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Preface

After the publication of Richard Feynman’s pioneering contributions (in the 80s
of the last century), investigations in the field of quantum computation theory have
become more and more intense. In spite of some initial skepticism, important
achievements have recently been obtained in the technological realizations of
quantum computers, which nowadays cannot be any longer regarded as mere
“thought experiments”. These researches have naturally inspired new theoretical
ideas, stimulating also a new interest for foundational and philosophical debates
about quantum theory.

As is well known, classical computers have a perfect abstract model represented
by the concept of Turing machine. Due to the intuitive strength of this concept and
the high stability of the notion of Turing computability (which has turned out to be
equivalent to many alternative definitions of computability) for a long time the
Church-Turing thesis (according to which a number-theoretic function f is com-
putable from an intuitive point of view iff f is Turing-computable) has been regarded
as a deeply reasonable conjecture. This hypothesis seems to be also confirmed by a
number of studies about alternative concepts of computing machine that at first
sight may appear “more liberal”. A significant example is represented by the notion
of non-deterministic (or probabilistic) Turing machine. Interestingly enough, one
has proved that non-deterministic Turing-machines do not go beyond the “limits
and the power” of deterministic Turing machines; for, any probabilistic Turing
machine can be simulated by a deterministic one.

To what extent have quantum computers “perturbed” such clear and well
established approaches to computation-problems? After Feynman’s contributions,
the abstract mathematical model for quantum computers has often been represented
in terms of the notion of quantum Turing machine, the quantum counterpart of the
classical notion of Turing machine. But what exactly are quantum Turing machi-
nes? So far, the literature has not provided a rigorous “institutional” concept of
quantum Turing machine. Some definitions seem to be based on a kind of “imi-
tation” of the classical definition of Turing machine, by referring to a tape (where
the symbols are written) and to a moving head (which changes its position on the
tape). These concepts, however, seem to be hardly applicable to physical quantum
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computers. We need only think of the intriguing situations determined by quantum
uncertainties that, in principle, should also concern the behavior of moving heads.
In this book, we will consider a more general concept, represented by the notion of
abstract quantum computing machine, which neglects both tapes and moving
heads. Do abstract quantum computing machines go beyond the computational
limits of classical Turing machines? In other words, does quantum computation
theory lead us to a refutation of the Church-Turing thesis? In spite of some inter-
esting examples discussed in the literature, this hard problem seems to be still
undecided.

Quantum computation theories have naturally inspired new ideas in the field of
logic, bringing about some important conceptual changes in the quantum-logical
investigations. The interaction between quantum theory and logic has a long history
that started in 1936 with the publication of Birkhoff and von Neumann’s celebrated
article “The logic of quantum mechanics”. At the very beginning, this article did not
raise any great interest either in the physical or in the logical community. Strangely
enough, logicians did not immediately recognize the most “revolutionary logical
idea” of quantum logic: the possible divergence between the concepts of maximal
information and logically complete information.

As is well known, the pure states of a classical physical system S (a gas-
molecule, a table, a planet, etc.) represent pieces of information that are at the same
time maximal and logically complete. The information provided by a pure state of
S cannot be consistently extended to a richer knowledge; at the same time, such
information decides all possible events that may occur to S. For this reason, the
notion of pure state of a classical physical object seems to be very close to the idea
of complete concept, investigated by Leibniz: although many properties of an
individual object (say, the Moon) may be unknown to human minds, God knows
the complete concept of any object (living either in the actual or in some possible
world), and this concept represents a maximal and logically complete information
about the object in question.

Due to the celebrated uncertainty-principles (discovered by Heisenberg), com-
plete concepts (in Leibniz’ sense) cannot exist for quantum objects. Consider a
quantum system S (say, an electron) in a pure state that assigns an exact value to its
velocity in the x-direction. In such a case, the position of S (with respect to the
x-direction) will be completely indeterminate: the object S turns out to be
non-localized. Quantum objects, are in a sense, “poor”; and their “poverty” con-
cerns the number of physical properties that can be satisfied at the same time.
Furthermore, quantum properties seem to behave in a contextual way: properties
that are completely indeterminate in a given context may become actual and
determinate in a different context (for instance, after the performance of an
appropriate measurement). Hence, the system of properties that are determinate for
a given quantum object turns out to be context-dependent. Quantum pure states
represent pieces of information that are at the same time maximal (since they cannot
be consistently extended to a richer knowledge) and logically incomplete (since
they cannot decide all the relevant properties of the objects under investigation).
This divergence between the concepts of maximal knowledge and logically
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complete knowledge represents a characteristic logical aspect of the quantum world
that may appear prima facie strange, since it is in contrast with a basic theorem of
classical logic (and of many alternative logics): Lindenbaum’s theorem, according
to which any non-contradictory set of sentences T can be extended to a set of
sentences T′ that is at the same time non-contradictory (no contradiction can be
derived from T′), logically complete (for any sentence a of the language either a or
its negation ¬a belongs to T′), maximal (all proper extensions of T′, formalized in
the same language of T′, are contradictory).

Apparently, quantum undecidabilities turn out to be much stronger than the
syntactical undecidabilities discovered by Gödel’s incompleteness theorems. In the
quantum world, undecidability is not only due to the limited proof-theoretic
capacities of finite minds: against “Leibniz’ dream” even an infinite omniscient
mind should be bound to quantum uncertainties.

Birkhoff and von Neumann’s quantum logic (as well as its further developments)
represent, in a sense, static logics. The basic aim of these logics is the description
of the abstract structure of all possible quantum events that may occur to a given
quantum system and of the relationships between events and states. In this
framework, the logical connectives are interpreted as (generally irreversible)
operations, which do not reflect any time-evolution either of the physical system or
of the observer.

Quantum computation theory has inspired a completely different approach to
quantum logic, giving rise to new forms of logics that have been called quantum
computational logics. The basic objects of these logics are pieces of quantum
information: possible states of quantum systems that can store and transmit the
information in question, evolving in time. Accordingly, any formula of a quantum
computational language can be regarded as a synthetic logical description of a
quantum logical circuit. In this way, linguistic expressions acquire a characteristic
dynamic meaning, representing possible computational actions.

The most natural semantics for quantum computational logics is a form of
holistic semantics, where some puzzling features of quantum entanglement (often
described as mysterious and potentially paradoxical) are used as a positive semantic
resource. Against the compositionality principle (a basic assumption of classical
logic and of many other logics), the meaning of a compound expression of a
quantum computational language cannot be generally represented as a function
of the meanings of its well-formed parts. The procedure goes from the whole to the
parts, and not the other way around. Furthermore, meanings are essentially
context-dependent. In this way, quantum computational logics turn out to be a
natural abstract tool that allows us to model semantic situations (even far from
microphysics), where holism, contextuality, vagueness and ambiguity play an
essential role, as happens in the case of natural languages and in the languages of
arts (say, poetry or music).

The aim of this book is providing a general survey of the main concepts,
questions and results that have been studied in the framework of the recent inter-
actions between quantum information, quantum computation and logic.
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Chapter 1 is an introduction to the basic concepts of the quantum-theoretic
formalism used in quantum information. It is stressed how the characteristic
uncertainties of the quantum world have brought about some deep logical inno-
vations, due to the divergence between the concepts of maximal information and
logically complete information. It is explained how Birkhoff and von Neumann's
quantum logic and the more recent forms of unsharp (or fuzzy) quantum logics have
naturally emerged from the mathematical environment of quantum theory.

Chapter 2 gives a synthetic presentation of the main “mathematical characters”
of the quantum computational game: qubits, quregisters, mixtures of quregisters,
and quantum logical gates. The basic idea of quantum computer theory is that
computations can be performed by some quantum systems that evolve in time.
Accordingly, by applying Schrödinger’s equation, it is natural to assume that
quantum information is processed by special examples of unitary operators (called
quantum logical gates), which transform in a reversible way the pure states of the
quantum systems that store the information in question. The last section of the
chapter illustrates possible physical implementations of some quantum logical
circuits by means of special variants of the Mach-Zehnder interferometer, an
apparatus that has played an important role in the philosophical debates about
quantum theory.

Chapter 3 investigates the puzzling entanglement-phenomena. The Einstein-
Podolsky-Rosen paradox (EPR) is logically analyzed and it is shown how
EPR-situations have later on been transformed into powerful resources, even from a
technological point of view. As a significant example, teleportation-experiments are
briefly illustrated.

Chapter 4 introduces the reader to quantum computational logics, new forms of
quantum logic inspired by the theory of quantum circuits. The basic idea of these
logics is that sentences denote pieces of quantum information, while logical con-
nectives are interpreted as special examples of quantum logical gates. The most
natural quantum computational semantics is a holistic and contextual theory of
meanings, where quantum entanglement can be used as a logical resource. The
concept of logical consequence, defined in this semantics, characterizes a weak
form of quantum logic (called holistic quantum computational logic), where many
important logical arguments (which are valid either in classical logic or in Birkhoff
and von Neumann’s quantum logic) are possibly violated.

Chapter 5 develops a quantum computational semantics for a language that can
express sentences like “Alice knows that everybody knows that she is pretty”. The
basic question is: to what extent is it possible to interpret quantifiers and epistemic
operators as special examples of Hilbert-space operations? It is shown how these
logical operators have a similar logical behavior, giving rise to a “reversibility-
breaking”. Unlike logical connectives, quantifiers and epistemic operators can be
represented as particular quantum maps that are generally irreversible. An inter-
esting feature of the epistemic quantum semantics is the failure of the unrealistic
phenomenon of logical omniscience: Alice might know a given sentence without
knowing all its logical consequences.
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Chapter 6 is devoted to a “many-valued generalization” of the classical part of
quantum computational logics, which only deals with bits, registers and gates that
are reversible versions of Boolean functions (in the framework of a two-valued
semantics). One can generalize this approach, by assuming a many-valued classical
basis for quantum computation. In this way, qubits are replaced by qudits: quantum
superpositions living in a Hilbert space whose dimension may be greater than two.
The qudit-semantics gives rise to some interesting physical applications.

Chapter 7 introduces the concept of abstract quantum computing machine,
which represents an adequate mathematical model for the description of concrete
quantum computers. To what extent can abstract quantum computing machines be
simulated by classical Turing machines? Does quantum computation give rise to
possible violations of the Church-Turing thesis? These hard questions did not find,
so far, a definite answer.

Chapter 8 describes some possible applications of the holistic quantum
semantics to fields (far apart from microphysics), where ambiguity, vagueness,
allusions and metaphors play an essential role. Some characteristic examples that
arise in the framework of musical languages are illustrated.

Chapter 9 discusses some recent debates about foundational and philosophical
questions of quantum theory, which have been stimulated by researches in the field
of quantum information and quantum computation. “Information interpretations”
according to which quantum theory should be mainly regarded as a “revolutionary
information theory” have been opposed to more traditional “realistic views”,
according to which the pure states of the quantum-theoretic formalism shall always
“mirror” objective properties of physical systems that exist (or may exist) in the real
world.

Chapter 10 contains a survey of the definitions of the main mathematical con-
cepts used in the book.

Florence, Italy Maria Luisa Dalla Chiara
Cagliari, Italy Roberto Giuntini
Bergamo, Italy Roberto Leporini
Cagliari, Italy Giuseppe Sergioli
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Chapter 1
The Mathematical Environment
of Quantum Information

1.1 Physics and Logic in Classical Information Theory

The general idea that inspires all approaches to quantum information is that infor-
mation can be stored and transmitted by quantum physical systems. Accordingly,
any piece of quantum information is identified with a possible state of an appro-
priate quantum system that is storing the information in question. In this way, the
quantum-theoretic formalism for the description of quantum systems becomes the
natural mathematical environment for the theories of quantum information and quan-
tum computation.

As is well known, classical information is measured in terms of bits. Consider a
single (atomic) question: α ?, where α is a sentence expressed in a given language
(say, “2 is a prime number”). One assumes that any question of this kind admits two
possible answers: “Yes” or “No”. Such answers naturally correspond to the classi-
cal truth-values Truth and Falsity. When the answer to the question α ? is “Yes”,
then the sentence α is supposed to be true; α is instead false, when the answer is
“No”. Intermediate truth-values are not taken into consideration: classical informa-
tion theory is essentially based on a two-valued semantics (where Truth and Falsity
are usually denoted by the natural numbers 1 and 0, respectively). Bits represent the
natural “informational counterpart” of classical truth-values. By definition, one bit
measures the information-quantity that is determined by the choice of one element
from a set B consisting of two distinct elements. Like in the case of truth-values, it
is customary to represent the two bits as the natural numbers 0 and 1 (assuming that
B = {0, 1}).

From a physical point of view, bits can be implemented in a number of different
ways. For instance, a canonical implementation uses electrical wires with switches.
Any switch of a wire can assume two different (concrete) states: either ON or
OFF . One can conventionally assume that ON corresponds to the bit 1, while
OFF corresponds to the bit 0. In this way, the two bits 1 and 0 can be dealt with
as two abstract states that mathematically represent the two concrete states ON and
OFF , respectively.

In classical physics dichotomic state-spaces (like {0, 1}) represent special cases
that are very simple. Generally, a classical physical system may assume many (pos-
sibly infinite) abstract states. An important example is represented by the abstract
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2 1 The Mathematical Environment of Quantum Information

states of a single classical particle S (say, a gas-molecule). In order to have a complete
information about S (at a given time-instant), six real numbers r1, . . . , r6 are neces-
sary and sufficient: r1, r2, r3 represent the three position-coordinates, while r4, r5, r6
are the three momentum-components. The set R

6 of all sextuplets of real numbers
is called the phase space of S, indicated by PhS. Any point s of PhS represents a
possible pure state: a complete and maximal information about S. When an observer
is able to associate to S a pure state s, his (her) knowledge about S corresponds to
the knowledge that in this connection would have a hypothetical omniscient mind.

How to represent the pure states of a composite system S (say, a gas consisting of
n particles)? In such a case it is natural to assume that the phase space PhS of S is
the cartesian product

R
6 × . . . × R

6
︸ ︷︷ ︸

n−times

= R
6n .

Accordingly, any point s of PhS = R
6n turns out to represent a possible pure state

of S.
Consider now a classical physical system S. The physical properties of S (say, “the

velocity of S in the x-direction is less than the light’s velocity in vacuum”) correspond
to possible physical events that can be mathematically represented as subsets X of
the phase spacePhS. On this basis, in perfect harmony with classical semantics, the
power set of PhS can be identified with the set of all possible physical events that
may hold for pure states s of S. It is natural to assume that:

the system S in the pure state s verifies the event X iff s ∈ X .

What about the algebraic structure of physical events? As is well known, the
power set of any set gives rise to a Boolean algebra. And also the set M (PhS) of
all measurable subsets of PhS (which is more tractable than the full power set of
PhS from a measure-theoretic point of view) turns out to have a Boolean structure.1

Accordingly, one can assume that the “natural” algebraic structure of the physical
events that may occur to a classical system S is the following σ -complete Boolean
algebra

MS = (M (PhS), ∩, ∪, ′, ∅, PhS)

(where ′, ∩, ∪ are the set-theoretic complement, intersection and union).
As a consequence, one immediately obtains that any pure state s of a system S

semantically decides any physical event X that belongs toPhS. We have:

either s ∈ X or s ∈ X ′.

In this sense, classical particle-mechanics is strongly deterministic.

1M (PhS) is the smallest subset of the power set ofPhS that contains all singletons, the total set,
the empty set and is closed under the set-theoretic complement, countable intersections, countable
unions. For the concepts of Boolean algebra, complete Boolean algebra and σ -complete Boolean
algebra see Definitions 10.8 and 10.4 (in the Mathematical Survey of Chap.10).
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The abstract concept of observable (or physical quantity) that can be measured
on a system S can be now defined in terms of the notion of physical event.

Definition 1.1 (Classical observable) Consider the setM (PhS) of all events that
may hold for a system S and let B(R) be the set of all Borel-sets of real numbers.2

An observable of S is a map O that satisfies the following conditions:

(1) O : B(R) → M (PhS). For any Δ ∈ B(R), the event O(Δ) is physically
interpreted as follows: the observable O of system S has a value included in the
Borel-set Δ.

(2) O(∅) = ∅; O(R) = M (PhS). Thus, for all pure states the event “having no
value for the observable O” is impossible, while the event “the value for the
observable O is included in R” is certain.

(3) O is a σ -homomorphism from the σ -complete Boolean algebra based onB(R)

into the σ -complete Boolean algebra based onM (PhS). Hence:

• O(Δ′) = O(Δ)′.
• O(

⋂ {Δi } i∈I ) = ⋂ {O(Δi )}i∈I ; O(
⋃ {Δi }i∈I ) = ⋃ {O(Δi )}i∈I , for any

countable set {Δi }i∈I of elements of B(R).

As we have seen, any pure state of a classical system S semantically decides all
physical events that may occur to S. Of course the information that a human observer
has about the system under investigation cannot always correspond to a pure state.
In such cases it is useful to refer to special examples of non-maximal pieces of
information that are calledmixtures (ormixed states). Mathematically, a mixture can
be represented as a convex combination of pure states:

W =
∑

i

wi si ,

where wi are positive real numbers (called weights) such that
∑

i wi = 1.
When an observer has associated to a system S the mixture W = ∑

i wi si , the
intuitive physical interpretation is the following: S might be in the pure state si with
probability-value wi . In classical physics, a mixture can be regarded as a kind of
ignorance of the observer, who does not know which is the “real” pure state of the
system. But a hypothetical omniscient mind would always deal with pure states only.

1.2 From the Classical to the Quantum-Theoretic
Formalism

The transition from classical physics to quantum theory has brought about some
deep logical innovations that have not immediately been understood either by the

2B(R) is the set of all measurable subsets of R.
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logical or by the physical community.As iswell known, the basic feature that strongly
distinguishes classicalmechanics fromquantum theory is the essential indeterminism
that characterizes the quantum world.

We have seen how the pure states of classical physical objects decide all the
relevant properties that may hold for them. If s is a pure state of a classical system S
and X is a physical event that may occur to S, we have:

either s ∈ X or s ∈ X ′.

Hence s verifies either the event X or its negation X ′, according to the semantic
excluded-middle principle. The logic of classical physical objects is naturally based
on a two-valued semantics. Such a dichotomic situation breaks down in quantum
theory. The celebrated uncertainty-principles have shown that the pure states of
quantum objects cannot decide all the relevant properties that may hold for them.
Consider a quantum object S (say, an electron) in a pure state that assigns an exact
value to its velocity in the x-direction. In such a case, the position of S (with respect
to the x-direction) will be completely indeterminate: the object S turns out to be
non-localized. Quantum objects are, in a sense, “poor”; and their “poverty” concerns
the number of physical properties that can be satisfied at the same time. Furthermore,
quantumproperties seem tobehave in a contextualway: properties that are completely
indeterminate in a given context may become actual and determinate in a different
context (for instance, after the performance of an appropriate measurement). Hence,
the system of properties that are determinate for a given quantum object turns out to
be context-dependent.

As we have seen, the pure states of a classical physical object S represent pieces of
information that are at the same time maximal and logically complete. The informa-
tion provided by a pure state cannot be consistently extended to a richer knowledge;
at the same time such information decides all possible events that may occur to S.
For this reason the notion of pure state of a classical physical object seems to be
very close to the idea of complete concept, investigated by Leibniz: although many
properties of an individual object (say, the Moon) may be unknown to human minds,
God knows the complete concept of any object (living either in the actual or in
some possible world), and this concept represents a maximal and logically complete
information about the object in question.

Due to the uncertainty-principles complete concepts (in Leibniz’ sense) cannot
exist for quantum objects. Quantum pure states represent pieces of information that
are at the same time maximal (since they cannot be consistently extended to a richer
knowledge) and logically incomplete (since they cannot decide all the relevant prop-
erties of the objects under investigation). This divergence between the concepts of
maximal knowledge and logically complete knowledge represents a characteristic
logical aspect of the quantum world that may appear prima facie strange, since it
is in contrast with a basic theorem of classical logic and of many alternative logics.
As is well known, according to Lindenbaum’s theorem any non-contradictory set of
sentences T can be extended to a set of sentences T ′ that is at the same time
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• non-contradictory (no contradiction can be derived from T ′);
• logically complete (for any sentence α of the language either α or its negation ¬α

belongs to T ′);
• maximal (all proper extensions of T ′, formalized in the same language of T ′, are
contradictory).

Apparently, quantum undecidabilities turn out to be much stronger than the syntac-
tical undecidabilities discovered by Gödel’s incompleteness theorems.

1.3 The Mathematics of Quantum Theory

The emergence of quantum uncertainties has determined some radical changes in the
mathematical representation of physical concepts: quantum pure states and quantum
events shall behave differently from their classical counterparts. In quantum theory
the role of phase spaces has been replaced by the more sophisticated class ofHilbert
spaces, which represent a generalization of the Cartesian plane and of Euclidean
spaces. According to the standard axiomatization of quantum theory any quantum
physical system S (say, an electron or an atom) is associated to a particular Hilbert
spaceHS, which represents the mathematical environment for S. As happens in the
case of classical phase spaces, the possible pure states of S can be mathematically
represented as particular points of HS that correspond to unit vectors. As is cus-
tomary, following a happy notation introduced by Paul Dirac, we will indicate the
vectors of HS by |ψ〉, |ϕ〉, |χ〉, . . . .

The basic properties of a Hilbert space H can be synthetically sketched as
follows3:

1. The set VH of the vectors of H is associated to a division ring that is based
either on the set R of all real numbers or on the set C of all complex numbers
or on the set Q of all quaternions. The elements of the division ring are called
scalars.

2. H is equipped with an inner product: a map that associates to any pair of vectors
|ψ〉 and |ϕ〉 a scalar 〈ψ |ϕ〉.

3. The inner product induces a norm and a metric inH :

• for any vector |ψ〉, the norm (or length) of |ψ〉 is the (real) number

‖|ψ〉‖ = √〈ψ |ψ〉;

• for any vectors |ψ〉 and |ϕ〉, the distance d(|ψ〉, |ϕ〉) is the (real) number
‖|ψ〉 − |ϕ〉‖ (where − is the vector-difference);

• H is metrically complete (with respect to the metric determined by d): any
Cauchy sequence of H converges to a vector of H .

3For a detailed definition of Hilbert space see Definition 10.20 (in the Mathematical Survey of
Chap.10).
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A canonical example of a Hilbert space is represented by the plane R
2, whose

vectors are all possible pairs of real numbers and whose division ring is the real field
(based onR). Quantum theory normally uses complexHilbert spaces, whose division
ring is the complex field C. The simplest example of a complex Hilbert space (which
plays an important role in quantum information) is the space C

2, whose vectors are
all possible pairs of complex numbers.

An interesting relation that may hold between two vectors of a Hilbert space is
the orthogonality-relation, which is defined in terms of the notion of inner product.

Definition 1.2 (Orthogonality) Two vectors |ψ〉 and |ϕ〉 of a Hilbert space H are
called orthogonal (|ψ〉 ⊥ |ϕ〉) iff the inner product 〈ψ |ϕ〉 is 0.
From an intuitive point of view the relation⊥ can be regarded as a kind of opposition
that is generally stronger than the simple inequality-relation. One can prove that in
the case of non-null vectors the orthogonality-relation is:

• irreflexive (|ψ〉 �⊥ |ψ〉);
• symmetric (|ψ〉 ⊥ |ϕ〉 =⇒ |ϕ〉 ⊥ |ψ〉);
• generally non-transitive.

