

Outline
• Deep Learning as Dataflow Graphs
• Auto-differentiable Libraries

© Petuum,Inc. 187

Auto-differential Libraries
• Auto-differential Library automatically derives the gradients following the back-

propagation rule.
• A lot of auto-differentiation libraries have been developed:
• So-called Deep Learning toolkits

© Petuum,Inc. 188

Deep Learning Toolkits

Vision NLP

• They are adopted differently in different domains
• For example

© Petuum,Inc. 189

Deep Learning Toolkits

Imperative Symbolic

• They are also designed differently
• Symbolic v.s. imperative programming

© Petuum,Inc. 190

Deep Learning Toolkits
• Symbolic vs. imperative programming

• Symbolic: write symbols to assemble the networks first, evaluate later
• Imperative: immediate evaluation

ImperativeSymbolic

© Petuum,Inc. 191

Deep Learning Toolkits
• Symbolic

• Good
• easy to optimize (e.g. distributed, batching, parallelization) for developers
• More efficient

• Bad
• The way of programming might be counter-intuitive
• Hard to debug for user programs
• Less flexible: you need to write symbols before actually doing anything

• Imperative:
• Good

• More flexible: write one line, evaluate one line
• Easy to program and easy to debug: because it matches the way we use C++ or python

• Bad
• Less efficient
• More difficult to optimize

© Petuum,Inc. 192

Deep Learning Toolkits

Layer-by-layer
construction

Dataflow graphs

• They are also designed differently
• For another example, dataflow graphs v.s. layer-by-layer construction

© Petuum,Inc. 193

Good and Bad of Dataflow Graphs

• Dataflow graphs seems to be a dominant choice for representing
deep learning models

• What’s good for dataflow graphs
• Good for static workflows: define once, run for arbitrary batches/data
• Programming convenience: easy to program once you get used to it.
• Easy to parallelize/batching for a fixed graph
• Easy to optimize: a lot of off-the-shelf optimization techniques for graph

• What‘s bad for dataflow graphs
• Not good for dynamic workflows: need to define a graph for every training sample -

> overheads
• Hard to program dynamic neural networks: how can you define dynamic graphs

using a language for static graphs? (e.g. LSTM, tree-LSTM).
• Not easy for debugging.
• Difficult to parallelize/batching across multiple graphs: every graph is different, no

natural batching.

© Petuum,Inc. 194

Static vs. Dynamic Dataflow Graphs

• Static Dataflow graphs
• Define once, execute many times

• For example: convolutional neural networks
• Execution: Once defined, all following computation will follow the

defined computation
• Advantages

• No extra effort for batching optimization, because it can be by nature batched
• It is always easy to handle a static computational dataflow graphs in all aspects,

because of its fixed structure
• Node placement, distributed runtime, memory management, etc.

• Benefit the developers

© Petuum,Inc. 195

Static vs. Dynamic Dataflow Graphs

• Dynamic Dataflow graphs
• When do we need?

• In all cases that static dataflow graphs do not work well
• Variably sized inputs
• Variably structured inputs
• Nontrivial inference algorithms
• Variably structured outputs
• Etc.

© Petuum,Inc. 196

Static vs. Dynamic Dataflow Graphs

• Can we handle dynamic dataflow graphs? Using static
methods (or declaration) will have a lot of problems

• Difficulty in expressing complex flow-control logic
• Complexity of the computation graph implementation
• Difficulty in debugging

© Petuum,Inc. 197

Introducing DyNet
• Designed for dynamic deep learning workflow, e.g.

• Tree-LSTM for neural machine translation, where each sentence defines a structure that
corresponds to the computational flow

• Graph-LSTM for image parsing, where each image has a specific connection between
segments

• etc.

© Petuum,Inc. 198

• Concept
• Separate parameter declaration and graph construction
• Declare trainable parameters and construct models first

• Parameters, e.g. the weight matrices in an LSTM unit.
• Construct a model as a collection of trainable parameters

• Construct computation graphs
• Allocate a few nodes for our computation (node can be seen as layers in NN)
• Specify the dataflow graph by connecting nodes together
• If necessary, different graphs for different input samples

• Conclusion: Define parameter once, but define graphs dynamically depending on inputs

Key Ingredients in DyNet

© Petuum,Inc. 199

Key Ingredients in DyNet
• Backend and programing model

• Graph construction
• In TensorFlow, constructing a graph has a considerable overhead.
• TensorFlow users avoid defining graphs repeatedly

• DyNet: highly optimized graph definition
• Little overhead defining a graph: good for dynamic neural networks.
• Easy to write recursive programs to define graphs (very effective for many

dynamic networks, such as tree-LSTM or graph-LSTM).

