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Abstract

This dissertation presents a numerical approach to reach the equilibrium position of a misaligned journal

bearing with radial loading. We consider the hydrodynamic Reynolds equation with cavitation phenomenon,

through both Reynolds and Elrod–Adams models. The device consists of an external cylinder surrounding

a rotating shaft, both separated by a lubricant to prevent contact. The unknowns are the pressure of the

lubricant satisfying a proper cavitation model, and the shaft position which could be misaligned. We couple

the hydrodynamic model to Newton’s second law, which describes the position of the shaft. This is consid-

ered an inverse problem where the coefficient of the equation is given by the unknown shaft position, which

depends on the pressure. Considering the Reynolds cavitation model, we solve the direct problem minimiz-

ing a convex functional. We use a preconditioned conjugate gradient method modified with projection and

restarting strategies to account for cavitation. To solve the associated inverse problem we use an interior,

trust-region algorithm subject to bounds, through which we transform the constrained optimization problem

into an unconstrained one. The simulations show the existence of contact points for finite loading when

misalignment occurs. We provide a mathematical proof for the point contact case. Similarly, we present

the admissible range of misalignment angle projections for prescribed values of the shaft eccentricity and

angular coordinate. With the Elrod–Adams model, we approximate the Heaviside function by a third order

Hermite polynomial and solve the direct problem by minimizing a convex and lower semi continuous func-

tional. To solve the associated inverse problem we introduce Ant Colony Optimization, an approach inspired

by the ants’ foraging behaviour and communication through pheromone trails. This approach, originally de-

veloped to solve discrete optimization problems has been now successfully extended to continuous domains.

Numerical results are presented to verify the different numerical approaches. To validate the proposal the

predicted pressure values, in the bearing mid-plane, are compared to published experimental data.
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Introduction

Since ancient times man has been concerned about the power loss of machinery and the wear of parts in rela-

tive motion (Dowson, 1979). Nowadays, the research of such phenomena have received increasing attention,

due to its multifactorial complexity. The movement process suffers the disturbing influence of the friction,

and therefore, a percentage of the energy involved in the movement is used to overcome that friction. In

1996, it was reported that 20% of the power consumed in cars was used in overcoming friction (Pope, 1996).

For decreasing the loss of material and energy as a consequence of this interaction, a major option to

consider is to diminish friction between the solid surfaces by introducing a fluid that avoids direct contact.

This way, the concept of lubrication emerges. Any analysis of a system consisting of two or more bodies

in relative motion that rub to each other, includes the whole study of friction, wear, and lubrication. A new

field of science, defined Tribology in 1967 by a committee of the Organization for Economic Cooperation

and Development, focuses on the study of these factors. Tribology is derived from the Greek word “tribos”

meaning rubbing or sliding (Stachowiak and Batchelor, 2013).

The modern machinery is expected to work at high speed and strain, which forces scientists to carefully

consider all phenomena taking place on surfaces in relative motion, namely in friction knots. A special case

is a journal bearing, which is a mechanical device consisting of two cylinders closely spaced and in relative

motion. The annular gap between them is filled with a fluid, the lubricant, to prevent contact. Journal

bearings have been widely used for load support of rotating machinery like gearboxes, pumps, thermal

engines or turbo-generators. Ideally, the axes of both cylinders are parallel when installed and remain so

during the operation, under an imposed load and speed (Jang and Khonsari, 2015); see Fig. 1a.

Actually, this ideal condition hardly exists and the inner cylinder, the shaft, tends to experience some

degree of misalignment while rotating inside the outer cylinder, the bearing; see Fig. 1b.
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Figure 1. A schematic for parallel and misaligned journal bearings.

Misalignment is known to have a harmful effect on the steady-state performance of a journal bearing.

The principal effect is a reduction in the minimum thickness of the lubricant film. Misalignment could be

parallel, angular or even a combination of them. In parallel misalignment, the centre lines of both cylinders

are parallel but they are offset while in angular misalignment, the centre lines are at an angle to each other.

Thus, the Reynolds Equation (RE) should be modified to allow the variation of the film thickness in both

circumferential and axial direction. Substantially, reduced minimum film thickness also alters the entire

pressure and temperature fields (Jang and Khonsari, 2015).

On the other hand, if the lubricant film fails, it impairs the relative movement between solid bodies and

inevitably causes severe damage to the surfaces in contact. That is why, from the practical engineering view

point, prediction of lubricant film behaviour is extremely important. The consequence of the lubricant film

failure is severe wear. Depending on the circumstances adhesive wear, fatigue wear, abrasive wear, erosive

wear, corrosive wear, oxidative wear, fretting wear, impact wear, melting wear, diffusive wear, or cavitation

wear may result. A report published in 1976 revealed that the economic losses caused by friction and wear

cost about 10 billions DM in West Germany each year, at 1975 values, which was equivalent to 1% of the

Gross National Product (apud Stachowiak and Batchelor, 2013, p. 6). About 50% of these losses were due

to abrasive wear. In France, it was assessed by Versailles Project on Advanced Materials and Standards

(VAMAS), in last century, that losses due to wear were equivalent to 2% of the Gross National Product.

At that time, a failure of a bearing, which usually carried a machine unavailability of 1300 MW power
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generating unit, could cost as much as 4 MF per day. Similarly, it was estimated by the American Society

of Mechanical Engineers (ASME) that 11% of total US energy consumption could be saved by research

and development in the field of Tribology (Frêne, Nicolas, et al., 1997). In a recent study on energy used,

it was estimated that about 100 EJ (1⁄5 of all energy produced) is used annually worldwide to overcome

friction (Holmberg and Erdemir, 2015). The largest quantities of energy are used by industry (29%) and

transportation (27%). The study concluded that in a term of 5 to 9 years it is possible to save the 17.5%

of the energy use in road transports by effective implementation of new tribological solutions. This equals

to annual energy savings of 11.6 EJ, fuel savings of 330 billion litres and reduction in CO2 emission by

860 Mt. Similarly, in paper machines, 11% of the total energy used to overcome friction can be saved by the

implementation of new tribological technologies (ibid.).

Moreover, cavitation is one of the most relevant processes with important economic implications in

industry because of its effects. It is defined by Dowson and C. M. Taylor (1979) as the rupture of the con-

tinuous fluid film due to the formation of air bubbles inside, which makes the RE no longer valid in the

cavitation area. In practice, it is very difficult to completely avoid cavitation with the conventional journal

bearing (Stachowiak and Batchelor, 2013). This condition makes the use of cavitation models mandatory

and has motivated several studies by many authors. The two most widely used cavitation models are the

Reynolds and the Elrod–Adams models. The main difference between these models, comes from the way

to obtain the free boundary that separates lubricated and cavitated areas. The former takes advantage that

the pressure in the full filled area is greater than the saturation pressure, inducing the use of the theory of

variational inequalities. The problem has been solved numerically by the classical Gauss-Seidel method

or a point-overrelaxation method with a projection technique. These approaches seem to be enough in the

sense that they solve the problem, but in many real engineering problems the discretization of the geom-

etry of a journal bearing needs to be accomplished by a really fine mesh, which yields not only large and

sparse matrices but also ill-conditioned. Under these circumstances, those classical approaches result in very

time-consuming tasks, prohibited if the problem is nested inside a large one. For that reason, it would be con-

venient to take advantage of the underlying mathematical model to choose a proper numerical approach. In

addition, for the Reynolds cavitation model, the work of Boedo and Booker (2004) suggests (but no proves)

that misaligned bearings have infinite load and moment capacity as the end-plane minimum film thickness
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approaches zero, which contradicts finite capacity trends reported in previous numerical and experimental

studies; see (Gómez-Mancilla and Nosov, 2002; Vijayaraghavan and Keith, 1990) for instance.

Furthermore, the Elrod–Adams model introduces the hypothesis that the cavitation region is a fluid-air

mixture. In this sense, an additional unknown, the saturation of fluid in the mixture appears, representing a

multivalued non-linear saturation-pressure relation, posed by the Heaviside operator. Numerical methods for

solving this model are mainly based on the characteristics discretization for the non-linear convection term

and a duality method for the Heaviside operator approximated by the Yosida regularization; see (Durany,

Pereira, and Varas, 2006; Durany and Vázquez, 1992) for instance.

In addition, most of the papers in the literature deal with imposed geometry in the associated RE, i.e.

the film thickness h for the journal bearing is a given datum and the unknown is the pressure p. In real

engineering applications the position of the shaft in a journal bearing, that defines the function h, is unknown.

To obtain h, a new equation is needed; thanks to Newton’s second law the problem is well posed. It is

considered an inverse problem where the coefficient h depends on the unknown p. In this sense, Ciuperca, Jai,

and Tello (2017) performed an equilibrium analysis for a mass-conserving model in presence of cavitation.

In their work, the balance of forces allows to obtain the unknown position of the surfaces, defined with one

degree of freedom. The general characterization of the behaviour of a misaligned journal bearing is very

complex when considering other realistic factors as temperature, elasticity, piezoviscosity, roughness and

also including the prediction of its final position. For that reason most researches focus on specific topics.

The provided analysis reveals the following:

• When considering cavitation, the solution of the RE in the cavitated area is not longer valid and needs

to be changed as well as its numerical resolution.

• To predict the final position of the shaft in a journal bearing with radial loading is of major concern in

real engineering applications. It involves the statement of a balance by coupling several mathematical

models.

• Existent numerical solutions to the Reynolds cavitation model do not take advantage of the underlying

mathematical model, resulting in very time-consuming tasks, prohibited if the problem is nested inside

a large one.

• The Elrod–Adams cavitation model involves a non-linearity which makes the coupled problem harder
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to solve. Existent algorithms for solving the non-linearity involves an additional iterative algorithm

nested to the problem, which complicates the solution.

• When considering both radial and angular misalignment in the analysis, the variation of the film thick-

ness in the circumferential and axial directions needs to be carefully taken into consideration.

• Few research efforts on misalignment effects exist, most of them of numerical nature making the results

of such studies too complex to evaluate.

• There is a reference that suggests infinite load and moment capacity as the end-plane minimum film

thickness approaches zero for misaligned journal bearings with the Reynolds cavitation model. This

result differs markedly from finite capacity trends reported in previous numerical and experimental

studies.

• The non-prediction of contact in a journal bearing with radial loading implies the use of such devices

in an improper operating regime, leading to foreseeable wear and avoidable economic losses.

Thus, in this context, a research problem arises:

How to determine the shaft position and the pressure distribution in a misaligned journal bearing with

radial loading, to predict contact and cavitation respectively?

In this thesis, we aim the following objectives:

1. To develop a computational algorithm that allows determining the shaft position and the pressure

distribution in a misaligned journal bearing with radial loading to predict contact and cavitation, for

both Reynolds and Elrod–Adams models.

2. To determine the existence of contact points for finite loading in misaligned journal bearings consid-

ering the Reynolds cavitation model.

We hold the following research hypothesis:

If after an initial pressure in the lubricant generated by an initial supposed displacement of the shaft

axis, we apply our proposed algorithm until reaching the equilibrium between the imposed load and the

hydrodynamic load, we can determine the final position of the shaft and the final pressure distribution to

predict contact and cavitation in a misaligned journal bearing.

The contributions of the research are the following:

5 Hassán Lombera Rodríguez
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Theoretical

1. The admissible range of misalignment angle projections for prescribed values of the shaft eccentricity

and angular coordinate; see Sect. 2.1.2.

2. A theorem and its mathematical proof on the existence of contact points for finite loading in misaligned

journal bearings considering the Reynolds cavitation model; see Sect. 3.1.

3. A preconditioned conjugate gradient method modified with both projection and restarting strategies to

account for cavitation; see Sect. 3.2.

4. The approximation of the Heaviside function in the Elrod–Adams model by a cubic Hermite poly-

nomial which allows to solve the direct problem by minimizing a convex and lower semi continuous

(l.s.c) functional; see Sect. 4.1.2.

Computational

1. The resolution of the inverse problem, considering misalignment and the Reynolds cavitation model,

based on an interior trust-region algorithm subject to bounds, through which we transform the con-

strained optimization problem into an unconstrained one.

2. The resolution of the inverse problem, considering misalignment and the Elrod–Adams cavitation

model, based on the Ant Colony Optimization for continuous domain (ACOR).

Scope and outline of the thesis

The dissertation focuses on the prediction of contact and cavitation in a misaligned journal bearing with

radial loading and a rigid geometry, considering a stationary regime of a Newtonian, isoviscous, isothermal

and incompressible lubricant. Two cavitation models, the Reynolds and the Elrod–Adams models are fully

depicted. When considering the latter, an axial feeding groove is added to the mathematical formulation.

The outline of this thesis is the following. In Chap. 1 we present a literature review on hydrodynamic

lubrication in journal bearings. In Chap. 2 we provide a deep revision on the mathematical details for the

proposed models. In particular, we derive the fluid film thickness model for a misaligned journal bearing and

pose two suitable variational formulations for the hydrodynamic problem considering the Reynolds and the

Elrod–Adams cavitation models respectively. We also present the admissible range of misalignment angle

projections for prescribed values of the shaft eccentricity and angular coordinate. We properly state the
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problem of a loaded misaligned journal bearing for stationary regime, considering the balance of force and

torque components involved.

In Chap. 3 we state and solve the inverse problem for the Reynolds cavitation model. Namely, we

prove the finite load capacity of a misaligned journal bearing for the point contact case. To solve the direct

problem, we consider a finite element discretization and accomplish the minimization stage by a Precondi-

tioned Conjugate Gradient Method (PCG), modified with both projection and restarting strategies to account

for cavitation. We also explain the resolution of the inverse problem by an interior, trust-region algorithm

subject to bounds. Numerical experiments and discussion are also included.

In Chap. 4 we state and solve the inverse problem for the Elrod–Adams cavitation model. We provide

the approximation of the Heaviside function and propose a functional whose minimum is the solution to

the direct problem. The resolution of the inverse problem, based on ACOR, is also explained. Numerical

experiments and discussion are also included.

Conclusions and suggestions for Future work are also provided.
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CHAPTER 1

Literature review

1.1 On the beginning of the theory of hydrodynamic lubrication

Hydrodynamic lubrication is a phenomenon characterized by a lubricant flowing in the narrow gap between

two closely spaced surfaces in relative motion. Important and well-known scientists, engineers and tribol-

ogists investigated in the past the relationship between friction, wear and lubrication, especially applied to

journal bearings. Gustave Adolph Hirn (1815-1890), accomplished in 1847 the first experiments on hy-

drodynamic lubrication and rediscovered the laws of Amontons and of Coulomb. In 1879, Robert Henry

Thurston (1839-1903), published the results of his study on friction and lubrication. He showed that, with

increasing speed, the friction coefficient of a lubricated bearing diminishes below its static value, passes

through a minimum and then increases. He also specified that the speed corresponding to the minimum of

friction depends on the load applied to the bearing (Frêne, Nicolas, et al., 1997).

In 1883, Nikolai Pavlovich Petrov (1836-1920) introduced the results of his studies and tests on lubri-

cated bearings. He proved that, among the physical characteristics of an oil, the viscosity has a preponderant

role in bearing friction. He stipulated that a fluid film totally separates the surfaces of both shaft and bear-

ing, and that a constant pressure should be produced in this film. Petrov, also looked through the work

of Hirn and reused the term of mediate friction to characterize hydrodynamic lubrication (ibid.). In 1885,

a remarkable discovery was the existence of hydrodynamic pressure in the lubricant film of a bearing by

Beauchamp Tower (1845-1904), which served as a basis for accomplishing the theory of lubrication. For-
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tunately, Tower’s discovery results provided experimental confirmation to Reynolds, who was working on a

hydrodynamic theory of lubrication at that time. The result of this was a theory of hydrodynamic lubrication

published in the Proceedings of the Royal Society by Reynolds; see (Reynolds, 1886). In that early work,

Reynolds proposed the equation that at present is named after him and provided the first analytical proof

that a viscous liquid can physically separate two sliding surfaces by hydrodynamic pressure, resulting in low

friction and theoretically zero wear (Stachowiak and Batchelor, 2013). That work represents the seminal pa-

per on Lubrication Theory and in fact, most of mathematical models of hydrodynamic lubrication processes

between solid surfaces have the RE as their key point. A rigorous approach for the deduction of the classical

linear RE from Navier–Stokes may be found in (Bayada and Chambat, 1986b).

It was not until the beginning of the 20th century that Reynolds theory on hydrodynamic lubrication was

used for calculating thrust and journal bearings. In 1902, Richard Stribeck confirmed the hydrodynamic

effects and performed the original research into the limits of hydrodynamic lubrication. He proposed the

relationship between friction, load, speed and viscosity that is still used today to present the various types

of lubrication. The limits of hydrodynamic lubrication are summarized in Fig. 1.1. Three zones can be

fr
ic

ti
o
n

1 32

v

F
0

Figure 1.1. Schematic diagram for the limits of hydrodynamic lubrication.

identified, each one corresponding to a type of lubrication depending on the level of pressure established in

the contact. For low pressure (0.1 to 50 MPa), zone 1 corresponds to boundary lubrication; surface separation

is ensured by lubricant molecules attached to the surfaces; see Fig. 1.2a. This type of lubrication is related

to the physico-chemistry of surfaces and of lubricants, for low and moderate speeds and for relatively low

loads. In zone 2, the hydrodynamic effect described by RE takes some importance and tends to separate
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(a) Boundary lubrication regime. (b) Mixed lubrication regime.

(c) Hydrodynamic lubrication regime.

Figure 1.2. Types of lubrication regimes present on the Stribeck curve.

the areas still in contact over a part of their asperities; this type of lubrication is the mixed lubrication; see

Fig. 1.2b. Zone 3 corresponds to hydrodynamic lubrication and is described by RE; see Fig. 1.2c. In this

region a full film separates the surfaces and friction is proportional to the speed if the lubricant viscosity

is constant with temperature (Frêne, Nicolas, et al., 1997). In general, it was found that when the friction

measurements from a journal bearing were plotted on a graph against a controlling parameter defined as µv
F ,

for all but very small sliding speeds, the friction was proportional to the above parameter which is known as

the “Stribeck number” (Stachowiak and Batchelor, 2013).

In 1904, Arnold Johannes Wilhelm Sommerfeld used a change of variables and succeeded in obtaining

an analytical solution of the RE for infinitely long journal bearings (∂p
∂x = 0), where x is in the direction of the

journal axis (Frêne, Nicolas, et al., 1997). Nevertheless, the used boundary conditions did not correspond to

the physical reality, as they did not take into account the film rupture in the bearing. In addition, the pressure
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distribution obtained was negative in the divergent zone of the film. In 1914, Ludwig Karl Friedrich Gümbel

suggested that only the positive part of the pressure distribution should be included for the calculation of the

bearing load, omitting the negative part. The load calculated was not exact either. Herbert Walker Swift in

1932, and later W. Stieber in 1933 independently presented boundary conditions for film exit, representing

the reality in an improved way (Stieber, 1933; Swift, 1932). With their proposals, the fluid film breaks

in its divergent zone along the boundary, where the pressure has the value of the saturated pressure and

its gradient is zero. Such conditions agree with the continuity of flow at the film exit and are named the

boundary conditions of Reynolds. They are universally used for calculating bearings with constant loads

(Frêne, Nicolas, et al., 1997). This model considers as interface conditions:

pc =
∂p
∂n

= 0, (1.1.1)

where n stands for the unitary normal vector to the free boundary. In 1941, a numerical method for solving

the RE with such boundary conditions was proposed in (Christopherson, 1941).

In 1953, Fred William Ocvirk proposed to neglect circumferential pressure gradient compared to the

axial one in the RE. This way he was presenting his approximate method for short bearing (F. W. Ocvirk and

DuBois, 1953). The solution is analytical and uses Gümbel’s boundary conditions. The results are almost

exact for journal bearings having an L/D ratio (bearing length over diameter) smaller than 0.25. Calculations

are in consequence considerably simplified (Frêne, Nicolas, et al., 1997).

A type of slider, with steps, consisting of two parallel parts, but shifted, was described by John William

Strutt, Lord Rayleigh. He showed that this type of slider exhibits a load carrying capacity for a given

minimum film thickness greater than for any known slider type (ibid.). In 1917, Lord Rayleigh was the first

one in calculating the load and the friction torque of a hydrostatic thrust bearing.

The review of all existing papers since the beginning of last century represents a considerable effort that

goes beyond the aims of this document. We presented here only a brief review of major achieved progresses

in the beginning of hydrodynamic lubrication, that will allow us to succeed “standing on the shoulders of

giants”.
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1.2 Tribology societies, institutes, and authors studying journal bearings

Many Tribology societies and institutes, worldwide, have dedicated their efforts to develop advanced studies

of lubrication, friction, and wear from the beginning of Tribology to the present. Table 1.1 shows a sample

of such organizations involved in research in or advocacy of Tribology.

Table 1.1. A list of some organizations involved in research in or advocacy of Tribology.

• American Bearing Manufacturers Association
• American Gear Manufacturers Association
• American Society of Mechanical Engineers -

Tribology Group
• Asociación Argentina de Tribología
• Austrian Center of Competence for Tribology
• Austrian Tribology Society
• Egyptian Society of Tribology
• Finnish Society for Tribology
• French Association for Mechanics - Tribology

Group
• Gesellschaft für Tribologie e.V.
• Institution of Engineering and Technology - Tri-

bology Network
• Institut National des Sciences Appliquées de

Lyon
• Institution of Mechanical Engineers - Tribology

Group

• International Tribology Council
• Italian Tribology Association
• Japanese Society of Tribologists
• Korean Society of Tribologists and Lubri-

cation Engineers
• Malaysian Tribology Society
• Red Temática de Ingeniería de Superficies

y Tribología
• Serbian Tribology Society
• Society of Bulgarian Tribologists
• Society of Tribologists and Lubrication

Engineers
• South African Institute of Tribology
• Tribology Institute of Chinese Mechanical

Engineering Society
• Tribology Society of India

They have all shown their commitment and common interest in advancing the science of Tribology

and the practice of lubrication engineering. Two institutions, the University of Leeds in England and the

Institut National des Sciences Appliquées de Lyon in France, have organized the Leeds-Lyon Symposium

on Tribology for many years, where important scientists from around the world have presented significant

results on several tribological phenomena and “best practices” for lubrication fields.

A brief examination of the Tribology literature shows that bearings have enjoyed more attention than any

other engine component (D. R. Adams, 1991, p. 8). In journal bearings, as in other lubricated devices, it is

very important to consider a well suited mathematical model in order to predict the behaviour of the lubricant

pressure distribution, the formation of air bubbles near the contact region as well as the gap profile which
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balances the hydrodynamic load and a given load vector (Arregui, Cendán, and Vázquez, 2002). These

previous facts have widely motivated an increasing study by many authors. Figure 1.3 shows a sample of

related groups of authors who have studied different topics on journal bearings. Data have been gathered

from Google Scholar and its visualization accomplished by the VOSviewer application (Eck and Waltman,

2015). Each circle represents an author and the size of each circle indicates the activity of the author in terms

of publications on journal bearings. The smaller the distance between two authors the higher the number of

co-citations. Colors represent groups of related authors.

Accordingly to the bibliography about journal bearings, studied for this work and represented in Fig. 1.3,

Guy Bayada, Carlos Vázquez, José Durany, Mohammed Jai, Ionel S. Ciuperca, Sébastien Martin, I. Hafidi,

Gustavo Buscaglia, Jean Frêne, Michel Fillon, J. Y. Jang, J. Sun, J. Ignacio Tello, Michael M. Khonsari, and

J. F. Booker are the authors with more papers about this topic.

Zengeya, M.
Xu, H.

Williams, J.
Verma, R. L.
Uchiyama, T.

Thomsen, T. C.
Swift, H. W.
Strzelecki, S.
Stieber, W.

Sommerfeld, A.
Savage, M. D.

Sahlin, F.
Rodrigues, J. F.
Reynolds, O.

Oh, K. P.

Hartinger, M.
Hannukainen, P.

Goenka, P. K.
Gethin, D. T.
Fernández, E.
Cuvelier, C.
Cryer, C. W.

Christopherson, D. G.
Brito, F. P.

Bhushan, B.
Bessonov, N. M.

Andrés, L. S.
Adams, D. R.

Wang, S. H.

Schweizer, B.

Pai, R.

Lombera, H.

Kumar, P.

Hua, D. Y.

Erdemir, A.

Bupara, S. S.

Buckholz, R. H.

Bonneau, D.

Boedo, S.

Ashour, N. M.

Adams, M. L.

Tsandzana, A.

Ram, N.

Pinkus, O.

Pimenta, J. C.

Nosov, V.

Nagy, J. G.

Kumar, S.

Japhet, C.

Hansen, P. C.

Gómez-Mancilla, J.

García, A.

Davies, A. R.

Chupin, L.

Asai, R.