All vectors |ψ〉 of a Hilbert spaceH can be represented in infinitely many ways
as linear combinations of other vectors:

|ψ〉 =
∑

i

ci |ψi 〉,

where each ci is a scalar, while
∑

i represents a (finite or infinite) vector-sum.
Any Hilbert space H has infinitely many orthonormal bases: special sets of

vectors that allow us to represent as convenient linear combinations all possible
vectors of the space.

Definition 1.3 (Orthonormal basis) A set B of vectors ofH is called an orthonor-
mal basis forH iff B satisfies the following conditions:

• the elements of B are pairwise orthogonal unit vectors (whose length is 1);
• any vector |ψ〉 of H can be represented as a linear combination

|ψ〉 =
∑

i

ci |ϕi 〉,

where |ϕi 〉 ∈ B.

From an intuitive point of view the elements of B can be thought of as a kind of
“bricks” that allow us to “construct” all elements of the space by means of scalars
and of vector-operations.
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One can prove that all orthonormal bases of a space H have the same cardinal
number, whichmay be either finite or infinite. This number determines the dimension
of H . For instance, both the spaces R

2 and C
2 have dimension two. An important

orthonormal basis of the space C
2 is the canonical basis, which consists of the

following two vectors:
|0〉 = (1, 0), |1〉 = (0, 1).

Although quantum theory cannot avoid the use of infinite dimensional Hilbert
spaces, quantum information and quantum computation normally need finite dimen-
sional spaces only. In such a case, for any choice of an orthonormal basis B, any
vector |ψ〉 can be represented as a finite linear combination

|ψ〉 = c1|ψ1〉 + · · · + cn|ψn〉,

where |ψ1〉, . . . , |ψn〉 belong toB. Since this book is concernedwith logical problems
of quantum computation, for the sake of simplicity we will always refer to finite-
dimensional Hilbert spaces.

Consider now a pure state |ψ〉 of a physical system S such that

|ψ〉 = c1|ψ1〉 + · · · + cn|ψn〉,

where |ψ1〉, . . . , |ψn〉 belong to a given orthonormal basis B of the spaceHS (asso-
ciated with S). Since the length of all vectors |ψ〉, |ψ1〉, . . . , |ψn〉 is 1, the complex
numbers c1, . . . , cn (also called amplitudes) shall satisfy the condition:

|c1|2 + · · · + |cn|2 = 1.

In such a case it is customary to say that the pure state |ψ〉 is a superposition of the
alternative pure states |ψ1〉, . . . , |ψn〉. We will see how the concept of superposition
(which has no counterpart in classical physics) is responsible for some basic features
of quantum theory that have for a long time been regarded as “strange”, “mysterious”
and “potentially paradoxical”.

How to deal in this framework with quantum events? A “classical way of think-
ing” would suggest to identify the set of the quantum events that may occur to a
system S with the set of all possible sets of pure states of S. Such a choice, however,
could not adequately represent the peculiar uncertainties that characterize the behav-
ior of quantum pure states: the very notion of logical negation, corresponding to
the set-theoretic complement-operation ′, should be transformed and possibly weak-
ened. To this aim a good candidate seems to be the orthocomplement (or orthogonal
complement), which is defined in terms of the orthogonality-relation.

Definition 1.4 (Orthocomplement) For any set X of vectors of a Hilbert spaceH ,
the orthocomplement X⊥ of X is defined as follows:
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X⊥ := {|ψ〉 ∈ VH : ∀|ϕ〉 ∈ X (|ψ〉 ⊥ |ϕ〉)} .

Thus, X⊥ is the set of all vectors that are orthogonal to every vector in X .
If X is a set of vectors ofH , the orthocomplement X⊥ is generally a proper subset

of the set-theoretic complement X ′. Consequently, the excluded-middle principle
turns out to be violated. For some vectors |ψ〉 and for some sets of vectors X wemay
have:

|ψ〉 /∈ X and |ψ〉 /∈ X⊥.

An important character of the Hilbert-space scenario is represented by the double
orthocomplement of a given set of vectors. The following Lemma sums up some
interesting properties of this operation.

Lemma 1.1 Let X be a set of vectors of a Hilbert space H .

(1) X ⊆ X⊥⊥.
(2) X = X⊥⊥ iff X is a closed subspaceofH (closed under linear combinations

and metrically complete).
(3) X⊥⊥⊥ = X⊥.
(4) |ψ〉 ∈ X⊥⊥ iff ∀|ϕ〉 �⊥ |ψ〉∃|χ〉 �⊥ |ϕ〉(|χ〉 ∈ X⊥⊥).

The nice properties of the sets X⊥⊥ have suggested that the closed subspaces of
a Hilbert space (which are richer than simple sets) can represent good mathematical
representatives for the intuitive notion of quantum event.4

According to the projection-theorem, for any choice of a closed subspace X , any
vector |ψ〉 of the space can be uniquely represented as a superposition

|ψ〉 = |ψ1〉 + |ψ2〉,

where |ψ1〉 ∈ X and |ψ2〉 ∈ X⊥. The two vectors |ψ1〉 and |ψ2〉 can be regarded as
the two components of |ψ〉 that belong to the subspaces X and X⊥, respectively.

The set C (H ) of all closed subspaces of a Hilbert space H gives rise to an
algebraic structure that (unlike the case of classical physical events) is not a Boolean
algebra. Consider the following algebraic structure

CH = (C (H ), �, �, ⊥, {0} , VH ),

where:

(1) � (the infimum) coincides with the set-theoretic intersection ∩;
(2) � (the supremum) is defined (in terms of ⊥ and �) via de Morgan-law:

X � Y := (X⊥ � Y⊥)⊥;

4See [3]. After Birkhoff and von Neumann’s pioneering work, different abstract approaches to the
foundations of quantum mechanics have been proposed. See, for instance, [5, 8, 10, 12, 14, 18,
19, 22, 23, 25].
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(3) ⊥ is the orthocomplement;
(4) {0} is the singleton of the null vector 0, while VH represents the total closed

subspace.

One can prove that CH is a complete orthomodular lattice.5 The subspaces {0}
andVH represent, respectively, theminimum and themaximum element with respect
to the lattice-partial order that is defined as follows:

X � Y iff X � Y = X.

Orthomodular lattices CH (based on some Hilbert space H ) are also called
Hilbert-space lattices (briefly, Hilbert-lattices). An important Boolean property that
is generally violated by Hilbert-lattices is distributivity. We may have:

X � (Y � Z) �� (X � Y ) � (X � Z).

Orthomodularity (the characteristic property of orthomodular lattices) represents
a special weakening of distributivity that can be formulated as follows:

X � Y =⇒ Y = X � (Y � X⊥).

Example 1.1 Consider the orthomodular lattice based on the set C (R2) of all closed
subspaces of the plane. The elements of C (R2) are:

• the singleton of the origin (represented by the null vector 0 = (0, 0));
• the total space R

2;
• all straight lines through the origin.

In this case the orthocomplement X⊥ of a closed subspace X represented by a straight
line X is the straight line (through the origin) that is perpendicular to X . In order to
“see” the failure of distributivity, take three pairwise non-orthogonal straight lines
X,Y, Z (Fig. 1.1). We have:

(X � Y ) � (X � Z) = {0} ; X � (Y � Z) = X.

The orthomodular lattice based on the set C (H ) of all closed subspaces of a
Hilbert spaceH turns out to be isomorphic to a different structure whose support is
the set P(H ) of all projection operators (briefly, projections) P of H .

Let us recall the definition of projection, a concept that plays a fundamental role
in the quantum-theoretic formalism.

Definition 1.5 (Projection) A projection of H is an operator P that transforms
vectors of H into vectors of H , satisfying the following conditions:

5See Definitions 10.7 and 10.4 (in the Mathematical Survey of Chap.10).
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Fig. 1.1 A counterexample
to distributivity

(1) P is defined on the total space VH ;
(2) P is linear. In other words, P preserves all linear combinations:

P(c1|ψ1〉 + · · · + cn|ψn〉) = c1P|ψ1〉 + · · · + cn P|ψn〉;

(3) P is idempotent:
PP|ψ〉 = P|ψ〉;

(4) P is self-adjoint. In other words:

P = P†,

where P† is the adjoint of P .6

The setP(H ) of all projections of a Hilbert spaceH is partially ordered by the
following relation:

P � Q iff PQ = P.

By using the projection-theorem one can naturally define two maps

f : C (H ) → P(H ); g : P(H ) → C (H )

that satisfy the following conditions:

• For any closed subspace X , f (X) is the projection PX such that for any vector
|ψ〉 = |ψ1〉 + |ψ2〉 (with |ψ1〉 ∈ X and |ψ2〉 ∈ X⊥) we have:

6For the concepts of adjoint operator and self-adjoint operator see Definitions 10.29 and 10.30 (in
the Mathematical Survey of Chap.10).
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PX |ψ〉 = |ψ1〉.

Thus PX transforms |ψ〉 into its X -component.
• For any projection P , g(P) is the smallest closed subspace XP that includes the
range (the set of all possible values) of P .

One can prove that:
P(XP ) = P and X(PX ) = X.

Hence, the maps f and g determine a bijection from C (H ) onto P(H ). On this
basis one can induce onP(H ) an algebraic structure that turns out to be isomorphic
to the orthomodular lattice CH . We will indicate this structure byPH . Accordingly,
the mathematical representatives of quantum events can be equivalently thought of
either as closed subspaces (living in the algebra CH ) or as projections (living in the
algebra PH ).

Aswe have seen, the semantic excluded-middle principle fails for quantum events.
Given a pure state |ψ〉 and a quantum event represented by the closed subspace X
(or by the corresponding projection PX ), three cases are possible:

1. |ψ〉 ∈ X and PX |ψ〉 = |ψ〉. In such a case one can say that the state |ψ〉 certainly
verifies the event represented by X and by PX .

2. |ψ〉 ∈ X⊥ and PX⊥|ψ〉 = |ψ〉. In such a case one can say that the state |ψ〉 cer-
tainly falsifies the event represented by X and by PX .

3. |ψ〉 /∈ X , |ψ〉 /∈ X⊥ and PX |ψ〉 �= |ψ〉, PX⊥|ψ〉 �= |ψ〉. In such a case one can
say that the event represented by X and by PX is indeterminate for the state |ψ〉.
In spite of a first appearance it would be wrong to conclude that the “natural

logic” of quantum events is a three-valued logic. The relation between pure states
and quantum events is highly more informative, since it essentially involves quantum
probabilities. Given a quantum event represented by a closed subspace X and by the
corresponding projection PX , any pure state |ψ〉 assigns to X and to PX a probability-
value (indicated by p|ψ〉(X) and by p|ψ〉(PX )), which is determined by the Born-rule:

p|ψ〉(X) = p|ψ〉(PX ) := ‖PX |ψ〉‖2.

Thus, the probability that a quantum system in state |ψ〉 verifies the event represented
by X and by PX is the number ‖PX |ψ〉‖2 (the squared length of the X -component
of |ψ〉). One can easily show that

p|ψ〉(X) = p|ψ〉(PX ) ∈ [0, 1].

One can also show that:

p|ψ〉(X) = p|ψ〉(PX ) = tr(P|ψ〉PX ),

where:
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• P|ψ〉 is the projection determined by the one-dimensional closed subspace that
contains the vector |ψ〉;

• tr is the trace-functional.7

For any closed subspaces X and Y ofH we have:

X � Y iff PX � PY iff for any pure state |ψ〉 : p|ψ〉(X) ≤ p|ψ〉(Y ).

Hence, the event-partial order turns out to have an interesting physical meaning.
As a particular case consider a system S in a pure state

|ψ〉 = c1|ψ1〉 + · · · + cn|ψn〉,

where all amplitudes ci are different from 0. According to the Born-rule this system
might satisfies with probability |ci |2 the properties that are certain for any system
whose state is |ψi 〉.

Quantum states seem to describe a kind of “cloud of potential properties” that
are, in a sense, all co-existent. Interestingly enough, such a co-existence (which may
appear prima facie strange and mysterious) can be used as a powerful resource for
different aims. We will see in the next Chapters how the parallel computational paths
of quantum computers are essentially based on superpositions, where alternative
states of a quantum object act at the same time.

Since the algebraic structure of quantum events is not Boolean, the behavior of
the quantum probabilities p|ψ〉, determined by the possible pure states of a quantum
system, turns out to diverge from the behavior of classical probabilities. At the same
time, quantum probabilities satisfy the following conditions (which are similar to
some basic properties of classical probabilities):

1. p|ψ〉(X) ∈ [0, 1] (for every event X ).
2. p|ψ〉({0}) = 0; p|ψ〉(VH ) = 1.
3. p|ψ〉(X⊥) = 1 − p|ψ〉(X) (for every event X ).
4. Let {Xi }i∈I be a countable set of quantum events that are pairwise orthogonal (i.e.

i �= j ⇒ Xi ⊆ X⊥
j ). We have:

p|ψ〉

(

⊔

i

Xi

)

=
∑

i

p|ψ〉(Xi ).

Condition 4. clearly represents a quantum version of σ -additivity.
The concept of quantum observable (or physical quantity that can be measured on

a quantum system S) can be now defined in terms of the notion of event (as happens
in the case of classical mechanics).

7The concept of trace-functional is defined in Definition 10.34 (in the Mathematical Survey of
Chap.10).
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Definition 1.6 (Quantum observable) Consider the set C (HS) of all events that
may hold for a quantum system S and let B(R) be the set of all Borel-sets of real
numbers. An observable of S is a map O that satisfies the following conditions:

(1) O : B(R) → C (HS). For anyΔ ∈ B(R), the quantumeventO(Δ) ∈ C (HS)

is physically interpreted as follows: the observable O of system S has a value
included in the Borel-set Δ.

(2) O(∅) = {0} ; O(R) = VH S .Thus, for all pure states the event “having no value
for the observable O” is impossible, while the event “the value for the observable
O is included in R” is certain.

(3) O is a σ -homomorphism from the σ -complete Boolean algebra based onB(R)

into the complete orthomodular lattice based on C (HS). Hence:

• O(Δ′) = O(Δ)⊥.
• O(

⋂ {Δi }i∈I ) =

⊔

{O(Δi )}i∈I ; O(
⋃ {Δi }i∈I ) = ⊔ {O(Δi )}i∈I , for any

countable set {Δi }i∈I of elements of B(R).

As expected, any observable O can be equivalently defined by referring to the set
P(HS) (instead of C (HS)). For this reason, the observables O of a space HS are
often called projection-valued measures (or spectral measures).

One can prove that any observable O of HS uniquely determines a self-adjoint
operator AO of the space. Conversely, any self-adjoint operator A of HS uniquely
determines an observable OA. We have:

A(OA) = A and O(AO ) = O.

Hence, the physical quantities that can be measured on a quantum system can be
mathematically represented either by projection-valued measures or by self-adjoint
operators (as is more customary in many standard axiomatizations of quantum the-
ory).

Consider a quantum system S in a state |ψ〉 and let O be an observable of the
space HS. For any real number a, we have:

p|ψ〉(O({a})) = 1 iff AO(|ψ〉) = a|ψ〉.

Thus, the event O({a}) is certain for the system S in state |ψ〉 iff |ψ〉 is an eigenvector
of the self-adjoint operator AO with corresponding eigenvalue a.8

So far we have been concerned with pure states, which represent maximal pieces
of information about the physical systems under investigation. Like classical physics,
quantum theory as well cannot avoid the use of mixed states (or mixtures) that cor-
respond to a non-maximal knowledge of the observer.

Quantummixtures can be represented in a form that is similar to classicalmixtures.
LetHS be the Hilbert space associated to a physical system S. Consider an operator
of HS having the following form:

8For the concepts of eigenvector and eigenvalue see Definition 10.24 (in the Mathematical Survey
of Chap.10). Note that all eigenvalues of a self-adjoint operator are real numbers.
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ρ = w1P|ψ1〉 + · · · + wn P|ψn〉,

where |ψ1〉, . . . , |ψn〉 are possible pure states of S, while w1, . . . ,wn are positive
real numbers such that w1 + · · · + wn = 1. Such an operator, which is expressed as
a convex combination of pure states, represents a possiblemixed state of S: amixture
of the pure states |ψ1〉, . . . , |ψn〉, with weights w1, . . . ,wn . When an observer has
associated to S the mixed state ρ, the physical interpretation is the following: S,
whose state is ρ, might be in the pure state |ψi 〉 with probability wi .

Any mixture represented as a convex combination ρ = w1P|ψ1〉 + · · · + wn P|ψn〉
(in aHilbert spaceH ) belongs to a special class of operators called density operators
of H . This class is properly included in the wider class B(H ) of all bounded
operators of the space.

Definition 1.7 (Bounded operator) A linear operator A of a Hilbert space H is
called bounded iff there exists a positive real number a such that for every vector
|ψ〉 of H :

|| A|ψ〉 || ≤ || a|ψ〉 || .

An important subclass of B(H ) is represented by the class of all positive oper-
ators of H .

Definition 1.8 (Positive operator) A bounded operator A of a Hilbert space H is
called positive iff for every vector |ψ〉 of H :

〈ψ | Aψ〉 ≥ 0.

The concept of density operator ofH can be now defined as follows.

Definition 1.9 (Density operator) A density operator of a Hilbert space H is a
positive, self-adjoint, trace-class operator ρ such that tr(ρ) = 1.9

The set of all density operators of H will be indicated by D(H ).
Using the concept of density operator a partial order relation can be defined on

the set of all self-adjoint operators of H as follows:

A � B iff ∀ρ ∈ D(H )[tr(ρA) ≤ tr(ρB)].

While any convex combination w1P|ψ1〉 + · · · + wn P|ψn〉 of pure states uniquely
determines a density operator, the inverse relation does not hold: generally, a density
operator ρ can be represented in many different ways as a convex combination of
pure states. Hence, it is convenient to identify the set of all possible mixed states
of a quantum system S with the set D(HS) of all density operators of the Hilbert

9For the concept of trace-class operator see Definition 10.33 (in the Mathematical Survey of
Chap.10).
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spaceHS. As expected, pure states correspond to special cases of mixtures that can
be represented as projections P|ψ〉 (where |ψ〉 is a unit vector of the space). Density
operators that cannot be represented in this form are called proper mixtures.

The basic probabilistic rule of quantum theory, theBorn-rule, can be nownaturally
extended to all states of a physical system S (which may be either pure or mixed).
Let ρ be a possible state of S and let the projection P ∈ P(HS) represent a quantum
event. The probability that the system S in state ρ verifies the event P is defined as
follows:

pρ(P) := tr(ρP).

And we already know that in the case of pure states |ψ〉 we have:

p|ψ〉(P) = ||P|ψ〉||2 = tr(P|ψ〉P).

In spite of a superficial formal appearance, mixtures (represented as particular
convex combinations) should not be confused with superpositions, whose behavior
is essentially different. Consider the following mixture (of the space C

2):

ρ = 1

2
P|0〉 + 1

2
P|1〉 = 1

2
I

(where I is the identity operator). Let us compare ρ with the following superposition
(which might appear prima facie similar):

|ψ〉 = 1√
2
|0〉 + 1√

2
|1〉.

Both states ρ and |ψ〉 assign the same probability-value to the two events P|0〉 and
P|1〉 (where P|0〉 is certain for the state |0〉, while P|1〉 is certain for the state |1〉). We
have:

p|ψ〉(P|0〉) = p|ψ〉(P|1〉) = pρ(P|0〉) = pρ(P|1〉) = 1

2
.

At the same time, the pure state |ψ〉 certainly verifies its characteristic property
represented by the event P|ψ〉. We have:

p|ψ〉(P|ψ〉) =‖P|ψ〉|ψ〉‖2 = tr(P|ψ〉P|ψ〉) = 1.

The probability-value assigned to the event P|ψ〉 by the mixture ρ is, instead, 1
2 . For,

we have:

pρ(P|ψ〉) = tr(ρP|ψ〉) = 1

2
tr(P|ψ〉) = 1

2
.

Although a pure states |ψ〉 has many indeterminate properties, there is always at
least one non-trivial event (different from the total event represented by the whole
space) that is certainly verified by |ψ〉. Mixtures, instead, give rise to a higher degree
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of indeterminacy: there are proper mixtures (for instance, the state 1
2I of C

2) for
which the total event only is certain.

To what extent is an “ignorance interpretation” of mixtures possible? This is a
question that has often been discussed in the foundational debates about quantum
theory. Is it reasonable to claim that any quantum system S is always in a well-
determined pure state, which may be unknown to human observers, but would be
perfectly known by a hypothetical omniscient mind? Such an interpretation of quan-
tum mixtures can be hardly defended for many reasons. As we have seen, density
operators can be generally represented as convex combinations of pure states inmany
different ways. How could we choose the “right” representation that determines the
“real” pure state of a given system? Another serious difficulty arises in the frame-
work of entanglement-phenomena (which will be investigated in Chap.3). We will
see that there are composite quantum systems S whose state is pure and entangled.
This state determines the states of the parts of S, which are indistinguishable and
cannot be represented as pure states. While in classical physics mixed states (which
are useful for human observers) would never be used by a hypothetical omniscient
mind, in quantum theory proper mixtures seem to be in principle unavoidable.

1.4 Composite Systems

Quantum physical systems (as well as classical systems) are often composite sys-
tems consisting of many parts (say, an n-electron system, a photon-beam, etc.). The
mathematical formalism of the theory shall represent the special relations that hold
between a possible state of a composite system and the states of its parts.

As we have seen, in classical mechanics the phase space PhS of a composite
system S consisting of n particles S1, . . . ,Sn is identified with the cartesian product
of the phase spaces of its parts:

PhS = PhS1 × · · · × PhSn = R
6 × · · · × R

6
︸ ︷︷ ︸

n−times

= R
6n .

As a consequence, one can say that the pure states of the parts (s1, . . . , sn) deter-
mine the pure state

s = s1 × · · · × sn

of the global system S. Conversely, any pure state

s = s1 × · · · × sn

of S determines the reduced state Redi (s) of each part. We have:

Redi (s1 × · · · × sn) = si = Πi (s),
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where Πi (s) is the projection of s1 × · · · × sn on its i th component.
In quantum theory the essential role of superpositions and the possibility of entan-

gled states give rise to a more complicated situation. Cartesian products, which can-
not adequately represent the characteristic holistic features of quantum composite
systems, have been replaced by the more sophisticated tensor products.

Let H1 and H2 be two Hilbert spaces. Roughly, the tensor product H1 ⊗ H2 of
H1 andH2 can be thought of as the smallest Hilbert spaceH (up to isomorphism)
that satisfies the following conditions10:

• there is an injective map ⊗ that associates to every element (|ψ(1)〉, |ϕ(2)〉) of the
cartesian product VH 1 × VH 2 an element |ψ(1)〉 ⊗ |ϕ(2)〉 of VH .

• VH is closed under all linear combinations of elements that belong to the range
of the map ⊗.

One can show that ⊗ satisfies associativity:

H1 ⊗ (H2 ⊗ H3) = (H1 ⊗ H2) ⊗ H3.

Any vector
|ψ〉 = |ψ(1)〉 ⊗ |ϕ(2)〉

is called a factorized vector of the spaceH = H1 ⊗ H2. Vectors ofH that cannot
be represented as factorized vectors are called non-factorizable. As an example, we
can consider the case of a pure state that plays an important role in quantum theory
and in quantum information. Let us refer to a composite system S = S1 + S2, whose
Hilbert space is:

HS = HS1 ⊗ HS2 = C
2 ⊗ C

2.