© Petuum,Inc. 200

Key Ingredients in DyNet

DyNet TreeLSTM (30 LoC) TensorFlow TreeLSTM (200 LoC)

• A visual comparison

© Petuum,Inc. 201

Part-III (2)
Distributed Deep Learning

© Petuum,Inc. 202

Outline
• Overview: Distributed Deep Learning on GPUs
• Challenges 1: Addressing the communication bottleneck
• Challenges 2: Handling the limited GPU memory

© Petuum,Inc. 203

Review – DL toolkits on single machine
• Using GPU is a must

• A small number of GPU-equipped machines could achieve satisfactory
speedup compared to CPU clusters with thousands of cores

• A cluster of 8 GPU-equipped machines
• A cluster of 2000 CPU cores

More readily
available to
researchers

© Petuum,Inc. 204

Review – DL toolkits on single machine
• However, using a single GPU is far from sufficient

• average-sized deep networks can take days to train on a single GPU when
faced with 100s of GBs to TBs of data

• Demand faster training of neural networks on ever-larger datasets

• However, current distributed DL implementations (e.g. in TensorFlow) can
scale poorly due to substantial parameter synchronization over the network
(we will show later)

AlexNet, 5 – 7 days GoogLeNet, 10+ days

© Petuum,Inc. 205

Outline
• Overview: Distributed Deep Learning on GPUs
• Challenges 1: Addressing the communication bottleneck
• Challenges 2: Handling the limited GPU memory

© Petuum,Inc. 206

Challenges
• Communication challenges

• GPUs are at least one order of magnitude faster than CPUs

• High communication load raises the network communication as the main bottleneck
given limited bandwidth of commodity Ethernet

• Managing the computation and communication in a distributed GPU cluster often
complicates the algorithm design

GPU are faster High Comm
Load

Limited network
bandwidth

bottleneck
Low GPU
utilization

Poor Scalability
with additional

machines

Bursty
Communication

© Petuum,Inc. 207

Let’s see what causes the problem
• Deep Learning on a single node – an iterative-convergent

formulation

Model parameters Forward

Backward

Data

Apply gradients

Zhang et al., 2017 © Petuum,Inc. 208

Let’s see what causes the problem
• Deep Learning on a single node – an iterative-convergent

formulation

Forward

Backward

Data

Forward and backward are the main computation (99%) workload of deep
learning programs.

© Petuum,Inc. 209

Distributed Deep Learning
• Distributed DL: parallelize DL training using multiple machines.
• i.e. we want to accelerate the heaviest workload (in the box) to

multiple machines

Forward

Backward

Data

Forward and backward are the main computation (99%) workload of deep
learning programs.

© Petuum,Inc. 210

Data parallelism with stochastic gradient
descent
• We usually seek a parallelization strategy called data parallelism, based

on SGD
• We partition data into different parts
• Let different machines compute the gradient updates on different data partitions
• Then aggregate/sync.

Sync

(one or more
machines)

Worker 1 Worker 2

Worker 3 Worker 4

Data

Data

Data

Data

© Petuum,Inc. 211

Data Parallel SGD
• Data parallel stochastic gradient descent
• Data-parallelism requires every worker to have read and write

access to the shared model parameters Ç, which causes
communication among workers;

Data partition p

In total P workers

Happening locally on each workerCollect and aggregate
before application, where
communication is required

Zhang et al., 2015, Zhang et al. 2017 © Petuum,Inc. 212

How to communicate
• Parameter server, e.g. Bosen, SSP

• A parameter server (PS) is a shared memory system that provides a
shared access for the global model parameters Ç

• Deep learning can be trivially data-parallelized over distributed
workers using PS by 3 steps:

• Each worker computes the gradients (¢L) on their own data partition
(tõ) and send them to remote servers;

• servers receive the updates and apply (+) them on globally shared
parameters;

• Each worker pulls back the updated parameters (Ç_ÿ)

Ho et al., 2013, Wei et al. 2015 © Petuum,Inc. 213

How PS works

Worker 1 Worker 2

Worker 3 Worker 4

PS

¢Ç$ ¢Ç&

¢Ç' ¢Ç2

Ç Ç

Ç Ç

Ho et al., 2013, Wei et al. 2015, Zhang et al., 2015, Zhang et al. 2017 © Petuum,Inc. 214