Álvarez, S. J.

Albedah, A. M.

Vlahopoulos, N.

Qiu, Z. L.

Papadopoulos, C. A.

Pan, X.

Nikolakopoulos, P. G.

Liu, S.Li, Q.

Larsson, R.

Fu, Y.

Ebrat, O.

Deng, M.

Booker, J. F.

Almqvist, A.

Allmaier, H.

Zhang, J.
Zhang, G.

Xie, W.

Nagaraju, T.

Lahmar, M.
Jain, S. C.

He, Z.

Godet, M.

Yang, L.

Xu, G.

Ocvirk, F. W.Geng, H.

Fabricius, J.

Dubois, G. B.

Zhao, X.Sharma, S. C.

Nicolas, D.

Maspeyrot, P.

Jang, J. Y.

Chambat, M.

Bouyer, J.

Gui, C.Zhang, L.

Varas, F.

Li, Z.Tello, J. I.

Hafidi, I.

Frêne, J.

Khonsari, M. M.

Fillon, M.

Sun, J.

Martin, S.

Buscaglia, G.

Durany, J.

Ciuperca, I. S.
Jai, M.

Bayada, G.

Vázquez, C.

VOSviewer

Figure 1.3. Sample of related groups of authors studying journal bearings.

On the other hand, Fig. 1.4 shows which topics have been currently addressed by those researchers,

accordingly to the bibliography about journal bearings of this work. Cavitation is definitely included in most
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Figure 1.4. Sample of the major topics on journal bearings and researchers working on them.

works. It is expected because it has important economic implications in industry. Other topics have also

received attention. Thermohydrodynamic Lubrication (THL) and Elastohydrodynamic Lubrication (EHL),

roughness and non-Newtonian lubricants have been deeply studied by the scientific community. Similarly,

misalignment has received a lot of attention since it is responsible for most common machine dynamic

problems happening in the field. Fig. 1.4 also shows a sample of authors who have worked on the solution

of the inverse problem related to journal bearings. Solving this particular problem is really important, as in

most interesting real problems the film thickness h is unknown and the data is a function of the pressure. We

noticed, in this study, there is not any result that addresses the inverse problem in journal bearing considering

cavitation and misalignment at the same time, or at least we are not aware of it.

Section 1.3 provides more details on why these topics: cavitation, misalignment and the inverse problem,
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are three of the most significant and are included as fundamentals in this dissertation.

1.3 On misalignment and cavitation in journal bearings

Misalignment

In the case where misalignment is not allowed, the mathematical model assumes that the clearance normal-

ized film thickness, h̄, only depends on the circumferential coordinate and is expressed as:

h̄ = 1 + ρ̄ cos(θ − α), (1.3.1)

where ρ̄ ∈ [0, 1) stands for the normalized shaft eccentricity, α is the shaft angular coordinate and θ represents

a point on the external circumference. The assumption posed by Eq. (1.3.1) is equivalent to the supposition

that both shaft and bearing axes are perfectly parallel to each other, and that the eccentricity ρ̄ does not

depend on the axial coordinate. Thus, this expression restricts the physical simulating capacity of the study

since in reality it becomes impossible to fully avoid radial and angular misalignments (Gómez-Mancilla and

Nosov, 2001). The most common causes of misalignment are elastic and thermal deflections of the shaft and

bearing misalignment, as a result of assembly errors. Large misalignment can decrease the bearing clearance

and its load capacity. It can increase the temperature and has the potential to reduce the operating velocity

threshold (ibid.). In addition, misalignment and residual unbalance are the typical causes for rotor vibration.

Both excitations are responsible for most common machine dynamic problems happening in the field.

One of the first documented researches on journal bearing misalignment is reported by S. A. McKee

and T. R. McKee (1932), who experimentally observed that measured peak pressures move from the bearing

mid-plane towards the bearing ends when the journal is subjected to misalignment. Same result was found by

Bouyer and Fillon (2002) in an experimental analysis of misalignment effects on hydrodynamic plain journal

bearing performance. They experimentally studied the hydrodynamic plain journal bearing submitted to a

misalignment torque. The misalignment caused more significant changes in bearing performance when the

rotational speed or load was low (ibid.). Piggott showed that a 40% reduction in bearing load capacity was

induced by a 0.0002 rad misalignment. These observations clearly revealed the importance of misalignment

in bearing performance (Piggott, 1942). Subsequently, Dubois, Mabie, and F. Ocvirk (1951) showed that the
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pressure distribution of a misaligned bearing was not symmetric, and reported that the maximum pressure

was located as well at the bearing ends. They observed that when a bearing is subjected to severe mis-

alignment, the maximum pressure increases and the bearing performance deteriorates due to the permanent

deformation at bearing ends (ibid.). In presence of cavitation it has been shown that the maximum pressure is

shifted to the bearing ends as well. The location of the maximum pressure is influenced by the orientation of

the misalignment. Besides, the maximum pressure is greater than that for the aligned bearing and an increase

in the degree of misalignment could yield two peak values in the pressure, axially near both ends (Jang and

Khonsari, 2015).

Representative numerical studies about loaded misaligned journal bearings by (Asanabe, Akakoski, and

Asai, 1971; Gómez-Mancilla and Nosov, 2002; Pinkus and Bupara, 1979; Vijayaraghavan and Keith, 1990)

suggest that misaligned bearings have a finite load capacity as the end-plane film thickness goes to zero.

Moreover, perfectly aligned journal bearings have a theoretically infinite load capacity, see (Ciuperca, Jai,

and Tello, 2009; Pinkus and Sternlicht, 1961) for instance. Conversely, Boedo and Booker (2004) suggest

(but no prove) that misaligned bearings have infinite load and moment capacity as the end-plane minimum

film thickness approaches zero under transient journal squeeze motion and under steady load and speed con-

ditions. These results differ markedly from finite capacity trends reported in previously mentioned numerical

and experimental studies. We show numerically, by finding contact points, that misaligned journal bearings

have finite load capacity for the Reynolds cavitation model. A mathematical proof is provided in Sect. 3.1 to

demonstrate the finite load capacity of the system for the point contact case.

Nikolakopoulos and Papadopoulos (1994) presented an analysis of misaligned journal bearing operat-

ing, considering both the linear and non-linear plain journal bearing characteristics. The Finite Element

Method (FEM) was used to solve the RE. They calculated the linear and non-linear dynamic properties for

misaligned bearings depending on the developed forces and moments as functions of the displacements and

misalignment angles (ibid.).

An analytical solution for misaligned journal bearing axes (short bearing) at its steady-state was ob-

tained in (Gómez-Mancilla and Nosov, 2001). The same approach for modelling misalignment was used

in (Gómez-Mancilla and Nosov, 2002). The solution is expanded in series over a small parameter a, which

characterizes the non parallelism of journal bearing axes. In our model we characterize misalignment using
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an equivalent derivation procedure, but we do not make that power series expansion, in order to propose a

general characterization for misaligned journal bearings; see Sect. 2.1.2 for details.

Thus, as a journal bearing almost always operates with some misalignment between its shaft and bearing,

it is important to include this issue in the analysis.

Cavitation models. Their numerical resolution

Mathematical models that we consider in Lubrication Theory, assume that the unknown pressure p is constant

through the thickness of the fluid film, which allows one to approximate the three dimensional Navier–Stokes

equations by the bidimensional RE; see (Bayada and Chambat, 1986b) for details. In presence of cavitation,

the RE is no longer valid and this condition makes the use of cavitation models mandatory. A review on

the mathematical and physical analysis for different cavitation models is presented in (Bayada and Chambat,

1986a). Also, Álvarez (1986) studied two different models for describing the fluid pressure distribution

in journal bearings: a stationary model and a transient model. He considered cavitation and demonstrated

uniqueness of the solution.

The common feature of the models lies in the domain decomposition into two parts: a lubricated region

and a cavitated region. In the former the RE is verified while in the latter the pressure is taken to be a

constant (Bayada and Vázquez, 2007). The main difference between models comes from the way to obtain

the free boundary that separates lubricated and cavitated areas. In Sect. 2.3 and Sect. 2.6 we give details on

the derivation of both cavitation models.

Several papers have used the theory of variational inequalities taking advantage that the pressure in the

full filled area is greater than the saturation pressure. In fact, the idea was reinforced when Cryer justified

the work of Christopherson (1941), associating that study to an obstacle problem (Cryer, 1971). This is

known as the Reynolds cavitation model (Bayada and Vázquez, 2007). In 1975, Rohde and McAllister

presented a variational formulation for hydrodynamic lubrication, from which the associated free boundary

problem arose naturally. The Finite Difference Method (FDM) and the FEM were discussed as strategies for

obtaining approximate solutions (Rohde and McAllister, 1975). In fact, due to the nature of the Reynolds

cavitation model and easy computational approach, it has been used in a large list of mathematical works;

see (Capriz and Cimatti, 1983; Cimatti, 1984; Cimatti, 1986; Cuvelier, 1979; Liu, 2004; Rodrigues, 1993)
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for instance. In general, for the numerical resolution of this model, techniques based on the FEM have

been widely used. The discrete problem has been solved by the classical Gauss-Seidel method or a point-

overrelaxation method, including both a projection technique to consider cavitation; see (Calvo, Durany,

and Vázquez, 1997; Cuvelier, 1979) for instance. In this work, we also use the Reynolds cavitation model

including a FEM discretization. Nevertheless, we solve the system of linear equations by minimizing a

convex functional, using a PCG with both projection and restarting strategies. The choice obeys two major

reasons: the fact that we solve a convex functional and that matrices resulting from the discretization of

Partial Differential Equations (PDE)(e.g. FEM or Finite Volume Method (FVM)), in addition to be sparse

are usually ill-conditioned, for which preconditioning is widely recommended.

Another model to describe cavitation is the Elrod–Adams model (Elrod and M. L. Adams, 1975). In that

work, the authors introduce the hypothesis that the cavitation region is a fluid-air mixture and an additional

unknown ϑ appears (the saturation of fluid in the mixture1). This model, which still relies on the RE has been

widely used in Tribology (Martin, 2008). Unlike some other models, such as the Reynolds cavitation model,

it does allow the starvation phenomena to take place. Its interest also relies on the evidence that it is a mass-

preserving model. In (Bayada and Chambat, 1986a; Durany and Vázquez, 1992) comparisons for journal

bearings are made, between their operating parameters computed by the Reynolds and the Elrod–Adams

cavitation models.

Vijayaraghavan and Keith (1989) analysed the effect of cavitation on the performance of a line-grooved

misaligned bearing for both flooded and starved inlet conditions. They used the mass-conserving cavitation

algorithm in their analysis. They took into account the lubricant rupture and the reformation phenomena.

One year later, they showed that at the higher degrees of misalignment, the performance characteristics of

the bearing are significantly different from those for an aligned journal bearing (Vijayaraghavan and Keith,

1990).

Numerical methods for solving the Elrod–Adams model for cavitation in different devices and condi-

tions were presented in (Bayada, Chambat, and Vázquez, 1998; Bermúdez and Durany, 1989; Durany and

Vázquez, 1992; El Alaoui Talibi and Bayada, 1991), among others. Similarly, numerical experimentations of

various schemes based both on stationary upwind methods and pseudo-stationary techniques were conducted

1It represents the lubricant concentration
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in (Calvo, Durany, and Vázquez, 1997). These methods are mainly based on the characteristics discretization

for the non-linear convection term and a duality method for the multivalued non-linear saturation-pressure

relation, posed by the Heaviside operator. Namely, they use an approach based on the Method of Character-

istics (MC) to discretize a total derivative in the final formulation. This technique was also used in (Durany,

García, and Vázquez, 2002; Durany, Pereira, and Varas, 2008; Durany, Pereira, and Varas, 2010; Lombera

and Tello, 2014) among others, and it is the strategy chosen to solve our problem as well. Additionally, the

first three used a Yosida regularization for the Heaviside operator as in (Bermúdez and Moreno, 1981). In

contrast, in (Lombera and Tello, 2014) it is used a regularization of this function by a cubic interpolating

Hermite polynomial that allowed to express the solution of the direct problem as a minimum of a convex

functional. This approach is also used in the present work.

1.4 The inverse problem. Its numerical resolution

Most of the papers previously mentioned deal with imposed geometry in the associated RE, i.e. the gap

function h for the journal bearing is a given datum and the unknown is the pressure p. In real engineering

applications the position of the shaft, that defines the gap function h, is unknown. So, Newton’s second

law is introduced to obtain that position. The problem consists in finding the pressure of the lubricant,

its concentration ϑ in the cavitation area and the shaft position. If misalignment is considered, two more

variables need to be found, which stand for the angular misalignment projections. The problem is considered

as an inverse problem where the coefficient h depends on the unknown p.

J. I. Díaz and Tello (2004) addressed such a problem, considering the simple case in which the surfaces

are two parallel planes, and assuming prescribed the total force applied upon one of the surfaces. They

provided some sufficient conditions on the total force in order to solve the inverse problem. Ciuperca, Hafidi,

and Jai (2006) also studied analytically the inverse problem for a more general geometry. Specifically, they

studied the asymptotic behaviour of the position in the evolution problem.

Furthermore, Ciuperca, Jai, and Tello (2009) studied the inverse problem for journal bearings using the

Reynolds cavitation model. In that work the inner cylinder is parallel to the exterior one and misalignment

is not allowed. They proved the existence of shaft equilibrium positions when the hydrodynamic force

created by the pressure film balances an external radial force. The authors proved the non-existence of
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contact for any force, even for the case where the shape of the external surface presents some rugosity.

Additionally, Ciuperca and Tello considered the problem for both cases, a rigid surface moving over a flat

plane and the elastohydrodynamic problem; see (Ciuperca and Tello, 2011a; Ciuperca and Tello, 2011b)

for instance. Similarly, Ciuperca, Jai and Tello studied the existence of equilibrium positions for the load

problem in Lubrication Theory. In their work, the balance of forces allows to obtain the unknown position

of the surfaces, defined with one degree of freedom (Ciuperca, Jai, and Tello, 2017).

As for the numerical resolution of the inverse problem which entails the balance between an imposed load

on the device and the hydrodynamic load we can mention the work of (Durany, García, and Vázquez, 2002).

They developed a numerical scheme which combines fixed point algorithms, the MC, duality techniques

and finite element approximations. In (Durany, Pereira, and Varas, 2010) the authors used an implicit Euler

method to deal with the dynamical shaft problem coupled with the fluid hydrodynamic problem. At each time

step the resulting non-linear system is solved by the Broyden method combined with the Armijo–Goldstein

criterion to choose a proper step length in the descent direction. Conversely, in (Lombera and Tello, 2014)

the authors proposed a different approach to deal with the shaft model. It was based on first solving the

Elrod–Adams equation for a known position by minimizing a convex and l.s.c functional and then using an

iterative method to reach the equilibrium, namely a trust-region strategy. A similar approach will be used

in this work for the Reynolds cavitation model. In general, there are a lot of gradient based algorithms for

continuous optimization that can be used for solving problems like the one addressed in this work. They

allow to find a local minimum, but the optimized function needs to be continuous and differentiable. Thus,

their usefulness is limited due to such prerequisites. Line search and trust-region approaches are two of the

fundamental strategies in optimization algorithms that must be mentioned; see (Nocedal and Wright, 2006)

for a wide explanation on these approaches.

On the other hand, metaheuristics are a family of optimization techniques, which have seen increasingly

rapid development and application to numerous problems in computer science and other related fields. Nor-

mally, they require the problem to be partitioned into a set of components to look for the solution in an

optimal combination or permutation of them. One of the more recent, prominent and actively developed

metaheuristic is Ant Colony Optimization (ACO) which was inspired by the ants’ foraging behaviour. It

was originally introduced by Dorigo (1992), to solve discrete optimization problems where each decision
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variable is characterized by a set of components; see (M. Dorigo, Maniezzo, and Colorni, 1996; Stützle and

Hoos, 2000) for instance. Many successful implementations of the ACO metaheuristic have been applied

to a number of different discrete optimization problems (Liao, 2011). These applications mainly concern

NP-hard combinatorial optimization problems including problems in routing (Gambardella, Taillard, and

Agazzi, 1999), assembly sequence planning (M. Díaz, Lombera, et al., 2015), bioinformatics (Blum, Vallès,

and Blesa, 2008) and many other areas.

ACO was initially designed to solve the Traveling Salesman Problem (TSP), where a salesman must

visit a list of cities exactly once, using the shortest possible route. The cities and paths between them can be

represented as a connected graph, and the ants move from one city to another following the pheromone trails

on the edges. Let T i j(t) be the trail intensity on edge (i, j) at time t. Then, each ant chooses the next city

to visit depending on the intensity of the associated trail. When the ants have completed their city tours, the

trail intensity is updated according to:

T i j(t + 1) = $T (t) + ∆T i j, $ ∈ [0, 1], (1.4.1)

where $ is a coefficient such that (1 −$) represents the evaporation of trail and

∆T i j =

m∑
k=1

∆T k
i j, (1.4.2)

where ∆T k
i j is the pheromone quantity laid by the kth ant on edge (i, j), defined as:

∆T k
i j =


1

Wk
, if edge (i, j) is in the trajectory of the kth ant,

0, otherwise,
(1.4.3)

with Wk the tour length of the kth ant (Dorigo, 1992). The transition probability Pk
i j from city i to city j for

the kth ant is defined as:

Pk
i j =

[T i j]a[ηi j]b∑
l∈allowedk [T il]a[ηil]b , (1.4.4)

where ηi j = 1/di j is called visibility and di j is the associated cost to travel from city i to city j; a and b are

parameters that control the relative importance of trail versus cost, and allowedk is the set of allowed cities
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the kth ant can move to from city i (Garcia-Najera and Bullinaria, 2007). Genetic Algorithm, Simulated

Annealing, Tabu Search and Particle Swarm Optimization are other approaches we find in the literature to

deal with combinatorial optimization problems; see for instance (Pedraza, M. Díaz, and Lombera, 2016;

Piniganti, 2014; Srinivas and Patnaik, 1994; Y. Zhang, Wang, and Ji, 2015) for a detailed explanation of

them.

Since the emergence of these approaches as combinatorial optimization tools, attempts have been made to

use them for addressing continuous problems (Socha, 2008). Now, these metaheuristics that were originally

developed for combinatorial optimization are adapted to the continuous case. Examples include the Contin-

uous Genetic Algorithm (Chelouah and Siarry, 2000), Enhanced Simulated Annealing (Siarry, Berthiau, et

al., 1997), or Enhanced Continuous Tabu Search (Chelouah and Siarry, 1999). There are also included some

ant related methods. In this sense, Socha and M. Dorigo (2008), proposed one of the most popular and easy

to implement ACO algorithms for continuous domains, called ACOR. It uses a solution archive as a form of

pheromone model for the derivation of a probability distribution over the search space. However, its use in

problems with many decision variables have some limitations, reported in (Leguizamón and Coello, 2010a).

Thus, Leguizamón and Coello (2010b) proposed an Alternative Ant Colony Optimization for continuous

domain (DACOR)2 which could be more appropriate for large scale unconstrained continuous optimization

problems. Later on, Liao, Montes de Oca, et al. (2011) proposed an Incremental Ant Colony Optimization

with Local Search for continuous domain (IACOR-LS). This algorithm uses a growing solution archive as an

extra search diversification mechanism and a local search to intensify the search. Subsequently, Liao, Stützle,

et al. (2014) proposed an ACO algorithm for continuous optimization that combines algorithmic components

from ACOR, DACOR and IACOR-LS. They called it Unified Ant Colony Optimization for continuous do-

main (UACOR). It is unified, because from UACOR, we can instantiate the original ACOR, DACOR and

IACOR-LS algorithms by using specific combinations of the available algorithmic components and param-

eter settings. Since in our inverse problem, we only deal with four decision variables and considering that

ACOR has proven to be an efficient, versatile and easy to implement tool for continuous optimization, we

propose its use in our work. However, we do deal with a large scale direct problem and motivated by the

inherent parallelism of the ACOR and possible computation speed up we suggest an implementation of the

2“D” stands for diversity
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algorithm with parallel regions for time-consuming tasks, using Open Multi-Processing (OpenMP).

1.5 Other notable topics

Moreover, we mention other topics which have also received attention on the subject of misaligned journal

bearings. Literature concerning the topics of thermohydrodynamic and elastohydrodynamic lubrication can

be found in (Abass and Sahib, 2013; Bouyer and Fillon, 2003; He, J. Zhang, et al., 2012; Kumar and

Khonsari, 2009; Pierre, Bouyer, and Fillon, 2002; Pierre, France, et al., 2004; Sun, Deng, et al., 2010;

Thomsen and Klit, 2012; Xu, Zhou, et al., 2015). Besides, lubrication is not the only way to decrease the

effect of friction; the materials used and the quality of polished surfaces are also of major concern. However,

if surfaces are extremely polished, it is probable a contrary trend to decrease load capacity. It has often

been observed in engineering practice that there is a risk of sudden seizure if the surface is too smooth. In

this sense, it is commonly believed that small asperities play a useful role as a reservoir for the lubricant

between asperities (Stachowiak and Batchelor, 2013). The effect of surface roughness on the performance

characteristics of bearings can be found in (Guha, 2000; Sharma, Jain, and Nagaraju, 2002). In general,

roughness is one of the challenges of the field; see (Bayada, Martin, and Vázquez, 2005a; Bayada, Martin,

and Vázquez, 2005b; Bayada, Martin, and Vázquez, 2005c; Bayada, Martin, and Vázquez, 2005d; Bayada,

Martin, and Vázquez, 2006; Martin, 2008) and references there in, to study its effects in journal bearings

for different scenarios. More recent results on this topic can be found in (Sun, Deng, et al., 2010; Sun, Zhu,

et al., 2014).

The current research on journal bearings also includes the applications of non-Newtonian fluids to im-

prove performance of modern machines (Jang and Khonsari, 2015). Such non-Newtonian fluids have shown

that the stress is not directly proportional to the shear strain, and the formulation of the governing equations

needs to be changed. Literature on non-Newtonian fluids includes the works of (Abass and Sahib, 2013;

Boucherit, Lahmar, and Bou-Said, 2008; Das, Guha, and Chattopadhyay, 2002; Jang, Khonsari, and Bair,

2007; Osman, 2001). The general characterization of the behaviour of a misaligned journal bearing consid-

ering all mentioned factors and including the prediction of its final position is very complex. For that reason

most researches focus on specific topics.
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1.6 Partial conclusions on the literature review

After studying the principal authors and the topics they are currently working on journal bearings we can

conclude that cavitation is definitely important and it must be included in our research. As for its mathe-

matical formulation many authors use the Reynolds cavitation model based on the variational inequality but

others use the Elrod–Adams model. The former is unquestioned easier to implement while the latter entails

more difficulties when programming. However, the latter is more realistic as there is evidence that it is a

mass-preserving model. We develop our proposal including they two, as we think both have advantages and

disadvantages. It is important to remark that for both cavitation models, experiments have yielded the same

results when roughness is not considered relevant.

In addition, misalignment has been also addressed by many authors. Its importance is also unquestioned.

It is responsible for most common machine dynamic problems happening in the field. Nevertheless, most

mathematical models proposed in the literature entail a solution expanded in series over a small parameter a,

which characterizes the non parallelism of journal bearing axes. In our model we characterize misalignment

using an equivalent derivation procedure, but we do not make that power series expansion, in order to propose

a general characterization for misaligned journal bearings. We consider that the torque effect must also be

taken into account.

Concerning the inverse problem its solution is really important, as in most interesting real problems in

engineering applications the fluid film thickness h is partially unknown and the data is a function of the

pressure. We are not aware of any result that addresses the inverse problem in journal bearing considering

cavitation and misalignment at the same time. Similarly, we could not find any result that solves the inverse

problem of this work by the ACOR metaheuristic.

Additionally, we must mention other topics which have also received attention in journal bearings. Ther-

mohydrodynamic lubrication, elastohydrodynamic lubrication and roughness are three of the most signifi-

cant. We plan to include them for future work.
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CHAPTER 2

Mathematical modelling

In this chapter we provide a deep revision on the mathematical details of the models used in this dissertation.

In particular, we derive the fluid film thickness model for journal bearings, considering both the parallel and

the misaligned case. We also derive the RE and the Generalized Reynolds Equation (GRE). Subsequently,

we pose two suitable variational formulations for the hydrodynamic problem considering the Reynolds and

the Elrod–Adams cavitation models respectively, which we derived in advance. In addition, we present

the admissible range of misalignment angle projections for prescribed values of the shaft eccentricity and

angular coordinate. We properly state the problem of a loaded misaligned journal bearing for stationary

regime, considering the balance of force and torque components involved.