Consider the following superposition, which represents a possible pure state of S:

|ψ〉 = 1√
2
(|1〉 ⊗ |0〉) + 1√

2
(|0〉 ⊗ |1〉).

This state belongs to a class of pure states that are usually called Bell-states. Accord-
ing to the Born-rule the superposition |ψ〉 assigns probability 1

2 to the two following
possibilities:

• the subsystem S1 is in state |1〉, while the subsystem S2 is in state |0〉;
• the subsystem S1 is in state |0〉, while the subsystem S2 is in state |1〉.

The distinction between factorizable and non-factorizable states can be naturally
extended to mixtures. Let A and B be two linear operators defined on the spaces
H1 and H2, respectively. One can prove that the pair (A, B) uniquely determines
a linear operator A ⊗ B of the product-space H1 ⊗ H2. As happens in the case of

10For a more detailed definition of tensor product see Definition 10.37 (in theMathematical Survey
of Chap.10).
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vectors, operators that have this form are called factorized. A mixed state ρ of the
spaceH1 ⊗ H2 is called factorizable iff ρ can be represented as a factorized operator
ρ1 ⊗ ρ2, where ρ1 ∈ D(H1) and ρ2 ∈ D(H2). Of course, there are density operators
of H1 ⊗ H2 that are not factorizable.

As happens in classical mechanics, any state of a composite quantum system
determines the reduced states of all its parts. For the sake of simplicity, let us first
consider a bipartite system consisting of two parts. In order to define the concept of
reduced statewe will first introduce the notion of partial trace. Consider two Hilbert
spaces H1, H2 and their tensor product H = H1 ⊗ H2. Let T (H ), T (H1),
T (H2) represent the sets of all trace-class operators of H , H1, H2, respectively.
One can prove that there exists a unique linear map

PTr2 : T (H ) → T (H1)

(called the partial trace of the second component) that satisfies the following condi-
tion for any A ∈ T (H1) and any B ∈ T (H2):

PTr2(A ⊗ B) = (trB)A.

In other words, PTr2(A ⊗ B) is an operator of H1, where:

• B (the component of A ⊗ B living in the space H2) has been “traced out”;
• the “memory” of B is preserved in PTr2(A ⊗ B) by means of the number trB.

In a symmetric way one can determine the map PTr1 (the partial trace of the first
component).

The concept of partial trace can be now applied to define the two reduced states
of a bipartite composite system.

Definition 1.10 (Reduced state) Consider a composite system S = S1 + S2 and its
associated Hilbert space HS = HS1 ⊗ HS2 . Let ρ be a state of HS. The reduced
state of ρ with respect to the first subsystem (Red1(ρ)) and the reduced state of ρ

with respect to the second subsystem (Red2(ρ)) are defined as follows:

Red1(ρ) := PTr2(ρ); Red2(ρ) := PTr1(ρ).

One can prove that Red1(ρ) is a density operator of H1, while Red2(ρ) is a
density operator ofH2. Moreover:

ρ = ρ1 ⊗ ρ2 =⇒ Red1(ρ) = ρ1, Red2(ρ) = ρ2

(but not the other way around).
The notion of reduced state can be naturally defined for multi-partite systems as

well. Let S = S1 + · · · + Sn be a composite systemwhose Hilbert space is the tensor
product

HS = HS1 ⊗ · · · ⊗ HSn .
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Any state ρ of S determines the reduced state Redi (ρ) of each subsystem Si .11

As an example, consider again the Bell-state

|ψ〉 = 1√
2
(|1〉 ⊗ |0〉) + 1√

2
(|0〉 ⊗ |1〉).

We have:

Red1(P|ψ〉) = Red2(P|ψ〉) = 1

2
I.

While the state of the composite system is pure (a maximal piece of information)
the reduced state of both subsystems is the proper mixture 1

2I, which represents
a maximal degree of uncertainty. Hence, the information about the global system
seems to be more precise than the information about its parts. Is it possible to “go
back” from the information about the parts to the information about the whole, as
happens in the case of classical pure states? The answer to this question is clearly
negative. We have:

P|ψ〉 �= Red1(P|ψ〉) ⊗ Red2(P|ψ〉).

While P|ψ〉 is a pure state, Red1(P|ψ〉) ⊗ Red2(P|ψ〉) is a proper mixture.
In quantum theory the state of a composite system determines the states of its

parts, but generally not the other way around. In Chap.3 we will see how holistic
situations of this kind play an important role in entanglement-phenomena.

1.5 Time Evolution and Quantum Measurements

As happens to all physical systems, quantum systems evolve in time. In quan-
tum theory the time-evolution of isolated systems is governed by the celebrated
Schrödinger’s equation: the pure states of systems that evolve in a given time-interval,
without any interaction with other systems, are determined by special examples of
unitary operators that transform pure states into pure states in a reversible way.

Definition 1.11 (Unitary operator) An operator U of a Hilbert space H is called
unitary iff U satisfies the following conditions:

• U is defined on the whole space;
• U is linear;
• UU† = U†U = I.

11A more general concept of reduced state will be considered in Sect. 2.1
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One can show that any unitary operator U satisfies the following conditions:

(1) U preserves the inner product:

∀|ψ〉, |ϕ〉 ∈ VH : 〈Uψ | Uϕ〉 = 〈ψ |ϕ〉.

Consequently, U preserves the length of all vectors, transforming pure states into
pure states.

(2) U is reversible:
U−1U = UU−1 = I.

Any unitary operator U of a space H can be canonically extended to a unitary
operation DU that transforms the density operators of H in a reversible way. The
operation DU is defined for any ρ ∈ D(H ) as follows:

DUρ := UρU†.

The general form of Schrödinger’s axiom, based on Schrödinger’s equation, can
be now formulated as follows.

Schrödinger’s Axiom

Consider a quantum system S and let [t0, t1] be a time-interval (where either t0 ≤ t1
or t1 ≤ t0). There exists a unitary operator US

[t0,t1] that maps the pure states of S into
pure states of S; for any pure state |ψ〉, US

[t0,t1]|ψ〉 represents the state of the system at
time t1, provided the system is in state |ψ〉 at time t0. The map US

[t0,t1] can be extended
to mixed states by means of the corresponding unitary operation DUS

[t0,t1].
Since unitary operators are linear, the time-evolution described by Schrödinger’s

equation generally preserves the uncertainties that characterize the initial state of the
system. Suppose the state of S at time t0 is the superposition

|ψ〉 = c1|ψ1〉 + · · · + cn|ψn〉, where c1 �= 0, . . . , cn �= 0.

At time t1 the state of S will be:

US
[t0,t1]|ψ〉 = c1U

S
[t0,t1]|ψ1〉 + · · · + cnU

S
[t0,t1]|ψn〉.

Thus, events that are indeterminate at the initial time t0 generally remain indetermi-
nate at the final time t1.

Schrödinger’s axiom describes the spontaneous evolution of quantum systems
that do not interact with an external environment. What happens when a measure-
ment is performed, giving rise to a special kind of interaction between a system S
and an apparatus A, used in the measuring procedure? Consider a system S whose
state is the density operator ρ (in the Hilbert space HS). Suppose the observer
wants to measure on S an observable O by means of a non-destructive measuring
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procedure.12 Suppose the result of the measurement is the Borel-set Δ (possibly,
a singleton {a}). In such a case, the observer has tested that the projection O(Δ)

represents a certain event for the system S. In fact, after we do a measurement and
see that the result is in the Borel-set Δ, if we repeat the measurement immediately,
we will always get the same result. Consequently, soon after the measurement, it
is natural to transform the initial state ρ (for which the event O(Δ) was possibly
indeterminate) into a new state ρ ′ such that:

pρ ′(O(Δ)) = 1.

Such a state-transformation seems to be justified by a general rational principle
according to which we should always take into account the results of experimental
evidence. Technically, this idea is realized by another basic axiom of quantum theory,
called collapse (or reduction) of the wave function (first proposed by von Neumann
and generalized by Lüders).

von Neumann–Lüders’ Axiom

Suppose the observer measures an observable O on a system S during the time-
interval [t0, t1] by means of a non-destructive measurement procedure. Let ρ repre-
sent the state of S at the initial time t0. Suppose the result of the measurement is the
Borel-setΔ. Then, soon after the measurement, at time t1, the observer will associate
to the system the following state:

ρ ′ = O(Δ)ρO(Δ)

tr(ρO(Δ))
.

One can show that ρ ′ assigns probability 1 to the event O(Δ). Hence, the perfor-
mance of a measurement induces a state-transformation that takes into account the
information obtained by the measuring procedure. Synthetically we will also write:

ρ �→M ρ ′ = O(Δ)ρO(Δ)

tr(ρO(Δ))
.

An interesting particular case thatmay arisewhen ρ is a pure state is the following:

1. ρ = P|ψ〉, where |ψ〉 = c1|ψ1〉 + · · · + cn|ψn〉, the vectors |ψ1〉, . . . , |ψn〉 are ele-
ments of a given orthonormal basis and all amplitudes ci are different from 0;

2. the result of the measurement of O is Δ and the range of the projection O(Δ) is
a one-dimensional closed subspace;

12For a long time non-destructive measurements have been considered a highly idealized concept.
Interestingly enough, nowadays such “ideal” measurements can be experimentally realized by
means of different technologies. For instance, one can manipulate some atoms by lasers and one
can investigate their spectral features with high precision by means of optical clocks. In these
experiments state-detection plays a crucial role: the fluorescence of an atomunder laser-illumination
reveals its internal quantum state.
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3. 0 < p|ψ〉(O(Δ)) < 1 (the event O(Δ) is indeterminate for |ψ〉);
4. there is a component |ψi 〉 of the superposition |ψ〉 such that:

• p|ψi 〉(O(Δ)) = 1 (the event O(Δ) is certain for |ψi 〉);
• p|ψ j 〉(O(Δ)) < 1, if j �= i (the event O(Δ) is not certain for all |ψ j 〉 different
from |ψi 〉).

In such a case, by collapse of the wave function, we obtain:

P|ψ〉 �→M P|ψi 〉.

State-transformations M induced by measurements can be mathematically
described by means of some special maps, called quantum operations (or quantum
channels), which are defined on the setB(H ) of all bounded operators of a Hilbert
spaceH . Unlike unitary operations, quantum operations are generally irreversible.

Definition 1.12 (Quantum operation) A quantum operation (or quantum channel)
of H is a linear map

E : B(H ) → B(H )

such that for some set J of indexes there exists a set
{

E j
}

j∈J of elements ofB(H )

satisfying the following conditions:

(1)
∑

j E
†
j E j = I;

(2) ∀A ∈ B(H ) : E(A) = ∑

j E j AE
†
j .

The set
{

E j
}

j∈J is also called a system of Kraus-operators for E.13

One can prove that quantumoperations are trace-preserving; hence quantum states
are transformed into quantumstates.Of course, anyunitary operationDU corresponds
to a special case of a quantum operation, but generally not the other way around.
Furthermore, unlike unitary operations, quantumoperations donot generally preserve
pure states.

The conjunction between Schrödinger’s axiom and von Neumann–Lüders’ axiom
gives rise to a conflictual situation and to potentially contradictory consequences, if
the apparatusA (used in the measuring procedure) is dealt with as a quantum system
that may belong to the universe of discourse of quantum theory. In such a case it is
natural to investigate the behavior of the composite system S + A, whose states shall
live in the product-spaceHS ⊗ HA (whereHS is the space of the systemS, whileHA

is the space of the apparatus A). The intriguing question that arises in this situation
is the following: how do the states of such a composite system evolve in time? Shall

13This definition is based on the so-calledKraus’ first representation theorem (See [20]). It is worth-
while recalling that in the literature one can also find a different definition of quantum operation,
where condition (1) (

∑

j E
†
j E j = I) is replaced by the weaker condition: tr(ρ

∑

j E
†
j E j ) ≤ 1,

for every ρ ∈ D(H ). In such a case, quantum operations are not trace-preserving. At the same time,
quantum channels are defined as quantumoperations that satisfy the stronger condition

∑

j E
†
j E j =

I.
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we apply Schrödinger’s equation or von Neumann–Lüders’ collapse of the wave
function? Actually, both choices seem to be reasonable from an intuitive point of
view. The global system S + A can be regarded as an isolated system that evolves
in time according to Schrödinger’s equation. At the same time, it is also reasonable
to apply von Neumann–Lüders’ axiom, since a measurement is performed on the
system S by means of the apparatus A (during a given time-interval [t0, t1]). In such
a situation it is natural to assume that the observable O (measured on S by A) is
correlated with a corresponding observable OA of the apparatus A. The values of
OA can be represented by possible positions of a pointer.

Suppose now that at the initial time t0 the system S is in the following pure state

|ψ〉S(t0) = c1|ψ1〉 + · · · + cn|ψn〉,

where n > 1 and all amplitudes ci are different from 0. Accordingly, the state of the
global system S + A can be represented as the following factorized state:

|
〉S+A(t0) = (c1|ψ1〉 + · · · + cn|ψn〉) ⊗ |ϕ〉A(t0),

where |ϕ〉A(t0) is a state of A that assigns probability 1 to the initial position of the
pointer. Suppose the outcome of the measurement performed byA for the observable
O is the Borel-set Δ. This means that at the final time t1 (after the measurement-
performance) the apparatus A shall be in a state |ϕ〉A(t1) that assigns probability 1
to the pointer-position corresponding to the value Δ for the observable O . Suppose
that the event O(Δ) was indeterminate for the initial state of the system

|ψ〉S(t0) = c1|ψ1〉 + · · · + cn|ψn〉,

while for some component |ψi 〉 we have:

p|ψi 〉(O(Δ)) = 1 and p|ψ j 〉(O(Δ)) < 1 for all |ψ j 〉 different from |ψi 〉.

By applying von Neumann–Lüders’ axiom to the global system, we will obtain the
following final factorized state:

|
〉S+A(t1) = |ψi 〉 ⊗ |ϕ〉A(t1).

Accordingly, we can write:

(c1|ψ1〉 + · · · + cn|ψn〉) ⊗ |ϕ〉A(t0) �→M |ψi 〉 ⊗ |ϕ〉A(t1).

The observer has “learnt” from the final state of the apparatus that the event O(Δ)

is certain for system S.
Does this result coincide with what is predicted by Schrödinger’s equation? In

other words, is it possible to describe the state-transformation
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(c1|ψ1〉 + · · · + cn|ψn〉) ⊗ |ϕ〉A(t0) �→M |ψi 〉 ⊗ |ϕ〉A(t1)

by means of a unitary operator US+A
[t0,t1]? The answer to this question is generally

negative. Since unitary operators are linear, we would obtain:

US+A
[t0,t1][(c1|ψ1〉 + · · · + cn|ψn〉) ⊗ |ϕ〉A(t0)] =

c1U
S+A
[t0,t1](|ψ1〉 ⊗ |ϕ〉A(t0)) + · · · + cnU

S+A
[t0,t1](|ψn〉 ⊗ |ϕ〉A(t0)).

And this state is generally different from the factorized state

|ψi 〉 ⊗ |ϕ〉A(t1).

The conflict between the predictions of Schrödinger’s equation and of von
Neumann–Lüder’s axiom is usually called “the quantum-measurement problem”,
which represents the most serious logical difficulty of quantum mechanics.14 After
von Neumann’s pioneering investigations, different foundational approaches to the
theory have proposed different possible solutions.

In the next Chapters we will see how both Schrödinger’s equation and von
Neumann–Lüder’s axiom play an important role for understanding the behavior of
quantum computers.

1.6 The Unsharp Approaches to Quantum Theory

An important question that arises in the investigations about the quantum-theoretic
formalism is the following: given a quantum system S (associated to a Hilbert space
HS), towhat extent is the setP(HS) of all projections ofHS the “best”mathematical
representative for the intuitive concept of event that may occur to S? Are there any
other operators ofHS forwhich aBorn-probability could be reasonably defined?This
question has a positive answer. Consider the set E (HS) of all self-adjoint operators
E of HS that satisfy the following condition:

∀ρ ∈ D(HS) : tr(ρE) ∈ [0, 1].

The elements of the set E (HS) are usually called effects of the space HS.15

Apparently, any state ρ ofHS assigns to any effect E ∈ E (HS) a probability-value
according to the Born-rule. Hence, like in the projection-case, we can put:

pρ(E) := tr(ρE).

14See [2, 4, 26, 27].
15See [1, 5–7, 9–11, 13, 15, 16, 21].
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One can easily show that P(HS) is a proper subset of E (HS): any projection is
an effect, but not the other way around. For instance, the operator 1

2I (of the space
C

2) is an effect that is not a projection.
The following Lemma asserts a characteristic property of effects.

Lemma 1.2 A self-adjoint operator A of aHilbert spaceHS is an effect iff A satisfies
the following condition for any vector |ψ〉 of HS:

0 ≤ 〈ψ |Aψ〉 ≤ ‖|ψ〉‖2.

Since effects are self-adjoint operators, the set E (HS) turns out to be partially
ordered by the relation �:

E � F iff ∀ρ ∈ D(HS)(tr(ρE) ≤ tr(ρF)).

Consequently, we obtain:

E � F iff ∀ρ ∈ D(HS)(pρ(E) ≤ pρ(F)).

Thus, the partial order � has a natural physical meaning: an effect E precedes an
effect F when all states assign to E a probability-value that is less than or equal to
the probability-value assigned to F .

One can prove that E (HS) coincides with the set of all self-adjoint operators A
of HS that satisfy the following condition:

O � A � I,

where O and I are the null projection and the identity operator of HS, respectively.
Unlike the case of projections, the partial order � does not determine a lattice-

structure. Some pairs of effects have no infimum, as shown by the following example.

Example 1.2 Consider the following effects of the Hilbert space C
2:

E |0〉 = 1

2
|0〉; E |1〉 = 1

2
|1〉;

F |0〉 = 3

4
|0〉; F |1〉 = 1

4
|1〉;

G|0〉 = 1

2
|0〉; G|1〉 = 1

4
|1〉.

It is not hard to see that G � E, F . Suppose, by contradiction, that the infimum
L = E � F exists in E (C2). An easy computation shows that L must be equal to G.
Consider now the following effect:
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M |0〉 = 7

16
|0〉 + 1

8
|1〉; M |1〉 = 1

8
|0〉 + 3

16
|1〉.

We have: M � E, F ; however M �� L , which is a contradiction.

An orthocomplement-like operation can be naturally defined on the set E (HS) in
the following way:

∀E ∈ E (HS) : E⊥ := I − E .

This operation turns out to correspond to the standard orthocomplement in the partic-
ular case of effects that are projections. For, any projection P satisfies the property:

P⊥ = I − P.

On this basis, the orthogonality-relation between effects can be defined as follows:

E ⊥ F iff E � F⊥.

As expected, this relation turns out to coincide with the standard orthogonality-
relation in the case of projections.

The structure (E (HS),�) can be enriched in differentways giving rise to different
kinds of algebraic structures, which have been investigated in a rich literature.16

Effects and projections have a different behavior with respect to contradictions. The
orthomodular lattice based on the set of all projections of a Hilbert spaceHS satisfies
the non-contradiction principle. The conjunction between an event P and its negation
P⊥ is always the impossible event (the null projection O):

P � P⊥ = O.

At the same time, proper effects may violate this basic logical principle. We may
have:

E � E⊥ �= O.

Hence, contradictions are not necessarily impossible. As an example consider the
proper effect 1

2I of the space C
2. We have:

1

2
I � 1

2
I⊥ = 1

2
I � 1

2
I = 1

2
I �= O.

From an intuitive point of view projections can be regarded as mathematical
representatives of sharp physical events, for which contradictions are always impos-
sible. Effects, instead, can naturally represent unsharp or fuzzy events that are basi-
cally ambiguous. One obtains in this way two different forms of uncertainty for

16The simplest structures are represented by effect algebras, special examples of partial algebras
(Definition 10.10 in theMathematical Survey of Chap.10). See, for instance, [9–11, 13, 15, 16].
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quantum events. We can try to illustrate this difference by using a non-scientific
example. Consider the following two sentences, which apparently have no definite
truth-value:

1. Hamlet is 1.70 m tall;
2. Brutus is an honourable man.

The semantic uncertainty involved in the first example seems to depend on the
logical incompleteness of the individual concept associated to the name “Hamlet”:
while the property “being 1.70m tall” is a sharp property, our concept ofHamlet is not
able to decidewhether such a property is satisfied or not. Unlike real persons, literary
characters have a number of indeterminate properties. On the contrary, the semantic
uncertainty involved in the second example is mainly caused by the ambiguity of
the concept “honourable”. What does it mean “being honourable”? One need only
recall how the ambiguity of the adjective “honourable” plays an important role in
the famous Mark Antony’s monologue in Shakespeare’s Julius Caesar.

The mathematical and physical behavior of unsharp quantum events has been
deeply investigated by the unsharp approaches to quantum theory.17 In this frame-
work the concept of quantum observable can be defined as an effect-valued measure:

O : B(R) → E (HS),

which maps Borel-sets of real numbers into effects (instead of projections). An
interesting advantage of this approach is the possibility of representing as a “genuine”
observable the joint observable of two incompatible physical quantities (like position
and momentum), which is generally forbidden in standard quantum theory.

1.7 Quantum Logics

The mathematical structures that arise in the quantum theoretic formalism have
inspired the development of different forms of non-classical logics, termed quantum
logics. The prototypical example of quantum logic is Birkhoff and von Neumann’s
quantum logic (first proposed in their celebrated article “The logic of quantum
mechanics”). This logic (which will be indicated by QLBN) represents a natural
logical abstraction from the class of all Hilbert-lattices:

CH = (C (H ), �, �, ⊥, {0} , VH ).

Consider a sentential languageL with atomic sentences and the following logical
connectives: ¬ (negation), ∧ (conjunction), ∨ (disjunction). A model of L (in the
Birkhoff and von Neumann’s semantics) can be defined as a pair

17See, for instance, [1, 4, 10, 11, 24].
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(CH , val),

where CH is a Hilbert-lattice, while val is an interpretation-function that assigns
to any sentence a meaning represented by a quantum event X in CH . The map val
shall preserve the logical form of all sentences, satisfying the following conditions
(for any sentences α, β of L ):

val(¬α) = val(α)⊥; val(α ∧ β) = val(α) � val(β); val(α ∨ β) = val(α) � val(β).

On this basis one can define the concepts of truth, logical truth and logical con-
sequence (for the Birkhoff and von Neumann’s semantics).

Definition 1.13 Truth Let M = (CH , val) be a model of L .

(1) A sentence α is called true for a state ρ of H (abbreviated as �ρ α) iff
pρ(val(α)) = 1.

(2) A sentence α is called true in the modelM (abbreviated as �M α) iff val(α) is
the whole space VH (hence, for all states ρ of H : pρ(val(α)) = 1).

Definition 1.14 (Logical truth and logical consequence)

(1) A sentence α is called a logical truth of the logicQLBN (abbreviated as �QLBN α)
iff α is true in any model M .

(2) β is called a logical consequence of α in the logicQLBN (abbreviated as α �QLBN

β) iff for any model M = (CH , val), val(α) � val(β) (hence, for all states ρ

ofH : pρ(val(α)) ≤ pρ(val(β))).

It is interesting to recall some important logical truths and logical arguments that
hold in the logic QLBN:

1. α �QLBN ¬¬α; ¬¬α �QLBN α (the double-negation principle).
2. �QLBN ¬(α ∧ ¬α) (the non-contradiction principle).
3. �QLBN α ∨ ¬α (the excluded-middle principle).
4. α ∧ ¬α �QLBN β (Duns Scotus’ law: ex absurdo sequitur quodlibet).
5. α �QLBN β iff ¬β �QLBN ¬α (contraposition).
6. (α ∧ β) ∨ (α ∧ γ ) �QLBN α ∧ (β ∨ γ ) (weak distributivity).