Parameter Server
• Parameter server has been successful for CPU-based deep

learning
• Google Distbelief, Dean et al. 2012

• Scale up to thousands of CPU machines and 16000 CPU cores
• SSPTable, Ho et al, 2013

• Stale-synchronous parallel consistency model
• Microsoft Adam, Chilimbi et al. 2014

• 63 machines, state-of-art results on ImageNet 22K
• Bosen, Wei et al. 2015

• Managed communication

© Petuum,Inc. 215

Parameter Server on GPUs
• Directly applying parameter server for GPU-based distributed deep

learning will underperform (as will show later).
• GPU is too fast
• Ethernet bandwidth is limited, and has latency

• For example
• AlexNet: 61.5M float parameters, 0.25s/iteration on Geforce Titan X

(batchsize = 256)
• Gradient generation rate: 240M float/(s*GPU)

• Parallelize it over 8 machines each w/ one GPU using PS.
• To ensure the computation not blocked on GPU (i.e. linear speed-up with

additional nodes)
• As a worker: send 240M floats/s and pull back 240M floats/s (at least)
• As a server: receive 240M * 8 floats/s and send back 240M * 8/s (at least)

Zhang et al., 2015, Zhang et al. 2017 © Petuum,Inc. 216

Parameter Server on GPUs
• Let’s see where we are

Ethernet standardsThis is what the GPU
workstation in you lab has

One of the most expensive instances
AWS could provide you (18$/h?)

Specialized hardware! Non-
commodity anymore, inaffordable

© Petuum,Inc. 217

The problem is more severe than described above
• We only use 8 nodes (which is small). How about 32,128, or even 256?
• We haven’t considered other issues (which might be also

troublesome), e.g.
• Memory copy between DRAM and GPU will have a non-trivial cost
• The Ethernet might be shared with other tasks, i.e. available bandwidth is even

less.
• Burst communication happens very often on GPUs (which will explain later).

Parameter Server on GPUs

© Petuum,Inc. 218

Address the Communication Bottleneck
• A simple fact:

• Communication time may be reduced, but cannot be eliminated (of
course)

• Therefore, possible ideas to address the communication
bottleneck

• Hide the communication time by overlapping it with the computation
time

• Reduce the size of messages needed to be communications

© Petuum,Inc. 219

Address the Communication Bottleneck
• A simple fact:

• Communication time may be reduced, but cannot be eliminated (of
course).

• Therefore, possible ideas to address the communication
bottleneck

• Hide the communication time by overlapping it with the
computation time

• Reduce the size of messages needed to be communications

© Petuum,Inc. 220

Overlap Computation and Communication

• Revisit on a single node the computation flow of BP
• MÕ: backpropagation computational through layer l
• Ÿ≤: forward and backward computation at iteration t

	Ÿ≤ Ÿ≤∂$

⋯
M‘M&M$

Ÿ≤∂& ⋯

⁄ÿ

Zhang et al., 2015, Zhang et al. 2017 © Petuum,Inc. 221

Overlap Computation and Communication

• On multiple nodes, when communication is involved
• Introduce two communication operations

• €Õ: send out the gradients in layer œ to the remote
• mÕ: pull back the globally shared parameters of layer œ from the remote
• ‹≤: the set €Õ Õº$‘ at iteration t
• ›≤: the set mÕ Õº$‘ at iteration t

	Ÿ≤ 	‹≤ ›≤ Ÿ≤∂$ 	›≤∂$

⋯

‹≤∂$

M‘M&M$
€Õ Õº$‘

mÕ Õº$‘

Computation and communication
happen sequentially!Zhang et al., 2015, Zhang et al. 2017 © Petuum,Inc. 222

Overlap Computation and Communication

• Note the following independency
• The send-out operation €Õ is independent of backward operations
• The read-in operation mÕ could update the layer parameters as long as
MÕ was finished, without blocking the subsequent backward operations
M0	(m < œ)

• Idea: overlap computation and communication by utilizing
concurrency

• Pipelining the updates and computation operations

© Petuum,Inc. 223

WFBP: Wait-free backpropagation
• Idea: overlap computation and communication by utilizing concurrency

• Pipelining the updates and computation operations

⋯
M‘M&M$

€‘€'€&€$

m‘m'm&m$

⋯
M‘M&M$

€Õ Õº$‘

mÕ Õº$‘

reschedule

Zhang et al., 2015, Zhang et al. 2017 © Petuum,Inc. 224

WFBP: Wait-free backpropagation
• Idea: overlap computation and communication by utilizing

concurrency
• Communication overhead is hidden under computation
• Results: more computations in unit time