2.1 Fluid film thickness

In this section we depict the formulations of the fluid film thickness of a journal bearing, for the parallel and

the misaligned case. Actually, there are similar results that can be found in the literature; see (Frêne, Nicolas,

et al., 1997; Gómez-Mancilla and Nosov, 2001) for instance. However, for making the thesis self-contained

we present their derivations in this section.
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2.1.1 Parallel case

Figure 2.1 depicts the cross section of a journal bearing. The inner cylinder, the shaft of radius R, rotates in

counter-clockwise direction at a constant velocity ω, about the X axis. The film pressure generated by the

moving surfaces, forces the lubricant through a wedge shaped zone of thickness h, which varies according

to the angle α. It is assumed a coordinate system in which “y” represents the circumferential coordinate,

“z” is the coordinate across the fluid film and “x” depicts the journal bearing axial dimension, orthogonal

to the zy-plane. Let Ob and O j be the centres of the bearing and shaft respectively. The over line symbol

test denotes a line segment. The origin of coordinate “y” is located over the line segment ObO j, to place the

minimum gap of the device at an angle Φ = π. Moreover, the reference z = 0 is taken on the bearing surface.

The model characterizes the parallel misalignment, where the shaft is allowed to move with two degrees of

freedom. Let M be a point over the bearing surface, represented by the angular coordinate Φ = (ObA,ObM),

𝛼

𝜃

Φ

𝛼

𝜌

M

M’

h

A

O𝑏

O𝑗

R𝑏

R Z

Y

Figure 2.1. Cross section of a journal bearing.
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where ObA and ObM are line segments. The fluid film thickness is given by:

h = ObM − ObM′
= Rb − ObM′

. (2.1.1)

Applying the sine rule for the triangle O jM
′

Ob we have:

O jM
′

sin(O jObM′)
=

R
sin(O jObM′)

=
R

sin(π − Φ)
=

R
sin(Φ)

=
ρ

sin(α)
, (2.1.2)

where

sin(α) =
ρ

R
sin(Φ) and ObM′

=
R

sin(Φ)
sin(ObO jM

′

). (2.1.3)

Notice that:

(ObO jM
′

) = Φ − α = Φ − arcsin
(
ρ

R
sin(Φ)

)
, (2.1.4)

and therefore:

ObM′
=

R
sin(Φ)

sin
(
Φ − arcsin

(
ρ

R
sin(Φ)

))
. (2.1.5)

Taking into account that:

arcsin
(
ρ

R
sin(Φ)

)
= arccos

[1 − (
ρ

R
sin(Φ)

)2
]1/2 , (2.1.6)

we can calculate the sine of the sum indicated in the Eq. (2.1.5), from which we obtain:

ObM′
=

R
sin(Φ)

sin(Φ) cos

arccos

[1 − (
ρ

R
sin(Φ)

)2
]1/2 − cos(Φ) sin

(
arcsin

(
ρ

R
sin(Φ)

)) ,
ObM′

=
R

sin(Φ)

sin(Φ)
[
1 −

(
ρ

R
sin(Φ)

)2
]1/2

− cos(Φ)
ρ

R
sin(Φ)

 ,
ObM′

= R
[
1 −

(
ρ

R
sin(Φ)

)2
]1/2

− ρ cos(Φ). (2.1.7)

Substituting Eq. (2.1.7) in Eq. (2.1.1) we have:

h = Rb −

R [
1 −

(
ρ

R
sin(Φ)

)2
]1/2

− ρ cos(Φ)

 . (2.1.8)
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Let C be the radial clearance. It must be noticed the relation:

ρ

R
<

C
Rb
� 1. (2.1.9)

Thus, the term
(
ρ
R sin(Φ)

)2
can be neglected compared to unit (Frêne, Nicolas, et al., 1997, p. 116). The fluid

film thickness becomes:

h ≈ Rb − R + ρ cos(Φ),

h ≈ C + ρ cos(Φ). (2.1.10)

In Fig. 2.1 we can notice the relation Φ = θ − α. Thus, Eq. (2.1.10) can be rewritten as:

h ≈ C + ρ cos(θ − α). (2.1.11)

where ρ and α depict the shaft position in polar coordinates and θ represents a point on the external circum-

ference at the height Y = y.

The non-dimensional expression

For the non-dimensional expression, we introduce the following non-dimensional variables:

h̄ =
h
C
, ρ̄ =

ρ

C
. (2.1.12)

Then, Eq. (2.1.11) can be rewritten as:

h̄ = 1 + ρ̄ cos(θ − α), ρ̄ ∈ [0, 1). (2.1.13)

Let h̄min be the minimum value of h̄. Notice that it occurs when cos(θ − α) = −1, so:

h̄min = 1 − ρ̄.
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A contact exists for ρ̄ = 1.

2.1.2 Misaligned case

In Fig. 2.2 we show the journal bearing axes along with their projections on the xy-plane and xz-plane. The

origin O is located at the centre of the bearing “left” end-plane Ob, and the shaft rotates at a constant velocity

ω about the X axis. The coordinate system has been rotated, in favour of the graphic comprehension.

x

Y

Z

X0
a

b

f

g

y
r

ggggg
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l
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nz
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Figure 2.2. Axes and projections in a misaligned journal bearing.

Notice that the axis is rotated an angle ψ, characterized by its projections ϕ and β on the xy-plane and

xz-plane respectively. We create a cross section of the inner cylinder along the plane X = x. The cross

section is approximated by a circumference. We compute the position of the inner cylinder centre, on that

plane, considering the eccentricity λ of its axis. Taking into account the auxiliary coordinate system (x
′

, y
′

, z
′

)

located in the yz-plane, at the position (ρ sinα, ρ cosα), the coordinates of the shaft, on the plane X = x, will
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be:

S y = νy + ρ sinα = x tanϕ + ρ sinα,

S z = νz + ρ cosα = x tan β + ρ cosα.

Therefore, the eccentricity λ is:

λ =
(
S y

2 + S z
2
)1/2

,

λ =
[
(x tanϕ + ρ sinα)2 + (x tan β + ρ cosα)2

]1/2
,

λ =
(
x2 tan2 ϕ + 2xρ tanϕ sinα + x2 tan2 β + 2xρ tan β cosα + ρ2

)1/2
.

We introduce the angle γ, computed as a function of the eccentricity components:

γ = arctan
S y

S z
,

γ = arctan
x tanϕ + ρ sinα
x tan β + ρ cosα

.

By analogy to the parallel case, see Sect. 2.1.1, we approximate the fluid film thickness as follows:

h(ρ, α, ϕ, β, θ, x) = C + λ(ρ, α, ϕ, β, θ, x) cos(θ − γ(ρ, α, ϕ, β, x)), (2.1.14)

where C represents the radial clearance and θ represents a point on the external circumference at the height

Y = y. To simplify the notation, we drop arguments of function h, λ and γ from now on.

The non-dimensional expression

For the non-dimensional expression, we introduce the following non-dimensional variables in addition to the

ones defined in Eq. (2.1.12):

x̄ =
x
L
, λ̄ =

λ

C
. (2.1.15)
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Then, Eq. (2.1.14) can be rewritten as:

h̄ = 1 + λ̄ cos(θ − γ̄), (2.1.16)

where

λ̄ =
1
C

[
(x̄ tanϕ + Cρ̄ sinα)2 + (x̄ tan β + Cρ̄ cosα)2

]1/2
(2.1.17)

and

γ̄ = arctan
x̄ tanϕ + Cρ̄ sinα
x̄ tan β + Cρ̄ cosα

. (2.1.18)

Admissible range for the misalignment angle projections given ρ̄ and α

In this section we present the admissible range of the misalignment angle projections ϕ and β to ensure we

have no contact for given values of ρ̄ and α. In the normalized case, we have one point contact at x̄ = 0 and

x̄ = 1. The solution of the former is trivial (ρ̄ < 1) and we will focus on the latter. We have the condition

λ̄2 < 1 which expands to:

(x̄ tanϕ + Cρ̄ sinα)2 + (x̄ tan β + Cρ̄ cosα)2 < C2. (2.1.19)

Working on the first term we get

(x̄ tanϕ + Cρ̄ sinα)2 < C2.

Considering the negative solution and the contact:

− tanϕ −Cρ̄ sinα < C,

−C(1 + ρ̄ sinα) < tanϕ. (2.1.20)

Considering the positive solution and the contact:

tanϕ + Cρ̄ sinα < C,

tanϕ < C(1 − ρ̄ sinα). (2.1.21)
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Putting Eq. (2.1.20) and Eq. (2.1.21) together we can set the range for tanϕ:

−C(1 + ρ̄ sinα) < tanϕ < C(1 − ρ̄ sinα). (2.1.22)

Following the same procedure we set the range for tan β as a function of tanϕ:

−
[
C2 − (tanϕ + Cρ̄ sinα)2

]1/2
−Cρ̄ cosα < tan β <

[
C2 − (tanϕ + Cρ̄ sinα)2

]1/2
−Cρ̄ cosα. (2.1.23)

Note that constraint (2.1.23) was obtained in the same way as the solution of inequality x2 + y2 < 1,

which represents a circle, i.e.

− 1 < x < 1, −(1 − x2)1/2 < y < (1 − x2)1/2. (2.1.24)

2.2 Derivation of the Reynolds Equation

The derivation of the RE can be found in different references; see (Liñan, 1999) for instance. To make this

thesis self-contained we provide its derivation in the current section. Thus, we obtain the governing equation

for an incompressible fluid, confined at small distance h between a surface and an object that slips on the

first one; see Fig. 2.3. For a better understanding of the phenomenon, we will place the coordinate system

on the object, as in (ibid.), in such a way that we get a moving surface with respect to the object, that will

remain fixed. The following assumptions are used in the analysis. The distance between the surface and the

h

L

B

Figure 2.3. A fluid example, confined between a surface and a moving object.
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object is assumed to be defined by the function h(x, t), where 0 < h(x, t) < H̃, with H̃ the largest distance that

can exist between them. Similarly, 0 < h(x, t) � L and 0 < h(x, t) � B. The origin of the analysis are the

conservation principles of Navier-Stokes for incompressible fluids, where u = (u, v,w) and v = (U,V ,W)

stand for the fluid and object velocity vector respectively. Let %, µ, g, p and t be the fluid density, the fluid

viscosity, the gravity vector, the fluid pressure and the time respectively.

Mass conservation for incompressible fluids

∇ · (u) = 0. (2.2.1)

Momentum conservation for incompressible fluids

%
∂u
∂t

+ %(u∇u) = −%g − ∇p +
µ

2
∇ · (∇u + (∇u)T ). (2.2.2)

Let w = u−v be the relative velocity between the fluid and the moving object. We rewrite the Eq. (2.2.2)

in terms of w:

%
∂

∂t
(u − v) + %

(
(u − v)∇(u − v)

)
= −%g − ∇p +

µ

2
∇ · (∇(u − v) + (∇(u − v))T ),

%
∂

∂t
(u − v) + %

(
(u − v)∇(u − v)

)
= −%g − ∇p +

µ

2
∇ · (∇u − ∇v + (∇u)T − (∇v)T ),

Since v only depends on time, ∇v vanishes and we obtain:

%
∂u
∂t
− %

∂v
∂t

+ %(u − v)∇u = −%g − ∇p +
µ

2
∇ · (∇u + (∇u)T ),

%
∂u
∂t

+ %u∇u = %
∂v
∂t

+ %v∇u − %g − ∇p +
µ

2
∇ · (∇u + (∇u)T ). (2.2.3)

We perform a dimensional analysis of Eq. (2.2.1) and Eq. (2.2.3), for computing the order of magnitude

of each term. We assume that the dimensions of the object are close, e.g. B
L ' 1. The distance h ' H̃ between

the object and the surface is negligible compared to the dimensions of the surface, H̃
L � 1 and H̃

B � 1.

We assume that the velocity components have variations Uc, Vc, Wc in a characteristic time Tc. Thus, we
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have:

Uc ∼
L
Tc
, (2.2.4)

Vc ∼
B
Tc
, (2.2.5)

Wc ∼
H̃
Tc
. (2.2.6)

Then:
Uc

Wc
∼

L
H̃
,

Wc

Uc
∼

H̃
L
∼ 0, since H̃ � L and therefore Wc � Uc.

Similarly:

Wc

Vc
∼

H̃
B
∼ 0, and Wc � Vc.

Performing the dimensional analysis in Eq. (2.2.1) we have:

∂u
∂x + ∂v

∂y + ∂w
∂z = 0,

Uc
L

Vc
B

Wc
H̃

1
Tc

1
Tc

1
Tc

using Eqs. (2.2.4-2.2.6).

Therefore, all terms are comparable and equally important.

Next, we analyse the x component of Eq. (2.2.3). Notice that in this direction there is no gravity compo-

nent.

%∂u
∂t + %u∂u

∂x + %v∂u
∂y + %w∂u

∂z = %∂U
∂t + %U ∂u

∂x + %V ∂u
∂y + %W ∂u

∂z −
∂p
∂x +

µ
2∇ · (∇u + (∇u)T ).

%Uc
Tc

%Uc
2

L %VcUc
B %WcUc

H̃
%Uc

Tc
%Uc

2

L %VcUc
B %WcUc

H̃
p
L (µUc

L2 µUc
B2 µUc

H̃2 )

The dominant term is µUc
H̃2 . When comparing it with the remaining orders, the other terms vanish, except p

L
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and %Uc
Tc

. The former, because it involves the unknown, the latter because since Tc is large enough, the term

Uc
H̃2 �

Uc
Tc

. Finally, we get:

−
∂p
∂x

+ µ
∂2u
∂z2 = 0. (2.2.7)

After applying the same analysis for the y component we have:

−
∂p
∂y

+ µ
∂2v
∂z2 = 0. (2.2.8)

In the case of the z component we firstly analyse the orders of magnitude of Eqs. (2.2.7-2.2.8).

p
L

= µ
Uc

H̃2
,

p = µ
L2

H̃2Tc
.

Similarly,

p
B

= µ
Vc

H̃2
,

p = µ
B2

H̃2Tc
.

Then, analysing the z component of Eq. (2.2.3) we obtain:

%∂w
∂t + %u∂w

∂x + %v∂w
∂y + %w∂w

∂z = %∂W
∂t + %U ∂w

∂x + %V ∂w
∂y + %W ∂w

∂z − %g − ∂p
∂z +

µ
2∇ · (∇w + (∇w)T ).

%Wc
Tc

%UcWc
L %VcWc

B %Wc
2

H̃
%Wc

Tc
%UcWc

L %VcWc
B %Wc

2

H̃
%g p

H̃
(µWc

L2 µWc
B2 µWc

H̃2 )

Applying the orders of magnitude of Eqs. (2.2.7-2.2.8) and the order p
H̃

we get the real order of magnitude

of term ∂p
∂z :

∂p
∂z

L2

H̃2TcH̃
L2

H̃3Tc
,
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Therefore, it is the dominant term. We can conclude that:

−
∂p
∂z

= 0. (2.2.9)

Notice the physical meaning of Eq. (2.2.9) under the assumptions used in the derivation: the pressure

variations in the height, are negligible with respect to the pressure variations along the other directions.

Finally, we obtain the following system of equations:

∂p
∂x

+ µ
∂2u
∂z2 = 0,

−
∂p
∂y

+ µ
∂2v
∂z2 = 0,

−
∂p
∂z

= 0.

with the following boundary conditions:

u = v = 0, w =
∂h
∂t
, at z = h. (2.2.10)

u − U = v − V = w = W = 0, at z = 0. (2.2.11)

We then integrate the Eq. (2.2.7):

−
∂p
∂x

+ µ
∂2u
∂z2 = 0,

µ
∂2u
∂z2 =

∂p
∂x
,∫ z

0
µ
∂2u
∂z2 dz =

∫ z

0

∂p
∂x

dz,

∂u
∂z

=
1
µ

∂p
∂x

(z + C1),∫ z

0

∂u
∂z

dz =

∫ z

0

1
µ

∂p
∂x

(z + C1)dz,

u =
1
µ

∂p
∂x

(z2

2
+ C1z + C2

)
,
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u =
z2

2µ
∂p
∂x

+ C1z + C2. (2.2.12)

Substituting and evaluating the initial condition u(0) = U we obtain:

U = C2. (2.2.13)

Substituting and evaluating the initial condition u(h) = 0, together with the result in Eq. (2.2.13) we have:

0 =
h2

2µ
∂p
∂x

+ C1h + U,

C1 =
−U − h2

2µ
∂p
∂x

h
,

C1 = −
U
h
−

h
2µ

∂p
∂x
. (2.2.14)

Substituting results from Eq. (2.2.14) and Eq. (2.2.13) in Eq. (2.2.12) we obtain:

u =
z2

2µ
∂p
∂x

+
[
−

U
h
−

h
2µ

∂p
∂x

]
z + U,

u =
z2

2µ
∂p
∂x
−

U
h

z −
h

2µ
∂p
∂x

z + U,

u =
1

2µ
∂p
∂x

z(z − h) + U(1 −
z
h

). (2.2.15)

Similarly, we obtain the expression for the v component:

v =
1

2µ
∂p
∂y

z(z − h) + V(1 −
z
h

). (2.2.16)

This way, we obtain the expressions for the velocity components in terms of the pressure gradient and the

object velocity. Then, we must find p which is independent of z. Therefore, we define the flow rate qi as the

amount of fluid flowing in the direction i, from 0 to h. The flow rate qx is:

qx =

∫ h

0
udz =

∫ h

0

( 1
2µ

∂p
∂x

z(z − h) + U(1 −
z
h

)
)
dz,
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=
h3

6µ
∂p
∂x
−

h3

4µ
∂p
∂x

+ Uh −
Uh
2
,

=
Uh
2

+
2h3 ∂p

∂x − 3h3 ∂p
∂x

12µ
,

=
Uh
2
−

h3

12µ
∂p
∂x
. (2.2.17)

Similarly, we found the expression for the flow rate qy:

qy =

∫ h

0
vdz =

Vh
2
−

h3

12µ
∂p
∂y
. (2.2.18)

We now substitute the expressions for u, v, w in the mass conservation Eq. (2.2.1), and we integrate along

the z direction: ∫ h

0

∂u
∂x

dz +

∫ h

0

∂v
∂y

dz +

∫ h

0

∂w
∂z

dz = 0. (2.2.19)

We then apply the Leibniz’s integral rule for the first two terms:

∂

∂x

∫ h

0
udz − u(h)

∂h
∂x

+ u(0)
∂0
∂x

+
∂

∂y

∫ h

0
vdz − v(h)

∂h
∂y

+ v(0)
∂0
∂y

+ w
∣∣∣∣h
0

= 0.

Since u(h) = v(h) = ∂0
∂x = ∂0

∂y = 0 and w(h) = ∂h
∂t we have:

∂

∂x

∫ h

0
udz +

∂

∂y

∫ h

0
vdz +

∂h
∂t

= 0. (2.2.20)

Substituting the flow rates of Eq. (2.2.17) and Eq. (2.2.18) in Eq. (2.2.20) we obtain:

∂

∂x

(Uh
2
−

h3

12µ
∂p
∂x

)
+
∂

∂y

(Vh
2
−

h3

12µ
∂p
∂y

)
+
∂h
∂t

= 0,

∂

∂x

(Uh
2

)
−
∂

∂x

( h3

12µ
∂p
∂x

)
+
∂

∂y

(Vh
2

)
−
∂

∂y

( h3

12µ
∂p
∂y

)
+
∂h
∂t

= 0,

6µ
∂

∂x
(
Uh

)
−
∂

∂x

(
h3 ∂p
∂x

)
+ 6µ

∂

∂y
(
Vh

)
−
∂

∂y

(
h3 ∂p
∂y

)
+ 12µ

∂h
∂t

= 0,
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from which we obtain the well-known RE for incompressible fluids:

− ∇ · (h3∇p) = −6µ∇ · (hv) − 12µ
∂h
∂t
, (2.2.21)

where:

h : stands for the fluid film thickness,

µ : stands for the fluid viscosity,

v : stands for the velocity of the moving object.

�

2.3 The Reynolds cavitation model

In this section we present the governing equations in a stationary regime for the hydrostatic pressure in a

journal bearing, considering a small fluid film thickness and the cavitation phenomenon. Namely, we intro-

duce the Reynolds cavitation model, which includes boundary conditions for film exit that were previously

proposed in the works of Swift and Stieber; see (Stieber, 1933; Swift, 1932). In fact, this model is known as

Reynolds cavitation model or Swift-Stieber model.

Let L, R be the length and the cross section radius respectively of the shaft. We consider the cir-

cumferential coordinate unfolded y ∈ (0, 2πR) and the axial dimension x ∈ [0, L]. We define the region

Ω : [0, 2πR] × [0, L]. The unknowns of the problem are:

p(y, x) : Ω→ R+, fluid pressure,

ρ ∈ [0,C), left end-plane eccentricity,

α ∈ [0, 2π], left end-plane angular position,

β ∈ [−2C/L, 2C/L], misalignment angle projection on xz-plane,

ϕ ∈ [−2C/L, 2C/L], misalignment angle projection on xy-plane,

(2.3.1)
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and they satisfy the constraint

C2 > λ2,

i.e.

C2 > x2 tan2 β + 2xρ tanϕ sinα + x2 tan2 β + 2xρ tan β cosα + ρ2.

Under certain operating conditions of a journal bearing, the fluid pressure can reach a minimum value,

related to the lubricant vapour pressure. Below this value, cavitation occurs, and the cavitated area is filled

by a vapour at a constant pressure pc. We will consider pc = 0 as an approximation of the pressure value at

which the phenomenon occurs. In this region the RE is no longer valid and a cavitation model is needed to

describe the phenomenon. We look for a function p ≥ 0 in Ω satisfying the RE, where p > 0 (the lubricated

region). We assume there is not mass exchange through the free boundary which separates both regions (the

lubricated region and the cavitated region) and we consider ∂p/∂n = 0, with n the unitary normal vector to

the free boundary. We then use the Reynolds cavitation model to describe this phenomenon, whose weak

formulation is given by the following inequality:

∫
Ω

h3∇p∇(φ − p)dydx ≥
∫

Ω

6µhv∇(φ − p)dydx ∀φ ∈ K, (2.3.2)

with

K =

{
φ ≥ 0,

(∫
Ω

(∇φ)2dydx
)1/2

+

(∫
Ω

φ2dydx
)1/2

< ∞, φ(y, 0) = φ(y, L) = pa

}
, (2.3.3)

pa = atmospheric pressure.

In Eq. (2.3.2), µ stands for the fluid viscosity, h stands for the fluid film thickness and the velocity v =

(U,V ,W) makes reference to the shaft velocity vector. For steady-state bearing operation the shaft presents

only one non-zero velocity component, W = ωR, with ω the angular velocity. Then Eq. (2.3.2) becomes:

∫
Ω

h3∇p∇(φ − p)dydx ≥
∫

Ω

6µhW
∂(φ − p)
∂y

dydx, ∀φ ∈ K, (2.3.4)

defined in Eq. (2.3.3).
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We define the bilinear form a and the function f by:

a(u, v) :=
∫

Ω

h3∇u∇vdydx,

f := −6µ∇ · (hv) ∈ H−1(Ω),

and reformulate Eq. (2.3.4) as follows:

a(u, v − u) ≥ < f , v − u > .

We express the problem as a minimization problem of the following convex functional,

J(v) =
1
2

a(v, v)− < f , v > on K. (2.3.5)

Taking the parameters of Eq. (2.3.4) and substituting them in Eq. (2.3.5) we obtain the dimensional functional

to minimize:

J(φ) =
1
2

∫
Ω

h3(∇φ)T∇φdydx −
∫

Ω

6µhW
∂φ

∂y
dydx, (2.3.6)

with h defined in Eq. (2.1.14).

2.3.1 The non-dimensional Reynolds cavitation model

To make our solution to suffice for a variety of different problems, we introduce the following non-dimensional

variables in addition to the ones defined in Eq. (2.1.12) and Eq. (2.1.15):

θ =
y
R , dy = Rdθ, dx = Ldx̄,

z̄ = z
h , φ̄ = C2

µ0ωR2φ, p̄ = C2

µ0ωR2 p,

µ̄ =
µ
µ0
, W = W

ωR , λ̄ = λ
C ,

(2.3.7)
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where µ0 stands for the reference viscosity. Thus, we transform our domain into the dimensionless do-

main Ω̄ = [0, 2π] × [0, 1] for the (θ, x̄) coordinates. Then, the dimensionless equation for the functional in

Eq. (2.3.6) is:

J(φ̄) =
1
2

∫
Ω̄

LRh̄3(∇φ̄)T∇φ̄dθdx̄ −
∫

Ω̄

6µ̄h̄W
µ0ωLR2

C2

∂φ̄

∂θ
dθdx̄, (2.3.8)

with h̄ defined in Eq. (2.1.16):

2.4 Derivation of the Generalized Reynolds Equation

The derivation of the GRE is a well-known result that can be found in the literature; see (Dowson, 1962)

for instance. However, we provide its derivation in the current section to make the thesis self-contained.