As expected, a characteristic classical argument that is generally violated in
Birkhoff and von Neumann’s quantum logic is the strong distributivity principle.
We have:

α ∧ (β ∨ γ ) �QLBN (α ∧ β) ∨ (α ∧ γ ).

Interestingly enough, the validity of the logical excluded-middle principle does
not imply the semantic tertium non datur (for any sentence α, either α or its negation
¬α is true in any model M ). While any sentence whose form is α ∨ ¬α is true in
any model, there are sentences γ that are semantically indeterminate in somemodels
M , where (unlike classical models) we may have:
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�M γ and �M ¬γ.

The divergence between the logical excluded-middle principle (�ρ α ∨ ¬α, for any
state ρ) and the semantic excluded-middle (either �ρ α or �ρ ¬α, for any state ρ) is
a peculiar feature of quantum logic.

The models of Birkhoff and von Neumann’s quantum logic have a direct physical
meaning, since they are based on Hilbert lattices. From a logical point of view it
is interesting to consider a convenient abstract generalization of Hilbert lattices, by
referring to the variety of all orthomodular lattices (which includes Hilbert lattices
as particular cases). In this way, one can semantically characterize a different form
of quantum logic (also called abstract quantum logic), whose models are based on
orthomodular lattices.18 This logic (indicated by QL) does not represent a “faith-
ful” generalization of Birkhoff and von Neumann’s quantum logic, because some
equations that hold in all Hilbert lattices are possibly violated in the variety of all
orthomodular lattices.19 WhileQL is an axiomatizable logic, the axiomatizability of
Birkhoff and von Neumann’s quantum logic is still an open problem.

New forms of quantum logics have been suggested by the unsharp approaches to
quantum theory. As expected, these logics (called unsharp quantum logics) represent
fuzzy versions of quantum logic, where the non-contradiction principle, the logical
excluded-middle and Duns Scotus’ law are possibly violated.

Both sharp and unsharp quantum logics seem to be characterized by some “static”
features. Their basic aim is the description of the abstract structure of all possible
quantum events that may occur to a given quantum system and of the relationships
between events and states. In this framework, the logical connectives are interpreted
as operations that are generally irreversible and do not reflect any time-evolution
either of the physical system under investigation or of the observer.

Quantum information and quantum computation have inspired a completely dif-
ferent approach to quantum logic, giving rise to new forms of logics that have been
termed quantum computational logics. The basic objects of these logics are pieces of
quantum information: possible states of quantum systems that can store and transmit
the information in question, evolving in time.

The next Chapter will be devoted to a synthetic description of the main abstract
characters of the quantum computational game.
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Chapter 2
Pieces of Quantum Information
and Quantum Logical Gates

2.1 Qubits, Quregisters and Mixtures of Quregisters

The “mathematical stages” where pieces of quantum information are usually sup-
posed to live are special examples of finite-dimensional Hilbert spaces whose general
form is:

H (n) = C
2 ⊗ · · · ⊗ C

2
︸ ︷︷ ︸

n−times

(where n ≥ 1).

The dimension of H (n) is, obviously, 2n.
Any space H (n) can be decomposed in different ways as

H (n) = H (m1)
1 ⊗ · · · ⊗ H (mr )

r ,

where m1 + · · · + mr = n. Accordingly, any density operator ρ of H (n) can be
regarded as a possible state of a composite system

S = S1 + · · · + Sr

(whereH (mi ) is the Hilbert space associated to the subsystem Si ).
Consider now a particular subsystem of S:

Si1 + · · · + Sik (with 1 ≤ i1, . . . , ik ≤ r).

We will indicate by
Red(i1,...,ik )

[m1,...,mr ](ρ)

the reduced state of ρ with respect to the subsystem Si1 + · · · + Sik and with respect
to the decompositionH (n) = H (m1)

1 ⊗ · · · ⊗ H (mr )
r .By simplicity wewill omit the

subscript [m1, . . . ,mr ] in the cases where the decomposition of H (n) is obvious.
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In the simplest situations a piece of quantum information can be stored by the
pure state of a single quantum system, associated to the Hilbert space H (1) = C

2.

Such a state is called a qubit-state (briefly, a qubit).1 Accordingly, any qubit |ψ〉 can
be represented as a superposition of the two elements of the canonical basis of C2:

|ψ〉 = c0|0〉 + c1|1〉.

From an intuitive point of view, the concept of qubit can be regarded as a quan-
tum variant of the classical concept of bit: any pure state c0|0〉 + c1|1〉 represents a
probabilistic information that might be false with probability-value |c0|2 and might
be truewith probability-value |c1|2 (according to the Born-rule). The two vectors |0〉
and |1〉 play, in this framework, the role of the two classical bits.

In more complex situations pieces of quantum information are represented by
quregisters: pure states of composite systems (consisting of n parts), whose associ-
ated Hilbert space isH (n). Accordingly, any quregister |ψ〉 can be represented as a
superposition:

|ψ〉 =
∑

i

ci |xi1 , . . . , xin 〉,

where xi1 , . . . , xin ∈ {0, 1} and |xi1 , . . . , xin 〉 (an abbreviation for |xi1〉 ⊗ · · · ⊗ |xin 〉)
is an element of the canonical basis of H (n), representing, in this framework, a
classical register.

More generally, pieces of quantum information (which may correspond to a non-
maximal knowledge) can be represented asmixtures of quregisters: density operators
ρ of a Hilbert space H (n).

One can usefully generalize to registers the distinction that holds between a true
bit (|1〉) and a false bit (|0〉). The basic idea is that for any register |ψ〉 = |x1, . . . , xn〉,
the last bit |xn〉 determines the truth-value of |ψ〉.2

Definition 2.1 (True and false registers) Let |x1, . . . , xn〉 be a register of H (n).

• |x1, . . . , xn〉 is called true iff xn = 1;
• |x1, . . . , xn〉 is called false iff xn = 0.

On this basis one can identify in any space H (n) two special projections that
represent the Truth-property and the Falsity-property (respectively) for all pieces of
quantum information living in H (n).

1In the literature the term “qubit” is sometimes used in an ambiguous sense. Usually “qubit” means
“pure state of a single particle” (say, an electron or a photon): a mathematical object living in the
space C

2. In some cases the term “qubit” is also used as an expression that refers to the particle
itself. One says, for instance: “take a qubit in the pure state |ψ〉”.
2In the next Section we will see how this convention plays an important role in the definitions
of some basic logical gates, where the last bit of an input-register represents the target that is
transformed by the gate in question into the final truth-value of the output.
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Definition 2.2 (Truth and Falsity) Consider a Hilbert space H (n).

• The Truth-property of H (n) is the projection P (n)
1 whose range is the smallest

closed subspace that contains all true registers of H (n).

• The Falsity-property of H (n) is the projection P (n)
0 whose range is the smallest

closed subspace that contains all false registers ofH (n).

In this way Truth and Falsity are dealt with as two special examples of quantum
events to which any (pure or mixed) state ρ of the space assigns a probability-value
according to the Born-rule. For any ρ ∈ D(H (n)) we have:

pρ(P
(n)
1 ) = tr(ρP (n)

1 ); pρ(P
(n)
0 ) = tr(ρP (n)

0 ).

Apparently, pρ(P
(n)
1 ) represents the probability that the information stored by a

quantum system in state ρ is true. In the following we will briefly write: p1(ρ),
instead of pρ(P

(n)
1 ). In the case of pure states we will also write: p1(|ψ〉), instead of

p1(P|ψ〉).
The probability-function p1 allows us to define a natural pre-order relation � on

the set D = ⋃

n D(H (n)) of all possible pieces of quantum information.3

Definition 2.3 (The pre-order relation) Consider two density operators ρ, σ ∈ D.

ρ � σ iff p1(ρ) ≤ p1(σ ).

Thus, the information ρ precedes the information σ iff the probability of ρ is
less than or equal to the probability of σ . In the case of pure states we will also
write: |ψ〉 � |ϕ〉, instead of P|ψ〉 � P|ϕ〉. One can easily check that the relation � is
reflexive and transitive, but generally non-antisymmetric. We have, for instance:

|0, 1〉 � |1, 1〉; |1, 1〉 � |0, 1〉; |0, 1〉 �= |1, 1〉.

A probabilistic equivalence-relation ∼= between two pieces of quantum informa-
tion can be then defined in the expected way.

Definition 2.4 (Theprobabilistic equivalence)Consider twodensity operatorsρ, σ ∈
D.

ρ ∼= σ iff ρ � σ and σ � ρ.

In the case of pure states we will also write: |ψ〉 ∼= |ϕ〉, instead of P|ψ〉 ∼= P|ϕ〉.
In the next Chapters we will see how the relations � and∼=will play an important

role in the development of the quantum computational semantics.

3Of course, the pre-order relation � (defined on the set of all density operators) should not be
confused with the partial order � (defined on the set of all self-adjoint operators).
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2.2 Quantum Logical Gates

The basic idea of the theory of quantum computers is that computations can be
performed by some quantum objects that evolve in time. As we have seen in
Chap.1, according to Schrödinger’s equation the time-evolution of quantum sys-
tems is described by unitary operators. Thus, it is natural to assume that quantum
information is processed by quantum logical gates (briefly, gates): special examples
of unitary operators that transform (in a reversibleway) the pure states of the quantum
systems that store the information in question.4 As expected, any gate G(n) (defined
on the spaceH (n)) can be extended to a unitary operation DG(n) (defined on the set
D(H (n)) of all density operators ofH (n)) according to the rule:

∀ρ ∈ D(H (n)) : DG(n)ρ = G(n)ρ G(n) †
.

For the sake of simplicity, we will call gate either a unitary operator G(n) or the
corresponding unitary operation DG(n).

We will now give the definitions of some basic gates that play an important
role both from the computational and from the logical point of view. We will first
consider some gates, called “semiclassical”, that cannot “create” superpositions from
register-inputs. The simplest example is the trivial gate, represented by the identity
operator I(n) that transforms every vector of a space H (n) into itself. Other gates
that are computationally important (for instance, in the network-design for quantum
computers) are the swap-gates.

Definition 2.5 (The swap-gates on the space H (n)) For any n ≥ 1 and any j, k
such that 1 ≤ j ≤ k ≤ n, the swap-gate Swap(n)

j,k onH
(n) is the linear operator that

satisfies the following condition for every element |x1, . . . , xn〉 of the canonical basis:

Swap(n)
j,k |x1, . . . , x j , . . . , xk, . . . , xn〉 := |x1, . . . , xk, . . . , x j , . . . , xn〉.

Thus, Swap(n)
j,k permutes the j th bit with the kth bit of the input-register. Of

course, we have: Swap(n)
j,k = I(n), when j = k. One can prove that Swap(n)

j,k is a
unitary operator.

Wewill now introduce three gates that have a special logical interest: the negation-
gate, the XOR-gate and the Toffoli-gate.

Definition 2.6 (The negation-gate on the space H (1)) The negation-gate on H (1)

is the linear operator NOT(1) that satisfies the following condition for every element
|x〉 of the canonical basis:

NOT(1)|x〉 := |1 − x〉.

4See [2, 3, 5–9, 11].
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One can prove that NOT(1) is a unitary operator.
The gate NOT(1) represents a natural quantum generalization of the classical nega-

tion. We have:
NOT(1)|0〉 = |1〉; NOT(1)|1〉 = |0〉.

When applied to “genuine” qubits, NOT(1) behaves as follows:

NOT(1)(c0|0〉 + c1|1〉) = c1|0〉 + c0|1〉,

inverting the amplitudes of the two bits that occur in the superposition.
The negation-gate can be naturally generalized to higher-dimensional spaces. For

anyH (n) (with n > 1), the operator NOT(n) is defined for every element |x1, . . . , xn〉
of the canonical basis as follows:

NOT(n)|x1, . . . , xn〉 := (I(n−1) ⊗ NOT(1))|x1, . . . , xn〉.

Apparently, NOT(n) always acts on the last bit of any register ofH (n).

Definition 2.7 (The XOR-gate on the space H (2)) The XOR-gate on H (2) is the
linear operator XOR(1,1) that satisfies the following condition for every element |x, y〉
of the canonical basis:

XOR(1,1)|x, y〉 := |x, x+̂y〉,

where +̂ is the addition modulo 2.

One can prove that XOR(1,1) is a unitary operator.
From a logical point of view it is natural to “read” the XOR-gate as a reversible

exclusive disjunction ( “aut” in Latin). For, we have:

• XOR(1,1)|x, y〉 = |x, 1〉 ⇐⇒ (x = 1 and y = 0) or (x = 0 and y = 1);
• XOR(1,1)|x, y〉 = |x, 0〉 ⇐⇒ (x = y = 1) or (x = y = 0).

Thus, the second bit of the output corresponds to the truth-value of the exclusive
disjunction.

At the same time, the XOR-gate can be also “read” as a “controlled nega-
tion”. Consider a possible input |x, y〉 of the gate. The first bit |x〉 is called the
control-bit, while the second bit |y〉 represents the target-bit. Consider the output:
XOR(1,1)|x, y〉 = |x, x+̂y〉. The control-bit has remained unchanged,while the input-
target has been transformed into the output-target |x+̂y〉. We have:

• XOR(1,1)|1, y〉 = |1〉 ⊗ NOT(1)|y〉;
• XOR(1,1)|0, y〉 = |0, y〉.
When the control-bit is |1〉, the target-bit is transformed into its negation. Accord-
ingly, one can say thatXOR(1,1) describes a controlled negation (also called “C − NOT
gate”).
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As happens in the case of the negation-gate, the XOR-gate can be naturally gen-
eralized to higher-dimensional spaces. In any space H (m+n) such that m > 1 or
n > 1, the operator XOR(m,n) is defined for every element |x1, . . . , xm, y1, . . . , yn〉
of the canonical basis as follows:

XOR(m,n)|x1, . . . , xm, y1, . . . , yn〉 :=

(I(m+n−2) ⊗ XOR(1,1))Swap(m+n)
m,m+n−1 |x1, . . . , xm, y1, . . . , yn〉.

Notice that XOR(m,n) permutes the two bits xm and yn−1 of the input-register.
Consequently, xm and yn turn out to be adjacent before the application of theXOR(1,1)-
gate. In the next Section we will see how the permutations determined by the Swap-
gates are useful in the circuit-representation of gates. Defining all gates XOR(m,n) in
termsofXOR(1,1) turns out to benatural and economical for physical implementations,
where one and the same apparatus implementing XOR(1,1) can be used for any choice
of a pair (m, n).5

As an example consider the gate XOR(2,2) (defined on the space H (4)) and take
the following input:

|x1, x2, y1, y2〉 = |1, 1, 0, 0〉.

We have:

XOR(2,2)|1, 1, 0, 0〉 = (I(2) ⊗ XOR(1,1))Swap(4)
2,3 |1, 1, 0, 0〉 =

(I(2) ⊗ XOR(1,1)) |1, 0, 1, 0〉 = |1, 0, 1, 1〉.

Of course, two different choices of a pair (m, n) such that m + n = t determine
two different XOR-gates, both defined on the spaceH (t).

Definition 2.8 (The Toffoli-gate on the space H (3)) The Toffoli-gate on H (3) is
the linear operator T(1,1,1) that satisfies the following condition for every element
|x, y, z〉 of the canonical basis:

5It is worth-while recalling a standard definition (that can be found in the literature) of a generalized
controlled negation in any space H (t) (with t > 2). Let i, j be two different indexes such that
1 ≤ i, j ≤ t and suppose that xi represents the control-bit, while x j is the target-bit. The gate
C − NOT(t,i, j) is defined for any register of H (t) as follows:

C − NOT(t,i, j)|x1, . . . , xt 〉 := |x1, . . . , x j−1, xi +̂x j , x j+1, . . . , xt 〉.
Consider now the gate XOR(m,n), with m + n = t . We obtain:
C − NOT(t,m,m+n)|x1, . . . , xm , y1, . . . , yn〉 = Swap(t)

(m,m+n−1)XOR
(m,n)|x1, . . ., xm , y1, . . ., yn〉 =

|x1, . . . , xm , y1, . . . , yn−1, xm+̂yn〉. Notice that, for the sake of simplicity, in our definition
of XOR(m,n) we have avoided to apply twice the Swap-gate (in order to obtain the output
|x1, . . . , xm , y1, . . . , yn−1, xm+̂yn〉). As we will see in the next Chapters, the order of the
control-bits in a XOR-output will not play any significant role in the logical applications.
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T(1,1,1)|x, y, z〉 := |x, y, ((x · y) +̂ z)〉.

One can prove that T(1,1,1) is a unitary operator.
We obtain:

T(1,1,1)|x, y, 0〉 = |x, y, x 
 y〉; T(1,1,1)|x, y, 1〉 = |x, y, (x 
 y)′〉

(where
 and ′ are the infimum and the complement of the two-valuedBoolean algebra
based on the set {0, 1}).

The gate T(1,1,1) is also called controlled controlled negation (“CC − NOT gate”).
Given an input |x, y, z〉, the first two bits |x〉 and |y〉 are dealt with as the control-bits,
while the third bit |z〉 represents the target. We have:

• T(1,1,1)|x, y, z〉 = |x, y〉 ⊗ NOT(1)|z〉, if x = y = 1;
• T(1,1,1)|x, y, z〉 = |x, y, z〉, if x �= 1 or y �= 1.

Thus, the target-bit |z〉 is transformed into its negation NOT(1)|z〉, when both the
control-bits |x〉 and |y〉 are the bit |1〉.

The following Theorem determines a useful canonical representation for the gate
T(1,1,1).

Theorem 2.1

T(1,1,1) = [(I(2) − (P (1)
1 ⊗ P (1)

1 )) ⊗ I(1)] + [P (1)
1 ⊗ P (1)

1 ⊗ NOT(1)].

Proof Consider a register |x, y, z〉 of H (3).

1. Let x = y = 1. Then,

[(I(2) − (P (1)
1 ⊗ P (1)

1 )) ⊗ I(1)]|x, y, z〉 = 0 (where 0 is the null vector).

Hence,

{

[(I(2) − (P (1)
1 ⊗ P (1)

1 )) ⊗ I(1)] + [P (1)
1 ⊗ P (1)

1 ⊗ NOT(1)]
}

|x, y, z〉 =

[P (1)
1 ⊗ P (1)

1 ⊗ NOT(1)]|x, y, z〉 = |x, y〉 ⊗ NOT(1)|z〉 = T(1,1,1)|x, y, z〉.

2. Let x �= 1 or y �= 1. Then,

[P (1)
1 ⊗ P (1)

1 ⊗ NOT(1)]|x, y, z〉 = 0.
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Hence,

{

[(I(2) − (P (1)
1 ⊗ P (1)

1 )) ⊗ I(1)] + [P (1)
1 ⊗ P (1)

1 ⊗ NOT(1)]
}

|x, y, z〉 =

[(I(2) − (P (1)
1 ⊗ P (1)

1 )) ⊗ I(1)]|x, y, z〉 = |x, y, z〉 = T(1,1,1)|x, y, z〉.

�

As happens in the case of the negation-gate and the XOR-gate, the Toffoli-gate can
be generalized to higher-dimensional spaces. In any spaceH (m+n+1) such thatm > 1
or n > 1, the operatorT(m,n,1) is defined for every element |x1, . . . , xm, y1, . . . , yn, z〉
of the canonical basis of as follows:

T(m,n,1)|x1, . . . , xm, y1, . . . , yn, z〉 :=

(I(m+n−2) ⊗ T(1,1,1))Swap(m+n+1)
m,m+n−1 |x1, . . . , xm, y1, . . . , yn, z〉.

Notice T(m,n,1) permutes the two bits xm and yn−1 (as happens in the definition of
XOR(m,n)).6

As an example consider the case where m = n = 2 and take the following input
(in the space H (5)):

|x1, x2, y1, y2, z〉 = |1, 1, 0, 1, 0〉.

We have:

T(2,2,1)|1, 1, 0, 1, 0〉 = (I(2) ⊗ T(1,1,1))Swap(5)
2,3 |1, 1, 0, 1, 0〉 =

(I(2) ⊗ T(1,1,1)) |1, 0, 1, 1, 0〉 = |1, 0, 1, 1, 1〉.

6Like in the case of the XOR-gate it may be useful to recall a standard definition of a generalized
controlled controlled negation in any spaceH (t) (with t > 3). Let i, j, k be three different indexes
such that 1 ≤ i, j, k ≤ t and suppose that xi and x j represent the control-bits, while xk is the
target-bit. The gate CC − NOT(t,i, j,k) is defined for any register of H (t) as follows:

CC − NOT(t,i, j,k)|x1, . . . , xt 〉 := |x1, . . . , xk−1, (xi · x j +̂xk), xk+1, . . . , xt 〉.
Consider now the gate T(m,n,1), with m + n + 1 = t . We obtain:
CC − NOT(t,m,m+n,m+n+1)|x1, . . . , xm , y1, . . . , yn, z〉 =
Swap(t)

(m,m+n−1)T
(m,n,1)|x1, . . . , xm , y1, . . . , yn, z〉 = |x1, . . . , xm , y1, . . . , yn, (xm · yn+̂z)〉.

Notice that (like in the case of XOR(m,n)) in our definition of T(m,n,1) we have avoided to apply
twice the Swap-gate. The possibility of defining XOR(m,n) in terms of C − NOT(t,i, j) and T(m,n,1) in
terms of CC − NOT(t,i, j,k) shows that an explicit reference to the swap-gate, although convenient,
is not strictly necessary.
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Of course, two different choices of a pair (m, n) such that m + n = t determine
two different Toffoli-gates, both defined on the spaceH (t).

The Toffoli-gate represents a very “powerful” gate that allows us to define
reversible versions of all Boolean functions.7 As is well known, in classical seman-
tics the logical negation is interpreted as a reversible truth-function. At the same
time, the operations that correspond to the basic binary connectives (conjunction,
disjunction,material implication, etc.) are usually defined as irreversible operations,
by means of appropriate truth-tables that refer to the two-valued Boolean algebra
({0, 1} , 
, �, ′, 0, 1). There is, however, an easy “trick” that allows us to transform
any irreversible operation into a reversible one. To this aim it is sufficient to “pre-
serve the memory” of the arguments that belong to the operation-inputs. Consider,
for instance, a binary Boolean function f (say, the infimum 
):

f : {0, 1}2 → {0, 1} .

A reversible version of f can be defined as a map

f R : {0, 1}3 → {0, 1}3

such that for every input (x, y) of f :

f R(x, y, a) = (x, y, f (x, y)+̂ a),

where a is a particular element of the domain of f , which plays the conventional
role of an ancilla. In particular, if a = 0 we obtain:

f (x, y) = Π3( f
R(x, y, 0)) = Π3(x, y, f (x, y))

(where Π3 is the projection on the third component).
Such a “trick” is systematically used in quantum computation in order to represent

as reversible operators some operations that are usually dealt with as irreversible
either in classical semantics or in classical computation. Interesting examples are
the definitions of a reversible conjunction and of a reversible negative conjunction
in terms of the Toffoli-gate. For any choice of two natural numbers m, n (such that
m, n ≥ 1) the reversible conjunction AND(m,n) (the reversible negative conjunction
NAND(m,n)) is dealt with as a holistic monadic operator that acts on global pieces of
quantum information, represented by quregisters of the spaceH (m+n). Accordingly,
any quregister of H (m+n) can be regarded as a holistic description of two possible
members of the conjunctionAND(m,n) (of the negative conjunctionNAND(m,n)), which
live in the space H (m) and H (n), respectively.