	Ÿ≤ 	‹≤ ›≤ Ÿ≤∂$ 	›≤∂$

Ÿ≤
‹≤
›≤

‹≤∂$

Ÿ≤∂$
‹≤∂$
›≤∂$

Ÿ≤∂&
‹≤∂&
›≤∂&

Ÿ≤∂'
‹≤∂'
›≤∂'

⁄ÿ

pipelining

Zhang et al., 2015, Zhang et al. 2017 © Petuum,Inc. 225

WFBP: Distributed Wait-free backpropagation

• How does WFBP perform?
• Using Caffe as an engine:

• Using TensorFlow as engine:

50% comms
bottleneck
reduction Zhang et al. 2017

© Petuum,Inc. 226

WFBP: Distributed Wait-free backpropagation
• Observation: Why DWBP would be effective

• More statistics of modern CNNs

• 90% computation happens at bottom layers
• 90% communication happens at top layers
• WFBP overlaps 90% and 90%

Params/FLOP distribution of modern CNNs

Zhang et al., 2015, Zhang et al. 2017 © Petuum,Inc. 227

WFBP: Wait-free Backpropagation
• Does overlapping communication and computation solve all the

problems?
• When communication time is longer than computation, no (see the figure below).
• Say, if communication and computation are perfectly overlapped, how many

scalability we can achieve?

Ÿ≤
‹≤
›≤

Ÿ≤

Single node Distributed gap

Zhang et al., 2015, Zhang et al. 2017 © Petuum,Inc. 228

Address the communication bottleneck
• Note a simple fact:

• Communication time may be reduced, but cannot be eliminated (of
course).

• Therefore, possible ideas to address the communication
bottleneck

• Hide the communication time by overlapping it with the computation
time – which we have described before.

• Reduce the size of messages needed to be communications
• While without compromising statistical convergence

© Petuum,Inc. 229

Introducing Sufficient Factor Broadcasting

• Matrix-parametrized models
Multiclass Logistic

Regression

#classes

Feature dim.
Distance Metric Learning

Latent dim.

Feature dim.

Sparse Coding

Dictionary
size

Feature dim.
Neural Network

#neurons in layer fl − ‡

#neurons in
layer fl

© Petuum,Inc. 230

Distributed Learning of MPMs
• Learning MPMs by communicating parameter matrices between server

and workers
• Dean and Ghemawat, 2008; Dean et al, 2012; Sindhwani and Ghoting, 2012; Gopal

and Yang, 2013; Chilimbi et al, 2014, Li et al, 2015
• High communication cost and large synchronization delays

#classes=325K

Feature dim. = 20K

26G

Multiclass Logistic
Regression Neural Network (AlexNet)

#neurons in layer
fc6=4096

#neurons in
layer fc7
=4096

200M

© Petuum,Inc. 231

Contents:
Sufficient Factor (SF) Updates
Full parameter matrix update ΔW can be computed as outer product of two
vectors uvT (called sufficient factors)

• Example: Primal stochastic gradient descent (SGD)

• Example: Stochastic dual coordinate ascent (SDCA)

Send lightweight SF updates (u,v), instead of expensive full-matrix ΔW updates!

)();(1min
1

WhbWaf
N

N

i
iiiW
+å

=

T (,)
()

i i
i

i

f Wa bW uv u v a
Wa

¶
D = = =

¶

* * T

1

1 1min () ()
N

i iZ i
f z h ZA

N N=

- +å

T
i iW uv u z v aD = = D =

© Petuum,Inc. 232

Sufficient Factor Broadcasting:
P2P Topology + SF Updates

Xie et al., 2015 © Petuum,Inc. 233

A computing & communication tradeoff

• Full update:

• Pre-update

• Stochastic algorithms
• Mini-batch: C samples

Training examples

Individual update
matrices

Aggregated
update matrix Sum

Training
examples

Sufficient
vectors ·$, G$ ·&, G& ·', G' ·2, G2

Cannot be aggregated

Matrix
Representation

‹(‚�)

SV Representation ‹(‚ + � Ÿ) © Petuum,Inc. 234

Synchronization of Parameter Replicas

• A Cost Comparison

parameter server Transfer SVs instead of ΔW

Size of one message Number of messages Network Traffic

P2P SV-Transfer ‹(‚ + �) ‹(!&) ‹((‚ + �)!&)

Parameter Server ‹(‚�) ‹(!) ‹(‚�!)
© Petuum,Inc. 235

Convergence Speedup

Multiclass Logistic Regression (MLR) Distance Metric Learning (DML) Sparse Coding (SC)