The geometry and coordinate system are shown in the cross section of a journal bearing shown in Fig. 2.1.

Suffixes 1 and 2 will be used to denote conditions on surfaces z = 0 and z = h respectively. The following

assumptions are used in the analysis as in (ibid.):

1. The radius of curvature of the bearing components is large compared with the film thickness.

2. The lubricant is a Newtonian fluid.

3. Inertia and body force terms are small compared with the viscous and pressure terms in the equations

of motion.

4. Owing to the geometry of the fluid film the derivatives of u and v with respect to z are large compared

with all other velocity gradients.

5. There is no slip between the fluid and boundary solids at common boundaries.

After applying an order of magnitude analysis to the Navier-Stokes equations for Newtonian fluids we

obtain the following system of equations. See Section 2.2 for details:

∂p
∂x

=
∂

∂z

(
µ
∂u
∂z

)
, (2.4.1)

∂p
∂y

=
∂

∂z

(
µ
∂v
∂z

)
, (2.4.2)
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∂p
∂z

= 0. (2.4.3)

The gradient of the velocity component u across the film can be found by integrating Eq. (2.4.1).

∫ z

0

∂

∂z

(
µ
∂u
∂z

)
dz =

∫ z

0

∂p
∂x

dz,

∂u
∂z

=
∂p
∂x

z
µ

+
B(x, y)
µ

. (2.4.4)

Integrating again, introducing the following boundary conditions

z = 0, u = U1, v = V1, (2.4.5)

z = h, u = U2, v = V2, (2.4.6)

we have:

∫ h

0

∂u
∂z

dz =

∫ h

0

∂p
∂x

z
µ

dz +

∫ h

0

B(x, y)
µ

dz,

u
∣∣∣∣h
0

=
∂p
∂x

∫ h

0

z
µ

dz + B(x, y)
∫ h

0

1
µ

dz,

B(x, y) =
U2 − U1∫ h

0
1
µdz

−
∂p
∂x

∫ h
0

z
µdz∫ h

0
1
µdz

. (2.4.7)

Defining

F0 =

∫ h

0

1
µ

dz, F1 =

∫ h

0

z
µ

dz, (2.4.8)

we have:

B(x, y) =
U2 − U1

F0
−
∂p
∂x

F1

F0
. (2.4.9)

The equation for the u component would be:

u(z) = u(0) +
∂p
∂x

∫ z

0

z
µ

dz + B(x, y)
∫ z

0

1
µ

dz. (2.4.10)
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Substituting the proper boundary condition from Eq. (2.4.6) and Eq. (2.4.9) in Eq. (2.4.10) we have:

u(z) = U1 +
∂p
∂x

∫ z

0

z
µ

dz +

(
U2 − U1

F0
−
∂p
∂x

F1

F0

) ∫ z

0

1
µ

dz. (2.4.11)

Similarly, the equation for the v component after applying the proper boundary conditions is:

v(z) = V1 +
∂p
∂y

∫ z

0

z
µ

dz +

(
V2 − V1

F0
−
∂p
∂y

F1

F0

) ∫ z

0

1
µ

dz. (2.4.12)

We then return to the continuity equation and perform an integration with respect to z between the limits 0

and h: ∫ h

0

∂%

∂t
dz +

∫ h

0

∂(%u)
∂x

dz +

∫ h

0

∂(%v)
∂y

dz +

∫ h

0

∂(%w)
∂z

dz = 0. (2.4.13)

We then apply the Leibniz’s integral rule:

∫ h2

h1

∂ f (x, y, z)
∂x

dz =
∂

∂x

∫ h2

h1

f (x, y, z)dz − f (x, y, h2)
∂h2

∂x
+ f (x, y, h1)

∂h1

∂x
,

which gives:

∫ h

0

∂%

∂t
dz +

∂

∂x

∫ h

0
(%u)dz +

∂

∂y

∫ h

0
(%v)dz − (%U)2

∂h
∂x
− (%V)2

∂h
∂y

+ [%w]h
0 = 0. (2.4.14)

The integrals of (%u) and (%v) are evaluated by parts to give:

∫ h

0

∂%

∂t
dz +

∂

∂x

[
(%uz)

∣∣∣∣h
0
−

∫ h

0
z
(
∂%

∂z
u +

∂u
∂z
%

)
dz

]
+
∂

∂y

[
(%vz)

∣∣∣∣h
0
−

∫ h

0
z
(
∂%

∂z
v +

∂v
∂z
%

)
dz

]
− (%U)2

∂h
∂x
− (%V)2

∂h
∂y

+ [%w]h
0 = 0. (2.4.15)

We then expand and simplify to obtain:

∫ h

0

∂%

∂t
dz + h

[
∂(%U)2

∂x
+
∂(%V)2

∂y

]
−
∂

∂x

∫ h

0

(
zu
∂%

∂z
+ z%

∂u
∂z

)
dz
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−
∂

∂y

∫ h

0

(
zv
∂%

∂z
+ z%

∂v
∂z

)
dz + [%w]h

0 = 0. (2.4.16)

Substituting Eq. (2.4.4) and Eq. (2.4.11) in term − ∂
∂x

∫ h
0

(
zu∂%∂z + z%∂u

∂z

)
dz of Eq. (2.4.16):

−
∂

∂x

∫ h

0
z
∂%

∂z

(
U1 +

∂p
∂x

∫ z

0

z
%

dz +

(
U2 − U1

F0
−
∂p
∂x

F1

F0

) ∫ z

0

1
µ

dz
)

dz

−
∂

∂x

∫ h

0
z%

(
∂p
∂x

z
µ

+
1
µ

[
U2 − U1

F0
−
∂p
∂x

F1

F0

])
dz = 0.

We then expand to get:

−
∂

∂x

∫ h

0
z
∂%

∂z
U1dz −

∂

∂x

∫ h

0
z
∂%

∂z
∂p
∂x

dz
∫ z

0

z
%

dz −
∂

∂x

∫ h

0
z
∂%

∂z

(
U2 − U1

F0

)
dz

∫ z

0

1
µ

dz,

+
∂

∂x

∫ h

0
z
∂%

∂z
dz

∫ z

0

∂p
∂x

F1

F0

1
µ

dz −
∂

∂x

∫ h

0

z2%

µ

∂p
∂x

dz −
∂

∂x

∫ h

0

z%
µ

U2 − U1

F0
dz +

∂

∂x

∫ h

0

z%
µ

∂p
∂x

F1

F0
dz = 0.

(2.4.17)

Grouping terms with ∂p
∂x and U2−U1

F0
respectively in Eq. (2.4.17) we have:

−
∂

∂x

∫ h

0
z
∂%

∂z
∂p
∂x

dz
∫ z

0

z
%

dz +
∂

∂x

∫ h

0
z
∂%

∂z
dz

∫ z

0

∂p
∂x

F1

F0

1
µ

dz −
∂

∂x

∫ h

0

z2%

µ

∂p
∂x

dz +
∂

∂x

∫ h

0

z%
µ

∂p
∂x

F1

F0
dz

−
∂

∂x

∫ h

0
z
∂%

∂z
U1dz −

∂

∂x

∫ h

0
z
∂%

∂z

(
U2 − U1

F0

)
dz

∫ z

0

1
µ

dz −
∂

∂x

∫ h

0

z%
µ

U2 − U1

F0
dz = 0.

We then apply a factorization:

−
∂

∂x

([∫ h

0

z%
µ

(
z −

F1

F0

)
dz +

∫ h

0

[
z
∂%

∂z

(∫ z

0

z
µ

dz −
F1

F0

∫ z

0

dz
µ

)]
dz

]
∂p
∂x

)
−
∂

∂x

∫ h

0
z
∂%

∂z
U1dz −

∂

∂x

[(
U2 − U1

F0

) (∫ h

0

[
z
∂%

∂z

∫ z

0

dz
µ

]
dz +

∫ h

0

z%
µ

dz
)]

= 0. (2.4.18)

Defining

F2 =

∫ h

0

z%
µ

(
z −

F1

F0

)
dz,

F3 =

∫ h

0

z%
µ

dz,
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G1 =

∫ h

0

[
z
∂%

∂z

(∫ z

0

z
µ

dz −
F1

F0

∫ z

0

dz
µ

)]
dz,

G2 =

∫ h

0

[
z
∂%

∂z

∫ z

0

dz
µ

]
dz,

G3 =

∫ h

0
z
∂%

∂z
dz,

we have:

−
∂

∂x

[
(F2 + G1)

∂p
∂x

]
−
∂

∂x

[(
U2 − U1

F0

)
(F3 + G2) + U1G3

]
= 0. (2.4.19)

Similarly, we derive the expressions for ∂v
∂z and ∂%

∂z . Substituting them in term − ∂
∂y

∫ h
0

(
zv∂%∂z + z%∂v

∂z

)
dz of

Eq. (2.4.16) we yield:

−
∂

∂y

[
(F2 + G1)

∂p
∂y

]
−
∂

∂y

[(
V2 − V1

F0

)
(F3 + G2) + V1G3

]
= 0. (2.4.20)

Substituting Eq. (2.4.19) and Eq. (2.4.20) in Eq. (2.4.16) we have:

∫ h

0

∂%

∂t
dz + h

[
∂(%U)2

∂x
+
∂(%V)2

∂y

]
−
∂

∂x

[
(F2 + G1)

∂p
∂x

]
−
∂

∂x

[(
U2 − U1

F0

)
(F3 + G2) + U1G3

]
−
∂

∂y

[
(F2 + G1)

∂p
∂y

]
−
∂

∂y

[(
V2 − V1

F0

)
(F3 + G2) + V1G3

]
+ (%W)2 − (%W)1 = 0. (2.4.21)

Balancing both sides of Eq. (2.4.21) we found the GRE:

∂

∂x

[
(F2 + G1)

∂p
∂x

]
+
∂

∂y

[
(F2 + G1)

∂p
∂y

]
=h

[
∂(%U)2

∂x
+
∂(%V)2

∂y

]
−
∂

∂x

[(
U2 − U1

F0

)
(F3 + G2) + U1G3

]
−
∂

∂y

[(
V2 − V1

F0

)
(F3 + G2) + V1G3

]
+

∫ h

0

∂%

∂t
dz + (%W)2 − (%W)1 = 0, (2.4.22)

where

F0 =

∫ h

0

1
µ

dz,
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F1 =

∫ h

0

z
µ

dz,

F2 =

∫ h

0

z%
µ

(
z −

F1

F0

)
dz,

F3 =

∫ h

0

z%
µ

dz,

G1 =

∫ h

0

[
z
∂%

∂z

(∫ z

0

z
µ

dz −
F1

F0

∫ z

0

dz
µ

)]
dz,

G2 =

∫ h

0

[
z
∂%

∂z

∫ z

0

dz
µ

]
dz,

G3 =

∫ h

0
z
∂%

∂z
dz.

2.5 Simplifications to the GRE for journal bearings

The following assumptions are used in the simplification. We consider in the left-hand side of Eq. (2.4.22)

the components of the pressure-driven flow (Poiseuille flow) along both circumferential “y” and axial “x”

directions. Similarly, we consider in the right-hand side of Eq. (2.4.22) the component of the drag-driven flow

(Couette flow) which is only present along the circumferential direction. We also consider an incompressible

fluid (% = const) and a stationary bearing (V1 = 0). In addition, there is no slip between the shaft and the

fluid, so U2 = ωR. Under these assumptions the Eq. (2.4.22) reduces to:

∂

∂y

[
F2
∂p
∂y

]
+
∂

∂x

[
F2
∂p
∂x

]
= h%

∂V2

∂y
−
∂

∂y

[
V2

F3

F0

]
+ %(W2 −W1). (2.5.1)

Then, the fluid density vanishes and in consequence F3 = F1. Thus, the Eq. (2.5.1) becomes:

∂

∂y

[
F2
∂p
∂y

]
+
∂

∂x

[
F2
∂p
∂x

]
=
∂(hV2)
∂y

−
∂

∂y

[
V2

F1

F0

]
− V2

∂h
∂y

+ (W2 −W1). (2.5.2)

For journal bearings, generally W2 −W1 = V2
∂h
∂y , see (Jang and Khonsari, 2004) for details. Then we obtain

the simplified GRE for journal bearings:

∂

∂y

[
F2
∂p
∂y

]
+
∂

∂x

[
F2
∂p
∂x

]
=

∂

∂y

[
V2

(
h −

F1

F0

)]
. (2.5.3)
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2.5.1 The non-dimensional GRE for journal bearings

To make Eq. (2.5.3) to suffice for a variety of different problems, we follow the non-dimensional variables

defined in Eq. (2.1.12), Eq. (2.1.15) and Eq. (2.3.7). As in Sect. 2.3.1, we transform our domain into the

dimensionless domain Ω̄ = [0, 2π]×[0, 1] for the (θ, x̄) coordinates. Since we consider an isoviscous lubricant

the non-dimensional viscosity integrals are defined as follows, see (Brito, 2009) for details.

F0 =

∫ 1

0

1
µ̄

dz̄ =
1
µ̄
, F1 =

∫ 1

0

z̄
µ̄

dz̄ =
1

2µ̄
, F2 =

∫ 1

0

z̄
µ̄

z̄ − F1

F0

 dz̄ =
2F0 − 3F1

6µ̄F0
,

with

F0 =
h̄CF0

µ0
, F1 =

h̄2C2F1

µ0
, F2 =

h̄3C3F2

µ0
. (2.5.4)

Then, by applying the chain rule, Eq. (2.5.3) is posed into the normalized reference domain:

∂

∂θ

 h̄3C3F2

µ0

µ0ωR2

C2

∂ p̄
∂θ

1
R

 1
R

+
∂

∂x̄

 h̄3C3F2

µ0

µ0ωR2

C2

∂ p̄
∂x̄

1
L

 1
L

=
∂

∂θ

ωR

h̄C −
h̄2C2F1

µ0h̄CF0
µ0


 1

R
. (2.5.5)

After simplifying we obtain the non-dimensional RE for journal bearings:

∂

∂θ

[
h̄3F2

∂ p̄
∂θ

]
+

R2

L2

∂

∂x̄

[
h̄3F2

∂p̄
∂x̄

]
=

∂

∂θ

h̄ 1 − F1

F0

 . (2.5.6)

We transform the domain into Ω̃ = [0, 2π] × [0, L
R ] by introducing the new variable x̃ = x̄ L

R . The Eq. (2.5.6)

becomes:
∂

∂θ

[
h̃3F2

∂ p̄
∂θ

]
+
∂

∂x̃

[
h̃3F2

∂ p̄
∂x̃

]
=

∂

∂θ

h̃ 1 − F1

F0

 . (2.5.7)

where:

h̃ = 1 + λ̃ cos(θ − γ̃), (2.5.8)

with

λ̃ =
1
C

[
(x̃ tanϕ + Cρ̄ sinα)2 + (x̃ tan β + Cρ̄ cosα)2

]1/2
(2.5.9)

and

γ̃ = arctan
x̃ tanϕ + Cρ̄ sinα
x̃ tan β + Cρ̄ cosα

. (2.5.10)
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It is important to remark that, due to the domain transformation from Ω̄ to Ω̃, the admissible range of

the misalignment angle projections provided in Eq. (2.1.22) and Eq. (2.1.23) for prescribed values of ρ̄ and

α changes to:

−
CR
L

(1 + ρ̄ sinα) < tanϕ <
CR
L

(1 − ρ̄ sinα) . (2.5.11)

−
R
L

[C2 −

( L
R

tanϕ + Cρ̄ sinα
)2]1/2

−Cρ̄ cosα

 < tan β <
R
L

[C2 −

( L
R

tanϕ + Cρ̄ sinα
)2]1/2

−Cρ̄ cosα

 . (2.5.12)

2.6 The Elrod–Adams cavitation model

An additional unknown is introduced to address the cavitation phenomenon in the Elrod–Adams model, the

saturation ϑ that represents the lubricant concentration. As it was explained in Sect. 1.3, when cavitation

occurs, the domain presents two regions. Thus, we split the domain Ω̃ into two parts: the active zone Ω+

where positive pressure values are present with the GRE governing the lubricant behaviour, and the Ω0 where

the pressure is zero and the conservation of mass equation needs to be changed. See the whole configuration

of the normalized domain Ω̃ including its boundary ∂Ω̃ in Fig. 2.4, i.e.

Ω̃ = Ω+ ∪Ω0, (2.6.1)

∂Ω̃ = Γ0 ∪ Γ1 ∪ Γ2. (2.6.2)

The saturation ϑ takes the value 1 in the active zone Ω+ and takes any other value in the range [0, 1] within

the cavitated region Ω0. Notice that Γ0 is the zero width boundary where the lubricant is axially supplied

through, with known concentration (ϑ = ϑ0); Σ depicts the free boundary between the active zone and

the cavitated one. The hydrodynamic problem is stated as follows. To find (p̄, ϑ) such as the following

conditions are verified:

∂

∂θ

[
h̃3F2

∂p̄
∂θ

]
+
∂

∂x̃

[
h̃3F2

∂p̄
∂x̃

]
=

∂

∂θ

h̃ 1 − F1

F0

 , p̄ > 0 and ϑ = 1 in Ω+, (2.6.3)

∂

∂θ

ϑh̃
1 − F1

F0

 = 0, p̄ = 0, 0 ≤ ϑ ≤ 1 in Ω0, (2.6.4)
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Figure 2.4. Configuration for the normalized hydrodynamic domain Ω̃.

h̃3F2
∂ p̄
∂n

= (1 − ϑ)h̃
1 − F1

F0

 cos(n, i), p̄ = 0 in Σ, (2.6.5)

ϑ = ϑ0 in Γ0, (2.6.6)

p̄ = p̄s in Γ0, (2.6.7)

p̄ = 0 in ∂Ω̃ − Γ0, (2.6.8)

p̄s = normalized supply pressure, (2.6.9)

where n is the normal vector to Σ and i is the unitary vector in the θ direction. The Eq. (2.6.3) states that

the pressure, in the active zone is governed by the GRE. The Eq. (2.6.4) states that in the cavitated zone, the

mass conservation law must be satisfied in the θ direction. The Eq. (2.6.5) is the flow continuity condition

through the free boundary between the active and the cavitated zone. Eqs. (2.6.6-2.6.9) correspond to the

boundary conditions related to the concentration and pressure at the supply groove, and the pressure at the

front and back boundaries of the device respectively.

2.6.1 Deduction of the flow continuity condition through the free boundary

The amount of flux in a fluid element is the difference between the amount of incoming and outcoming

fluxes. Mathematically it is: ∫
Ω̃

∇ · (h̃3F2∇ p̄)dΩ̃ =

∫
∂Ω̃

h̃3F2
∂p̄
∂n

ds. (2.6.10)
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It is important to remark that the flux has two components: the pressure-driven flow (Poiseuille flow) along

both circumferential “y” and axial “x” directions and the drag-driven flow (Couette flow) which is only

present along the circumferential direction. The flux in Ω+ is:

h̃3F2∇ p̄ − h̃
1 − F1

F0

 i, (2.6.11)

where i is the standard basis vector i = (1, 0), pointing to the θ direction in this case. At the boundary of

Ω+ the flux comprises the normal and the tangential components. Since a mass interchange occurs along the

normal direction, we have:

h̃3F2
∂p̄
∂n
− h̃

1 − F1

F0

 i · n. (2.6.12)

In the same way, the amount of outcoming mass from Ω0 through the boundary Σ is:

ϑh̃
1 − F1

F0

 i · n. (2.6.13)

Then, there must be a balance, so:

h̃3F2
∂ p̄
∂n

= h̃
1 − F1

F0

 i · n − ϑh̃
1 − F1

F0

 i · n, (2.6.14)

i.e.

h̃3F2
∂ p̄
∂n

= (1 − ϑ)h̃
1 − F1

F0

 cos(i,n). (2.6.15)

�

2.7 Weak formulation of the Elrod–Adams cavitation model

The starting point of this derivation is the strong form of the Elrod-Adams model provided by Eqs. (2.6.3-

2.6.7). We first multiply by φ̄ such as φ̄|Γ1∪Γ2 = 0,
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φ̄∇ · (h̃3F2∇ p̄) = φ̄∇ ·

h̃ 1 − F1

F0

 , 0 p̄ > 0, ϑ = 1 in Ω+. (2.7.1)

The boundary of Ω+ denoted by ∂Ω+ is split into two parts Γ2 and Σ, i.e.

∂Ω+ = Γ2 ∪ Σ. (2.7.2)

So, we apply Green’s formula on the left-hand side and we have:

∫
Γ2

h̃3F2
∂p̄
∂n

φ̄ dΓ2 +

∫
Σ

h̃3F2
∂ p̄
∂n

φ̄ dΣ −

∫
Ω+

(h̃3F2∇ p̄)∇φ̄dΩ+ =

∫
Ω+

∇ ·

h̃ 1 − F1

F0

 , 0 φ̄. (2.7.3)

Similarly, we apply Green’s formula on the right-hand side of Eq. (2.7.3) to have:

∫
Γ2

h̃3F2
∂ p̄
∂n

φ̄ dΓ2 +

∫
Σ

h̃3F2
∂p̄
∂n

φ̄ dΣ −

∫
Ω+

(h̃3F2∇ p̄)∇φ̄dΩ+ =

∫
Γ2

h̃ 1 − F1

F0

 , 0 n φ̄ dΓ2

+

∫
Σ

h̃ 1 − F1

F0

 , 0 n φ̄ dΣ −

∫
Ω+

h̃ 1 − F1

F0

 , 0∇φ̄dΩ+. (2.7.4)

Since the function φ̄ is chosen such as φ̄|Γ2 = 0 we have:

∫
Σ

h̃3F2
∂ p̄
∂n

φ̄ dΣ−

∫
Ω+

(h̃3F2∇ p̄)∇φ̄dΩ+ =

∫
Σ

h̃ 1 − F1

F0

 , 0 n φ̄ dΣ−

∫
Ω+

h̃ 1 − F1

F0

 , 0∇φ̄dΩ+. (2.7.5)

We now multiply by the function φ̄ the Eq. (2.6.4). Since ∂Ω0 = Γ0 ∪ Γ1 ∪ Σ and ϑ = ϑ0 in Γ0 we have after

applying Green’s formula:

∫
Γ0

ϑ0

h̃ 1 − F1

F0

 , 0 n φ̄ dΓ0 +

∫
Γ1

ϑ0

h̃ 1 − F1

F0

 , 0 n φ̄ dΓ1

+

∫
Σ

ϑ0

h̃ 1 − F1

F0

 , 0 n φ̄ dΣ −

∫
Ω0
ϑ

h̃ 1 − F1

F0

 , 0 ∇φ̄dΩ0 = 0.

(2.7.6)
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Since the function φ̄ is chosen such as φ̄|Γ1 = 0 we have:

∫
Γ0

ϑ0

h̃ 1 − F1

F0

 , 0 n φ̄ dΓ0 +

∫
Σ

ϑ0

h̃ 1 − F1

F0

 , 0 n φ̄ dΣ −

∫
Ω0
ϑ

h̃ 1 − F1

F0

 , 0 ∇φ̄dΩ0 = 0,

(2.7.7)

i.e.

∫
Γ0

ϑ0h̃
1 − F1

F0

 cos(n, i) φ̄ dΓ0 +

∫
Σ

ϑh̃
1 − F1

F0

 cos(n, i) φ̄ dΣ −

∫
Ω0
ϑh̃

1 − F1

F0

 ∂φ̄
∂θ

dΩ0 = 0. (2.7.8)

We then substitute Eq. (2.6.5) in Eq. (2.7.5) and obtain:

∫
Σ

(1 − ϑ)h̃
1 − F1

F0

 cos(n, i) φ̄ dΣ −

∫
Ω+

(h̃3F2∇ p̄)∇φ̄dΩ+ =

∫
Σ

h̃
1 − F1

F0

 cos(n, i) φ̄ dΣ

−

∫
Ω+

h̃
1 − F1

F0

 ∂φ̄
∂θ

dΩ+. (2.7.9)

Reducing like terms we have:

−

∫
Σ

ϑh̃
1 − F1

F0

 cos(n, i) φ̄ dΣ −

∫
Ω+

(h̃3F2∇ p̄)∇φ̄dΩ+ = −

∫
Ω+

h̃
1 − F1

F0

 ∂φ̄
∂θ

dΩ+. (2.7.10)

Then, adding up Eq. (2.7.8) and Eq. (2.7.10) and reducing like terms we obtain:

−

∫
Ω+

(h̃3F2∇ p̄)∇φ̄dΩ+ = −

∫
Ω+

h̃
1 − F1

F0

 ∂φ̄
∂θ

dΩ+ +

∫
Ω0
ϑh̃

1 − F1

F0

 ∂φ̄
∂θ

dΩ0

−

∫
Γ0

ϑ0h̃
1 − F1

F0

 cos(n, i) φ̄ dΓ0. (2.7.11)

Taking into account that Ω̃ = Ω+ ∪Ω0, ϑ = 1 in Ω+ and p̄ = 0 in Ω0 we have:

−

∫
Ω̃

(h̃3F2∇ p̄)∇φ̄dΩ̃ = −

∫
Ω̃

ϑh̃
1 − F1

F0

 ∂φ̄
∂θ

dΩ̃ −

∫
Γ0

ϑ0h̃
1 − F1

F0

 cos(n, i) φ̄ dΓ0, (2.7.12)
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ϑ ∈ H( p̄) =



1, if p̄ > 0,

[0, 1], if p̄ = 0,

0, if p̄ < 0,

(2.7.13)

where the space of test functions is given by:

K =
{
φ̄ ∈ H1(Ω̃) : φ̄|∂Ω̃−Γ0

= 0
}
. (2.7.14)

By using integration by parts we rewrite Eq. (2.7.12) as follows:

−

∫
Ω̃

(h̃3F2∇ p̄)∇φ̄dΩ̃ =

∫
Ω̃

∂

∂θ

ϑh̃
1 − F1

F0

 φ̄ dΩ̃, ∀φ̄ ∈ K , ϑ = ϑ0 in Γ0. (2.7.15)

2.8 Shaft stationary model

The shaft stationary model is based on the balance of force and torque components involved in the device.