Definition 2.9 (The conjunction on the space H (m+n)) For any quregister |ψ〉 of
H (m+n),

7See [13].
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AND(m,n)|ψ〉 := T(m,n,1)(|ψ〉 ⊗ |0〉)

(where the bit |0〉 plays the role of an ancilla).

Definition 2.10 (The negative conjunction on the spaceH (m+n)) For any quregister
|ψ〉 of H (m+n),

NAND(m,n)|ψ〉 := T(m,n,1)(|ψ〉 ⊗ |1〉)

(where the bit |1〉 plays the role of an ancilla).

Notice that T(m,n,1)(|ψ〉 ⊗ |0〉) and T(m,n,1)(|ψ〉 ⊗ |1〉) are two quregisters of the
space H (m+n+1), while |ψ〉 is a quregister of H (m+n). Accordingly, AND(m,n)|ψ〉
and NAND(m,n)|ψ〉 can be dealt with as two abbreviations for T(m,n,1)(|ψ〉 ⊗ |0〉) and
for T(m,n,1)(|ψ〉 ⊗ |1〉), respectively.

In the case of mixed input-states ρ ∈ D(H (m+n)) we will write:

• DAND(m,n)(ρ) for DT(m,n,1)(ρ ⊗ P (1)
0 );

• DNAND(m,n)(ρ) for DT(m,n,1)(ρ ⊗ P (1)
1 ),

where DT(m,n,1) is the unitary quantum operation that corresponds to the unitary
operator T(m,n,1).

As a particular case, consider a register |x, y〉 of the space H (2).
We obtain:

• AND(1,1)|x, y〉 = T(1,1,1)|x, y, 0〉 = |x, y, 1〉 iff x = y = 1;
• AND(1,1)|x, y〉 = T(1,1,1)|x, y, 0〉 = |x, y, 0〉 iff x = 0 or y = 0.

Hence, AND(1,1) represents a “good” quantum generalization of classical conjunc-
tion. At the same time, this particular form of quantum conjunction gives rise to a
characteristic holistic behavior, which is deeply rooted in the holistic features of the
quantum-theoretic formalism. Consider, for instance, the following quregister of the
space H (2) (which represents one of the possible examples of a Bell-state):

|ψ〉 = 1√
2
|0, 0〉 + 1√

2
|1, 1〉.

We have:

AND(1,1)|ψ〉 = T(1,1,1)(|ψ〉 ⊗ |0〉) = 1√
2
|0, 0, 0〉 + 1√

2
|1, 1, 1〉;

DAND(1,1)(P|ψ〉) = DT(1,1,1)(P|ψ〉 ⊗ P (1)
0 ) = P 1√

2
|0,0,0〉+ 1√

2
|1,1,1〉.

Hence, AND(1,1)|ψ〉 andDAND(1,1)(P|ψ〉) represent a pure state of the spaceH (3). At
the same time, the two reduced states of P|ψ〉 turn out to be one and the same mixture
(of the space H (1)):
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Red1(P|ψ〉) = Red2(P|ψ〉) = 1

2
I(1).

We have:

DAND(1,1)(Red1(P|ψ〉) ⊗ Red2(P|ψ〉))= DT(1,1,1)(Red1(P|ψ〉) ⊗ Red2(P|ψ〉) ⊗ P(1)
0 ),

which is a proper mixture. Hence,

DAND(1,1)(P|ψ〉) �= DAND(1,1)(Red1(P|ψ〉) ⊗ Red2(P|ψ〉)).

The conjunction over a global piece of information (consisting of two parts) does not
generally coincidewith the conjunction of the two separate parts. In the next Chapters
we will see how the holistic features of the quantum conjunction AND(m,n) allow us
to formally describe some semantic situations that are strongly anti-classical.

The gatesNOT(n),XOR(m,n),T(m,n,1) have been called “semiclassical” because they
are unable to “create” superpositions. Whenever the information-input is a register,
the information-output will be a register. Quantum computation, however, cannot
help referring also to “genuine quantum gates” that can transform classical inputs
(represented by registers) into genuine superpositions. And it is needless to stress
how superpositions play an essential role in quantum computation, being responsible
for the characteristic parallel structures that determine the speed and the efficiency
of quantum computers.

We will now give the definitions of two important genuine quantum gates: the
Hadamard-gate (also called square root of identity) and the square root of negation.

Definition 2.11 (The Hadamard-gate on the space H (1)) The Hadamard-gate on

H (1) is the linear operator
√
I

(1)
that satisfies the following condition for every

element |x〉 of the canonical basis:
√
I

(1)|x〉 := 1√
2
((−1)x |x〉 + |1 − x〉).

One can prove that
√
I

(1)
is a unitary operator. We have:

√
I

(1)|0〉 = 1√
2
(|0〉 + |1〉); √

I
(1)|1〉 = 1√

2
(|0〉 − |1〉).

Accordingly,
√
I

(1)
transforms both bits into two different genuine superpositions

that might be either true or false with probability 1
2 .

The basic property of the Hadamard-gate is the property that has suggested its
name (“square root of identity”):

√
I

(1)√
I

(1)|ψ〉 = |ψ〉, for any qubit |ψ〉.
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In other words, applying twice the Hadamard-gate gives the identity.

Definition 2.12 (The square root of negation on the spaceH (1)) The square root of

negation onH (1) is the linear operator
√
NOT

(1)
that satisfies the following condition

for every element |x〉 of the canonical basis:
√
NOT

(1)|x〉 := 1

2
((1 + ı)|x〉 + (1 − ı)|1 − x〉)

(where ı is the imaginary unit).

One can prove that
√
NOT

(1)
is a unitary operator, which transforms both bits into two

different genuine superpositions that might be either true or false with probability 1
2 .

The basic property of the square root of negation is the property that has suggested
its name: √

NOT
(1)√

NOT
(1)|ψ〉 = NOT(1)|ψ〉, for any qubit |ψ〉.

In other words, applying twice the square root of negation means negating.

As expected, both
√
I

(1)
and

√
NOT

(1)
can be generalized to higher-dimensional

spaces. In any spaceH (n) (with n > 1), the operators
√
I

(n)
and

√
NOT

(n)
are defined

for every element |x1, . . . , xn〉 of the canonical basis as follows:
• √

I
(n)|x1, . . . , xn〉 := (I(n−1) ⊗ √

I
(1)

)|x1, . . . , xn〉;

• √
NOT

(n)|x1, . . . , xn〉 := (I(n−1) ⊗ √
NOT

(1)
)|x1, . . . , xn〉.

The two following Theorems sum up some important basic properties and some
important probabilistic properties of the gates defined above.

Theorem 2.2 (1) NOT(n)NOT(n) = I(n)

(2)
√
I

(n)√
I

(n) = I(n)

(3)
√
NOT

(n)√
NOT

(n) = NOT(n)

(4) T(m,n,1) = [(I(m+n) − (P (m+n−1)
1 ⊗ P (1)

1 )) ⊗ I(1) +
P (m+n−1)
1 ⊗ P (1)

1 ⊗ NOT(1)][Swap(m+n−1)
m,m+n−1 ⊗ I(2)].

Proof (1)–(3) By definition of the gates NOT(n),
√
NOT

(n)
,
√
I

(n)
it is sufficient to

consider the case of n = 1. And by easy calculations one can show that for any bit
|x〉:

NOT(1)NOT(1)|x〉 = |x〉; √
I

(1)√
I

(1)|x〉 = |x〉; √
NOT

(1)√
NOT

(1)|x〉 = NOT(1)|x〉.

(4) Proof similar to the proof of Theorem 2.1. �

Theorem 2.3 (1) p1(
DAND(m,n)(ρ)) = tr[(P (m)

1 ⊗ P (n)
1 ) ρ], for any ρ ∈

D(H (m+n)).
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(2) p1(
DAND(m,n)(ρ)) ≤ p1(Red

(1)
[m,n](ρ));p1(

DAND(m,n)(ρ)) ≤ p1(Red
(2)
[m,n](ρ)),

for any ρ ∈ D(H (m+n)).
(3) p1(

DNOT(n)(ρ)) = 1 − p1(ρ), for any ρ ∈ D(H (n)).
(4) p1(

DAND(m,n)(ρ ⊗ σ)) = p1(ρ) · p1(σ ),
for any ρ ∈ D(H (m)) and any σ ∈ D(H (n)).

(5) DAND(m,n)(ρ ⊗ σ) ∼= DAND(n,m)(σ ⊗ ρ),
for any ρ ∈ D(H (m)) and any σ ∈ D(H (n)).8

(6) DAND(m,n+p+1)(ρ ⊗ DAND(n,p)(σ ⊗ τ)) ∼=
DAND(m+n+1,p)(DAND(m,n)(ρ ⊗ σ) ⊗ τ)),
for any ρ ∈ D(H (m)), any σ ∈ D(H (n)) and any τ ∈ D(H (p)).

(7) DNOT(n) D
√
NOT

(n)
ρ ∼= D

√
NOT

(n) DNOT(n) ρ, for any ρ ∈ D(H (n)).

(8) D
√
I

(n) D
√
NOT

(n)
ρ ∼= D

√
I

(n)
ρ;

D
√
NOT

(n) D
√
I

(n)
ρ ∼= DNOT(n) D

√
NOT

(n)
ρ, for any ρ ∈ D(H (n)).

(9) D
√
I

(1)
P (1)
0

∼= D
√
I

(1)
P (1)
1 .

(10) D
√
NOT

(1)
P (1)
0

∼= D
√
NOT

(1)
P (1)
1 .

(11) DNOT(1) D
√
I

(1)
P (1)
0

∼= D
√
I

(1)
P (1)
0 ;

DNOT(1) D
√
I

(1)
P (1)
1

∼= D
√
I

(1)
P (1)
1 .

(12) DNOT(1) D
√
NOT

(1)
P (1)
0

∼= D
√
NOT

(1)
P (1)
0 ;

DNOT(1) D
√
NOT

(1)
P (1)
1

∼= D
√
NOT

(1)
P (1)
1 .

(13) D
√
I

(m+n+1) DAND(m,n)(ρ) ∼= D
√
I

(1)
P (1)
0 ;

D
√
NOT

(m+n+1) DAND(m,n)(ρ) ∼= D
√
NOT

(1)
P (1)
0 ,

for any ρ ∈ D(H (m+n)).

(14) D
√
I

(m+n+1) D
√
NOT

(m+n+1) DAND(m,n)(ρ) ∼= D
√
NOT

(1)
P (1)
0 ;

D
√
NOT

(m+n+1) D
√
I

(m+n+1) DAND(m,n)(ρ) ∼= D
√
NOT

(1)
P (1)
0 ,

for any ρ ∈ D(H (m+n)).

Proof (1) By definition of AND(m,n) and by Theorem 2.2(4) we have:

DAND(m,n)(ρ) = T(m,n,1)(ρ ⊗ P (1)
0 )T(m,n,1)

= [(I(m+n) − P (m+n−1)
1 ⊗ P (1)

1 ) ⊗ I(1)](Swap(m+n−1)
m,m+n−1 ⊗ I(2))(ρ ⊗ P (1)

0 )

(Swap(m+n−1)
m,m+n−1 ⊗ I(2))[(I(m+n) − P (m+n−1)

1 ⊗ P (1)
1 ) ⊗ I(1)]

+ [P (m+n−1)
1 ⊗ P (1)

1 ⊗ NOT(1)](Swap(m+n−1)
m,m+n−1 ⊗ I(2))(ρ ⊗ P (1)

0 )

(Swap(m+n−1)
m,m+n−1 ⊗ I(2))[P (m+n−1)

1 ⊗ P (1)
1 ⊗ NOT(1)].

One can easily see that

P (m+n+1)
1 (I(m+n) − P (m+n−1)

1 ⊗ P (1)
1 ) ⊗ I(1)(Swap(m+n−1)

m,m+n−1 ⊗ I(2))(ρ ⊗ P (1)
0 )

(Swap(m+n−1)
m,m+n−1 ⊗ I(2))(I(m+n) − P (m+n−1)

1 ⊗ P (1)
1 ) ⊗ I(1)

8∼= is the probabilistic equivalence relation (Definition 2.4).
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is the null projection operator. Consequently:

p1(
DAND(m,n)(ρ)) = tr(P (m+n+1)

1 (P (m+n−1)
1 ⊗ P (1)

1 ⊗ NOT(1))

(Swap(m+n−1)
m,m+n−1 ⊗ I(2))(ρ ⊗ P (1)

0 )

(Swap(m+n−1)
m,m+n−1 ⊗ I(2))(P (m+n−1)

1 ⊗ P (1)
1 ⊗ NOT(1)))

= tr(P (m+n+1)
1 ((P (m)

1 ⊗ P (n)
1 )ρ(P (m)

1 ⊗ P (n)
1 )) ⊗ NOT(1)P (1)

0 NOT(1)))

= tr((P (m)
1 ⊗ P (n)

1 )ρ)tr(P (1)
1 P (1)

1 )

= tr((P (m)
1 ⊗ P (n)

1 )ρ).

(2) Let ρ ∈ D(H (m+n)). By (1), p1(
DAND(m,n)(ρ)) = tr((P (m)

1 ⊗ P (n)
1 )ρ).

Since (P (m)
1 ⊗ P (n)

1 )(P (m)
1 ⊗ I(n)) = (P (m)

1 P (m)
1 ⊗ P (n)

1 I(n))=P (m)
1 ⊗P (n)

1 , we have:
P (m)
1 ⊗ P (n)

1 � P (m)
1 ⊗ I(n). Hence (by definition of reduced state):

tr((P (m)
1 ⊗ P (n)

1 )ρ) ≤ tr((P (m)
1 ⊗ I(n))ρ) = tr(P (m)

1 Red(1)
[m,n](ρ)).

Consequently: p1(
DAND(m,n)(ρ)) ≤ p1(Red

(1)
[m,n](ρ)).

In a similar way, one can prove: p1(
DAND(m,n)(ρ)) ≤ p1(Red

(2)
[m,n](ρ)).

(3) By definition of NOT(n), we have for any ρ ∈ D(H (n)):
p1(

DNOT(n)(ρ)) = tr(P (n)
1 NOT(n) ρ NOT(n)) = tr(NOT(n) P (n)

1 NOT(n) ρ) = tr(P (n)
0

ρ) = tr((I(n) − P (n)
1 ) ρ) = tr(ρ) − tr(P (n)

1 ρ) = 1 − p1(ρ).
(4) By (1), p1(

DAND(m,n)(ρ ⊗ σ)) = tr((P (m)
1 ⊗ P (n)

1 )(ρ ⊗ σ)),
for any ρ ∈ D(H (m)) and any σ ∈ D(H (n)). We have:
tr((P (m)

1 ⊗ P (n)
1 )(ρ ⊗ σ)) = tr(P (m)

1 ρ) · tr(P (n)
1 σ).

Hence, p1(
DAND(m,n)(ρ ⊗ σ)) = p1(ρ) · p1(σ ).

(5) By (4), p1(
DAND(m,n)(ρ ⊗ σ)) = p1(ρ) · p1(σ ) = p1(

DAND(n,m)(σ ⊗ ρ)),
for any ρ ∈ D(H (m)) and any σ ∈ D(H (n)). Hence,
DAND(m,n)(ρ ⊗ σ) ∼= DAND(n,m)(σ ⊗ ρ).

(6) Similar to (5).
(7) By Theorem 2.2(3).
(8)–(14) can be proved by similar arguments. �
Is it possible to define all possible gates of a space H (n) by means of a finite

set of gates? The answer to this question is clearly negative by trivial cardinality-
reasons: while the set of all gates of H (n) is non-denumerable, the set of all finite
combinations of elements of any finite set of gates is denumerable.

Interestingly enough, one can prove that there exists a finite (and “small”) system
of gates that satisfies the following property: for any spaceH (n), any gate G(n) can be
approximatedwith arbitrary precision by a convenient finite combination of elements
of the system. This result can be obtained by using an important theorem proved by
Shi and Aharonov.9 Consider the following gate-system:

G∗ = (I(1), NOT(1), T(1,1,1),
√
I

(1)
).

9See [1, 12].
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For any space H (n), consider the infinite (denumerable) family FG∗(n) of derived
gates G(n) that can be defined as appropriate (finite) combinations of elements ofG∗,
by using gate-tensor products and gate-compositions.

Theorem 2.4 For any gate G(n) of H (n) and for any choice of a non-negative real
number ε there exists a finite sequence of gates (G(n)

1 , . . . ,G(n)
u ) such that:

(1) G(n)
1 , . . . ,G(n)

u ∈ FG∗(n);
(2) for any vector |ψ〉 of H (n), ‖G(n)|ψ〉 − G(n)

1 . . .G(n)
u |ψ〉‖ ≤ ε.

Thus, the familyFG∗(n) has the capacity of approximating with arbitrary accuracy
all possible gates of H (n). In this sense, the system G∗ can be described as an
approximately universal gate-system.10

One could notice that G∗ is, in a sense, redundant. For, the negation-gate
can be defined in terms of the Toffoli-gate, which represents a controlled con-
trolled negation. Accordingly, NOT |x〉 might be dealt with as an abbreviation for
T(1,1,1)|1, 1, x〉. However, T(1,1,1)|1, 1, x〉 only exists in the spaceH (3)), while using
an “autonomous” negation, defined on the smaller spaceH (1), turns out to be more
convenient both for computational and for logical applications.

2.3 Quantum Logical Circuits

Quantum computations are performed by appropriate combinations of gates that give
rise to some special configurations called quantum logical circuits (briefly, quantum
circuits). Roughly, a quantum circuit C can be described as a network consisting of
wires that carry pieces of quantum information to gates whose actions transform the
pieces of information in question. Wires are usually represented as horizontal lines,
while gates are represented asboxes crossed by someof thewires.One conventionally
assumes that pieces of quantum information flow from the left to the right (in a given
circuit). Any quantum circuit C refers to a Hilbert space H (n), where all possible
inputs and outputs forC are supposed to live. Let us first consider the case of circuits
where gates are unitary operators of a space H (n), while all possible inputs and
outputs are quregisters of the space. Of course each gate G(n) of a circuit C may be
the tensor product of other gates:

G(n) = G(m1)
1 ⊗ · · · ⊗ G(mr )

r (where m1 + · · · + mr = n).

Asanexample,wewill consider three characteristic instances of circuits. Figure2.1
describes a three-wire circuit, where any possible input (living in the spaceH (3)) is
submitted to the action of the gate NOT(3) = I(2) ⊗ NOT(1).11

10See [4].
11For the sake of simplicity one often avoids to represent identity-gates as particular boxes.
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Fig. 2.1 A quantum circuit
for the gate NOT(3)

Fig. 2.2 A quantum circuit
for the gate XOR(2,2)

Fig. 2.3 A circuit for the
gate-sequence
(I(1) ⊗ NOT(1) ⊗
I(1), T(1,1,1), I(1) ⊗
I(1) ⊗ √

I
(1)

)

Figure2.2 illustrates a four-wire circuit where any possible input (living in the
spaceH (4)) is submitted to the actionof thegateXOR(4) = (I(2) ⊗ XOR(1,1))Swap(4)

2,3.
This circuit allows us to “visualize” the role played by the Swap-gate.

Figure2.3 illustrates a three-wire circuit where any possible input (living in the
space H (3)) is submitted to the actions of the three following gates:

I(1) ⊗ NOT(1) ⊗ I(1), T(1,1,1), I(1) ⊗ I(1) ⊗ √
I

(1)
.

In the case of our third example (Fig. 2.3) it is natural to assume that each gate of the

gate-sequence (I(1) ⊗ NOT(1) ⊗ I(1), T(1,1,1), I(1) ⊗ I(1) ⊗ √
I

(1)
) corresponds to

a particular computational step of the circuit (also called layer of the circuit).
This kind of representation can be easily generalized to more complex examples

of circuits, characterized by n wires and by m computational steps (where each
particular step may involve more than one gate). Accordingly, the computational
complexity of a given circuit turns out to depend on the following parameters:
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1. the wire-number n (determined by the Hilbert spaceH (n) which the circuit refers
to). This number is also called the width of the circuit.

2. The number g of gates. This number is also called the size of the circuit.
3. The number m of the computational steps. This number is also called the depth

of the circuit.

It us useful to recall that in the literature the gates NOT(1), XOR(1,1), T(1,1,1) are
often represented in the following way:

This stresses the fact that XOR is a controlled negation, while Toffoli is a controlled
controlled negation. Accordingly, the intended reading of our three figures is the
following: ⊕ represents the negation-gate; a full circle represents a control-unit,
while the operator ⊕ is intended to be be applied only in the case where all control-
units are set to |1〉.

As expected, any quantum circuit

C = (G(n)
1 , . . . ,G(n)

t )

(where each G(n)
i is a unitary operator of the space H (n)) can be canonically trans-

formed into a corresponding circuit

DC = (DG(n)
1 , . . . , DG(n)

t ),

where each DG(n)
i is the unitary operation corresponding to the unitary operator G(n)

i .
In the next Chapters we will see how the main features of quantum circuits can

be faithfully reflected in the linguistic expressions of quantum computational logics.

2.4 Physical Implementations by Optical Devices

Physical implementations of quantum logical gates represent the basic issue for the
technological realization of quantum computers. Among the different choices that
have been investigated in the literature we will consider here the case of optical
devices, where photon-beams (possibly consisting of single photons) move in differ-
ent directions. Let us conventionally assume that |0〉 represents the state of a beam
moving along the x-direction, while |1〉 is the state of a beam moving along the
y-direction.

In the framework of this “physical semantics”, one-qubit gates (likeNOT(1),
√
I

(1)
,√

NOT
(1)
) can be easily implemented. A natural implementation of NOT(1) can be

obtained by a mirror M that reflects in the y-direction any beam moving along the
x-direction, and vice versa. Hence we have:
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|0〉 �M |1〉; |1〉 �M |0〉

(the mirror transforms the state |0〉 into the state |1〉, and vice versa).
An implementation of the Hadamard-gate

√
I

(1)
can be obtained by a symmetric

50 : 50 beam splitter BS. We have:

|0〉 �BS
1√
2
(|0〉 + |1〉); |1〉 �BS

1√
2
(|0〉 − |1〉).

Accordingly, any beam that goes through BS is split into two components: one
component moves along the x-direction, while the other component moves along
the y-direction. And the probability of both paths (along the x-direction or along the
y-direction) is 1

2 . Also the gate
√
NOT

(1)
can be implemented in a similar way.

Other apparatuses that may be useful for optical implementations of gates are the
relative phase shifters along a given direction. A particular example is described by
the following unitary operator.

Definition 2.13 (The relative phase shifter along the y-direction) The relative
phase shifter along the y-direction is the linear operator UPS that is defined for
every element |v〉 of the canonical basis of C2 as follows: UPS|v〉 = c|v〉, where
c =

{

eiπ , if v = 1;
1, otherwise.

We obtain:
UPS|0〉 = |0〉; UPS|1〉 = −|1〉.

Let us indicate by PS a physical apparatus that realizes the phase shift described by
UPS.

Relative phase shifters, beam splitters and mirrors are the basic physical com-
ponents of the Mach-Zehnder interferometer (MZI), an apparatus that has played a
very important role in the logical and philosophical debates about the foundations of
quantum theory. The physical situation can be sketched as follows (Fig. 2.4).