• 3 Benchmark ML Programs
• Big parameter matrices with 6.5-8.6b entries (30+GB), running on 12- & 28-

machine clusters
• 28-machine SFB finished in 2-7 hours

• Up to 5.6x faster than 28-machine PS, 12.3x faster than 28-machine Spark
• PS cannot support SF communication, which requires decentralized

storage

Xie et al., 2015 © Petuum,Inc. 236

Convergence Guarantee
• Assumptions

• Bridging model
• Staleness Synchronous Parallel (SSP) with staleness

parameter „
• Bulk Synchronous Parallel is a special case of SSP when
„ = 0

• Communication methods
• Partial broadcast (PB): sending messages to a subset of
E	(E < ! − 1) machines

• Full broadcast is a special case of PB when E = ! − 1
• Additional assumptions

© Petuum,Inc. 237

Convergence Guarantee
• Results

© Petuum,Inc. 238

Convergence Guarantee
• Take-home message:

• Under full broadcasting, given a properly-chosen
learning rate, all local worker parameters –õŒ
eventually converge to stationary points (i.e. local
minima) of the objective function, despite the fact
that SV transmission can be delayed by up to „
iterations.

• Under partial broadcasting, the algorithm
converges to a ‹(Qù(! − E)) neighbourhood if
Ÿ ⟶ ∞.

© Petuum,Inc. 239

Parameter Storage and
Communication Paradigms

Server

Worker

Send change
ΔW Send W itself

Worker

Worker

Send change
ΔW

Centralized Storage Decentralized Storage

Send change
ΔW

• Centralized: send parameter W itself from server to worker
• Advantage: allows compact comms topology, e.g. bipartite

• Decentralized: always send changes ΔW between workers
• Advantage: more robust, homogeneous code, low communication (?)

© Petuum,Inc. 240

Topologies:
Master-Slave versus P2P?

Master-slave
• Used with centralized storage paradigm
• Disadvantage: need to code/manage clients

and servers separately
• Advantage: bipartite topology is comms-

efficient
• Popular for Parameter Servers: Yahoo LDA,

Google DistBelief, Petuum PS, Project Adam,
Li&Smola PS, …

P2P
• Used with decentralized storage
• Disadvantage (?): high comms volume for

large # of workers
• Advantage: same code for all workers; no

single point of failure, high elasticity to
resource adjustment

• Less well-explored due to perception of high
communication overhead?

© Petuum,Inc. 241

Hybrid Updates: PS + SFB
• Hybrid communications:

Parameter Server +
Sufficient Factor
Broadcasting

• Parameter Server: Master-
Slave topology

• Sufficient factor
broadcasting: P2P topology

• For problems with a mix of
large and small matrices,

• Send small matrices via PS
• Send large matrices via SFB

Zhang et al., 2015, Zhang et al. 2017 © Petuum,Inc. 242

Hybrid example: CNN
• Example: AlexNet CNN model

• Final layers = 4096 * 30000 matrix (120M parameters)
• Use SFB to communicate

• 1. Decouple into two 4096 vectors: u, v
• 2. Transmit two vectors
• 3. Reconstruct the gradient matrix

Hao Zhang, Zhiting Hu, Jinliang Wei, Pengtao Xie, Gunhee Kim, Qirong Ho, Eric P. Xing. Poseidon: A
System Architecture for Efficient GPU-based Deep Learning on Multiple Machines. USENIX ATC 2016.

Figure from
Krizhevsky et al. 2012

Zhang et al., 2015, Zhang et al. 2017 © Petuum,Inc. 243

Hybrid example: CNN
• Example: AlexNet CNN model

• Convolutional layers = e.g. 11 * 11 matrix (121 parameters)
• Use Full-matrix updates to communicate

• 1. Send/receive using Master-Slave PS topology

Hao Zhang, Zhiting Hu, Jinliang Wei, Pengtao Xie, Gunhee Kim, Qirong Ho, Eric P. Xing. Poseidon: A
System Architecture for Efficient GPU-based Deep Learning on Multiple Machines. USENIX ATC 2016.