For that, the hydrodynamic RE is coupled to Newton’s second law. It is well-known that the pressure p is

a physical magnitude that measures the force projection in a perpendicular direction to the surface per unit

area. Then, the resultant dimensional fluid film force components, acting on the bearing and accordingly to

Fig. 2.2 are:

∫
Ω

p(θ, x) sin θdθdx = Fy,∫
Ω

p(θ, x) cos θdθdx = Fz,

where sin θ and cos θ stand for the unitary normal vector components to the bearing surface.

Moreover, to determine the resultant torque generated by the fluid force on the shaft, we start finding the

torque in an arbitrary position vector q located on the bearing surface with coordinates q = (x,Rb sin θ,Rb cos θ)

with Rb the bearing radius. The coordinate system corresponds to the one in Fig. 2.2. Let p be, the pressure
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at the position vector q. The force Fq exerted by the fluid pressure at that point will be:

Fq = (0, p sin θ, p cos θ),

Mathematically the torque τ is defined as a cross product of two vectors, which produces rotation:

τ = r × Fq,

where r represents the displacement vector from the rotation axis to the point where Fq is applied. Thus, the

torque generated at the position vector q is:

τ = q × Fq,

= (x,Rb sin θ,Rb cos θ) × (0, p sin θ, p cos θ),

= (0,−xp cos θ, xp sin θ).

Then, the resultant dimensional torque components acting on the bearing are:

−

∫
Ω

xp(θ, x) cos θdθdx = τy,∫
Ω

xp(θ, x) sin θdθdx = τz.

Notice that the equilibrium of the external torque τ and the one exerted by the fluid film is taken also with

respect to the origin O. Accordingly to Eq. (2.3.7), we obtain the following dimensionless expressions for

the equilibrium of force components:

1
|F|

∫
Ω̄

µ0ωLR3

C2 p̄ sin θdθdx̄ = F̄y,

1
|F|

∫
Ω̄

µ0ωLR3

C2 p̄ cos θdθdx̄ = F̄z,

where |F| denotes the modulus of the external load F, used for scaling. The right-hand side terms F̄y and F̄z
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stand for the normalized components of F. Similarly, the dimensionless expressions for the torque are:

−
1
|τ|

∫
Ω̄

µ0ωL2R3

C2 x̄ p̄ cos θdθdx̄ = τ̄y,

1
|τ|

∫
Ω̄

µ0ωL2R3

C2 x̄ p̄ sin θdθdx̄ = τ̄z,

where |τ| denotes the modulus of the external torque τ, used for scaling. The right-hand side terms τ̄y and τ̄z

stand for the normalized components of τ.
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CHAPTER 3

Prediction of contact with the Reynolds cavitation model

In this chapter we consider a finite element discretization and accomplish the minimization stage by a PCG,

modified with both projection and restarting strategies to account for cavitation. We also explain the resolu-

tion of the inverse problem by an interior, trust-region algorithm subject to bounds. Numerical experiments

and discussion are also included.

3.1 Finite load capacity for the point contact case

It is important to remark that the limit case of a shaft-bearing contact presents two particular situations: a line

contact and a point contact. The line-contact case has been studied before in (Ciuperca, Jai, and Tello, 2009),

where the authors show the infinite load capacity of the system and the unboundedness of the pressure. For

the point contact case, it is possible to analytically obtain a finite load capacity of the system. We prove in

Theorem 3.1.1 that the force exerted by the pressure is indeed finite. A similar proof on sliders can be found

in (Ciuperca, Hafidi, and Jai, 2006).

Theorem 3.1.1. Let h̄(x̄, α, θ, β) = 1 + x̄
C tan β cos(θ − α) be the fluid film thickness for x̄ ∈ [0, 1], such

that min{h̄} = 0 with a contact point at x̄ = 1 if tan β = C, ρ̄ = 0 and θ − α = π. Then, we have that:

lim
tan β→C

∫
Ω̄
φ̄dx̄dθ < k(β,C, ρ̄, α).
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Proof. We first prove that the term ∫
Ω̄

h̄3|∇φ̄|2dx̄dθ (3.1.1)

is uniformly bounded. The proof is obtained from the inequality

∫
Ω̄

h̄3|∇φ̄|2dx̄dθ = Λ

∫
Ω̄

h̄
∂φ̄

∂θ
dx̄dθ,

≤
1
2

∫
Ω̄

h̄3|∇φ̄|2dx̄dθ +
Λ2

2

∫
Ω̄

h̄−1dx̄dθ,

providing ∫
Ω̄

h̄−1dx̄dθ ≤ k < ∞,

and in consequence the boundedness of Eq. (3.1.1). Since

∫ α+ 7π
6

α+ 5π
6

∫ 1

0
h̄−1dx̄dθ ≤

∫ α+ 7π
6

α+ 5π
6

C
[
ln(C + tan β cos(θ − α))

tan β cos(θ − α)
−

ln(C)
tan β cos(θ − α)

]
dθ,

≤
C

tan β

[ ∫ α+ 7π
6

α+ 5π
6

ln(C + tan β cos(θ − α))
cos(θ − α)

dθ − k0

]
< ∞,

we have that

lim
tan β→C

∫
Ω̄

h̄3|∇φ̄|2dx̄dθ ≤ k < ∞,

and therefore ∫
Ω̄

h̄3|∇φ̄|2dx̄dθ ≤ k < ∞, ∀β < arctan C. (3.1.2)

Let Ω1 =
{
(x̄, θ) ∈ (0, 1) × (α − 5π

6 , α + 5π
6 )

}
, i.e. a region where no over-pressures nor contacts occur. Thanks

to (3.1.2) we have ∫
Ω1

h̄3|∇φ̄|2dx̄dθ ≤ k < ∞.

So, ∫
Ω1

|∇φ̄|2dx̄dθ ≤
k

min
(x̄,θ)∈Ω1

h̄3
, ∀β < arctan C,
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and in consequence, φ̄ ∈ Lp(Ω1), ∀p < ∞, in particular

∫
Ω1

|φ̄|dx̄dθ ≤ k. (3.1.3)

To compute the L1-norm of φ̄ in Ω̄ we consider

∣∣∣∣∣∫
Ω̄

φ̄ cos(θ − α)dx̄dθ
∣∣∣∣∣ =

∣∣∣∣∣∫
Ω̄

φ̄
∂

∂x̄
x̄ cos(θ − α)dx̄dθ

∣∣∣∣∣ ,
=

∣∣∣∣∣∣k0

∫
Ω̄

φ̄
∂h̄
∂x̄

dx̄dθ

∣∣∣∣∣∣ ,
=

∣∣∣∣∣∣k0

∫
Ω̄

h̄
∂φ̄

∂x̄
dx̄dθ

∣∣∣∣∣∣ ,
≤

∣∣∣∣∣∣k0

(
1
2

∫
Ω̄

h̄3|∇φ̄|2dx̄dθ +
Λ2

2

∫
Ω̄

h̄−1dx̄dθ
)∣∣∣∣∣∣ .

Since lim
tan β→C

∫
Ω̄
φ̄ cos(θ − α)dx̄dθ < ∞, in view of (3.1.3), we have that

lim
tan β→C

∫ α+ 7π
6

α+ 5π
6

∫ 1

0
φ̄dx̄dθ < ∞. (3.1.4)

Then, thanks to (3.1.3) and (3.1.4) we obtain

lim
tan β→C

∫
Ω̄

φ̄dx̄dθ < ∞. (3.1.5)

�

Nevertheless, Boedo and Booker (2004) suggest that misaligned bearings have infinite load and moment

capacity as the end-plane minimum film thickness approaches zero under transient journal squeeze motion

and under steady load and speed conditions. Those results differ markedly from this proof and from finite

capacity trends reported in previous numerical and experimental studies.

Corollary 1. As a consequence of the previous theorem we have that

∫
Ω̄

φ̄ sin(θ − α)dx̄dθ,
∫

Ω̄

φ̄ cos(θ − α)dx̄dθ,
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∫
Ω̄

x̄φ̄ sin(θ − α)dx̄dθ,
∫

Ω̄

x̄φ̄ cos(θ − α)dx̄dθ,

are uniformly bounded at the contact point limit and therefore for |F| or |τ| large enough we do not have a

solution for the problem.

Nevertheless, the inequality (3.1.5) does not guarantee the uniform boundedness of the pressure. See in

Fig. 3.13 the pressure behaviour as tan β→ C.

Remark 3.1.1. The study in (Boedo and Booker, 2004), for the stationary case, is accomplished for

h = C − ex cos θ − ey sin θ − zφy cos θ + zφx sin θ, (3.1.6)

where ex, ey are components of mid-plane journal eccentricity, and φx, φy are components of journal axial

misalignment angle. It is possible to reproduce the proof of Theorem 3.1.1 using Eq. (3.1.6) by assuming

ex = ey = φy = 0 and substituting φx by tan φx.

3.2 Direct problem resolution

We first consider the direct problem, where the position of the inner cylinder is known, i.e. h is a given

datum determined by α, ρ, ϕ and β. Taking advantage of the region under study we perform the spatial

approximation by piecewise quadrangular Lagrange Q1 finite elements; see (Zienkiewicz and R. L. Taylor,

2000) for details. Let n be the total number of nodes for the mesh discretization. Then, φ̄ is approximated as

follows:

φ̄ ≈ φ̄f =

n∑
j=1

N jφ j,

where N j stands for the shape function evaluated at node j and parameter φ j stands for the discrete pressure

value also evaluated at node j. Subscript f stands for the finite element approximation.

The mesh topology used in this work is shown in Fig. 3.1. As in (Boedo and Booker, 2004), we use a

uniform mesh density along the circumferential direction, whereas in the axial direction the mesh density

becomes finer when moving from the bearing mid-plane to the bearing ends. An attenuation factor δ is used

for this purpose. When considering misalignment, this mesh topology provides better results towards the
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contact. In addition, the singularity appears to the bearing ends when δ = 0 and for that reason a finer mesh

at these places is particularly convenient. In the axial direction, given L and the division number m, the

θ

0 1 2 3 4 5 6 7

x̄

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.1. The mesh topology used in this work (dimensionless).

coordinates x̄i are generated from a bearing end to its mid-plane, by Eq. (3.2.1):

x̄i+1 = x̄i +
∆

δi , (3.2.1)

x̄0 = 0,

where

∆ =
L
2
/

m
2 −1∑
j=0

δ j−m
2 +1.

The generated mesh, as in (ibid.), is then reflected about the bearing mid-plane, (x̄ = 1/2) in this work. On

the other hand, the discretized form of the dimensionless functional in Eq. (2.3.8) is:

J(φ̄f) =
1
2

n∑
j=1

n∑
k=1

∫
Ω̄

LRh̄3
[
∇
(
N jφ j

)]T
∇
(
Nkφk

)
dθdx̄

−

n∑
j=1

∫
Ω̄

6µ̄h̄W
µ0ωLR2

C2

∂
(
N jφ j

)
∂θ

dθdx̄,
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i.e.

J(φ̄f) =
1
2

n∑
j=1

n∑
k=1

φ j
( ∫

Ω̄

LRh̄3(∇N j)T (∇Nk)dθdx̄
)
φk

−

n∑
j=1

φ j

∫
Ω̄

6µ̄h̄W,
µ0ωLR2

C2

∂N j

∂θ
dθdx̄. (3.2.2)

It can be easily verified this functional is in the form of 1
2φ

T Aφ − φT b.

Therefore, for the resolution of the direct problem we propose a PCG, with some variations to account

for cavitation. Starting at any φ1 ∈ R
n the basic approach of conjugate gradient methods is to generate a

sequence of iterates φ j according to:

φ j+1 = φ j + ε jd j, ε j =
< r j, r j >

< d j, Ad j >
, (3.2.3)

where d j stands for the search direction, ε j is the step length that minimizes the functional along d j from

the point φ j, and r j = b − Aφ j stands for the residual. Notation <, > stands for the inner product of both

n-dimensional vectors. Subsequent computations of terms r j and d j obey the following equations that guar-

antee vectors {d j} to be A-orthogonal (Luenberger and Ye, 2008):

r j+1 = r j − ε jAd j, (3.2.4)

d j+1 = r j+1 + ξ jd j, (3.2.5)

ξFR
j =

< r j+1, r j+1 >

< r j, r j >
, (3.2.6)

where term ξFR
j stands for the deflection parameter that characterizes a concrete conjugate gradient imple-

mentation, the Fletcher-Reeves approach in our case; see (Bazaraa, Sherali, and Shetty, 2006) for details.

Although for quadratic functions all approaches coincide, we select the Fletcher-Reeves’ taking advantage

of the inner product < r j, r j >, which is known from the previous iteration. We define d1 = r1 = b − Aφ1 for

the initial iteration.

Moreover, it has been demonstrated that the performance of the conjugate gradient method can be really

enhanced by accomplishing a restart, following a proper criterion. Suppose that we decide to reset at some
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iteration j, having found φ j+1 following Eq. (3.2.3). Let ς = j be this restart iteration. For the next one, we

find the search direction as usual:

dς+1 = rς+1 + ξςdς.

Then, we store the direction dς+1 at some variable, say d1, we set j = 1 and the algorithm returns to the first

step to execute the next loop of iterations. However, instead of always employing Eq. (3.2.5) we use:

d2 = r2 + ξ1d1, for j = 1,

but

d j+1 = r j+1 + ξ jd j + ζ jd1 for j ≥ 2, (3.2.7)

where

ζ j =
< −r j+1, Ad1 >

< d1, Ad1 >
,

and ξ j is computed as usually, following Eq. (3.2.6). This schema ensures d1 and d2 to be A-orthogonal when

the function is quadratic. Nevertheless, if the function is quadratic with a positive definite Hessian A, and d1

is chosen arbitrarily, when j = 2 the usual choice of ξ2 would guarantee d3 and d2 to be A-orthogonal but a

correction parameter will be needed to make d3 and d1 A-orthogonal. This is ensured by the third term ζ jd1

in Eq. (3.2.7). The procedure was suggested by Beale in 1970, with the motivation that whenever a restart is

done using d1 = r1 instead of d1 = dς+1 we lose important second order information inherent in dς. More

on this can be viewed in (ibid.). Furthermore, the conjugate gradient method is usually extended to include

preconditioning as follows:

φ j+1 = φ j + ε jd j, ε j =
< r j, s j >

< d j, Ad j >
,

r j+1 = r j − ε jAd j, s j+1 = M−1r j+1,

d j+1 = s j+1 + ξ jd j, ξFR
j =

< r j+1, s j+1 >

< r j, s j >
,

M = ΨΨT ,
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where r1 = b − Aφ1 and d1 = s1 = M−1r1 for the initial iteration. Unfortunately, we cannot perform the

minimization of the functional in Eq. (3.2.2) by using straightforwardly the PCG depicted above. With that

regular approach, it is possible to get a solution out of the convex set defined in Eq. (2.3.3), for configurations

that provoke cavitation. Those solutions would mean negative pressure values that have no physical meaning.

So, we need to specify that the pressure is never negative in order to get physically correct results. Thus, we

modified the PCG with a projection technique to account for cavitation, and performing a restarting process

whenever a projection occurs. This approach corrects at each iteration j the pressure value components φi
j

and takes up the necessary zero gradients automatically, whenever the first one is detected out of the convex

set. We use the projection technique max(φi
j, 0), also proposed in (Calvo, Durany, and Vázquez, 1997).

We determined the following expressions to properly compute the new descent directions after a restart-

ing procedure when considering preconditioning. These expressions, that guarantee the search directions

{d j} to be A-orthogonal, are in fact our contribution to ensure that the modified PCG holds its convergence

properties. In what follows, the terms applied to the restarting process for the PCG will all be marked by˜ as

in (Knabner and Angermann, 2003), except ξ j and ζ j. Thus, for the direction d̃ j+1 with j ≥ 2 we have:

d̃ j+1 = r̃ j+1 + ξ jd̃ j + ζ jd̃1.

Due to back transformation

φ = Ψ−T φ̃,

the algorithm has the search direction

d j = Ψ−T d̃ j,

for the transformed iterate

φ j = Ψ−T φ̃ j. (3.2.8)

The residual r j in φ j is given by:

r j = b − Aφ j = Ψ (c − Bφ̃ j) = Ψ r̃ j,

where B = Ψ−1AΨ−T and c = Ψ−1b are the system matrix and the right-hand side term respectively after
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applying a split preconditioning process. Then:

d̃ j+1 = Ψ−1r j+1 + ξ jd̃ j + ζ jd̃1,

Ψ−T d̃ j+1 = Ψ−TΨ−1r j+1 + ξ jΨ
−T d̃ j + ζ jΨ

−T d̃1,

d j+1 = Ψ−TΨ−1r j+1 + ξ jd j + ζ jd1,

d j+1 = M−1r j+1 + ξ jd j + ζ jd1,

with

ζ j =
< −r̃ j+1, Bd̃1 >

< d̃1, Bd̃1 >
,

=
< −Ψ−1r j+1, Ψ

−1AΨ−TΨT d1 >

< ΨT d1, Ψ−1AΨ−TΨT d1 >
,

=
< −Ψ−1r j+1, Ψ

−1Ad1 >

< ΨT d1, Ψ−1Ad1 >
.

Taking the inner product:

ζ j =
(−Ψ−1r j+1)TΨ−1Ad1

(ΨT d1)TΨ−1Ad1
,

=
−rT

j+1Ψ
−TΨ−1Ad1

dT
1ΨΨ

−1Ad1
,

=
−rT

j+1M−1Ad1

dT
1 Ad1

.

If we denote σ1 = Ad1 we have:

ζ j =
−rT

j+1M−1σ1

dT
1σ1

.

Notice that we need additionally to solve the system of equation Msσ = σ1, but only when a restarting pro-

cedure occurs. The solution is carried out by easily solving two triangular systems with coefficient matrices

Ψ and ΨT . Finally, we have:

ζ j =
< −r j+1, sσ >
< d1, σ1 >

.

A flow chart for the proposed PCG algorithm considering cavitation with the restarting technique in-
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cluded is presented in Fig. 3.2. As a summary, in the regular iteration when there is no cavitation nor

StartA, b,M, φ1
Input

r1 = b − Aφ1
s1 = M \ r1
d1 = s1

hr0 =< s1, r1 >
ςiter = false

Restart = false

Step1. Initial conditions

Stopping
criteria

ε j =
hr0

< d j, Ad j >

φ j+1 = φ j + ε jd j
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Cavitation?
(φi

j < 0)
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j = max(φi

j, 0)

ri
j = max(ri

j, 0)

s j = M \ r j
d j = s j

hr0 =< s j, r j >
ςiter = true

Restart = true

Step 3. Solve cavitation

r j+1 = r j − ε jAd j
s j+1 = M \ r j+1
hr1 =< s j+1, r j+1 >

ξ j =
hr1

hr0

Step4. Compute

ςiter == true

d1 = d j
d j+1 = s j+1 + ξ jd1
σ1 = Ad1
sσ = M \ σ1
ςiter = false

Step 5. Restarting first iteration

Restart==true

d j+1 = s j+1 + ξ jd j

Step 6. No restarting

ζ j =
< −r j+1, sσ >
< d1, σ1 >

d j+1 = s j+1 + ξ jd j + ζ jd1

Step 7. Compute

hr0 = hr1

Step 8. Update

φ j
Output

Stop
No

Yes

No

Yes

No

Yes

No

Yes

Figure 3.2. Flow chart for the PCG considering cavitation and the restarting technique.

restarting (steps 2, 4, 6, 8), we have the following expressions:

φ j+1 = φ j + ε jd j, ε j =
< r j, s j >

< d j, Ad j >
,
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r j+1 = r j − ε jAd j, s j+1 = M−1r j+1, (3.2.9)

d j+1 = s j+1 + ξ jd j, ξFR
j =

< r j+1, s j+1 >

< r j, s j >
.

Whenever we detect cavitation (φi
j < 0), we set the negative pressure and residual components to zero.

We solve s j in Eq. (3.2.9), but using the updated residual value r j. We prepare the restarting procedure by

setting d j = s j, computing the product < s j, r j > and defining two flags (step 3). Then, in the first iteration

of the restarting (when ςiter == true) we set and compute (step 5):

d1 = d j, same value as s j,

d j+1 = s j+1 + ξ jd1, for j = 1,

sσ = M \ σ1, computed just once per restarting,

σ1 = Ad1.

Subsequent iterations (when Restart == true) consider the search direction computed as follows (step 7):

d j+1 = s j+1 + ξ jd j + ζ jd1, for j ≥ 2,

ζ j =
< −r j+1, sσ >
< d1, σ1 >

.

This way we performed the minimization stage of our functional getting the pressure values at each dis-

cretization node. Since we deal with a quadratic functional and our proposal guarantees the search directions

{d j} to be A-orthogonal, by Theorem 8.8.3 in (Bazaraa, Sherali, and Shetty, 2006, p. 405), the Conjugate

Gradient Method (CG) produces an optimal solution after one complete application of the main step, that

is, after at most n line searches1 have been performed. Due to the deduction of the PCG, see (Knabner and

Angermann, 2003) for instance, and the identity

‖φ j − φ‖A = ‖φ̃ j − φ̃‖B, (3.2.10)

which results from Eq. (3.2.8), the approximation properties for the CG also hold for the PCG method

1using exact arithmetic
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if the condition number κ(A) is replaced by κ(B) = κ(M−1A). Notice that, since Ψ−T BΨT = M−1A and

ΨBΨ−1 = AM−1, B, M−1A and AM−1 have the same eigenvalues, and hence the same condition number κ.

Therefore, the error (φ j − φ) at the jth step in the energy norm ‖.‖A is:

‖φ j − φ‖A ≤ 2
(
κ1/2 − 1
κ1/2 + 1

) j

‖φ0 − φ‖A, (3.2.11)

with κ = κ(M−1A). The algorithm stops when either the maximum iteration number is reached or ‖r‖ ≤

tol‖b‖, with tol the chosen tolerance.

3.3 Inverse problem resolution

For solving the dimensionless inverse problem we first consider the balance of force and torque components

involved. Thus, the hydrodynamic RE is coupled to Newton’s second law (see Sect. 2.8). According to the

domain Ω̄ we define the residual E as follows:

E(xk) =



F̄y − 1
|F|

∫
Ω̄

µ0ωLR3

C2 φ̄k sin θdθdx̄

F̄z − 1
|F|

∫
Ω̄

µ0ωLR3

C2 φ̄k cos θdθdx̄

τ̄y + 1
|τ|

∫
Ω̄

µ0ωL2R3

C2 x̄φ̄k cos θdθdx̄

τ̄z − 1
|τ|

∫
Ω̄

µ0ωL2R3

C2 x̄φ̄k sin θdθdx̄


: R4 7→ R. (3.3.1)

where φ̄k is the kth solution to the hydrodynamic problem in Eq. (2.3.8), whose coefficient depends on

xk = {ρ̄k, αk, ϕk, βk}, such that E(x0) ≥ E(x1) ≥ · · · ≥ E(xn) for n solutions with the following constraints:

ρ̄k ∈ [0, 1), (3.3.2)

αk ∈ [0, 2π], (3.3.3)

ϕk ∈
[
arctan (−C(1 + ρ̄k sinαk)) , arctan (C(1 − ρ̄k sinαk))

]
, (3.3.4)

βk ∈

[
arctan

(
−

[
C2 − (tanϕk + Cρ̄k sinαk)2

]1/2
−Cρ̄k cosαk

)
,

arctan
([

C2 − (tanϕk + Cρ̄k sinαk)2
]1/2
−Cρ̄k cosαk

) ]
. (3.3.5)
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Thus, the numerical approach is to minimize in least squares sense the L2-norm of the residual E, defined in

Eq. (3.3.1), i.e.

min
xk∈R4

‖E(xk)‖22, (3.3.6)

subject to the constraints defined in Eqs. (3.3.2-3.3.5). To obtain the dimensionless pressure minimizer φ̄∗,

four unknown parameters are needed (ρ̄∗, α∗, ϕ∗, β∗), which determine the shaft position and misalignment of

the system. Starting from an initial guess vector x0 = {ρ̄0, α0, ϕ0, β0}, we use an iterative method, in the set of

admissible positions of the parameters, that generates a sequence of ever improving solutions x1, x2,. . . , xn

that minimize ‖E‖22. At the minimum, where the equilibrium between the imposed and hydrodynamic loads

is attained, we are predicting the final position of the shaft and the final pressure distribution.