Consider a photon-beam that may move either along the x-direction or along
the y-direction. Photons moving along the y-direction go through the relative phase
shifter PS of MZI. We have:

|0〉 �PS |0〉; |1〉 �PS −|1〉

(the phase of the beam changes only in the case where the beam is moving along
the y-direction). Soon after the beam goes through the first beam splitter BS1. As
a consequence, it is split into two components: one component moves along the
interferometer’s arm in the x-direction, the other component moves along the arm in
the y-direction. We have:

|0〉 �BS1
1√
2
(|0〉 + |1〉); −|1〉 �BS1

1√
2
(−|0〉 + |1〉).
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Fig. 2.4 The Mach-Zehnder
interferometer

Then, both components of the superposed beam (on both arms) are reflected by the
mirrorsM. We have:

1√
2
(|0〉 + |1〉) �M

1√
2
(|0〉 + |1〉); 1√

2
(−|0〉 + |1〉) �M

1√
2
(|0〉 − |1〉).

Finally, the superposed beam goes through the second beam splitter BS2, which
re-composes the two components. We have:

1√
2
(|0〉 + |1〉) �BS2 |0〉; 1√

2
(|0〉 − |1〉) �BS2 |1〉.

Accordingly,MZI transforms the input |0〉 into the output |0〉, while the input |1〉 is
transformed into the output |1〉.

One is dealing with a result that has for a long time been described as deeply
counter-intuitive. In fact, according to a “classical way of thinking” we would expect
that the outcoming photons from the second beam splitter should be detected with
probability 1

2 either along the x-direction or along the y-direction.
The Mach-Zehnder interferometer gives rise to a physical implementation of the

following quantum logical circuit (called “the Mach-Zehnder circuit”):

√
I

(1)
NOT(1)

√
I

(1)
.

We have:

√
I

(1)
NOT(1)

√
I

(1)|0〉 = |0〉; √
I

(1)
NOT(1)

√
I

(1) − |1〉 = |1〉.
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While optical implementations of one-qubit gates are relatively simple, trying to
implement many-qubit gates may be rather complicated. Consider the case of the
Toffoli-gate T(1,1,1). For any element |v1, v2, v3〉 of the canonical basis of the space
H (3) we have:

T(1,1,1)|v1, v2, v3〉 =
{

|v1, v2, v1 
 v2〉, if v3 = 0;
|v1, v2, (v1 
 v2)′〉, if v3 = 1.

The main problem is finding a device that can realize a physical dependence of
the target-bit (v1 
 v2 or (v1 
 v2)′) from the control-bits (v1, v2). A possible strategy
is based on an appropriate use of the optical “Kerr-effect”: a substance with an
intensity-dependent refractive index is placed into a given device, giving rise to an
intensity-dependent phase shift.

Let us first give the mathematical definition of a unitary operator that describes a
particular form of conditional phase shift.

Definition 2.14 (The relative conditional phase shifter) The relative conditional
phase shifter of the spaceH (3) is the unitary operator UCPS that is defined for every
element of the canonical basis as follows:

UCPS|v1, v2, v3〉 = |v1, v2〉 ⊗ c|v3〉,

where c =
{

eiπ , if v1 = 1, v2 = 1 and v3 = 0;
1, otherwise.

.

Let us indicate byCPS a physical apparatus that realizes the phase shift described
by the operator UCPS. Clearly, CPS determines a conditional phase shift. For, the
phase of a three-beam system in state |v1, v2, v3〉 is changed only in the case where
both control-bits (|v1〉, |v2〉) are the state |1〉, while the target-bit |v3〉 is the state |0〉.
From a physical point of view, such a result can be obtained by using a convenient
substance that produces the Kerr-effect.

In order to obtain an implementation of the Toffoli-gate T(1,1,1,) we will now
consider a “more sophisticated” version of theMach-Zehnder interferometer thatwill
be called “Kerr-Mach-Zehnder interferometer” (indicated by KMZI). Besides the
relative phase shifter (PS), the two beam splitters (BS1,BS2) and themirrors (M), the
Kerr-Mach-Zehnder interferometer also contains a relative conditional phase shifter
(CPS) that can produce the Kerr-effect (Fig. 2.5).

While the inputs of the canonical Mach-Zehnder interferometer are single beams
(whose states live in the spaceH (1)), the apparatusKMZI acts on composite systems
consisting of three beams (S1,S2,S3), whose states live in the space H (3). For the
sake of simplicity we can assume that S1,S2,S3 are single photons that may enter
into the interferometer-box either along the x-direction or along the y-direction. Let
|v1, v2, v3〉 be the input-state of the composite system S1 + S2 + S3. Photons S1,S2
(whose states |v1〉, |v2〉 represent the control-bits) are supposed to enter into the box
along the yz-plane, while photon S3 (whose state |v3〉 is the target-bit) will enter
through the first beam-splitter BS1.
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Fig. 2.5 The
Kerr-Mach-Zehnder
interferometer

Mathematically, the action performed by the apparatusKMZI is described by the
following unitary operator (of the space H (3)):

UKMZ = (I(1) ⊗ I(1) ⊗ √
I

(1)
) ◦ (I(1) ⊗ I(1) ⊗ NOT(1)) ◦ UCPS ◦ (I(1) ⊗ I(1)

⊗ √
I

(1)
) ◦ (I(1) ⊗ I(1) ⊗ UPS).

In order to “see” how KMZI is working from a physical point of view, it is
expedient to consider a particular example. Take the input |v1, v2, v3〉 = |1, 1, 0〉 and
let us describe the physical evolution determined by the operator UKMZ for the system
S1 + S2 + S3, whose initial state is |1, 1, 0〉. We have:

• (I(1) ⊗ I(1) ⊗ UPS)|1, 1, 0〉 = |1, 1, 0〉. The relative phase shifter along the y-
direction (PS) does not change the state of photon S3, which is moving along
the x-direction.

• (I(1) ⊗ I(1) ⊗ √
I

(1)
)|1, 1, 0〉 = |1, 1〉 ⊗ 1√

2
(|0〉 + |1〉). Photon S3 goes through

the first beam splitter BS1 splitting into two components: one component moves
along the interferometer’s arm along the x-direction, the other component moves
along the arm in the y-direction (like in the case of the canonical Mach-Zehnder
interferometer). At the same time, photons S1 and S2 (both in state |1〉) enter into
the interferometer-box along the yz-plane.

• UCPS(|1, 1〉 ⊗ 1√
2
(|0〉 + |1〉)) = |1, 1〉 ⊗ 1√

2
(−|0〉 + |1〉). The conditional phase

shifter CPS determines a phase shift for the component of S3 that is moving
along the x-direction; because both photons S1 and S2 (in state |1〉) have gone
through the substance (contained in CPS) that produces the Kerr-effect.

• (I(1) ⊗ I(1) ⊗ NOT(1))(|1, 1〉 ⊗ 1√
2
(−|0〉 + |1〉)) = |1, 1〉 ⊗ 1√

2
(|0〉 − |1〉). Both

components of S3 (on both arms) are reflected by the mirrors.
• (I(1) ⊗ I(1) ⊗ √

I(1))(|1, 1〉 ⊗ 1√
2
(|0〉 − |1〉)) = |1, 1, 1〉. The second beam split-

ter BS2 re-composes the two components of the superposed photon S3.

Consequently, we obtain:
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UKMZ|1, 1, 0〉 = |1, 1, 1〉 = T(1,1,1)|1, 1, 0〉.

In general, one can easily prove that UKMZ and T(1,1,1) are one and the same unitary
operator.

Lemma 2.1 For every element |v1, v2, v3〉 of the canonical basis of the spaceH (3),

UKMZ|v1, v2, v3〉 = T(1,1,1)|v1, v2, v3〉.

Although, from a mathematical point of view, UKMZ and T(1,1,1) represent the
same gate, physically it is not guaranteed that the apparatus KMZI always realizes
the “expected job”. All difficulties are due to the behavior of the conditional phase
shifter. In fact, the substances used to produce the Kerr-effect normally determine
results that are only stochastic.12 As a consequence one shall conclude that the Kerr-
Mach-Zehnder interferometer allows us to obtain an approximate implementation of
the Toffoli-gate with an accuracy that may be very good in some cases.
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Chapter 3
Entanglement: Mystery and Resource

3.1 Entangled Pure States

Entanglement, one of the basic features of quantum theory, has been described as
“mysterious” and “potentially paradoxical” by some of the founding fathers of quan-
tummechanics. The term “entanglement” (in its original German version “Verschär-
fung”) has been first proposed by Schrödinger, who wrote:

Entanglement is not one but rather the characteristic trait of quantum mechanics.1

Although Einstein, Podolsky and Rosen did not use the term “entanglement” in
their celebrated article “Can quantummechanical description of reality be considered
complete?”, entangled pure states are essentially involved in the paradoxical situation
discussed in their paper.2

While the critical concept of entanglement did not play any central role in the
logico-algebraic approaches to quantum theory (developed on the lines of Birkhoff
and von Neumann’s quantum logic), a strong interest for entanglement-phenomena
emerged again in the more recent investigations about quantum information and
quantum computation. We will see how, in this framework, the “strangeness” of
entangled states (which had worried Einstein) has been transformed into a powerful
“resource” both for theoretic aims and for technological applications.

We will first consider the case of entangled pure states of bipartite systems con-
sisting of two subsystems.

Definition 3.1 Entangled pure states of a bipartite system
Let S = S1 + S2 be a bipartite system whose Hilbert space is HS = HS1 ⊗ HS2 . A
pure state |ψ〉 of S is called entangled iff |ψ〉 cannot be represented as a factorized
state

|ψ1〉 ⊗ |ψ2〉,

1See [1].
2See [2].
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where |ψ1〉 is a pure state of HS1 and |ψ2〉 is a pure state of HS2 .

One can prove that for any entangled pure state |ψ〉, both Red1(|ψ〉) and
Red2(|ψ〉) are proper mixtures. A typical example of an entangled pure state is
the following Bell-state (which lives in the space H (2) = C

2 ⊗ C
2):

|ψ〉 = 1√
2
|1, 0〉 + 1√

2
|0, 1〉.

As we have seen (in Sect. 1.3), we have:

Red1(P|ψ〉) = Red2(P|ψ〉) = 1

2
I(1).

Thus one can say that the states of the two subsystems, which are indistinguishable,
are entangled in the context |ψ〉.

The concept of entangled pure state can be naturally generalized to the case n-
partite systems. In this book, for the sake of simplicity, wewill not consider entangled
mixtures.

3.2 The Einstein-Podolsky-Rosen Paradox

Many important applications of entanglement-phenomena refer to “EPR-situations”,
where the basic concepts and arguments of the “Einstein-Podolsky-Rosen paradox”
are used for positive aims.

We will briefly illustrate a simplified version of the EPR-paradox, which arises in
the case of a composite quantum system, consisting of two subsystems where some
two-valued observables can be measured.3 A typical example is represented by a
two-electron system S = S1 + S2 and by the observable spin that can be measured in
different directions. For any choice of a direction d, the observable Spind (the spin in
the d-direction) can assume two possible values: either + 1

2 or − 1
2 . It is customary to

call “spin up” the value + 1
2 , while the value − 1

2 is called “spin down”. Accordingly,
any direction d can be associated to a particular orthonormal basis

Bd = {|d+〉, |d−〉}

of the spaceC2. The two elements of the basisBd are the two eigenvectors of the self-
adjoint operator ASpind (corresponding to the observable Spind), while the numbers
+ 1

2 and − 1
2 are the corresponding eigenvalues. As expected, we have:

3See [3].

https://doi.org/10.1007/978-3-030-04471-8_1
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• p|d+〉
(
Spind

( {+ 1
2

} )) = 1.
The event Spind

( {+ 1
2

} )
is certain for the state |d+〉.

• p|d−〉
(
Spind

( {− 1
2

} )) = 1.
The event Spind

( {− 1
2

} )
is certain for the state |d−〉.

According to the quantum-theoretic formalism, for any choice of two different
directions d and e, the two observables Spind and Spine represent two incompatible
physical quantities that cannot be simultaneously measured. As a consequence we
have:

• p|d+〉
(
Spine

( {+ 1
2

} )) �= 1, 0; p|d+〉
(
Spine

( {− 1
2

} )) �= 1, 0.
• p|d−〉

(
Spine

( {+ 1
2

} )) �= 1, 0; p|d−〉
(
Spine

( {− 1
2

} )) �= 1, 0.
• p|e+〉

(
Spind

( {+ 1
2

} )) �= 1, 0; p|e+〉
(
Spind

( {− 1
2

} )) �= 1, 0.
• p|e−〉

(
Spind

( {+ 1
2

} )) �= 1, 0; p|e−〉
(
Spind

( {− 1
2

} )) �= 1, 0.

Wewill now describe the physical situation which the EPR-paradox refers to. We are
dealing with a composite system S consisting of two electrons S1 and S2 that have
interacted before a given time t0. As a consequence of this interaction, the spin-values
of S1 and S2 (in any direction) are correlated:

the spin-value of S1 is up (down) iff the spin-value of S2 is down (up).

Suppose that at time t0 the spin-value in the x-direction (associated to the canonical
basis BC = {|0〉, |1〉}) is indeterminate for both subsystems S1 and S2. The state of
the composite system S can be represented by the following superposition:

|ψ〉S(t0) = 1√
2
|1, 0〉 + 1√

2
|0, 1〉.

Suppose the system S remains isolated during the time interval [t0, t1]. According to
Schrödinger’s equation, for any time t such that t0 ≤ t ≤ t1, we will have:

|ψ〉S(t) = |ψ〉S(t0).

During the interval [t0, t1] the two subsystems S1 and S2 (which had interacted
before time t0) may be “physically separated” in a very strong sense: no signal can be
sent from the space-time region where S1 is located to the space-time region where
S2 is located (in other words, the two regions are space-like separated).

Suppose now that during the time-interval [t1, t2] anobserverO1 (whohas physical
access to the subsystemS1) decides to performonS1 ameasurement of the observable
Spinx. Suppose the outcome of this measurement is the number + 1

2 , which is the
eigenvalue corresponding to the eigenvector |1〉 of the self-adjoint operator ASpinx .
By applying von Neumann-Lüders’ axiom to the state of the global system S, we
obtain:

1√
2
|1, 0〉 + 1√

2
|0, 1〉 �→M |1, 0〉.
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Themeasurement performedby the observerO1 has transformed a “potential” Spinx-
value into an “actual” value not only for the subsystem S1 that is “close” to O1, but
even for S2, which is “far apart”.

Such a “spooky action at distance”, which may appear prima facie strange and
counter-intuitive, is not in principle contradictory. In order to derive a formal contra-
diction, Einstein, Podolsky and Rosen make recourse to three general assumptions
that do not strictly belong to the quantum-theoretic formalism:

1. the reality-principle;
2. the physical completeness-principle;
3. the locality-principle.

The Reality-Principle

The reality-principle represents a philosophical assumption that can be naturally
connectedwith a “realistic” interpretation of physical theories.According toEinstein,
Podolsky and Rosen:

If, without in any way disturbing the system, we can predict with certainty (i.e.
with probability equal to unity) the value of a physical quantity, then there exists an
element of reality corresponding to that physical quantity.

What is the exact meaning of the somewhat obscure expression “element of real-
ity”? This question has stimulated long and deep debates in the literature about the
philosophy of quantum mechanics. According to a natural interpretation, the reality-
principle can be regarded as a proposal of a sufficient condition for a physical property
to be objective, independently of any observer’s action.

The Physical Completeness-Principle

Every element of physical reality must have a counterpart in the physical theory.

This principle suggests a connection between two different domains: the “onto-
logical”world of elements of reality and themathematical world of pure states (which
aremaximal pieces of information): any objective physical property shall be reflected
in an appropriate pure state of the theory. Notice that the concept of “physical com-
pleteness” should not be confused with the concept of “logical completeness”: one
is dealing with two conditions that are formulated in two different languages. While
“logical completeness” can be described in the language of the quantum-theoretic
formalism (for any quantum event X and any pure state |ψ〉, either p|ψ〉(X) = 1 or
p|ψ〉(X⊥) = 1), “physical completeness” is formulated in a hybrid language, which
refers to the mysterious “elements of reality”.

The Locality-Principle

Unlike the reality-principle and the physical completeness-principle (which are based
on some deeply philosophical assumptions), the locality-principle represents a “gen-
uine” physical assertion that is rooted in relativity theory:
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there cannot exist any superluminal interaction between physical systems that are
space-like separated.

Using the principles of reality, of physical completeness and of locality, one can
now formally derive the “EPR-contradiction”. By means of his (her) measurement
on the “close” system S1, the observerO1 has tested that the “far” system S2 certainly
verifies the event Spinx

( {− 1
2

} )
(the spin in the x direction is down). By the locality-

principle, O1 could not physically interact with S2 (which is space-like separated
from S1). Hence, by the reality-principle, the event Spinx

( {− 1
2

} )
corresponds to

an objective property of S2: an element of physical reality that will be here indicated
by P−

x . Since S2 has been isolated during the interval [t0, t2], P−
x must represent an

objective property of S2 already at time t0.
At this point one can apply a counterfactual argument. The choice of measuring

on S1 the spin-value in the x-direction (instead of a different direction, say y) depends
on the subjective free will of the observer O1. Hence, the following counterfactual
implication can be asserted:

Should O1 have chosen to measure on S1 the observable Spiny instead of Spinx,
either P+

y or P−
y would be an objective property of S2 at time t0

(where P+
y and P−

y correspond to the events Spiny
( {+ 1

2

} )
and Spiny

( {− 1
2

} )
,

respectively).
By definition of objectivity, the objective properties of S2 at time t0 cannot depend

on the subjective choices taken by a “far” observer at a later time. Consequently:

either [P−
x and P+

y ] or [P−
x and P−

y ] is an objective property ofS2 at time t0.

Hence, by the physical completeness-principle, quantum theory must have a “coun-
terpart” for such an objective property. Thus, there exists a pure state |ψ〉 of S2 such
that:

either

[
p|ψ〉

(
Spinx

( {
−1

2

} ))
= 1 and p|ψ〉

(
Spiny

({
+1

2

} ))
= 1

]

or

[
p|ψ〉

(
Spinx

({
−1

2

}))
= 1 and p|ψ〉

(
Spiny

( {
−1

2

} ))
= 1

]
.

This conclusion, however, contradicts the physical incompatibility of the two observ-
ables Spinx and Spiny (which is asserted by a theorem of quantum theory).

Howcanweblock the derivation of this contradiction?Theproof of a contradiction
in a scientific theory is, in a sense, similar to the discovery of a murder in the
framework of a detective story. And each solution that is proposed to avoid the
contradiction plays the role of a detective who identifies the murderer. Of course, as
happens in detective stories, scientific paradoxes also may have different solutions.
In the case of the EPR-argument the possibly “guilty” hypotheses are the three



58 3 Entanglement: Mystery and Resource

principles: reality, physical completeness, locality. Each solution of theEPR-paradox
is characterized by a different choice of some guilty hypotheses.

Einstein, Podolsky and Rosen did not have any doubt: the hypothesis that has
to be rejected is the physical completeness-principle. The original version of the
EPR-argument was presented as a kind of proof by contradiction whose conclusion
was: quantum theory is physically incomplete. In other words, the pure states of the
theory do not represent a maximum of information: one is dealing with a kind of
statistical pieces of information that are quite similar to the mixed states of classical
statistical mechanics. The article “Can quantum mechanical description of reality be
considered complete?” concludes as follows:

While we have thus proved that the wave function does not provide a complete
description of the physical reality, we left open the question whether or not such a
description exists. We believe, however, that such a theory is possible.

This conclusion, however, does not seem justified from a logical point of view.
In fact, the EPR-argument only proves the logical incompatibility between quantum
theory and the conjunction of our three general principles, without forcing us to
choose a particular “guilty hypothesis”. For instance, the solution proposed by Niels
Bohr and by the “Copenhagen interpretation” is based on the refusal of the reality-
principle. According to Bohr, it is not reasonable to speak of “elements of reality”,
because all properties of quantum objects have to be dealt with as relations that are
context-dependent.

In more recent times (in the framework of quantum information theories) the
locality-principle also has been put in question. One has realized that the action per-
formed by the observerO1 (on the “close” system S1) may have a “genuine physical
influence” on the “far” system S2. Such a phenomenon, however, does not imply
the possibility of sending a signal from O1 to a hypothetical observer O2, “close”
to the system S2. In spite of a superficial appearance, there is no conflict between
quantum non-locality and special relativity (which was Einstein’s basic worry).

In 1985, half a century after the appearing of the EPR-article, Nathan Rosen
was still alive. A number of conferences were organized in order to celebrate the
discovery of the famous paradox; and sometimes the “honor guest” was, of course,
Rosen. How did the “third man” of the trio regard the EPR-argument, fifty years
after? The following quotation represents an interesting witnessing:

At the time of the writing of the EPR paper I agreed with the belief expressed at
the end that a complete theory is possible. Since then fifty years have passed and
physics has changed greatly. In recent years doubts have arisen in my mind as to
whether a theory will be found in the future that will be complete according to the
criteria of the paper and will be correct in giving agreement with observations .....
Hence it is hard to believe that a theory will be found that will be complete, based
on the criterion of an element of reality, used in the paper. It may also be that in the
future physical theories will describe reality in different terms from those to which
we are now accustomed. Does this means that the EPR paper is useless? I think
not. The paper has led to a great deal of discussion that has helped to clarify the
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physical concepts. I like to believe that this has contributed, if in a small measure,
to the progress of physics.4

3.3 Quantum Teleportation

EPR-situations play an essential role in teleportation-phenomena, which may appear
prima facie puzzling, both from a physical and from a logical point of view.5

Let us briefly illustrate a typical teleportation-case. We are dealing with a com-
posite quantum system

S = S1 + S2 + S3,

consisting of three particles (say, three photons) whose states are supposed to live
in the space C

2. As happens in the case of EPR-situations, the systems S2 and S3
have interacted before a given time t0 and are supposed to be physically separated at
time t0. As a consequence of the past interaction, the state of the composite system
S2 + S3 is the following entangled Bell-state:

|ψ〉S2+S3
t0 = 1√

2
(|0, 0〉 + |1, 1〉) .

Two human agents are supposed to act in the teleportation-experiment: the
observers Alice and Bob. At time t0 both of them know that the state of the sys-
tem S2 + S3 is 1√

2
(|0, 0〉 + |1, 1〉). While S2 is physically accessible to Alice, S3 is

accessible to Bob. At the same time Alice has also access to S1, whose state is the
qubit

|ψ〉S1t0 = a|0〉 + b|1〉 (with a, b �= 0).

At any time t of a given time-sequence, both observers have a global or a partial
information about the state of the composite system S. Furthermore, both of them
can modify the state of S (or of a subsystem of S) either by applying some gates or
by performing a measurement, which induces a collapse of the wave function.

The epistemic situation of either observer O at any time t (of the considered
time-sequence) can be represented as a pair consisting of:

(a) the physical system SOt that is physically accessible to our observer;
(b) a state ρOt that represents the observer’s information about a given system that

does not necessarily coincide with SOt .

We will write:
I n f (Ot ) = (SOt , ρOt ).

4See [4].
5See, for instance, [5–7].
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We can now represent the epistemic situations of Alice and Bob at the initial time
t0 as follows.

Alice at time t0

I n f (Alicet0) = (
(S1 + S2)t0 , |ψ〉St0

)
, where

|ψ〉St0 = (a|0〉 + b|1〉) ⊗ 1√
2
(|0, 0〉 + |1, 1〉) =

1√
2
(a|0〉 ⊗ (|0, 0〉 + |1, 1〉)) + 1√

2
(b|1〉 ⊗ (|0, 0〉 + |11〉)).