Figure from
Krizhevsky et al. 2012

Zhang et al., 2015, Zhang et al. 2017 © Petuum,Inc. 244

Hybrid Communication

• Idea
• Sync FC layers using SFB
• Sync Conv layer using PS

• Effectiveness
• It directly reduces the size

of messages in many
situations

• Is SFB always optimal?
• No, its communication

load increases
quadratically

• The right strategy: choose
PS whenever it results in
less communication

© Petuum,Inc. 245

Hybrid Communication
• A best of both worlds strategy
• For example, AlexNet parameters between FC6 and FC7
• Tradeoff between PS and SFB communication

Zhang et al., 2015 © Petuum,Inc. 246

Hybrid Communication
• How to choose? Where is the threshold?
• Determine the best strategy depending on

• Layer type: CONV or FC?
• Layer size
• Batch size
• # of Cluster nodes

Zhang et al., 2015, Zhang et al. 2017 © Petuum,Inc. 247

Hybrid Communication
• Hybrid communication algorithm

Determine the best strategy depending on
• Layer type: CONV or FC?
• Layer size: M, N
• Batch size: K
• # of Cluster nodes: !$, !&

Zhang et al., 2015, Zhang et al. 2017 © Petuum,Inc. 248

Hybrid Communication
• Results: achieve linear scalability across different models/data with 40GbE bandwidth

• Using Caffe as an engine:

• Using TensorFlow as engine

Zhang et al., 2015, Zhang et al. 2017

Improve over WFBP

© Petuum,Inc. 249

Hybrid Communication
• Linear scalability on throughput, even with limited bandwidth!

• Make distributed deep learning affordable

Zhang et al., 2015, Zhang et al. 2017

parameters 143M 229M5M

© Petuum,Inc. 250

Hybrid Communication
• Discussion: Utilizing SFs is not a new idea, actually

• Microsoft Adam uses the third strategy (c)

PS SFB push: SFs
Pull: full matrices

© Petuum,Inc. 251

Hybrid Communication
• Adam’s strategy leads to communication bottleneck

• Pushing SFs to server is fine
• Pulling full matrices back will create a bottleneck on the server node.

• Hybrid communication yields communication load balancing
• Which is important to address the problem of burst communication.

© Petuum,Inc. 252

Introducing Poseidon
• Poseidon: An efficient communication architecture

• A distributed platform to amplify existing DL toolkits

Poseidon

toolkits

platform

© Petuum,Inc. 253

Poseidon’s position
• Design principles

• Efficient distributed platform for amplifying any DL toolkits
• Preserve the programming interface for any high-level toolkits

• i.e. distribute the DL program without changing any line of code
• Easy deployment, easy adoption.

© Petuum,Inc. 254

Poseidon System Architecture
GPU CPU

Stream Pool Thread Pool

KV Store

Synceri

Coordinator

SFB

data flow
allocation
instruction

KV Store

Zhang et al., 2015, Zhang et al. 2017 © Petuum,Inc. 255

Poseidon APIs
• KV Store, Syncer and Coordinator
• Standard APIs similar to parameter server

• Push/Pull API for parameter synchronization
• BestScheme method to return the best communication method

Zhang et al., 2015, Zhang et al. 2017 © Petuum,Inc. 256

Amplify DL toolboxes Using Poseidon
• For developers: plug Poseidon API into the backpropagation

code, all you need to do is:
• Back propagate through layer œ
• Sync parameters of layer œ
• Wait for finishing

• Amplifying Google TensorFlow
• 250 line of code

• Amplifying Caffe
• 150 line of code

Zhang et al., 2015, Zhang et al. 2017 © Petuum,Inc. 257

Using Poseidon
• Poseidon: An efficient communication architecture

• Preserve the programming interface for any high-level toolkits
• i.e. distribute the DL program without changing any line of application code

Poseidon

toolkits

platform

© Petuum,Inc. 258

Outline
• Overview: Distributed Deep Learning on GPUs
• Challenges 1: Addressing the communication bottleneck
• Challenges 2: Handling the limited GPU memory

© Petuum,Inc. 259

What is the Issue
• Memory

• GPUs have dedicate memory
• For a DL training program to be efficient, its data must be placed on

GPU memory
• GPU memory is limited, compared to CPU, e.g. maximally 12Gb
• Memcpy between CPU and GPU is expensive – a memcpy takes the

same time as launching a GPU computation kernel
• Problems to be answered

• How to Avoid memcpy overhead between CPU and GPU?
• How to proceed the training of a gigantic network with very limited

available memory?

© Petuum,Inc. 260

A Machine w/o GPU

DRAM
(CPU memory)

NIC

NetworkCPU cores
...

Local
storage

© Petuum,Inc. 261

A Machine w/ GPU

GPU device

GPU
memory

(a few GB)

GPU cores
DRAM

(CPU memory)

NIC

NetworkCPU cores
...