For the optimization routine we propose a trust-region algorithmic strategy (Nocedal and Wright, 2006).

Following the idea behind a trust-region method, the information gathered about E is used to construct an

approximation mk, usually defined to be a quadratic function of the form:

mk(xk + sk) = E(xk) + sT
k ∇E(xk) +

1
2

sT
k ∇

2E(xk)sk,

whose behaviour in a neighbourhood (the trust region) of the current point xk is similar to that of the func-

tion E. Usually, the trust-region is a ball defined by ‖sk‖2 ≤ ∆k, where the scalar ∆k > 0 is called the

trust-region radius (ibid.). To solve the problem we find the step sk = xk+1 − xk by approximately solving the

following subproblem:

min
sk∈R4

mk(xk + sk), where xk + sk lies inside the trust region. (3.3.7)

If the candidate solution does not decrease enough the value of E, we shrink the trust-region and resolve

Eq. (3.3.7). Let He and G be defined by:

He(xk) := ∇2E(xk), G(xk) := ∇E(xk).

We proceed as in (Coleman and Li, 1996) to deal with the constraints. Let l and u be the lower and upper

bounds of xk. A solution xk ∈ R
4 is a feasible solution if and only if xi

k, which represents the value of xk in
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the coordinate i ∈ {1, 2, 3, 4}, satisfies its corresponding constraint. Let li and ui be the lower and upper limit

values respectively of the i coordinate. The following holds: l1 ≤ x1
k < u1, l2 ≤ x2

k ≤ u2 and li < xi
k < ui, for

i ∈ {3, 4}. We define a vector function r(xk) : Rn → Rn as follows:

Definition 3.3.1. The vector r(xk) ∈ Rn is defined:

(i) if G(xi
k) < 0 and ui < ∞, then ri = (xi

k) − ui,

(ii) if G(xi
k) ≥ 0 and li > −∞, then ri = (xi

k) − li.

For any a ∈ Rn, diag(a) denotes an n-by-n diagonal matrix with the vector a defining the diagonal entries

in their natural order. So, we define:

D(xk) = diag(|r(xk)|−1/2).

In this manner and because we are facing a determined non-linear system of equations and a bounded ad-

missible set of parameters, we propose the following scaled trust-region subproblem as in (Coleman and Li,

1996):

min
sk∈R4

mk(s) = sT
k G(xk) +

1
2

sT
k M(xk)sk, (3.3.8)

where

Jr(xk) = diag(sgn(G(xk))),

C(xk) = D(xk)diag(G(xk))Jr(xk)D(xk),

M(xk) = B(xk) + C(xk),

where B(xk) is the discretization of He. As the notation indicates, mk and E are in agreement to first order at

the current iterate xk. The matrix M(xk) and the diagonal matrix D(xk) are chosen this way such that there

is no need to handle constraints explicitly. Since the quadratic model mk in Eq. (3.3.8) is defined to include

the constraint information, a natural extension to the classical definition of the ratio ηk also takes place, see

(Nocedal and Wright, 2006), and it is given by:

ηk =
E(xk + sk) − E(xk) + 1

2 sT
k C(xk)sk

mk(sk)
.
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See (Coleman and Li, 1996) for a wide explanation on this selection. With this approach, it is possible

to obtain an approximate trust-region solution which can guarantee second-order convergence by simply

solving an unconstrained trust-region subproblem. A detailed study on the convergence of this method is

found in (ibid., p. 11). Each iteration involves the approximate solution of the system using the classical

PCG. When the squared 2-norm of E is small enough in correspondence with the tolerance chosen the

algorithm finishes. An implementation of the routine used for the inverse problem can be found in MATLAB

(e.g. lsqnonlin).

It is important to remark that the numerical approach returns the equilibrium position, which could be

in contact with the bearing geometry or outside the region of admissible positions. If any of them occurs,

verified with Eq. (2.1.22) and Eq. (2.1.23), we say the solution is the contact. We have considered three cases

in which the algorithm for the inverse problem stops:

1. The equilibrium position is found within the region of admissible positions (no contact).

2. The equilibrium position is found, in contact with the bearing geometry.

3. There is a contact but the equilibrium position is not found. Before it occurs, the modified PCG,

running inside the trust-region algorithm, warns the system matrix is not longer positive definite for

the current iteration of the forward problem. In addition, it shows the candidate solution of the inverse

problem places the shaft too far from the geometry boundary and, therefore, the mathematical model

is not valid. After several attempts, trying to find a solution for the inverse problem in a smaller trust

region, the algorithm throws an exception. We catch and handle the exception and say that surfaces

are in contact.

3.4 Numerical results and discussion

We consider the Reynolds cavitation model for a journal bearing system when the position of the inner

cylinder is unknown and allowed to be misaligned. The unknowns of the problem are the pressure of the

lubricant and the shaft position, which is obtained when the equilibrium of force and torque components is

attained. The forces acting on the system are the force exerted by the lubricant pressure and the exterior

force applied to the system. We also consider their corresponding torques. To deal with the problem we first
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consider the direct problem, which is solved numerically by minimizing a convex functional. For this, we

use a PCG modified with both projection and restarting strategies to account for cavitation. The numerical

approach to solve the inverse problem is based on an interior, trust-region algorithm subject to bounds,

through which we transform the constrained optimization problem into an unconstrained one.

By solving this problem we provide engineers, under the assumptions made in this thesis, with an ap-

proach to predict cavitation and contact for a journal bearing allowed to be misaligned with an imposed radial

loading. It is well-known that manufacturing defects in assembly may introduce problems during running,

specifically misalignment. The destructive effects of this running problem have justified the development of

numerical models for predicting the bearing operating characteristics under steady-state conditions (Pierre,

France, et al., 2004). The algorithm provided, would help engineers in preventing damages to these devices

that usually bring together serious economic implications. Cavitation, for instance, is well-known for pro-

voking, along with the metal-to-metal contact, adhesive wear, erosive wear, and abrasive wear. They are all

serious damages to a machine. Normally, technical problems on those devices entail stopping a productive

machine, a disassembly process to substitute parts, with the corresponding waste of time and economic re-

sources. In addition, we provide to engineers the Eq. (2.1.22) and Eq. (2.1.23) which can be useful for the

assembly process since they define the admissible range of the misalignment angle projections ϕ and β to

ensure no contact for prescribed values of ρ̄ and α.

In this section, we also present numerical tests to verify the different numerical approaches involved. The

dimensionless domain Ω̄ = [0, 2π]× [0, 1] is discretized using a 400× 160 finite elements mesh (64000 four-

noded quadrangles) and an attenuation factor δ = 0.93. Unless other values are specified, the geometrical

and physical constants, taken from an experimental analysis accomplished in (Bouyer and Fillon, 2002), and

numerical constants used during the experiments are those in Table 3.1.

Although the problem is solved in a dimensionless domain, most of the results are back transformed and

presented in their real scales and units when it does not affect the visualization purpose. From now on, the

terms front and rear ends of the bearing will be used in place of the left and right end-planes respectively.

In Fig. 3.3 we show the equilibrium position and the resulting pressure map wrapped around the bearing,

when applying an external force of 3000 N in the “z” direction and a torque of 70 N m in the “y” direction.

This is equivalent to applying the force at 23.3 mm from the origin. That force is represented by the
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Table 3.1. Geometrical, physical and numerical constants.

Parameter Symbol Value

Shaft angular velocity ω [rpm] 1500
Journal bearing length L [mm] 80
Radial clearance C [µm] 117.5
Shaft radius R [mm] 49.89
Fluid viscosity µ [Pa s] 0.023
Reference viscosity µ0 [Pa s] 0.0813
Atmospheric pressure pa [MPa] 0.101325
Initial pressure p0 [MPa] 1
Initial ρ̄ ρ̄0 [dimensionless] 0.5
Initial α α0 [rad] π

6
Initial ϕ ϕ0 [rad] 1.745e-5
Initial β β0 [rad] 1.745e-5

Figure 3.3. Solution to the inverse problem for F = (0, 0, 3000 N) and τ = (0, 70 N m, 0). The equilibrium position is
found at ρ̄ = 108.57 µm, α = 3.775367 rad, ϕ = −0.000075 rad and β = −0.000140 rad.

vertical arrow in this figure. As expected, the peak pressure map is located accordingly to the force position

and shaft displacement, and tends to move towards the bearing front in this case, representing the reality.

The equilibrium position is found at ρ̄ = 108.57 µm, α = 3.775367 rad, ϕ = −0.000075 rad and β =

−0.000140 rad. Notice that the colour bar presents real pressure values and the corresponding unit, but a

normalized journal bearing has been used in favour of visualization. With this solution, attained with our

numerical approach, we verify our hypothesis on how to predict the final position of the shaft and the final
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pressure distribution in a misaligned journal bearing with the Reynolds cavitation model.

A contour map for the pressure is presented in Fig. 3.4 and also a perspective view in Fig. 3.5. Both
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Figure 3.4. Contour map for the pressure obtained when solving the inverse problem for F = (0, 0, 3000 N) and
τ = (0, 70 N m, 0).
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Figure 3.5. Perspective view for the pressure obtained when solving the inverse problem for F = (0, 0, 3000 N) and
τ = (0, 70 N m, 0).

verify the peak pressure behaviour. The latter also shows the cavitated region when the pressure takes the
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zero value, most on the divergent zone. In Fig. 3.6 we show the behaviour of the fluid film thickness h

at the equilibrium position of the inverse problem for F = (0, 0, 3000 N) and τ = (0, 70 N m, 0). The

minimum value is 8.93 µm, represented in the figure by a circular marker. It is located at x = 0 mm,

θ = 3.7699 rad (θR = 188.0808 mm). Figures 3.7a and 3.7b present the misalignment of the axes on the
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Figure 3.6. The fluid film thickness behaviour at the equilibrium position of the inverse problem for F = (0, 0, 3000 N)
and τ = (0, 70 N m, 0). The minimum value is 8.93 µm, represented in the figure by a circular marker. It is located at
x = 0 mm, θ = 3.7699 rad (θR = 188.0808 mm).

xz-plane and xy-plane respectively. Accordingly to the force applying position, the centre at the front end,

as expected, approaches more towards the contact in both figures. In Fig. 3.8 we present the behaviour of

the minimum film thickness function hMin related to the force applying position, in both front and rear ends

of the device. This case has been conducted using different forces of 1000 N, 2000 N and 3000 N for an

angular velocity of 1500 rpm. The force position, as a way of generating different torques, has been applied

every 2 mm from the bearing mid-plane to its rear end (21 points in total).

In Fig. 3.8a the behaviour at the rear end is presented. Notice that, when the position of the application

of the force increases, the minimum film thickness monotonically decreases, reaching even some contact

point detected by the algorithm and shown as a black square marker. This result proves numerically, that the

device is unable to generate a force that can balance a large imposed load under that operating conditions.
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Figure 3.7. View of the misalignment in both xz-plane and xy-plane when solving the inverse problem for F =

(0, 0, 3000 N) and τ = (0, 70 N m, 0).
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Figure 3.8. Behaviour of the minimum gaps at the end-planes, related to the force applying position. Collisions are
found for |F| = 3000 N and |F| = 2000 N at 62 mm and 66 mm respectively, at the rear end of the device.

Thus, we found finite load capacity as stated in (Asanabe, Akakoski, and Asai, 1971; Gómez-Mancilla and

Nosov, 2002; Pinkus and Bupara, 1979; Vijayaraghavan and Keith, 1990). Also, notice that for higher force

values the same pattern get repeated, but the contact is reached faster.

In Fig. 3.8b we present the same study at the front end. The behaviour is no longer strictly monotone.

This obeys the fact that at the beginning, when the force is applied at the mid-plane (centre of mass), there is

not misalignment and both end-planes centres decrease their positions in the same way. Nevertheless, when

the distance between the centre of mass and the application point of the force increases, the centre of the

front end goes up due to the torque, and the film thickness at that end-plane increases as well. At some point,
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the centre of the front end crosses the closest point to the bearing axis (where the film thickness is maximum)

and subsequent movements decrease the film thickness again, since the shaft is now approaching towards the

bearing top at this end. As expected, we should see two crossing lines when inspecting the axes of a journal

bearing subjected to this experiment. See for instance Fig. 3.7a to verify this effect. We show in Fig. 3.9 the

paths of both end-planes centres for the case conducted with F=(0, 0, 3000 N) in Fig. 3.8. Similarly, if some

  0.05
  0.1

  0.15

30

210

60

240

90 270

120

300

150

330

180

0 Bearing centre
Shaft centre

(a) Centre path at the rear end of the bearing.
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(b) Centre path at the front end of the bearing.

Figure 3.9. Paths of both centres at their end-planes for |F| = 3000 N. Both views are seen from the front end of the
bearing.

contact point is found, the position where the centre is located is shown as a black square marker. Notice that

both views are seen from the front end of the bearing. The behaviour of both centres can be easily confirmed,

as described above.

We show in Fig. 3.10 the behaviour of the eccentricity λ related to the misalignment angle ψ = (β2+ϕ2)
1
2 .

Every marker on the dashed line corresponds to a solution of an inverse problem conducted with a force of

3000 N. As the experiment in Fig. 3.8, the force was applied from the bearing mid-plane to the bearing end

until finding collision. A misalignment angle ψ was measured for each inverse problem at its equilibrium

position. Notice how the eccentricity changes as the misalignment angle increases. We present in Fig. 3.10a

the combined effect of eccentricity and the misalignment angle at the rear end-plane. According to the

depicted experiment, the eccentricity – as expected – increases all the time. In Fig. 3.10b we present the

behaviour at the front end-plane where a change of monotonicity also appears. Both show coherence with

previous experiments.

On the other hand, Fig. 3.11 presents a similar experiment as in Fig. 3.8, but increasing the angular
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(a) Eccentricity behaviour vs the misalignment angle ψ in
the bearing rear end-plane.

ψ (rad) ×10-4
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

λ
 (

m
m

)

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

(b) Eccentricity behaviour vs the misalignment angle ψ in
the bearing front end-plane.

Figure 3.10. Eccentricity vs the misalignment angle ψ at both bearing end-planes when solving the set of inverse
problems for F = (0, 0, 3000 N) depicted in Fig. 3.8.

velocity to 3000 rpm. As expected the carrying capacity increases, and in consequence the contact points

disappear. This demonstrates the influence of the velocity and also the consistence of our proposal.
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(a) Rear end-plane behaviour.
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(b) Front end-plane behaviour.

Figure 3.11. Behaviour of the minimum gaps at the end-planes, related to the force applying position for an angular
velocity of 3000 rpm.

Additionally, Fig. 3.12 shows the effect on the force exerted by the pressure when the slenderness ratio

(L/D) changes. In the experiment the bearing length varies from 10 mm to 160 mm, with a step of 10 mm.

The force was always computed for α = 3.752458 rad, ρ = 82.25 µm, ϕ = −0.000047 rad, and β =

−0.000067 rad. We notice, as stated in the literature, how the carrying capacity of the journal bearing is

compromised as the slenderness ratio is much less than about 1/4; see (Williams, 2005) for instance.
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Figure 3.12. The effect on the force exerted by the pressure when the slenderness ratio (L/D) changes. The force was
computed for α = 3.752458 rad, ρ = 82.25 µm, β = −0.000067 rad and ϕ = −0.000047 rad.

Finally, we show the pressure behaviour as tan β → C. In Fig. 3.13 a numerical simulation with a high

pressure value for a minimum of (tan β)/C = 0.999991 is presented. It was computed in a grid of 400 × 400

elements. It numerically states that the uniform boundedness of the pressure is not guaranteed.

Figure 3.13. The peak pressure for a minimum of (tan β)/C = 0.999991 considering h̄(x̄, θ, β) = 1 + x̄
C tan β cos (θ − α)

as in Sect. 3.1.
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3.4.1 Grid convergence study

In this section we conduct a convergence study for verification of calculations, as suggested in (Roache,

1994; Roache, 2002). Since the exact solution for the force exerted by the lubricant pressure is unknown

we perform three computations of forces, on a different grid each. We then calculate two Grid Convergence

Indexes (GCIs) from fine grid to intermediate (GCI12) and from intermediate to coarse grid (GCI23). The

GCI indicates how much the computed force will change with an additional refinement of the grid (Roache,

1998). A small value is preferable, since it suggests the force is within the asymptotic range. The grid infor-

mation for the convergence study is provided in Table 3.2. It includes, for each experiment, the corresponding

force value for the direct problem, computed for α = 3.665192 rad, ρ = 58.75 µm, ϕ = 0.000017 rad and

β = 0.000017 rad. Notice also that every grid has twice the number of elements as the previous grid on each

direction. The geometrical and physical constants used are those in Table 3.1.

Table 3.2. Grid information for the convergence study.

No Grid elements Force ID Force value (N)

1 800 × 320 F1 7.335851 × 103

2 400 × 160 F2 7.353513 × 103

3 200 × 80 F3 7.390402 × 103

We determine the order of convergence cs according to the force values. As we use in the convergence

study a constant refinement ratio rt = 2, we can perform a direct evaluation of cs by Eq. (3.4.1); see (Roache,

1994) for details:

cs = ln
(

F3 − F2

F2 − F1

)
/ ln rt, (3.4.1)

cs = ln
(
7.390402 × 103 N − 7.353513 × 103 N
7.353513 × 103 N − 7.335851 × 103 N

)
/ ln 2,

cs = 1.0625.

The GCI for the fine grid solution is then computed. It is defined as:

GCI jk =
fs

(rt
cs − 1)

∣∣∣∣∣∣F j − Fk

F j

∣∣∣∣∣∣ ,
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where fs is a factor of safety, recommended to be fs = 1.25 for comparisons of three grids; see (Roache,

1998) for details. The GCI for grids 1 and 2 is:

GCI12 =
1.25

(21.0625 − 1)

∣∣∣∣∣∣7.335851 × 103 N − 7.353513 × 103 N
7.335851 × 103 N

∣∣∣∣∣∣ ,
GCI12 = 0.0028.

Similarly, the GCI for grids 2 and 3 is:

GCI23 =
1.25

(21.0625 − 1)

∣∣∣∣∣∣7.353513 × 103 N − 7.390402 × 103 N
7.353513 × 103 N

∣∣∣∣∣∣ ,
GCI23 = 0.0058.

We then check that these solutions are within the asymptotic range of convergence by Eq. (3.4.2):

GCI23 = rt
csGCI12, (3.4.2)

0.0058
21.0625 0.0028

= 0.997598,

which is approximately 1 and indicates that the test succeeded. Based on this study we can also estimate the

exact solution Fe by the Richardson extrapolation, using Eq. (3.4.3); see (Roache, 1994) for details:

Fe u F1 +
F1 − F2

rt
cs − 1

, (3.4.3)

Fe u 7.335851 × 103 N +
7.335851 × 103 N − 7.353513 × 103 N

21.0625 − 1
,

Fe u 7.319626 × 103 N.

Finally, we could say that the force exerted by the lubricant pressure, for the direct problem depicted, is

estimated to be 7.319626 × 103 N with an error band of 0.0028.
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3.4.2 Validation

To validate the whole numerical approach, we compare the predicted pressure values, in the bearing mid-

plane, to published experimental data. For that, the work of Pierre, France, et al. (2004) was used, where

the same geometrical and physical constants of the journal bearing were considered. Two experiments, one

showing the maximum pressure and the other one showing the pressure field, both for different misalignment

torques, are presented. For both simulations the pressure values in the bearing mid-plane were collected at

the equilibrium position, after solving the corresponding inverse problem for each different misalignment

torque. As in (ibid.) we performed the simulation for an angular velocity of 4000 rpm and a radial load of

9000 N. The misalignment torques, taken with respect to the bearing mid-plane, vary from 0 N m (aligned

case) to 70 N m.

In Fig. 3.14 we show the maximum pressure in the bearing mid-plane computed by the algorithm and

the experimental data, as shown in (ibid., p. 599). Comparisons between the experimental and the numerical
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Figure 3.14. Maximum pressure obtained in the bearing mid-plane for different misalignment torques (ω =

4000 rpm and F = (0, 0, 9000 N)).

results show small discrepancies for all the misalignment torques. In Fig. 3.15 we present the pressure field

obtained in the bearing mid-plane for both the experiment and the numerical approach.
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Figure 3.15. Pressure field in the bearing mid-plane for different misalignment torques (ω = 4000 rpm and F =

(0, 0, 9000 N)).

The differences can be related to the fact that not all the surrounding phenomena (as temperature) are

considered in our numerical model. Nevertheless, both experiments show an acceptable agreement between

the output of our model and the experimental data. Such differences do not influence the determination of the

maximum pressure, which is an essential factor when designing a journal bearing. The discrepancy was less

than 0.0963 MPa, a value below the atmospheric pressure (0.101325 MPa). Thus, it makes us think that the

algorithm can be used as a first prediction of the final position of a journal bearing under an imposed radial

loading, considering misalignment and the cavitation phenomenon. In addition, it could be verified that

misalignment tends to decrease the maximum pressure in the bearing mid-plane, as stated in the literature;

see (Bouyer and Fillon, 2002) for instance.
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CHAPTER 4

Prediction of contact with the Elrod-Adams cavitation model

In this chapter we state and solve the inverse problem for a misaligned journal bearing considering the

Elrod–Adams cavitation model. We provide the approximation of the Heaviside function and propose a

functional whose minimum is the solution to the direct problem. We consider a finite element discretiza-

tion and accomplish the minimization stage by the algorithm Limited-Memory Broyden Fletcher Goldfarb

Shanno (L-BFGS). The resolution of the inverse problem, based on ACOR, is also explained. Numerical

experiments and discussion are also included.

4.1 Direct problem resolution

We define a parameter Λ = 1
F2

(
1 − F1

F0

)
and we rewrite Eq. (2.7.15) as:

∫
Ω̃

h̃3∇ p̄∇φ̄dΩ̃ = −

∫
Ω̃

∂

∂θ

(
ϑh̃Λ

)
φ̄ dΩ̃, ∀φ̄ ∈ K , ϑ = ϑ0 in Γ0, (4.1.1)

with K defined in Eq. (2.7.14). For the numerical solution of Eq. (4.1.1), several techniques have been

proposed. Mainly, the existing literature combines the MC with the FEM. To introduce the MC to the

problem in the stationary case, we have adopted the technique based on introducing an artificial dependence
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on time, already proposed in (Calvo, Durany, and Vázquez, 1997). In this manner, we define:

ˆ̄φ(θ, x̃, t) = φ̄(θ, x̃),

ˆ̄p(θ, x̃, t) = p̄(θ, x̃),

ˆ̃h(ρ̄, α, ϕ, β, θ, x̃, t) = h̃(ρ̄, α, ϕ, β, θ, x̃),

ϑ̂(θ, x̃, t) = ϑ(θ, x̃).

Thus, we can write the right-hand side of Eq. (4.1.1) in terms of the total derivative, assuming an artificial

velocity υ = 1. So,
D
Dt

=
∂

∂t
+ υ

∂

∂θ
=
∂

∂t
+
∂

∂θ
,

then, in the case of a stationary regime we have:

D
Dt

=
∂

∂θ
.

For simplicity in the notation we drop the superscripts ˆ of variables from now on. Thus, the problem in

Eq. (4.1.1) is formulated as the stationary state of the following transient problem:

∫
Ω̃

h̃3∇ p̄∇φ̄dΩ̃ = −

∫
Ω̃

D
Dt

(
ϑh̃Λ

)
φ̄dΩ̃, ∀φ̄ ∈ K , ϑ = ϑ0 in Γ0, (4.1.2)

with K defined in Eq. (2.7.14). The next step is to discretize the total derivative following the velocity field

υ. For this purpose, an upwind schema of characteristics is used.