Thus, Alice has physical access to the subsystem S1 + S2. At the same time, she
is informed about the state of the global system S.

Bob at time t0

I n f (Bobt0) =
(
(S3)t0 , |ψ〉S2+S3

t0

)
, where

|ψ〉S2+S3
t0 = 1√

2
(|0, 0〉 + |1, 1〉).

Thus, Bob has physical access to the subsystem S3. At the same time, he is
informed about the state of the system S2 + S3.

The basic goal of quantum teleportation is transmitting a state to a “far” observer
bymeans of a quantum non-locality phenomenon. In this particular case, Alicewants
to transmit to Bob the qubit a|0〉 + b|1〉, which is the pure state of particle S1 at time
t0. As expected, the operations performed by Alice in order to obtain this aim will
transform her epistemic situation.

Alice at time t1

In the interval [t0, t1] Alice applies the gate XOR(1,1) to the subsystem S1 + S2 (acces-
sible to her). As a consequence, we obtain:

I n f (Alicet1) = (
(S1 + S2)t1 , |ψ〉St1

)
, where:

|ψ〉St1 = [
XOR(1,1) ⊗ I(1)

] |ψ〉St0 =
1√
2
(a|0〉 ⊗ (|0, 0〉 + |1, 1〉)) + 1√

2
(b|1〉 ⊗ (|1, 0〉 + |0, 1〉)).

It is worth-while noticing that theoretically Alice is acting on the whole system
S, while materially she is only acting on the subsystem S1 + S2 that is accessible to
her.

Alice at time t2

In the interval [t1, t2] Alice applies the Hadamard-gate to the system S1 (whose state
is to be teleported). Hence, we obtain:

I n f (Alicet2) = (
(S1 + S2)t2 , |ψ〉St2

)
, where:

|ψ〉St2 =
[√

I
(1) ⊗ I(1) ⊗ I(1)

]
|ψ〉St1 =

1√
2

1√
2
{[a(|0〉 + |1〉) ⊗ (|0, 0〉 + |1, 1〉)] + [b(|0〉 − |1〉) ⊗ (|1, 0〉 + |0, 1〉)]} =

1
2 [(|0, 0〉 ⊗ (a|0〉 + b|1〉)) + (|0, 1〉 ⊗ (a|1〉 + b|0〉))+
(|1, 0〉 ⊗ (a|0〉 − b|1〉)) + (|1, 1〉 ⊗ (a|1〉 − b|0〉))].
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Alice at time t3

In the interval [t2, t3] Alice decides to perform a measurement on the subsystem
S1 + S2 (accessible to her). As a consequence (by collapse of the wave function) she
will obtain with equal probability (= 1

4 ) one of the four following quregisters:

1. |ψ1〉St3 = |0, 0〉 ⊗ (a|0〉 + b|1〉)
2. |ψ2〉St3 = |0, 1〉 ⊗ (a|1〉 + b|0〉)
3. |ψ3〉St3 = |1, 0〉 ⊗ (a|0〉 − b|1〉)
4. |ψ4〉St3 = |1, 1〉 ⊗ (a|1〉 − b|0〉)

We have:
I n f (Alicet3) = (

(S1 + S2)t3 , |ψi 〉St3
)
, where:

|ψi 〉St3 is one of the four states considered above.
Notice that after Alice’s measurement (at time t3) the original superposed state

a|0〉 + b|1〉 of particle S1 has disappeared. The state of S1 is now:

|ψ〉S1t3 = Red1(|ψi 〉St3),

which is a bit |x〉.
As a consequence of her measurement, Alice also knows the qubit representing

the state at time t3 of particle S3 (accessible to Bob). In fact, by quantum non-locality,
the state of particle S3 has been transformed into one of the four possible qubits:

|ϕi 〉S3t3 = Red3(|ψi 〉St3), with 1 ≤ i ≤ 4.

Apparently, only |ϕ1〉S3t3 is the qubit a|0〉 + b|1〉, the original state of particle S1
(accessible to Alice). Anyway, by application of a convenient gate, all states |ϕi 〉S3t3
can be transformed into the state a|0〉 + b|1〉. We have:

• I(1)(|ϕ1〉S3t3 ) = a|0〉 + b|1〉
• NOT(1)(|ϕ2〉S3t3 ) = a|0〉 + b|1〉
• Z(1)(|ϕ3〉S3t3 ) = a|0〉 + b|1〉
• NOT(1)Z(1)(|ϕ4〉S3t3 ) = a|0〉 + b|1〉,
where Z(1) is the third Pauli matrix, which is defined as follows on the canonical
basis of C2:

Z(1)|0〉 = |0〉; Z(1)|1〉 = −|1〉.

In this situation, Alice can give an “order” to Bob, by using a classical communi-
cation channel (say, a phone) during the interval [t3, t4]. The order will be:
• “apply I(1)!” (i.e. “don’t do anything!”), in the first case.
• “apply NOT(1)!”, in the second case.
• “apply Z(1)!”, in the third case.
• “apply NOT(1)Z(1)!”, in the fourth case.
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Suppose that Bob follows Alice’s order in the interval [t4, t5]. His final epistemic
situation (at time t5) will be:

I n f (Bobt5) = (
(S3)t5 , |ψ〉S3t5

)
,

where |ψ〉S3t5 = a|0〉 + b|1〉.
Teleportation is now completed. At the end of the process, the original qubit

a|0〉 + b|1〉 has disappeared for Alice, because at the final time the system S1 is
storing a classical bit. Bob, instead, has acquired the information a|0〉 + b|1〉, which
is stored by “his” particle S3, whose original state was the proper mixture:

Red2
(|ψ〉S2+S3

t0

) = Red2

(
1√
2
(|0, 0〉 + |1, 1〉)

)
= 1

2
I(1).

Of course, what has been sent from Alice to Bob is not the “material” object S1,
but rather the qubit a|0〉 + b|1〉, that was the state of S1 at the initial time t0.

When discussing teleportation, one often stresses that the qubit a|0〉 + b|1〉, trans-
mitted toBob,might beunknown toAlice. Such observation (whichmay appearprima
facie somewhat puzzling) can be interpreted as follows.

• At time t0 Alice has physical access to particle S1;
• Alice knows that the state of S1 (at time t0) is pure: a genuine qubit whose form is
a|0〉 + b|1〉;

• in spite of this,Alice ignores the actual values of the two amplitudes a and b, which
are dealt with by her as complex-number variables.

We could say that what Alice actually knows is not a genuine qubit-state, but
rather a kind of metastate (which ranges over all possible genuine qubit-states).
Such ignorance, however, does not prevent Alice to perform all operations that are
needed in order to transmit a genuine qubit-state to Bob. She can physically act on
the subsystem S1 + S2 (accessible to her) both by applying the convenient material
gates and by performing the measurement that determines the final collapse of the
wave function. At the same time, she can theoretically calculate the metastates that
correspond to the states |ψ〉St1 , |ψ〉St2 , |ψ〉St3 . dealing with variable instead of constant
amplitudes.

Teleportation is not only a puzzlingGedankenexperiment: it has been experimen-
tally realized with greater and greater efficiency by different experimental teams
in different places. The first teleportation-experiments have been performed (inde-
pendently) by teams of physicists in Innsbruck and in Rome (in the Nineties).6 In
2004 Anton Zeilinger and a group of physicists of the “Institute for Experimental
Physics” in Vienna have performed a teleportation-experiment on the river Danube

6See [8, 9].
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Fig. 3.1 Teleportation on the Danube

with optimal efficiency. Three distinct photon-states were teleported over a distance
of 600 meters across the river (Fig. 3.1).7

More recently, a group of physicists in China have experimented a long-distance
teleportation of single photon-qubits from a ground observatory to a low Earth-orbit
satellite with a distance up to 1400Km.8
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Chapter 4
From Quantum Circuits to Quantum
Computational Logics

4.1 A New Approach to Quantum Logic: Quantum
Computational Logics

The theory of quantum logical circuits has naturally inspired new forms of quantum
logic that have been termed quantum computational logics.1 From a semantic point
of view, any formula α of the language of a quantum computational logic is sup-
posed to denote a piece of quantum information: a density operator ρ that lives in a
Hilbert space H α whose dimension depends on the linguistic complexity of α. At
the same time, the logical connectives are interpreted as special examples of gates.
Accordingly, any formula of a quantum computational language can be regarded as
a synthetic logical description of a quantum circuit. In this way linguistic formu-
las acquire a characteristic dynamic meaning, representing possible computational
actions.

The most natural semantics for quantum computational logics is a form of holistic
semantics, where the puzzling entanglement-phenomena can be used as a logical
resource. As iswell known, classical semantics is characterized by a general principle
(clearly set forth by Frege): the compositionality principle, according to which

the meaning of any compound linguistic expression shall be represented as a function of the
meanings of its (well-formed) parts.

Consider, for instance, the sentence “Alice is pretty andBob loves her”. Itsmeaning is
determined by the meanings of its parts (the names “Alice” and “Bob”, the predicates
“pretty” and “to love”, the logical connective “and”).

In spite of their strongly non-classical features, both Birkhoff and von Neumann’s
quantum logic and abstract quantum logic turn out to respect the compositionality
principle: the quantum events living in a Hilbert-lattice (as well as the elements of
an abstract orthomodular lattice) are composed by the algebraic operations ⊥, � and
�. Hence, in the algebraic semantics of quantum logics the meaning of a molecular

1See [2, 3, 7]. Other logical approaches (inspired by quantum information theory) have been
proposed, for instance, in [1, 5, 8].
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sentence can always be described as a function of the meanings of its well-formed
parts. Notice that only superficially the characteristic behavior of the quantum logical
disjunction seems to violate the compositionality-principle.Weknow that in quantum
logic a disjunction α ∨ β may be true, even if both members (α, β) are not true.
However, such a situation would be in contrast with the compositionality-principle
only in the framework of a two-valued semantics; while the semantics of all quantum
logics is essentially many-valued.

The compositionality-principle breaks down in semantic situations where mean-
ings of formulas are represented as pieces of quantum information (instead of quan-
tum events). As we have seen in the previous chapters, the states of quantum systems
have a characteristic holistic and contextual behavior. Unlike the case of classical
systems, the state of a composite quantum object (say, an electron-system or an
atom) determines the states of all its subsystems, and not the other way around.
And, generally, the state of the global system cannot be reconstructed as a function
of the states of its parts. Such an anti-compositional relationship between a whole
and its parts can be naturally applied in order to develop a holistic and contextual
semantics, which may find significant applications even outside the strict domain of
microphysics.

4.2 A Sentential Quantum Computational Language

We will now introduce a particular example of a sentential quantum computational
language L0, whose alphabet contains atomic formulas (say, “the spin-value in the
x-direction is up”), including two privileged formulas t and f that represent the truth-
values Truth and Falsity, respectively. In the semantics all atomic formulas will be
interpreted as pieces of quantum information that live in the space H (1) = C

2.
The connectives of L0 correspond to some gates that have a special logical

and computational interest: the negation ¬ (corresponding to the gate negation),
a ternary connective ᵀ (corresponding to the Toffoli-gate), the exclusive disjunction
� (corresponding to XOR), the square root of the identity

√
id (corresponding to the

Hadamard-gate), the square root of negation
√¬ (corresponding to the gate square

root of NOT). The notion of (well-formed) formula (or sentence) ofL0 is inductively
defined (in the expected way): for any formulas α, β and for any atomic formula q,
the expressions ¬α,

√
id α,

√¬α, α � β, ᵀ(α, β, q) are formulas.
Recalling the definition of the holistic conjunctionAND(m,n) in terms of theToffoli-

gate (Definition 2.9), it is useful to introduce a binary logical conjunction∧ bymeans
of the following metalinguistic definition:

α ∧ β := ᵀ(α, β, f)

(where the false formula f plays the role of a syntactical ancilla).
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On this basis, a (binary) inclusive disjunction is (metalinguistically) defined via
de Morgan-law:

α ∨ β := ¬(¬α ∧ ¬β).

The connectives ¬, ∧, ∨ and � will be also termed quantum computational
Boolean connectives; while

√
id and

√¬ represent genuine quantum computational
connectives. A formula that contains atmost Boolean connectives is called a quantum
computational Boolean formula ofL0. In the following we will use q,q1,q2, . . . as
metavariables for atomic formulas, whileα, β, γ, . . .will represent generic formulas.

Definition 4.1 (The atomic complexity of a formula) The atomic complexity At (α)

of a formula α is the number of occurrences of atomic formulas in α.

For instance, At (ᵀ(q,q, f)) = 3.The notion of atomic complexity plays an impor-
tant semantic role. As we will see (in the next section), the meaning of any formula
whose atomic complexity is n shall live in the domainD(H (n)). For this reason, the
space H (At (α)) (briefly indicated by H α) will be also called the semantic space of
α.

Any formula α can be naturally decomposed into its parts, giving rise to a special
configuration called the syntactical tree of α (indicated by STreeα). The configura-
tion STreeα can be represented as a finite sequence of levels:

Levelαh
. . . . . .

Levelα1

where:

• each Levelαi (with 1 ≤ i ≤ h) is a sequence (βi1 , . . . , βir ) of subformulas of α;
• the bottom level Levelα1 is (α);
• the top level Levelαh is the sequence (q1, . . . ,qk), where q1, . . . ,qk are the atomic
occurrences in α;

• for any i (with 1 ≤ i < h), Levelαi+1 is the sequence obtained by dropping the prin-
cipal connective in all molecular formulas occurring at Levelαi , and by repeating
all atomic sentences that occur at Levelαi .

By Height of α (indicated by Height (α)) we mean the number h of levels of the
syntactical tree of α.

As an example, consider the following formula:

α = ¬ ᵀ (
√
idq,¬q, f) = ¬(

√
idq ∧ ¬q).
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The syntactical tree of α is the following sequence of levels:

Levelα4 = (q,q, f)

Levelα3 = (
√
idq,¬q, f)

Levelα2 = (ᵀ(
√
idq,¬q, f))

Levelα1 = (¬ ᵀ (
√
idq,¬q, f))

Clearly, Height (α) = 4.
The syntactical tree of any formula α uniquely determines a sequence of gates,

all defined on the semantic space of α. As an example, consider again the formula
α = ¬ ᵀ (

√
idq,¬q, f). In the syntactical tree of α the third level has been obtained

from the fourth level by applying the connective
√
id to the first occurrence of q, by

negating the second occurrence of q and by repeating f , while the second and the
first level have been obtained by applying, respectively, the connectives ᵀ and ¬ to
formulas occurring at the levels immediately above. Accordingly, one can say that
the syntactical tree of α uniquely determines the following sequence consisting of
three gates, all defined on the semantic space of α:

(
D

√
I

(1) ⊗ DNOT(1) ⊗ DI(1), DT(1,1,1), DNOT(3)
)

.

Such a sequence is called the gate tree of α. This procedure can be naturally gener-
alized to any formula α. The general form of the gate tree of α will be:

(DGα
(h−1), . . . ,

D Gα
(1)),

where h is the Height of α.
Apparently, given a formula α, its gate tree describes a particular example of a

quantum circuit. This is the reason why any formula α of the quantum computational
language can be regarded as a synthetic logical description of a corresponding quan-
tum circuit C α , whose possible inputs and outputs live in the semantic space H α .
Clearly, the width and the depth of C α are determined (respectively) by the atomic
complexity of α and by the height of its syntactical tree.

Consider, for instance, the formula

α = √
id ᵀ (q,¬q, f).

The quantum circuit C α corresponding to α is the circuit represented in Fig. 4.1
(which has been illustrated in Sect. 2.3).

Of course, by obvious cardinality-reasons, not all possible quantum circuits can be
exactly described by formulas of a quantum computational language (whose alphabet
is denumerable).
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Fig. 4.1 A circuit for the
gate-sequence
(I(1) ⊗ NOT(1) ⊗ I(1),

T(1,1,1), I(1) ⊗ I(1) ⊗√
I

(1)
)

4.3 A Holistic Computational Semantics

Wewill now introduce the basic concepts of aholistic quantumcomputational seman-
tics for the language L0. The intuitive idea can be sketched as follows. Interpreting
L0 means determining a holistic model that assigns to any formula α a global infor-
mational meaning living inH α (the semantic space of α). This meaning determines
the contextual meanings of all subformulas of α (from the whole to the parts). It may
happen that one and the samemodel assigns to a given formula α different contextual
meanings in different contexts.2

Before defining the concept of model, we will introduce the weaker notion of
holistic map for the language L0.

Definition 4.2 (Holistic map) A holistic map for L0 is a map Hol that assigns a
meaning Hol(Levelαi ) to each level (Levelαi ) of the syntactical tree of α, for any
formula α. This meaning is a density operator living in the semantic space of α.

Given a formula γ , any holistic map Hol determines the contextual meaning,
with respect to the context Hol(γ ), of any occurrence of a subformula β in γ . This
contextual meaning can be defined, in a natural way, by using the notion of reduced
state.

Definition 4.3 (Contextual meaning) Consider a formula γ such that Levelγi =
(βi1 , . . . , βir ). We have:

H γ = H βi1 ⊗ . . . ⊗ H βir .

LetHol be a holistic map. The contextual meaning of the occurrence βi j with respect
to the context Hol(γ ) is defined as follows:

Holγ (βi j ) := Red j
[At (βi1 ),...,At (βir )](Hol(Leveli (γ ))).

Of course, we obtain:
Holγ (γ ) = Hol(γ ).

2See [4, 6].
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A holistic map Hol is called normal for a formula γ iff for any subformula β of
γ ,Hol assigns the same contextual meaning to all occurrences of β in the syntactical
tree of γ . In other words:

Holγ (βi j ) = Holγ (βuv
),

where βi j and βuv
are two occurrences of β in STreeγ . In such a case we will simply

write: Holγ (β). A normal holistic map is a holistic map Hol that is normal for all
formulas γ .

Holistic models of the language L0 can be now defined as normal holistic maps
that preserve the logical form of all formulas, assigning the “right” meaning to the
false sentence f and to the true sentence t.

Definition 4.4 (Holistic model) A holistic model of L0 is a normal holistic map
Hol that satisfies the following conditions for any formula α.

(1) Let (DGα
(h−1), . . . ,

DGα
(1)) be the gate tree of α and let 1 ≤ i < h. Then,

Hol(Levelαi ) = DGα
(i)(Hol(Levelαi+1)).

In otherwords, themeaning of each level (different from the top level) is obtained
by applying the corresponding gate to the meaning of the level that occurs imme-
diately above.

(2) Suppose that the false sentence f or the true sentence t occurs in STreeα . Then,

Holα(f) = P (1)
0 ; Holα(t) = P (1)

1 .

In other words, the contextual meanings of f and of t are the Falsity and the
Truth, respectively.

On this basis, we put:
Hol(α) := Hol(Levelα1 ),

for any formula α.
Since all gates are reversible, assigning a value Hol(Levelαi ) to a particular

Levelαi of STreeα determines the value Hol(Levelαj ) for any other level Levelαj .
Consequently, Hol(Levelαi ) determines the contextual meaning Holα(β) for any
subformula β of α.

Notice that any Hol(α) represents a kind of autonomous semantic context that is
not necessarily correlated with the meanings of other formulas. Generally we have:

Holγ (β) �= Holδ(β).

Thus, one and the same formula may receive different contextual meanings in differ-
ent contexts (as, in fact, happens in the case of our normal use of natural languages).
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The characteristic holistic features of the models Hol are clearly due to the fact
that any Hol assigns to each level of the syntactical tree of a given formula a global
meaning that determines the contextual meanings of all subformulas occurring at
that level. And, generally, this global meaning cannot be represented as the tensor
product of the contextual meanings of the subformulas in question.

An interesting case arises when the meaning of the top level of the syntactical
tree of a given formula is an entangled state. Consider, for instance, the contradictory
formula

α = q ∧ ¬q = ᵀ(q,¬q, f).

And let Hol be a map that assigns the following meanings to the levels of STreeα:

Hol(Levelα3 ) = Hol((q,q, f)) = P 1√
2
|1,0,0〉+ 1√

2
|0,1,0〉

Hol(Levelα2 ) = Hol((q,¬q, f)) = P 1√
2
|1,1,0〉+ 1√

2
|0,0,0〉

Hol(Levelα1 ) = Hol((ᵀ(q,¬q, f)) = P 1√
2
|1,1,1〉+ 1√

2
|0,0,0〉

Clearly,Hol is a normalmap that is also amodel for the formula α.WhileHol(α)

(themeaning ofα) is a pure entangled state, the contextualmeaning of the subformula
q is a proper mixture. We have:

Holα(q) = Holα(¬q) = 1

2
I(1).

Consequently:

Hol(α) = Hol(ᵀ(q,¬q, f)) = DT(1,1,1)(Hol((q,¬q, f))) �=
DT(1,1,1)(Holα(q) ⊗ Holα(¬q) ⊗ Holα(f)).

Interestingly enough, the two states

DT(1,1,1)(Hol((q,¬q, f))) and DT(1,1,1)(Holα(q) ⊗ Holα(¬q) ⊗ Holα(f))

turn out to have different probability-values. We have:

• p1(
DT(1,1,1)(Hol((q,¬q, f)))) = 1

2 ;
• p1(

DT(1,1,1)(Holα(q) ⊗ Holα(¬q) ⊗ Holα(f))) = 1
4 .

It is worth-while noticing that in both cases we are dealing with a contradictory
sentence (q ∧ ¬q) whose meaning represents a piece of quantum information that is
not impossible.

An important special case of the holistic quantum computational semantics is
a compositional semantics, based on the assumption that all models behave in a
compositional way.
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Definition 4.5 (Compositional model) A model Hol is called

• compositional for a formula α iff Hol assigns to the top level

Levelαh = (q1, . . . ,qr )

of the syntactical tree of α the following factorized state:

Holα(q1) ⊗ . . . ⊗ Holα(qr ).

• compositional iff Hol is compositional for all formulas α;
• perfectly compositional iff Hol is a compositional model that satisfies the follow-
ing condition for any formulas α, β and for any atomic formula q (occurring in α

and in β):
Holα(q) = Holβ(q).

While compositional models may be context-dependent, models that are perfectly
compositional are always context-independent.

One can easily show that any compositional model Hol for a formula α assigns to
each level of the syntactical tree of α the tensor product of the contextual meanings
of the subformulas occurring at that level. Suppose that (βi1 , . . . , βir ) is the i th level
of STreeα . We have:

Hol(Levelαi ) = Holα(βi1) ⊗ . . . ⊗ Holα(βir ).

We call compositional quantum computational semantics the special version of the
quantum computational semantics based on the hypothesis that all models are com-
positional.

It is worth-while noticing that the compositional semantics does not forbid the
emergence of entangled meanings. An interesting example is represented by the
sentence

α = √
id q1 � q2,

whose gate tree is

(
√
I

(1) ⊗ I(1), XOR(1,1)).

Consider the following holistic map Hol for α:

Hol(Levelα3 ) = Hol((q1,q2)) = |0, 1〉
Hol(Levelα2 ) = Hol((

√
id q1,q2)) = (

√
I

(1) ⊗ I(1))|0, 1〉 =
1√
2
(|0〉 + |1〉) ⊗ |1〉 = 1√

2
|0, 1〉 + 1√

2
|1, 1〉

Hol(Levelα1 ) = Hol((
√
id q1 � q2)) =
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XOR(1,1)(
1√
2
|0, 1〉 + 1√

2
|1, 1〉) = 1√

2
|0, 1〉 + 1√

2
|1, 0〉.