Local
storage

Small GPU memory
Expensive to copy between GPU/CPU mem

© Petuum,Inc. 262

Machine Learning on GPU

Input
data

GPU memoryCPU memory

Intermediate
data

a mini-batch of training data

Parameter data

Staging memory
for input data batch

Input data file
(training data)

© Petuum,Inc. 263

Deep Learning on GPU
Class probabilities

Eagle Vulture

AccipiterOsprey

Training batch

parameters

Intermediate states

GPU memory

© Petuum,Inc. 264

Numbers
Training batch

parameters

Intermediate states

GPU memory

Network Batch size Input size Parameters
+ grads

Intermediat
e states

AlexNet 256 150MB <500M 4.5G
GoogLeNet 64 19MB <40M 10G
VGG19 16 10MB <1.2G 10.8G

Max available GPU memory: 12G

© Petuum,Inc. 265

Why Memory is an Issue?
• Intermediate states occupy 90% of the GPU memory
• Intermediate states is proportional to input batch size

• However,
• If you want high throughput, you must have large batch size (because

of the SIMD nature of GPUs)
• If you have large batch size, your GPU will be occupied by

intermediate states, which thereby limits your model size/depth

© Petuum,Inc. 266

Saving Memory: A Simple Trick
• Basic idea

• The fact: intermediate states are proportional to the batch size K
• Idea: achieve large batch size by accumulating gradients generated by smaller batch sizes

which are affordable in the GPU memory

• Solution:
• Parition K into M parts, every part has K/M samples
• For iter = 1:M

• Train with mini-batchsize K/M
• Accumulate the gradient on GPU w/o updating model parameters

• Update the model parameter all together when all M parts finished

• Drawbacks
• What if the GPU still cannot afford the intermediate states even if K=1?
• Small batch size usually leads to insufficient use of GPUs’ computational capability

© Petuum,Inc. 267

Memory Management using CPU Memory

• Core ideas
• If the memory is limited, trade something for memory

• Trade extra computations for memory
• Trade other cost (e.g. memory exchange) for more available memory

• If the memory is limited, then get more
• model parallel
• CPU memory

© Petuum,Inc. 268

Memory Management using CPU Memory

• For each iteration (mini-
batch)

• A forward pass
• Then a backward pass

• Each time only data of two
layers are used

Class probabilities

Training images

Cui et al., 2016 © Petuum,Inc. 269

Memory Management using CPU Memory

• For each iteration (mini-
batch)

• A forward pass
• Then a backward pass

• Each time only data of two
layers are used

Class probabilities

Training images

Cui et al., 2016 © Petuum,Inc. 270

Memory Management using CPU Memory

• For each iteration (mini-
batch)

• A forward pass
• Then a backward pass

• Each time only data of two
layers are used

Class probabilities

Training images

Cui et al., 2016 © Petuum,Inc. 271

Memory Management using CPU Memory

• For each iteration (mini-
batch)

• A forward pass
• Then a backward pass

• Each time only data of two
layers are used

Class probabilities

Training images

Cui et al., 2016 © Petuum,Inc. 272

Memory Management using CPU Memory

Training images

Class probabilities • For each iteration (mini-
batch)

• A forward pass
• Then a backward pass

• Each time only data of two
layers are used

Cui et al., 2016 © Petuum,Inc. 273

Memory Management using CPU Memory

• For each iteration (mini-
batch)

• A forward pass
• Then a backward pass

• Each time only data of
two layers are used

The idea
• Use GPU mem as a cache to keep actively used data
• Store the remaining in CPU memory

Class probabilities

Training images

Cui et al., 2016 © Petuum,Inc. 274

Memory Management using CPU Memory

Input
data

GPU memory

Intermediate
data

parameters

Staging memory
for input data batch

Input data file
(training data)

CPU/GPU
data transfer

CPU memory

Very expensive,
sometimes more
expensive than

computation

Cui et al., 2016 © Petuum,Inc. 275

Memory Management using CPU Memory

Input
data

GPU memory

Intermediate
data

parameters

Staging memory
for input data batch

Input data file
(training data)

CPU/GPU
data transfer

CPU memory

Controller/Scheduler
to alleviate/hide this

overhead

Cui et al., 2016 © Petuum,Inc. 276

Memory Management using CPU Memory

• Controller
• The fact: the memory access order is deterministic and can be exactly

known by a single forward and backward pass
• Idea:

• Obtain the memory access order by a virtual iteration
• Pre-fetch memory blocks from CPU to GPU
• Overlap memory swap overhead with computation