4.1.1 The Method of Characteristics

Let χ(θ, t; τ) denotes the position at time τ of a particle of fluid moving according to the velocity field

υ = (1, 0), and placed at the point θ at the reference time t. That is, χ is the solution to the final value

problem:

∂

∂τ
(χ(θ, t; τ)) = υ(χ(θ, t; τ)),
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χ(θ, t; t) = θ.

So, the approximation of the total derivative is accomplished by using an upwind schema which follows the

trajectory (or characteristics) of particles being analysed. We introduce the following notation:

• 4t is the time step.

• tn = n4t.

• χn(θ) = χ(θ, tn+1; tn) denotes the position at time tn of a particle placed at the point θ at time tn+1, when

it moves according to the artificial velocity field υ.

• gn+1(θ) = g(θ, (n + 1)4t).

With the above notation we consider:

D
Dt

g(θ, tn+1) ≈
gn+1(θ) − gn(χn(θ))

4t
. (4.1.3)

As in fact the time dependence is fictitious, functions gn+1(θ) and gn(θ) are the same, and thereby we can

recast Eq. (4.1.3) as:
D
Dt

g(θ) ≈
g(θ) − g(χk(θ))

k
, (4.1.4)

where k plays the role of the artificial time step and χk(θ) denotes the position at time t−k of a particle placed

at the point θ at time t.

Then, substituting Eq. (4.1.4) into Eq. (4.1.2) yields a k-dependent family of equations, that approximates

the original problem in Eq. (4.1.2) as:

∫
Ω̃

h̃3∇ p̄∇φ̄dΩ̃ +
1
k

∫
Ω̃

(
ϑh̃Λ

)
φ̄dΩ̃ =

1
k

∫
Ω̃

(
ϑh̃Λ

)
◦ χkφ̄dΩ̃, ∀φ̄ ∈ K , ϑ ∈ H( p̄), (4.1.5)

where symbol ◦ stands for the composition operator. At this point we proposed a fixed-point algorithm to

define p̄n+1 as the solution of the following problem:

∫
Ω̃

h̃3∇ p̄n+1∇φ̄dΩ̃ +
1
k

∫
Ω̃

ϑn+1h̃Λφ̄dΩ̃ =
1
k

∫
Ω̃

(
ϑnh̃Λ

)
◦ χkφ̄dΩ̃, ∀φ̄ ∈ K , ϑn+1 ∈ H( p̄n+1), (4.1.6)
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which in fact is similar to the strategy of making time tends to infinity until reaching the stationary state.

4.1.2 The regularization approach for the Heaviside function

The problem under study is non-linear at each time step, due to the Heaviside function H( p̄). A particular

regularization technique has been widely used for dealing with the Heaviside function discontinuity, namely

in (Calvo, Durany, and Vázquez, 1997; Durany, Pereira, and Varas, 2010) among others. They adopted a

duality type method consisting in applying an algorithm proposed by Bermúdez and Moreno (1981) with a

Yosida regularization for the Heaviside operator.

We propose a regularization approach by a cubic interpolating Hermite polynomial for the Heaviside

function, which is derived following a divided-difference schema (Conte and De Boor, 1980; Quarteroni,

Sacco, and Saleri, 2007). It is a recursive division process widely used, but not only, to calculate the coeffi-

cients of the interpolation polynomial in the Newton form. It is defined as:

f [xi] := f (xi),

f [xi, xi+1] :=
f [xi+1] − f [xi]

xi+1 − xi
,

f [xi, xi+1, xi+2] :=
f [xi+1, xi+2] − f [xi, xi+1]

xi+2 − xi
, (4.1.7)

...

f [xi, xi+1, . . . , xi+k] :=
f [xi+1, xi+2, . . . , xi+k] − f [xi, xi+1, . . . , xi+k−1]

xi+k − xi
.

It is important to remark the case when x0 = x1 = · · · = xi. In this case, f (x) must have at least i

continuous derivatives. Then, the leading coefficient is:

f [x0, . . . , xi] =
f (i)(x0)

i!
, if x0 = x1 = · · · = xi. (4.1.8)

In the regularization approach we define a penalty parameter ε, which is used to construct the full set of

points needed to derive an approximation for Eq. (2.7.13). So, we have two points {0, ε} with one derivative

each {0, 0}, required to guarantee the approximation to be C1. Thus, the points set is {xi} = {0, 0, ε, ε}. The
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whole procedure of computing the divided differences is shown in Table 4.1.

Table 4.1. Divided-difference table of the cubic interpolating Hermite polynomial for the Heaviside function.

i = 0 i = 1 i = 2 i = 3
x0 f [0] = 0

f [0, 0] = 0

x1 f [0] = 0 f [0, 0, ε] = 1
ε2

f [0, ε] = 1
ε f [0, 0, ε, ε] = − 2

ε3

x2 f [ε] = 1 f [0, ε, ε] = − 1
ε2

f [ε, ε] = 0
x3 f [ε] = 1

The top entries in the columns inform about the leading coefficients needed to compute the interpolating

polynomial following the Eq. (4.1.9):

pn(x) =

n∑
i=0

f [x0, . . . , xi]
i−1∏
j=0

(x − x j). (4.1.9)

Thus,

Hε(x) = f [0] + f [0, 0]x + f [0, 0, ε]x2 + f [0, 0, ε, ε]x2(x − ε),

Hε(x) =
1
ε2 x2 −

2
ε3 x2(x − ε),

Hε(x) =
1
ε3

(
3εx2 − 2x3

)
. (4.1.10)

With that selection we may express the solution as a minimum of a convex functional at each time iteration.

On the contrary, if the Yosida regularization is used, we need a different iterative procedure to deal with,

since the convexity of the functional could not be guaranteed in the same way; see (Durany, Pereira, and

Varas, 2008; Durany, Pereira, and Varas, 2010) for instance. In this manner, we define the approximation
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function Hε for the Heaviside’s as follows:

Hε(x) =



1, if x > ε,

1
ε3

(
3εx2 − 2x3), if 0 ≤ x ≤ ε,

0, if x < 0.

(4.1.11)

So, from now on, ϑε = Hε( p̄).

4.1.3 The associated functional

In this section we propose a functional whose minimum is the solution to Eq. (4.1.6).

Lemma 1. Let Jε be the following functional:

Jε( p̄) =
1
2

∫
Ω̃

h̃3|∇ p̄|2dΩ̃ +
1
k

∫
Ω̃

h̃ΛΦε( p̄)dΩ̃ −
1
k

∫
Ω̃

(
ϑh̃Λ

)
◦ χk p̄dΩ̃, (4.1.12)

where function Φε( p̄) is defined as:

Φε( p̄) =



p̄ − 1
2ε, if p̄ > ε,

1
ε3

(
ε p̄3 − 1

2 p̄4), if 0 ≤ p̄ ≤ ε,

0, if p̄ < 0.

(4.1.13)

Then, Jε is convex, l.s.c and limp̄→∞ Jε( p̄) = ∞ for any ε > 0.

Proof. Notice that Φε is C2, its second derivative is non-negative and the rest of the terms in Jε are convex

and l.s.c. Then, we have that Jε is l.s.c and convex. A standard argument proves that limp̄→∞ Jε( p̄) = ∞.

Thanks to Corollary III.20 in (Brézis, 1984, p. 45), p̄ε (the minimum of Jε) is the unique solution to the

penalized problem:

∫
Ω̃

h̃3∇ p̄ε∇φ̄dΩ̃ +
1
k

∫
Ω̃

(
ϑh̃Λ

)
φ̄dΩ̃ =

1
k

∫
Ω̃

(
ϑε h̃Λ

)
◦ χkφ̄dΩ̃, ∀φ̄ ∈ K , (4.1.14)

ϑε ∈ Hε( p̄ε).
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Since Hε ≤ 1, we have that p̄ε is uniformly bounded in H1(Ω̃). So, there exists a subsequence p̄εi which

converges weakly to p̄∗ which satisfies Eq. (4.1.5). Since the solution to Eq. (4.1.5) is unique, see (Álvarez

and Oujja, 2003; Martin, 2005), we have that any other subsequence p̄ε j converges to p̄∗. �

On the other hand, and taking advantage of the region under study we perform the spatial approximation

by piecewise quadrangular Lagrange Q1 finite elements. That is, p̄, φ̄ and ϑ are approximated as follows:

p̄ ≈ p̄f =

n∑
j=1

N j p j, (4.1.15)

φ̄ ≈ φ̄f =

n∑
j=1

N jφ j, (4.1.16)

ϑ ≈ ϑf =

n∑
j=1

N jϑ j, (4.1.17)

where N j stands for the shape function evaluated at node j and parameter φ j stands for the discrete pressure

value also evaluated at node j. Subscript f stands for the finite element approximation. Now, we solve by a

fixed-point iteration the discretized problem:

∫
Ω̃

h̃3∇ p̄n+1
f ∇φ̄fdΩ̃ +

1
k

∫
Ω̃

ϑn+1
f h̃Λφ̄fdΩ̃ =

1
k

∫
Ω̃

(
ϑn

f h̃Λ
)
◦ χkφ̄fdΩ̃,

ϑn+1
f = Hε( p̄n+1

f ), (4.1.18)

which must minimize at each iteration the following functional:

J( p̄n+1
f ) =

1
2

∫
Ω̃

h̃3|∇ p̄n+1
f |

2dΩ̃ +
1
k

∫
Ω̃

h̃ΛΦε(p̄n+1
f )dΩ̃ −

1
k

∫
Ω̃

(
ϑn

f h̃Λ
)
◦ χk p̄n+1

f dΩ̃. (4.1.19)

We use the algorithm L-BFGS to perform the minimization stage (Nocedal and Wright, 2006), with the

line search approach widely depicted in (Moré and Thuente, 1994). The L-BFGS algorithm is useful in this

case as we are dealing with a large scale problem whose Hessian matrix cannot be computed at a reasonable

cost. In fact, the main idea of this algorithm is to use curvature information from only the most recent

iterations to construct the Hessian approximation (Nocedal and Wright, 2006). The gradient needed for the

algorithm is presented in Eq. (4.1.20):
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∇J( p̄n+1
f ) =

∫
Ω̃

h̃3|∇p̄n+1
f |dΩ̃ +

1
k

∫
Ω̃

h̃ΛHε( p̄n+1
f )dΩ̃ −

1
k

∫
Ω̃

(
ϑn

f h̃Λ
)
◦ χkdΩ̃. (4.1.20)

4.2 Inverse problem resolution

As in Chapter 3, we consider the balance of force and torque components involved, (see Sect. 2.8). According

to the domain Ω̃, introduced in Sect. 2.6, we define the residual E as follows:

E(xk) =



F̄y − 1
|F|

∫
Ω̃

µ0ωR4

C2 φ̄k sin θdθdx̃

F̄z − 1
|F|

∫
Ω̃

µ0ωR4

C2 φ̄k cos θdθdx̃

τ̄y + 1
|τ|

∫
Ω̃

µ0ωR5

C2 x̃φ̄k cos θdθdx̃

τ̄z − 1
|τ|

∫
Ω̃

µ0ωR5

C2 x̃φ̄k sin θdθdx̃


: R4 7→ R. (4.2.1)

where φ̄k is the kth solution to the hydrodynamic problem in Eq. (4.1.19), whose coefficient depends on

xk = {ρ̄k, αk, ϕk, βk}, such that E(x0) ≥ E(x1) ≥ · · · ≥ E(xr) for r solutions with the following constraints:

ρ̄k ∈ [0, 1), (4.2.2)

αk ∈ [0, 2π], (4.2.3)

ϕk ∈

[
arctan

(
−

CR
L

(1 + ρ̄k sinαk)
)
, arctan

(CR
L

(1 − ρ̄k sinαk)
)]
, (4.2.4)

βk ∈

[
arctan

−R
L

[C2 −

(L
R

tanϕk + Cρ̄k sinαk

)2]1/2

−Cρ̄k cosαk

 ,
arctan

R
L

[C2 −

(L
R

tanϕk + Cρ̄k sinαk

)2]1/2

−Cρ̄k cosαk

 ]. (4.2.5)

Thus, the objective is to minimize the L2-norm of the residual E defined in Eq. (4.2.1), in least squares sense,

i.e.

min
xk∈R4

‖E(xk)‖22, (4.2.6)

subject to the constraints defined in Eqs. (4.2.2-4.2.5).

However, for the numerical resolution, the strategy is to minimize the residual E through an extension

of the metaheuristic ACO, applied to continuous domains (Socha and M. Dorigo, 2008). Specifically, we
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propose to use ACOR for the minimization stage, with continuous domains defined by intervals for each

dimension.

The gradient based algorithms, like the one used in Chapter 3, require the optimized function to be

continuous and differentiable, making them limited for this reason. The ACOR, as well as all other algorithms

for continuous optimization mentioned earlier, do not have such limitations, which makes them much more

general and preferable for the present inverse problem with the Elrod–Adams cavitation model.

To obtain the dimensionless pressure minimizer φ̄∗, four unknown parameters (ρ̄∗, α∗, ϕ∗, β∗) are needed,

which determine the shaft position and misalignment of the system. As other minimization algorithms,

ACOR is an iterative minimization procedure that, starting from an initial guess vector x0 = {ρ̄0, α0, ϕ0, β0},

generates in the set of admissible positions of the parameters, a sequence of ever improving solutions x1,

x2,. . . , xr that minimize ‖E‖22. At the minimum, where the equilibrium between the imposed and hydrody-

namic loads is attained, we are also predicting the final position of the shaft and the final pressure distribution,

this time for the Elrod–Adams cavitation model.

A solution xk ∈ R
4 is a feasible solution if and only if xi

k, which represents the value of xk in the

coordinate i ∈ {1, 2, 3, 4}, satisfies its corresponding constraint. Let li and ui be the lower and upper limit

values respectively of the i coordinate. The following holds: l1 ≤ x1
k < u1, l2 ≤ x2

k ≤ u2 and li < xi
k < ui,

for i ∈ {3, 4}.

It is well-known that an ACO algorithm tries to solve an optimization problem by iterating over the

following two stages:

1. Construction of candidate solutions in a probabilistic way over the search space, using a probability

distribution.

2. Candidate solutions are used to change the probability distribution in a way that predispose future

sampling towards high quality solutions.

The central component of ACO algorithms is the pheromone model, which is used to probabilistically sam-

ple the search space (ibid.). Concerning ACOR, it works with a solution archive An which represents its

pheromone model (Liao, Montes de Oca, et al., 2011). It starts filling the solution archive An with na solu-

tions generated uniformly at random, in a way that each component of a solution satisfies its constraint, see

Alg. 1.4. The archive keeps solutions sorted according to the value of their objective functions. Next, at each
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iteration a new set of ns solutions are probabilistically generated and added to An, see Alg. 1 from line 25 to

line 32. The algorithm sorts the na + ns available solutions according to their quality (from best to worst) and

keeps only the best na solutions, see Alg. 1, lines 33 and 34. This process guides the search towards the best

found solutions (Blum, Cardoso, and Herrera, 2009).

The solution construction procedure is based on a probabilistic density function (PDF) called a Gaussian

kernel Gi, which is defined as a weighted sum of several Gaussian functions gi
k, where k is a solution index

and i is a coordinate index. The Gaussian kernel for coordinate i is:

Gi(x) =

n∑
k=1

wkgi
k(x) =

n∑
k=1

wk
1

σi
k

√
2π

exp

− (x − µi
k)2

2(σi
k)2

 , (4.2.7)

where parameters wk, µi
k, σi

k stand for the weight, mean and standard deviation respectively of the Gaussian

function gi
k(x). Notice that, the Gaussian kernel Gi is constructed using only the ith coordinates of all na

solutions of the archive.

The Gaussian function gk corresponds to the solution xk of archive An. In our problem, for the construc-

tion of the new solution xk, an artificial ant performs 4 steps. At the ith step, an ant chooses a value for the

i dimension of xk. This is accomplished by sampling Gi using the na solutions of the archive. Firstly, the

weight is calculated using a Gaussian function as:

wk =
1

qna
√

2π
exp

(
−(rank(k) − 1)2

2(qna)2

)
, (4.2.8)

where rank(k) is the rank of solution xk in An, and q is a parameter of the algorithm representing the locality

of the search process. The weight wk is defined as the value for the Gauss function with argument k, mean

1 and a standard deviation qna. This means that the smaller is k, the greater is the weight of gk. In other

words, Gaussian kernels that correspond to the best solutions have greater weights than remaining solutions.

In addition, when q is small, better solutions are preferred and if it is large, the weight distribution becomes

more uniform (ibid.). The influence of parameter q in ACOR is similar to adjusting the balance of the

pheromone updating methods used in the ACO algorithm for the combinatorial optimization between “best

iteration” vs. “best so far” (Stützle and Hoos, 2000).

The sampling of Gi is performed in two stages. The first one is to choose probabilistically one of the
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Gaussian functions corresponding to the Gaussian kernel PDF, see Alg. 1.27. The probabilityPk of choosing

the kth Gaussian function is given by:

Pk =
wk∑na
j=1 w j

. (4.2.9)

Stage two consists of sampling the chosen Gaussian function (i.e., at coordinate i the function gi
k). This

can be done, using a random number generator that is able to generate random numbers according to a

parametrized normal distribution (ibid.), see Alg. 1.28. This sampling of two stages is equivalent to the

sampling process of the Gaussian kernel Gi, defined in Eq. (4.2.7). According to the domain intervals it

might be possible that values from the sampling process are not valid. Regular implementations of ACOR

reject such values and perform a new sampling.

Parameters µi
k and σi

k must be defined in advance to sampling gi
k. At each step µi

k = xi
k and σi

k is

calculated as the average distance from xi
k to the values of dimension i in the remaining solutions of the

archive, see Alg. 1 from line 16 to line 23. We multiply the result by the parameter ξ > 0, which is the same

for all the dimensions and influences the way the long term memory is used in the ACOR.

σi
k = ξ

na∑
j=1

‖xi
k − xi

j‖

na − 1
. (4.2.10)

Actually, its effect is similar to that of the pheromone evaporation rate in ACO. It influences the conver-

gence speed of the algorithm. It is well-known that every algorithm must use some strategy to diversify the

search, for not getting stuck in a local minimum, but still converging in the global optimum. These are two

contradictory goals (Socha, 2008) since an algorithm is expected to converge quickly, but not to converge

entirely to a local minimum. The algorithm must decide to focus on diversification (higher robustness), or

intensification (higher convergence speed–higher efficiency). In this sense, ACOR uses three parameters in

order to define the balance between diversification and intensification. Parameters such as the learning rate

and the number of ants are those that most influence the robustness of the algorithm. In the case of ACOR,

the slower the learning rate (higher values of ξ) and the larger the solution archive size, the more robust is the

algorithm. However, the convergence speed will be slower. In ACOR, there is another parameter to control

the diversification of the search process, q. When q approaches 0, it means that only the Gaussian function

associated with the best solution found so far is used for generating further solutions by the ants. When us-
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ing larger q, the algorithm samples the search space based on a larger number of reasonably good solutions,

rather than only on the best one found so far. The search is more diversified and the algorithm performs more

robustly. Unfortunately, higher robustness usually means lower efficiency and slower convergence speed; see

(Socha, 2008; Socha and M. Dorigo, 2008).

Moreover, we note that at step i, the standard deviation needs only to be known for the single Gaussian

function gi
k, chosen in stage one.

The proposed ACOR is presented in Alg. 1. Considering that we deal with a large scale direct problem

and motivated by the inherent parallelism of the ACOR and possible computation speed up we propose an

implementation of the algorithm with parallel regions for time-consuming tasks, using OpenMP; see Alg. 1

at lines 3 and 24. To ensure that same components of σk or µk are not calculated many times by different

ants we calculate the whole vectors σk and µk in advance.

4.3 Numerical results and discussion

In this chapter we addressed the mathematical formulation and numerical solution of a misaligned journal

bearing with an axial supply groove and subjected to radial loading. The unknowns of the problem were

the pressure of the lubricant, the concentration of the lubricant and the shaft position, which was obtained

coupling the hydrodynamic model to Newton’s second law. The forces acting on the system were the force

exerted by the pressure of the lubricant and the exterior force applied to the system. We also considered

their corresponding torques. We addressed the cavitation phenomenon by the Elrod–Adams model, which

includes a non-linear term given by the Heaviside function. We performed a regularization of this func-

tion by a cubic interpolating Hermite polynomial, which allowed us to find a suitable convex functional to

minimize, whose minimum is the solution to the penalized direct problem Eq. (4.1.19). The minimization

stage was performed via the algorithm L-BFGS with the line search approach by (Moré and Thuente, 1994).

The numerical approach to solve the associated inverse problem was based on the metaheuristic ACOR, an

approach inspired by the ants’ foraging behaviour and successfully applied to continuous optimization. To

speed up the solution of the inverse problem, several instances of the direct problem (a large scale problem)

are solved in parallel using OpenMP. By solving the inverse problem in a misaligned journal bearing with

the Elrod–Adams cavitation model, we provide to engineers, with the benefits of this model, an approach to
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Algorithm 1 The ACOR algorithm implemented with parallel regions.

1: procedure ACOR(E)
2: input: objective function E
3: #pragma omp parallel for
4: for k ← 1, na do
5: Ak

n ← xk, generated uniformly at random such that every xi
k is within its corresponding interval.

6: {compute each value of the objective function for xt, i.e. E(xk) } . Time-consuming task!
7: end for
8: An ← sort An according to the value of the objective functions E(xk)
9: for k ← 1, na do

10: wk ← compute each solution weight according to Eq. (4.2.8)
11: end for
12: for k ← 1, na do
13: Pk ← compute the probability of choosing the kth Gaussian function according to Eq. (4.2.9)
14: end for
15: while stop conditions not met do . Main loop of ACOR
16: for k ← 1, na do
17: µk ← xk

18: end for
19: for k ← 1, na do
20: for j← 1, na do
21: σi

k ← compute the standard deviation at each dimension i according to Eq. (4.2.10)
22: end for
23: end for
24: #pragma omp parallel for
25: for t ← 1, ns do . The construction of candidate solutions
26: for i← 1, 4 do
27: g← choose by roulette choice an individual Gaussian function with probability P
28: xi

t ← µi
g + σi

g × randn() : every xi
t must be within its corresponding interval

29: end for
30: {compute each value of the objective function for xt, i.e. E(xt) } . Time-consuming task!
31: end for
32: An ← xt : t ∈ {1, . . . , ns} . The archive An is augmented with new ns solutions
33: An ← sort the augmented An according to the value of the objective functions E
34: An ← shrink An to the initial size na

35: bestAnt ← A0
n

36: end while
37: output: bestAnt
38: end procedure

predict cavitation and contact in such devices subjected to radial loading. The algorithm provided, showed

another way of solution to the present problem, in particular for the inverse problem which we solved by

the metaheuristic ACOR. In addition, we provided to engineers the Eq. (2.5.11) and Eq. (2.5.12), which
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Table 4.2. Geometrical, physical and numerical constants.

Parameter Symbol Value

Shaft angular velocity ω [rpm] 1500
Journal bearing length L [mm] 80
Radial clearance C [µm] 117.5
Shaft radius R [mm] 49.89
Fluid viscosity µ [Pa s] 0.023
Reference viscosity µ0 [Pa s] 0.0813
Supply pressure ps [MPa] 0.08
Penalty parameter in the Heaviside approximation ε [dimensionless] 5e-12
Number of ants in the solution archive na [ants] 70
Number of new ants ns [ants] 50
Locality of the search process in the ACOR q [dimensionless] 0.0103
Speed of convergence in the ACOR ξ [dimensionless] 0.8257
Initial pressure p0 [MPa] 1
Initial ρ̄ ρ̄0 [dimensionless] 0.5
Initial α α0 [rad] π

6
Initial ϕ ϕ0 [rad] 1.745e-5
Initial β β0 [rad] 1.745e-5

define the correct range of admissible misalignment angle projections, computed for the specific domain of

the mathematical formulation of this problem.

In this section, we also present numerical tests which try to verify the performance and coupling of the

different numerical approaches involved. The dimensionless domain Ω̃ = [0, 2π]× [0, L
R ] is discretized using

a 200 × 80 finite elements mesh (16000 four-noded quadrangles) and an attenuation factor δ = 0.93. Unless

other values are specified for the experiments, the geometrical and physical constants, taken from (Bouyer

and Fillon, 2002) and the ACOR numerical constants, taken from (Leguizamón and Coello, 2010b), are those

in Table 4.2.

Again, the problem is solved in a dimensionless domain, but most of the results are back transformed

and presented in their real scales and units when it does not affect the visualization purpose.

In Fig. 4.1 we show the equilibrium position and the resulting pressure map wrapped around the bearing,

when applying an external force of 3000 N in the “z” direction and a torque of 70 N m in the “y” direction.