© Petuum,Inc. 277

Memory Management using CPU Memory

• What’s the best we can do with this strategy
• We only need 3 memory blocks (peak size) on GPU for:

• Input, Parameters, Output
• The whole training can process with ONLY these three blocks by

• Scheduling memcpy between CPU and GPU to be overlapped with computation
• Move in and out for each layer’s computation as training proceeds

peak

Cui et al., 2016 © Petuum,Inc. 278

Throughput vs. memory budget

All data in GPU memory

Only buffer pool in GPU memory
Twice the peak size for double buffering

• Only 27% reduction in throughput with 35% memory
• Can do 3x bigger problems with little overhead

Cui et al., 2016 © Petuum,Inc. 279

Larger models

• Models up to 20 GB

Cui et al., 2016 © Petuum,Inc. 280

Summary
• Deep learning as dataflow graphs
• A lot of auto-differentiation libraries have been developed to train NNs

• Different adoption, advantages, disadvantages
• DyNet is a new framework for next-wave dynamic NNs

• Difficulties arise when scaling up DL using distributed GPUs
• Communication bottleneck
• Memory limit

• Poseidon as a platform to support and amplify different kinds of DL
toolboxes

© Petuum,Inc. 281

Elements of Modern AI

Data

Task

Model

Algorithm

Implementation

System

Platform
and Hardware

• Network switches
• Infiniband

• Stochastic Gradient
 Descent / Back
 propagation

• Graphical Models

• Regularized
 Bayesian Methods

• Deep Learning • Sparse Coding

• Sparse Structured
 I/O Regression

• Large-Margin

• Spectral/Matrix
 Methods

• Nonparametric
 Bayesian Models

• Coordinate
 Descent

• L-BFGS • Gibbs Sampling • Metropolis-
 Hastings

• Mahout
 (MapReduce)

• Mllib
 (BSP)

• CNTK • MxNet • Tensorflow
 (Async)

 …

• Network attached
 storage
• Flash storage

• Server machines
• Desktops/Laptops
• ARM-powered
 devices
• Mobile devices
• GPUs

• RAM
• Flash
• SSD

• IoT device
networks (e.g.
Amazon EC2)

• Virtual
 machines

Hadoop Spark MPI RPC GraphLab …

© Petuum,Inc. 282

Sys-Alg Co-design Inside!

Data

Task

Platform
and Hardware

Our “VML”
Software Layer

Model

Algorithm

Implementation

System

© Petuum,Inc. 283

Spark Hand-
Crafted
System

PetuumOS

Ti
m

e
ta

ke
n

(m
in

ut
es

)

Speedup vs

Up to 200x faster on some ML
algorithms

Up to 20x faster deep learning
vs TensorFlow

Number of GPU computers

S
pe

ed
up

• Fast and Real-Time
• Orders of magnitude

faster than Spark and
TensorFlow

• As fast as hand-crafted
systems

• Any Scale
• Perfect straight-line

speedup with more
computing devices

• Spark, TensorFlow can
slow down with more
devices

• Low Resource
• Turning a regular

cluster into a super
computer:

• Achieve AI results with much
more data, but using fewer
computing devices

• Google brain uses ~1000
machines whereas Petuum
uses ~10 for the same job

Better Performance

© Petuum,Inc. 284

A Petuum Vision

Data

Task

Platform
and Hardware

Model

Algorithm

Implementation

System

• Network switches
• Infiniband

• Stochastic Gradient
 Descent / Back
 propagation

• Graphical Models

• Regularized
 Bayesian Methods

• Deep Learning • Sparse Coding

• Sparse Structured
 I/O Regression

• Large-Margin

• Spectral/Matrix
 Methods

• Nonparametric
 Bayesian Models

• Coordinate
 Descent

• L-BFGS • Gibbs Sampling • Metropolis-
 Hastings

• Mahout
 (MapReduce)

• Mllib
 (BSP)

• CNTK • MxNet • Tensorflow
 (Async)

 …

• Network attached
 storage
• Flash storage

• Server machines
• Desktops/Laptops
• ARM-powered
 devices
• Mobile devices
• GPUs

• RAM
• Flash
• SSD

• IoT device
networks (e.g.
Amazon EC2)

• Virtual
 machines

Hadoop Spark MPI RPC GraphLab …

• Omni-Source
 (Any Data)

• Omni-Lingual
 (Any Programming Language)

• Omni-Mount
 (Any Hardware)

© Petuum,Inc. 285