This is equivalent to applying the force at 23.3 mm from the origin. That force is represented by the vertical

arrow in this figure. As expected, the peak pressure map is located accordingly to the force position and

shaft displacement, and tends to move towards the bearing front in this case, representing the reality. Notice
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Figure 4.1. Solution to the inverse problem for F = (0, 0, 3000 N) and τ = (0, 70 N m, 0). The equilibrium position is
found at ρ̄ = 108.73 µm, α = 3.704084 rad, ϕ = −0.000045 rad and β = −0.000094 rad.

that a normalized journal bearing has been used in favour of visualization. The equilibrium position is found

at ρ̄ = 108.73 µm, α = 3.704084 rad, ϕ = −0.000045 rad and β = −0.000094 rad. Despite we are using a

different cavitation model, this solution for the inverse problem is very close to the one obtained in Sect. 3.4,

which is in accordance with the literature. Note also that the colour bar presents real pressure values and

the corresponding unit. In addition, with this solution, attained with our numerical approach, we verify our

hypothesis on how to predict the final position of the shaft and the final pressure distribution in a misaligned

journal bearing with the Elrod–Adams cavitation model.

A perspective view for the pressure is presented at the equilibrium position in Fig. 4.2 and a contour map

in Fig. 4.3. Both verify the peak pressure behaviour.

In Fig. 4.4 we show the concentration contour map at the equilibrium position of the inverse problem

under study. Cavitation regions, within isolines with ϑ = 1, should be noticed. They appear at zones with

zero pressure values of Fig. 4.3, as it was expected. In Fig. 4.5 we zoom in the cavitated region at the

bottom right corner of Fig. 4.4, the divergent zone accordingly to the shaft movement. The hypothesis of the

Elrod–Adams cavitation model, the fluid-air mixture, is verified with different lubricant concentrations that

represent the saturation of fluid in the mixture.
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Figure 4.2. Perspective view of the pressure when solving the inverse problem with the Elrod–Adams model for
F = (0, 0, 3000 N) and τ = (0, 70 N m, 0).
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Figure 4.3. Contour map of the pressure when solving the inverse problem with the Elrod–Adams model for F =

(0, 0, 3000 N) and τ = (0, 70 N m, 0).

In Fig. 4.6 we show the behaviour of the fluid film thickness h at the equilibrium position with the

Elrod–Adams model, when solving the inverse problem for F = (0, 0, 3000 N) and τ = (0, 70 N m, 0).

The minimum value is 8.71 µm, represented in the figure by a circular marker. It is located at x = 0 mm,

θ = 3.7699 rad (θR = 188.0808 mm). Accordingly to the solution obtained for the inverse problem it is also
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Figure 4.4. Concentration contour map at the equilibrium position of the inverse problem for F = (0, 0, 3000 N) and
τ = (0, 70 N m, 0).
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Figure 4.5. A zoom for the concentration contour map at the bottom right corner of Fig. 4.4.

expected this result be similar to the minimum attained in Fig. 3.6.

Figures 4.7a and 4.7b present the misalignment of the axes on the xz-plane and xy-plane respectively at

the equilibrium position. Accordingly to the force applying position, the centre at the front end, as expected,

approaches more towards the contact in both figures.
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Figure 4.6. The fluid film thickness behaviour at the equilibrium position of the inverse problem for F = (0, 0, 3000 N)
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Figure 4.7. View of the misalignment in both xz-plane and xy-plane when solving the inverse problem with the Elrod–
Adams cavitation model for F = (0, 0, 3000 N) and τ = (0, 70 N m, 0).

In Fig. 4.8 different pressure contour maps are presented. They show the behaviour of the solution of the

direct problem (for ρ̄ = 0.5, α = 215°, ϕ = 0.001°, β = 0.001°) with respect to the penalization parameter ε,

when it tends to zero. The values chosen for the experiment are: ε = 5e-9, ε = 5e-10, ε = 5e-11, ε = 5e-12.

The stability of the pressure contour map pattern should be noticed when ε decreases up to three orders of
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magnitude. However, cavitation regions appear at different locations, as expected, since they are directly

governed by the ε parameter.
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(a) Pressure contour map for ε = 5e-9.
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(b) Pressure contour map for ε = 5e-10.
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(c) Pressure contour map for ε = 5e-11.
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(d) Pressure contour map for ε = 5e-12.

Figure 4.8. Pressure contour maps for different values of the penalization parameter ε.

Finally, in Fig. 4.9 we show the behaviour of the force exerted by the lubricant pressure |FL| with respect

to the shaft angular velocity ω. The experiment was accomplished for ρ̄ = 0.5, α = 215°, ϕ = 0.001°,

β = 0.001° and different ω values: {1000, 1500, 2000, 2500, 3000, 3500, 4000} rpm. It proves the continuous

dependence of the |FL| generated by the lubricant on the shaft angular velocity.

It is important to remark that, a comparison between the proposed metaheuristic with other classical

optimization algorithms used by other authors is a difficult task when it comes to choose a proper criterion

to compare. At first glance, one may think it must be done based on CPU time. This choice makes the

comparison of different algorithms complicated, as the CPU time depends significantly on the programming
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Figure 4.9. The behaviour of |FL| with respect to ω.

language used, the compiler, the expertise of the programmer, and the computer used for running the exper-

iments. In fact, it is recommended to implement all the algorithms used in the comparison in order to make

it fair. Even so, a fully fair comparison is not guaranteed since it is difficult to ensure that the same amount

of effort is put to optimize the code of all the implemented algorithms.

Notice that, in our case, the direct problem is a large scale problem whose solution is a time-consuming

task. Then, the number of evaluations of the direct problem to achieve a desired solution quality of the

inverse problem, seems to be a good candidate criterion of comparison. Since the gradient of the residual

E is not explicitly available, at each step, classical optimization algorithms need to approximate it, by finite

differences, for example. Thus, it is ensured several calls to the direct problem during the whole optimization

routine, not to mention the calls in the residual itself. Moreover, in ACOR at each iteration, several ants

solve the direct problem from a probabilistically generated vector solution, to compute their associated cost

function. This criterion is insensitive to the programming language, to the compiler and to the characteristics

of the computer. The disadvantage is that it does not take into account the time-complexity of the algorithms

compared. In addition, ACOR is an inherently parallel algorithm; condition that – when exploited – hides the

true performance of the metaheuristic, if such comparison criterion is considered. We plan to study a proper

criterion for accomplishing a comparison between these kinds of algorithms in future work.
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4.3.1 Behaviour of ρ with respect to |FL| for the parallel case

In Fig. 4.10 we show the behaviour of ρ with respect to |FL| at the equilibrium positions, illustrating how the

eccentricity approaches to C when increasing the applied load. The simulation is taken applying the forces

at the centre of mass, recreating the parallel case, when both ϕ and β are equal zero.
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Figure 4.10. The behaviour of ρ with respect to |FL|.

It should be noticed that |FL| is a monotone increasing function, which numerically indicates uniqueness.

These results match those observed in (Álvarez and Oujja, 2011). For the parallel case, we also noted that the

solution holds under the effect of rotation, i.e., if (p(ρ, α), h(ρ, α)) is a solution, then (p(ρ, α + θ), h(ρ, α + θ))

is also a solution.

4.3.2 Grid convergence study

In this section we conduct a convergence study as in Sect. 3.4.1 to verify the calculations for the direct

problem with the Elrod–Adams cavitation model. We follow the procedure as suggested in (Roache, 1994;

Roache, 2002). Since the exact force exerted by the fluid pressure is unknown we perform as well three

computations of forces, on a different grid each, and compute two GCIs, from fine grid to intermediate

(GCI12) and from intermediate to coarse grid (GCI23). Thus, we know how much the computed force

will change with an additional refinement of the grid (Roache, 1998). A small value is preferable, since it
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suggests the force is within the asymptotic range. The grid information for the convergence study is provided

in Table 4.3.

Table 4.3. Grid information for the convergence study.

No Grid elements Force ID Force value (N)

1 400 × 160 F1 7.67609 × 103

2 200 × 80 F2 7.45791 × 103

3 100 × 40 F3 7.37293 × 103

It includes, for each experiment, the corresponding force value for the direct problem, computed for

α = 3.665192 rad, ρ = 58.75 µm, β = 0.000017 rad and ϕ = 0.000017 rad. The geometrical and physical

constants used are those in Table 4.2.

We determine the order of convergence cs according to the force values. As we use in the convergence

study a constant refinement ratio rt = 2, we can perform a direct evaluation of cs by Eq. (4.3.1); see (Roache,

1994) for details:

cs = ln
(

F3 − F2

F2 − F1

)
/ ln rt, (4.3.1)

cs = ln
(
7.37293 × 103 N − 7.45791 × 103 N
7.45791 × 103 N − 7.67609 × 103 N

)
/ ln 2,

cs = −1.3603.

The GCI for the fine grid solution is then computed. It is defined as:

GCI jk =
fs

(rt
cs − 1)

∣∣∣∣∣∣F j − Fk

F j

∣∣∣∣∣∣ ,
where fs is a factor of safety, recommended to be fs = 1.25 for comparisons of three grids; see (Roache,

1998) for details. The GCI for grids 1 and 2 is:

GCI12 =
1.25

(2−1.3603 − 1)

∣∣∣∣∣∣7.67609 × 103 N − 7.45791 × 103 N
7.67609 × 103 N

∣∣∣∣∣∣ ,
GCI12 = −0.0582.
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Similarly, the GCI for grids 2 and 3 is:

GCI23 =
1.25

(2−1.3603 − 1)

∣∣∣∣∣∣7.45791 × 103 N − 7.37293 × 103 N
7.45791 × 103 N

∣∣∣∣∣∣ ,
GCI23 = −0.0233.

We then check that these solutions are within the asymptotic range of convergence by Eq. (4.3.2):

GCI23 = rt
csGCI12, (4.3.2)

−0.0233
2−1.3603 − 0.0582

= 1.0293,

which is approximately 1 and indicates that the test succeeded. Based on this study we can also estimate the

exact solution Fe by the Richardson extrapolation, using Eq. (4.3.3); see (Roache, 1994) for details:

Fe u F1 +
F1 − F2

rt
cs − 1

, (4.3.3)

Fe u 7.67609 × 103 N +
7.67609 × 103 N − 7.45791 × 103 N

2−1.3603 − 1
,

Fe u 7.3187 × 103 N.

Finally, we could say that the force exerted by the fluid pressure, for the direct problem depicted, is estimated

to be 7.3187 × 103 N with an error band of 0.0582.

4.3.3 Validation

We compare the predicted pressure values in the bearing mid-plane, to published experimental data, to val-

idate the whole numerical approach with the Elrod–Adams cavitation model; see Fig. 4.11. For that, the

work of Bouyer and Fillon (2002) was used, where the same geometrical and physical constants of the jour-

nal bearing were considered. Specifically, we compare our numerical results, after solving the corresponding

inverse problem, with the experimental data referred in Fig. 6 of (ibid., p. 315). The experiment is accom-

plished for a misalignment of 70 N m, an external radial force of 3000 N and a shaft angular velocity of

2000 rpm.
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Figure 4.11. Validation of the whole numerical approach with the Elrod–Adams model, comparing the predicted
pressure in the bearing mid-plane to experimental data (|τ|=70 N m, |F|=3000 N, ω=2000 rpm).

Comparison between the experimental and the numerical results shows small discrepancies. Again, the

differences can be related to the fact that not all the surrounding phenomena (as temperature) are considered

in our numerical model. However, the experiment shows an acceptable agreement between the output of

our model and the experimental data. Such differences do not influence the determination of the maximum

pressure (discrepancy of 0.014276 MPa), which is an essential factor when designing a journal bearing.

Thus, the algorithm could be used as a first prediction of the final position of a journal bearing under an

imposed radial loading, considering misalignment and the Elrod–Adams cavitation model.
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As a major conclusion, based on the results of this dissertation, we draw that our computational algorithm

is suitable to determine the shaft position and the pressure distribution in a misaligned journal bearing with

radial loading, as a first prediction of contact and cavitation. So, our hypothesis could be verified for both

Reynolds and Elrod–Adams cavitation models. Despite we did not include in the analysis other realistic

factors, the comparisons between the experimental and numerical results showed small discrepancies that

do not influence the determination of the maximum pressure, an essential factor when designing a journal

bearing.

Additionally, for the Reynolds cavitation model, it is suitable to tackle the direct problem by minimizing

a convex functional using a PCG with both projection and restarting strategies. To address the inverse

problem, it is possible to pose a system of non-linear equations and then solving it, in least squares sense,

by a trust-region numerical approach. In this context, it provides another way of solution, different from

the ones that exist in the literature. Equally important, the numerical simulations showed the existence of

contact points for finite loading when misalignment occurs. A mathematical proof was provided in Sect. 3.1

to demonstrate the finite load capacity of the system for the point contact case. Nevertheless, the uniform

boundedness of the pressure is not guaranteed. The results also showed the continuous dependence of the

maximum load capacity of the bearing on the shaft angular velocity, in such a way that it increases with the

latter.

When considering the Elrod–Adams cavitation model, it is possible to find a numerical solution to the

direct problem, by minimizing the convex functional proposed in Eq. (4.1.19). Then, it is possible to address

the inverse problem related by first posing a system of non-linear equations and then solving it, in least

squares sense, through the metaheuristic ACOR. In this context, it provides also another way of solution,
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different to the ones existing at this point. The numerical simulations show that the force exerted by the

pressure depends continuously on the shaft angular velocity as well. We also noted that, as |F| increases, the

eccentricity increases in a continuous and monotone way as far as the model is valid (i.e. for experimental

values |1 − ρ̄| > 10e-3).
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Future work

Throughout this dissertation we have developed two different approaches to solve the inverse problem in a

misaligned journal bearing with the Reynolds and the Elrod–Adams cavitation model respectively. Despite

the encouraging results there are still some improvements that can be added to the present study in order to

capture the reality observed in practice. However, to couple most of the improvements is required a large

numerical effort.

For instance, a thermal problem must be solved in the lubricant for large values of the eccentricity.

Under this circumstance, the energy dissipation by viscous effects is limited to the zone of the fluid film

minimum thickness and, in consequence, large variations of temperature may occur along the fluid film. By

solving the thermal problem we could obtain the correct values of the lubricant viscosity to be used in the

hydrodynamic problem. Besides, if the lubricant viscosity depends on the pressure (piezoviscous regime)

we need to introduce the Barus law, as a viscosity-pressure relation.

On the other hand, if high pressure values can deform the surfaces in contact, an elastohydrodynamic

regime must be considered, including a pressure gap relation. The Hertz equation should be taken into

account to address elastic deformations. Similarly, non-Newtonian fluids must be considered in the analysis

since real lubricants have shown that the stress is not directly proportional to the shear strain and in addition

can contain additives. This is a wide field of interest in the mechanical literature.

Moreover, if operating conditions become really strong, in a way that the lubricant minimum thickness

tends to be small as the order of magnitude of the roughness, the effect of the surface roughness on the

behaviour of the lubricant film comes into play. In fact, it is of interest to study the effect of deterministic

periodical pattern of roughness for which a mathematical theory is available (homogenization theory).

To consider all these factors (among others), they are plugged into the RE. A wide set of non-linear
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equations appears which usually demands a large numerical effort. We plan to consider them in future work,

as well as finding a proper criterion to compare quantitatively our proposed metaheuristic with other classical

optimization algorithms.
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Glossary

abrasive wear A wear caused by the loss of material due to hard particles or hard protuberances that are

forced against and move along a solid surface. 2, 74

adhesive wear The result of adhesion between contacting bodies. 2, 74

cavitation wear A wear caused by fast flowing liquids. 2

corrosive wear A wear caused by the fluid material formed by chemical attack of either contacting body. 2

diffusive wear A wear caused at high interface temperatures. 2

erosive wear A wear caused by the impact of particles of solid or liquid against the surface of an object.

The impacting particles gradually remove material from the surface through repeated deformations

and cutting actions. 2, 74

fatigue wear A milder forms of wear often initiated by fatigue processes due to repetitive stresses under

either sliding or rolling. 2

fretting wear A wear caused when the amplitude of movement between contacting bodies is restricted

to few micrometres and the film material is trapped within the contact and may eventually become

destructive. 2

impact wear A wear caused by impact between two solids. 2

melting wear A wear caused when the contact loads and speeds are sufficiently high to allow for the surface

layers of the solid to melt. 2

NP-hard The class of problem for which it is strongly believed that it is not possible to find efficient (i.e.,

polynomial time) algorithms to solve them optimally. 21

OpenMP An application programming interface (API) for shared-memory parallel programming. 23, 98

oxidative wear A wear caused by atmospheric oxygen as the corroding agent. 2
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Acronyms

ACO Ant Colony Optimization. xi, 21, 23, 94–97

ACOR Ant Colony Optimization for continuous domain. xxi, 6, 7, 23, 25, 87, 94–100, 106, 111

ASME American Society of Mechanical Engineers. 3

CG Conjugate Gradient Method. 69

DACOR Alternative Ant Colony Optimization for continuous domain. 23

EHL Elastohydrodynamic Lubrication. 15

FDM Finite Difference Method. 18

FEM Finite Element Method. 17–19, 87

FVM Finite Volume Method. 19

GCI Grid Convergence Index. 82, 83, 107, 108

GRE Generalized Reynolds Equation. 27, 44, 48, 49, 51, 52

IACOR-LS Incremental Ant Colony Optimization with Local Search for continuous domain. 23

L-BFGS Limited-Memory Broyden Fletcher Goldfarb Shanno. 87, 93, 98

l.s.c lower semi continuous. xi, 6, 21, 92

MC Method of Characteristics. 19, 21, 87

PCG Preconditioned Conjugate Gradient Method. xvii, 7, 19, 59, 64, 66–69, 73, 74, 111

PDE Partial Differential Equations. 19

PDF probabilistic density function. 96

RE Reynolds Equation. 2–4, 10–12, 17–20, 27, 34, 41, 42, 50, 56, 70, 113

THL Thermohydrodynamic Lubrication. 15

TSP Traveling Salesman Problem. 21
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Acronyms

UACOR Unified Ant Colony Optimization for continuous domain. 23

VAMAS Versailles Project on Advanced Materials and Standards. 2
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List of symbols

Symbol Description Unit

Γ2 Front and back boundaries at the active region dimensionless

Ω+ Active zone or lubricated region mm2

α Shaft angular coordinate rad

Φ Bearing angular coordinate rad

γ Angular position at plane X = x rad

Pk
i j The transition probability from city i to city j for the kth ant dimensionless

Ti j(t) Trail intensity on edge (i, j) dimensionless

ηi j The ant visibility in the ACO algorithm dimensionless

k Artificial time step dimensionless

υ An artificial velocity field dimensionless

pa Atmospheric pressure MPa

δ Meshing attenuation factor dimensionless

x
′

Auxiliary coordinate for x mm

y
′

Auxiliary coordinate for y mm

z
′

Auxiliary coordinate for z mm

γ̄ Normalized angular position at plane X = x̄ dimensionless

Ω̄ Normalized domain dimensionless

F̄y Normalized Fy component dimensionless

F̄z Normalized Fz component dimensionless

h̄ Normalized film thickness dimensionless

λ̄ Normalized λ dimensionless

p̄ Normalized fluid pressure dimensionless
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List of symbols

Symbol Description Unit

ρ̄ Normalized shaft eccentricity mm

φ̄ Normalized test function dimensionless

τ̄y Normalized τy component dimensionless

τ̄z Normalized τz component dimensionless

W Normalized W dimensionless

µ̄ Normalized fluid viscosity Pa s

x̄ Normalized axial coordinate dimensionless

z̄ Normalized z dimensionless

p̄s Atmospheric pressure MPa

C Radial clearance µm

Γ1 Front and back boundaries at the cavitation region dimensionless

Ω0 Cavitated region mm2

ϑ Lubricant concentration dimensionless

κ(A) Condition number of a matrix A dimensionless

ζ j Correction parameter at iteration j after the restarting procedure in the PCG dimensionless

D Bearing diameter mm

ξ j Deflection parameter at iteration j for the PCG dimensionless

% Fluid density kg m−3

ϑ j Discrete concentration value at node j dimensionless

φ j Discrete pressure value at node j MPa

r Displacement vector from the rotation axis to the point where Fq is applied mm

m Division number along the axial direction dimensionless

Ω Domain mm2

ξ Speed of convergence in the ACOR dimensionless

Σ Free boundary between Ω+ and Ω0 dimensionless

ps Atmospheric pressure MPa

F External force vector N m

FL Force vector exerted by the lubricant N m

Fq Force exerted by the fluid pressure at point q N

Fy External force component in the y direction N
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List of symbols

Symbol Description Unit

Fz External force component in the z direction N

g Gravity vector mm s−2

g Gaussian function dimensionless

Gi Gaussian kernel dimensionless

Pk The probability of choosing the kth Gaussian function dimensionless

wk Associated weight for the solution k in the ACOR algorithm dimensionless

GCIi j Grid Convergence Index computed between grids i and j dimensionless

g Scalar value for gravity mm s−2

h Film thickness µm

Hε Approximation for the Heaviside function dimensionless

H Heaviside function dimensionless

na Number of ants in the solution archive for the ACOR algorithm dimensionless

L Journal bearing length mm

Λ A parameter grouping the viscosity integrals in the Elrod–Adams model dimensionless

λ Eccentricity respect to the global coordinate system µm

S y Component of λ along the (y) direction mm

S z Component of λ along the (z) direction mm

µ Mean for the Gaussian kernel Gi dimensionless

ψ Misalignment angle rad

ϕ Projection of ψ on the xy-plane rad

β Projection of ψ on the xz-plane rad

mk Quadratic model function for the trust-region approach dimensionless

n Total number of nodes for the mesh discretization dimensionless

ns Number of new ants probabilistically generated in the ACOR algorithm dimensionless

ν Eccentricity respect to the auxiliary coordinate system µm

n Unit normal vector to Σ dimensionless

i Exterior normal unit vector of Ω0 dimensionless

Ob Bearing centre mm

B The object depth in Fig. 2.3 mm

H̃ Largest distance between the surface and the object in Fig. 2.3 mm

121 Hassán Lombera Rodríguez



List of symbols

Symbol Description Unit

O j Shaft centre mm

ω Shaft angular velocity rpm

cs Order of convergence in the grid convergence study dimensionless

O Origin of coordinate dimensionless

p Fluid pressure MPa

pc Cavitation pressure MPa

ε Penalty parameter in the Heaviside approximation dimensionless

$ Coefficient related to the evaporation of trail dimensionless

xk Current iterate for the trust-region approach dimensionless

q Arbitrary position vector on the bearing surface mm

Ψ Lower triangular matrix dimensionless

M Preconditioning matrix dimensionless

q Locality of the search process in the ACOR algorithm dimensionless

qx Flow rate in the x direction mm3 s−1

qy Flow rate in the y direction mm3 s−1

R Shaft radius mm

∆k Trust-region radius dimensionless

Rb Bearing radius mm

rt Refinement ratio in the grid convergence study dimensionless

µ0 Reference viscosity Pa s

r j Residual at iteration j defined for the PCG MPa

E Residual for the inverse problem dimensionless

ς Restart iteration for the PCG dimensionless

Γ0 Supply groove dimensionless

d j Search direction at iteration j for the PCG mm

ρ Shaft eccentricity mm

N j Shape function for the FEM evaluated at node j dimensionless

An Solution archive for the ACOR dimensionless

s Solution to the system of linear equation in the preconditioning approach MPa

σ Standard deviation for the Gaussian kernel Gi dimensionless
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List of symbols

Symbol Description Unit

ε j Step length for the PCG mm

sk Solution step for the minimization of the residual E dimensionless

t Time s

Tc Characteristic time s

φ Test function MPa

K Space of test functions for the Reynolds cavitation model dimensionless

K Space of test functions for the Elrod–Adams cavitation model dimensionless

θ Circumferential coordinate rad

γ̃ Transformed γ rad

Ω̃ Transformed normalized domain dimensionless

h̃ Transformed h̄ dimensionless

λ̃ Transformed λ̄ dimensionless

x̃ Transformed x̄ dimensionless

τ External torque vector N m

τy External torque component in the y direction N m

τz External torque component in the z direction N m

u Fluid velocity component along the x coordinate mm s−1

Uc Velocity variation in the x component mm s−1

v Fluid velocity component along the y coordinate mm s−1

Vc Velocity variation in the y component mm s−1

u Fluid velocity vector mm s−1

v Object velocity vector mm s−1

U Object velocity component along the x coordinate mm s−1

V Object velocity component along the y coordinate mm s−1

W Object velocity component along the z coordinate mm s−1

w Relative velocity vector between the fluid and the object mm s−1

µ Fluid viscosity Pa s

w Fluid velocity component along the z coordinate mm s−1

Wc Velocity variation in the z component mm s−1

x Cartesian coordinate mm
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List of symbols

Symbol Description Unit

y Cartesian coordinate mm

z Cartesian coordinate mm
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