Apparently, this Hol is a compositional model for α that assigns a classical
meaning (the register |0, 1〉) to the top level of STreeα . At the same time, themeaning
assigned by Hol to α is the entangled Bell-state:

1√
2
|0, 1〉 + 1√

2
|1, 0〉.

An important question is the following: do contextual meanings and gates (asso-
ciated to particular logical connectives) commute? This question receives different
answers in the compositional semantics and in the more liberal holistic semantics.
In both semantics, the gates corresponding to the 1-ary connectives ¬,

√
id and

√¬
turn out to commute with the contextual meanings of the subformulas of a given
formula.

Theorem 4.1 Consider a holistic model Hol for a formula γ .

(1) Let ¬β be a subformula of γ . Then,

Holγ (¬β) = DNOT(At (β))(Holγ (β)).

(2) Let
√
idβ be a subformula of γ . Then,

Holγ (
√
idβ) = D

√
I

(At (β))
(Holγ (β)).

(3) Let
√¬β be a subformula of γ . Then,

Holγ (
√¬β) = D

√
NOT

(At (β))
(Holγ

T(β)).

Thus, the contextual meaning of ¬β,
√
idβ,

√¬β can be obtained by applying the
corresponding gate to the contextual meaning of β.

Proof By definition of syntactical tree, of gate tree, of holistic model and of contex-
tual meaning. �

In the holistic semantics the commutativity between contextual meanings and
gates generally fails in the case of the binary connective � and of the ternary con-
nective ᵀ. As we have seen, the XOR-gate and the Toffoli-gate have a characteristic
holistic behavior; consequently, the following semantic situations are possible:

• Holγ (α � β) �= DXOR(At (α),At (β))(Holγ (α) ⊗ Holγ (β)).

• Holγ (ᵀ(α, β,q)) �= DT(At (α),At (β),At (q))(Holγ (α) ⊗ Holγ (β) ⊗ Holγ (q)).

At the same time, the connectives � and ᵀ turn out to satisfy a weaker condition,
stated by the following theorem.



74 4 From Quantum Circuits to Quantum Computational Logics

Theorem 4.2 Consider a holistic model Hol for a formula γ .

(1) Let α1 � α2 be a subformula of γ . Thus, the syntactical tree of γ shall contain
two levels whose form is:

• Levelγ(i+1) = (β(i+1)1 , . . . , β(i+1)k1
, β(i+1)k2

, . . . , β(i+1)r ),

where α1 = β(i+1)k1
, α2 = β(i+1)k2

.
• Levelγi = (βi1 , . . . , βi j , . . . , βis ), where α1 � α2 = βi j .

We have:

Holγ (α1 � α2) =
DXOR(At (α1),At (α2))(Red(k1,k2)

[At (β(i+1)1 ),...,At (β(i+1)r )](Hol(Level(i+1)(γ )))).

(2) Letᵀ(α1, α2,q) be a subformula of γ . Thus, the syntactical tree of γ shall contain
two levels whose form is.

• Levelγ(i+1) = (β(i+1)1 , . . . , β(i+1)k1
, β(i+1)k2

, β(i+1)k3
, . . . , β(i+1)r ),

where α1 = β(i+1)k1
, α2 = β(i+1)k2

, q = β(i+1)k3
.

• Levelγi = (βi1 , . . . , βi j , . . . , βis ), where ᵀ(α1, α2,q) = βi j .

We have:

Holγ (ᵀ(α1, α2,q)) =
DT(At (α1),At (α2),At (q))(Red(k1,k2,k3)

[At (β(i+1)1 ),...,At (β(i+1)r )](Hol(Level(i+1)(γ )))).

Proof By definition of syntactical tree, of gate tree, of holistic model and of contex-
tual meaning. �

Unlike the case of the general holistic semantics, in the less liberal compositional
semantics contextual meanings turn out to commute with the gates that correspond
to the connectives � and ᵀ.

Theorem 4.3 Consider a compositional model Hol for a formula γ .

(1) Let α1 � α2 be a subformula of γ . Then,

Holγ (α1 � α2) = DXOR(At (α1), At (α2))(Holγ (α1) ⊗ Holγ (α2)).

(2) Let ᵀ(α1, α2,q) be a subformula of γ . Then,

Holγ (ᵀ(α1, α2, q)) = DT(At (α1),At (α2), At (q))(Holγ (α1) ⊗ Holγ (α2) ⊗ Holγ (q)).

Proof By definition of compositional model. �

The following theorem will play an important role in the development of the
holistic semantics.
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Theorem 4.4 Consider a formula γ and let η be a subformula of γ . For any model
Hol and for any formula β there exists a model ∗Hol such that,

∗Holγ∧β(η) = Holγ (η).

Proof (Sketch) Consider two formulas γ and β and let Hol be a model. If β is a
subformula of γ the proof is trivial (since it is sufficient to take ∗Hol equal to Hol).
Suppose that β is not a subformula of γ (while γ and β may have some common
subformulas). Consider the syntactical tree of γ ∧ β, which includes (in its left part)
the syntactical tree of γ (where Levelγ1 appears at Levelγ∧β

2 , while the top level
of STreeγ is supposed to be repeated until the Height h of STreeγ∧β is reached).
The model Hol assigns a density operator Hol(Levelγi ) to each level of STreeγ

(represented as a part of STreeγ∧β). Let us briefly write: γ ρi+1 = Hol(Levelγi ).
We transform STreeγ∧β into a “hybrid” object Hybr that is a sequence of sequences
Hybri . Each Hybri corresponds to Levelγ∧β

i and is a sequence of objects that are
either formulas or density operators. Taking into account the fact the ᵀ(γ, β, f) and
β are not subformulas of γ , we define the first two elements of Hybr as follows:

Hybr1 = (ᵀ(γ, β, f)); Hybr2 = (γ ρ2, β, P (1)
0 ). Then, we proceed (step by step)

by replacing the first occurrence in STreeγ∧β of each formula θ that is also a subfor-
mula of γ with the density operator Holγ (θ). Suppose, for instance, that θ occurs
for the first time at Levelγ∧β

i , and suppose that θ = ᵀ(ξ1, ξ2, ξ3). Then (by definition
of syntactical tree), ξ1, ξ2 and ξ3 shall occur at Levelγ∧β

i+1 . We define Hybri and
Hybri+1 in such a way that the following conditions are satisfied: a) in Hybri the
density operatorHolγ (θ) occurs in place of the formula θ (occurring at Levelγ∧β

i ); b)
in Hybri+1 the density operator [DT(At (ξ1),At (ξ2),At (ξ3))]−1(Holγ (θ)) occurs in place
of the subsequence (ξ1, ξ2, ξ3) (occurring at Level

γ∧β

i+1 ). We proceed in a similar way

for all possible linguistic forms of θ . When we finally reach the top level Levelγ∧β

h ,
the corresponding Hybrh will have the following form:

Hybrh = (γ ρh, Ob1, . . . , Obt , P (1)
0 ),

where each Obj is either a density operator or an atomic formulaq that does not occur
in γ . Now, we replace in Hybrh each “surviving” formula qwith the density operator
Hol(q) (which lives in C

2). This operation destroys the “hybrid” form of Hybrh ,
which is now transformed into a homogeneous sequence of density operators:

DHybrh = (γ ρh,
DOb1, . . . ,

DObt , P (1)
0 ), where:

DObj =
{
Obj , if Obj is a density operator;
Hol(q), if Obj = q.

On this basis, we transform the whole Hybr into a sequence of density operator-
sequences DHybri . Let us first refer to Hybrh−1, which may contain formulas that
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are not subformulas of γ . Suppose, for instance, that the first formula occurring in
Hybrh−1 is

β(h−1) j = ᵀ(q1,q2,q3).

Since β(h−1) j is not a subformula of γ , DHybrh shall contain three separate density
operators q1ρ, q2ρ, q3ρ (corresponding to the atom-sequence (q1,q2,q3) occurring in
the right part of STreeγ∧β). On this basis, we replace the formula ᵀ(q1,q2,q3) with
the density operator DT(1,1,1)(q1ρ ⊗ q2ρ ⊗ q3ρ) in Hybrh−1 and in all other Hybri
where ᵀ(q1,q2,q3) possibly appears.

Then, we proceed step by step by applying the same procedure to all formulas βi j
occurring in Hybri , for any i (1 ≤ i < h). At the end of the procedure, each Hybri
(1 < i ≤ h) has been transformed into a sequence of density operators

DHybri = (γρi , ρi1 , . . . , ρir , P (1)
0 ),

where any density operator is naturally associated to a segment of Levelγ∧β

i .
We define now the map ∗Hol in the following way:

• ∗Hol(Levelγ∧β

i ) = γρi ⊗ ρi1 ⊗ . . . ⊗ ρir ⊗ P (1)
0 , if 1 < i ≤ h;

• ∗Hol(Levelγ∧β

i ) = DT(At (γ ),At (β),1)(∗Hol(Levelγ∧β

2 )), if i = 1.

We have:

(I) by construction, ∗Hol(Levelγ∧β

i ) is a density operator ofH γ∧β . Hence, ∗Hol
is a holistic map for γ ∧ β;

(II) ∗Hol is normal for γ ∧ β, by the normality of Hol and because different
occurrences in Hybr of a formula that is not a subformula of γ have been
replaced by the same density operator;

(III) by construction, ∗Hol preserves the logical form of all subformulas of γ ∧ β.
Accordingly, ∗Hol(Levelγ∧β

i ) = DG(i)(
∗Hol(Levelγ∧β

i+1 )), for any i such that
1 ≤ i < h, where (DG(h−1), . . . ,

DG(1)) is the gate-tree of γ ∧ β. Furthermore,
the sentences f and t have (trivially) the “right” contextual meanings. Hence,
∗Hol is a model for γ ∧ β;

(IV) by construction, for any η that is a subformula of γ :

∗Holγ∧β(η) = Holγ (η). �

We can now define the basic concepts of the holistic quantum computational
semantics: truth, validity, logical consequence and logical equivalence.

Definition 4.6 (Truth) A formula α is called true with respect to a model Hol
(abbreviated as |=Hol α) iff p1(Hol(α)) = 1.

Apparently, the quantum computational concept of truth is a probabilistic notion,
defined in terms of the Born-probability function p1.
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Definition 4.7 (Validity) α is called valid (|= α) iff for any model Hol, |=Hol α.

Definition 4.8 (Logical consequence) β is called a logical consequenceofα (α � β)
iff for any formula γ such that α and β are subformulas of γ and for any model Hol,

Holγ (α) � Holγ (β)

(where � is the pre-order relation defined by Definition2.3).

Apparently, the quantum computational relation of logical consequence is a contex-
tual notion that refers to all possible contexts where the formulas under investigation
may occur.

Definition 4.9 (Logical equivalence) α and β are logically equivalent (α ≡ β) iff
α � β and β � α.

Although the holistic semantics is strongly context-dependent, one can prove that
the logical consequence-relation is reflexive and transitive.

Theorem 4.5 (1) α � α;
(2) α � β and β � δ ⇒ α � δ.

Proof (1) Straightforward.
(2) Assume the hypothesis and suppose, by contradiction, that there exists a model

Hol and a formulaγ , whereα and δ occur as subformulas, such that:Holγ (α) �

Holγ (δ). Consider the formulaγ ∧ β. ByTheorem4.4 there exists amodel ∗Hol
such that for any η that is a subformula of γ : ∗Holγ∧β(η) = Holγ (η). Thus,
we have:
∗Holγ∧β(α) = Holγ (α) and ∗Holγ∧β(δ) = Holγ (δ).
Since we have assumed (by contradiction) that Holγ (α) � Holγ (δ), we obtain:
∗Holγ∧β(α) �

∗Holγ∧β(δ), against the hypothesis and the transitivity of �,
which imply:
∗Holγ∧β(α) � ∗Holγ∧β(β); ∗Holγ∧β(β) � ∗Holγ∧β(δ);
∗Holγ∧β(α) � ∗Holγ∧β(δ). �

The concept of logical consequence, defined in this semantics, characterizes a
special form of quantum computational logic (formalized in the language L0) that
has been called holistic quantum computational logic (HQCL). At the same time, the
compositional semantics (based on the hypothesis that all models Hol are composi-
tional) characterizes a different logic, termed compositional quantum computational
logic (CQCL). Of course, we have:

α �HQCL β =⇒ α �CQCL β.

We will see that the inverse relation does not hold.
Interestingly enough, the compositional quantum computational semantics

describes, as a special case, a reversible version of classical sentential semantics.
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Consider the sublanguage L C
0 of L0, whose formulas are the quantum computa-

tional Boolean formulas of L0. The concept of classical quantum computational
model for the language L C

0 can be now defined in the expected way.

Definition 4.10 (Classical quantum computational model) A classical quantum
computational model forL C

0 is a map Hol that satisfies the following conditions:

(1) Hol is a perfectly compositional model for allL C
0 -formulas.

(2) For any formula α ofL C
0 , Hol assigns to the top level of STreeα a register that

belongs to the semantic space of α.

One immediately obtains that any classical quantum computational model assigns
to any formula α of L C

0 a register of the space H α . Furthermore, all meanings are
context-independent.

As is well known an “uneasy” feature of the standard versions of classical seman-
tics is due to the fact that interpretations of the language generally “loose thememory”
of the linguistic complexity of the formulas under investigation; for, the extensional
meaning of any formula is dealt with as a single truth-value (a single bit). In the
classical quantum computational semantics, instead, the meaning of a formula α is
represented by a register that lives in the semantic space of α. This allows us to pre-
serve, at least to a certain extent, the “memory” of the complexity of α. One should
notice however that a register |x1, . . . , xn〉 may represent the meaning of different
formulas that share the same semantic space H (n).

We can now define a natural concept of logical consequence for the languageL C
0 .

Definition 4.11 (Quantum-classical logical consequence) Let α and β be two for-
mulas of L C

0 .
The formula β is called a quantum-classical logical consequence of α (α �QCL β)
iff for any classical quantum computational model Hol,

Hol(α) � Hol(β).

Lemma 4.1 For any formulas α and β of L C
0 , α �QCL β iff β is a logical conse-

quence of α according to classical sentential logic.

Proof Straightforward. �
Thus, we can say that the logicQCL represents a quantum computational version

of classical logic, characterized by a semantics where all logical connectives are
interpreted as reversible logical operations.

4.4 Quantum Computational Logical Arguments

Which logical arguments are either valid or possibly violated in the logics HQCL
andCQCL? The following theorems give some answers to this question.Wewill first
consider the case ofHQCL. By simplicitywewill writeα � β instead ofα �HCQL β.

Theorem4.6 sums up some basic arguments that hold for the quantum computa-
tional Boolean connectives and for the sentences f , t.
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Theorem 4.6 (1) α ∧ β � α; α ∧ β � β

(2) α � β ⇒ α ∧ δ � β

(3) ¬¬α ≡ α

(4) α � β ⇒ ¬β � ¬α

(5) ¬α � ¬β ⇒ β � α

(6) f � β; β � t
(7) f ≡ ¬t; t ≡ ¬f
(8) � t
(9) � α ⇐⇒ t � α

Proof (1) α ∧ β � α; α ∧ β � β.
Let α and α ∧ β (= ᵀ(α, β, f)) be subformulas of γ . Suppose that α, β, f occur
respectively at the positions k1, k2, k3 of Level

γ

i+1 (in the syntactical tree of γ ),
while ᵀ(α, β, f) occurs at Levelγi . By Theorem 4.2(2), for any Hol we have:

Holγ (ᵀ(α, β, f)) = DT(At (α),At (β),At (f))(Red(k1,k2,k3)
[1,...,r ] (Hol(Levelγi+1)))

(where r is the number of formulas occurring at Levelγi+1). Hence, by definition
of contextual meaning and by Theorem2.3(2):

Holγ (ᵀ(α, β, f)) � Holγ (α).

In a similar way one can prove that α ∧ β � β.
(2) α � β ⇒ α ∧ δ � β.

Assume the hypothesis and let α ∧ δ, β be subformulas of γ . Then α and δ

also are subformulas of γ . By hypothesis, for any Hol: Holγ (α) � Holγ (β).
By (1): Holγ (α ∧ δ) � Holγ (α). Hence, by transitivity of �: Holγ (α ∧ δ) �
Holγ (β).

(3) ¬¬α ≡ α.
Let ¬¬α and α be subformulas of γ . By Theorem4.1(1) and by the double-
negation principle for the gate NOT(n) (Theorem2.2(1)), we obtain for any Hol:

Holγ (¬¬α) = DNOT(At (α)) DNOT(At (α))Holγ (α) = Holγ (α).

(4) α � β ⇒ ¬β � ¬α.
Assume the hypothesis and let¬β,¬α be subformulas ofγ . Thenα andβ also are
subformulas of γ . By hypothesis, for any Hol: p1(Holγ (α)) ≤ p1(Holγ (β)).
Hence, 1 − p1(Holγ (β)) ≤ 1 − p1(Holγ (α)). By Theorem2.3(3) we have:
1 − p1(Holγ (β)) = p1(

DNOT(At (β))Holγ (β));
1 − p1(Holγ (α)) = p1(

DNOT(At (α))Holγ (α)).

Hence,
DNOT(At (β))Holγ (β) � DNOT(At (α))Holγ (α).

Whence, by Theorem4.1(1): Holγ (¬β) � Holγ (¬α).
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(5) ¬α � ¬β ⇒ β � α.
By (4) and by (3).

(6) f � β; β � t.
Let β and f be subformulas of γ . By definition of holistic model we have:
p1(Holγ (f)) = p1(P

(1)
0 ) = 0, for any Hol. Hence, Holγ (f) � Holγ (β). In a

similar way one can prove that β � t.
(7) f ≡ ¬t; t ≡ ¬f .

Straightforward.
(8) � t.

Straightforward.
(9) � α ⇐⇒ t � α.

Straightforward. �

The dual forms of Theorems4.6(1) and of 4.6(2) (α � α ∨ β, β � α ∨ β, α �
β ⇒ α � β ∨ δ) hold by definition of the connective ∨.

The following theorem sums up some important classical arguments that are not
valid in the logic HQCL.

Theorem 4.7 (1) α � α ∧ α

(2) α ∧ β � β ∧ α

(3) α ∧ (β ∧ δ) � (α ∧ β) ∧ δ

(4) (α ∧ β) ∧ δ � α ∧ (β ∧ δ)

(5) α ∧ (β ∨ δ) � (α ∧ β) ∨ (α ∧ δ)

(6) (α ∧ β) ∨ (α ∧ δ) � α ∧ (β ∨ δ)

(7) δ � α and δ � β � δ � α ∧ β

(8) α ∧ ¬α � β

(9) α � β � β � α

(10) α � β � α ∨ β; α � β � ¬α ∨ ¬β

Proof In the following counterexamples α, β and δ will always represent atomic
formulas.

(1) α � α ∧ α.
Take γ = α ∧ α and consider a model Hol such that

Hol(γ ) = DT(1,1,1)(
1

2
I(1) ⊗ 1

2
I(1) ⊗ P (1)

0 ).

We have: p1(Hol
γ (α)) = 1

2 > p1(Hol
γ (α ∧ α)) = 1

4 .
(2) α ∧ β � β ∧ α.

Take γ = (α ∧ β) ∧ (β ∧ α) and consider a model Hol such that
Hol(γ ) = DT(3,3,1)[DT(1,1,1)( 12I

(1) ⊗ 1
2I

(1) ⊗ P (1)
0 ) ⊗

DT(1,1,1)(P 1√
2
(|01〉−|10〉) ⊗ P (1)

0 ) ⊗ P (1)
0 ].

We have: p1(Hol
γ (α ∧ β)) = 1

4 > p1(Hol
γ (β ∧ α)) = 0.
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(3) α ∧ (β ∧ δ) � (α ∧ β) ∧ δ.
Take γ = (α ∧ (β ∧ δ)) ∧ ((α ∧ β) ∧ δ) and consider a model Hol such that
Hol(γ ) =
DT(5,5,1)[DT(1,3,1)( 12I

(1) ⊗ DT(1,1,1)( 12I
(1) ⊗ 1

2I
(1) ⊗ P (1)

0 ) ⊗ P (1)
0 )⊗

DT(3,1,1)(DT(1,1,1) ⊗ I(2)(P 1√
2
(|01010〉−|10000〉))) ⊗ P (1)

0 ].
We have: p1(Hol

γ (α ∧ (β ∧ δ))) = 1
8 > p1(Hol

γ ((α ∧ β) ∧ δ)) = 0.
(4) (α ∧ β) ∧ δ � α ∧ (β ∧ δ).

Similar to (3).
(5) α ∧ (β ∨ δ) � (α ∧ β) ∨ (α ∧ δ).

Take γ = (α ∧ (β ∨ δ)) ∧ ((α ∧ β) ∨ (α ∧ δ)) and consider amodelHol such
that
Hol(γ ) =
DT(5,7,1)[DT(1,3,1)( 12I

(1) ⊗ DNOT(3) DT(1,1,1)(P 1√
2
(|01〉−|10〉) ⊗ P (1)

0 ) ⊗ P (1)
0 )⊗

DNOT(7) DT(3,3,1)(DNOT(3) DT(1,1,1)( 12I
(1) ⊗ 1

2I
(1) ⊗ P (1)

0 )⊗
DNOT(3) DT(1,1,1)( 12I

(1) ⊗ 1
2I

(1) ⊗ P (1)
0 ) ⊗ P (1)

0 ) ⊗ P (1)
0 ].

We have: p1(Hol
γ (α ∧ (β ∨ δ))) = 1

2 > p1(Hol
γ ((α ∧ β) ∨ (α ∧ δ))) = 7

16 .
(6) (α ∧ β) ∨ (α ∧ δ) � α ∧ (β ∨ δ).

Take γ = (α ∧ (β ∨ δ)) ∧ ((α ∧ β) ∨ (α ∧ δ)) and consider amodelHol such
that Hol(γ ) =
DT(5,7,1)[DT(1,3,1)(12I

(1) ⊗ DNOT(3) DT(1,1,1)( 12I
(1) ⊗ 1

2I
(1) ⊗ P (1)

0 ) ⊗ P (1)
0 )⊗

DNOT(7) DT(3,3,1)(DNOT(3) DT(1,1,1)( 12I
(1) ⊗ 1

2I
(1) ⊗ P (1)

0 )⊗
DNOT(3) DT(1,1,1)( 12I

(1) ⊗ 1
2I

(1) ⊗ P (1)
0 ) ⊗ P (1)

0 ) ⊗ P (1)
0 ].

We have: p1(Hol
γ ((α ∧ β) ∨ (α ∧ δ))) = 7

16 > p1(Hol
γ (α ∧ (β ∨ δ))) = 3

8 .
(7) δ � α and δ � β � δ � α ∧ β.

Take γ = (α ∧ β) ∧ δ and consider a model Hol such that
Hol(γ ) =
DT(3,1,1)(DT(1,1,1)( 12I

(1) ⊗ 1
2I

(1) ⊗ P (1)
0 ) ⊗ 1

2I
(1) ⊗ P (1)

0 ).
We have:
p1(Hol

γ (α)) = p1(Hol
γ (β)) = p1(Hol

γ (δ)) = 1
2 > p1(Hol

γ (α ∧ β)) = 1
4 .

(8) α ∧ ¬α � β.
Take γ = (α ∧ ¬α) ∧ β and consider a model Hol such that

Hol(γ ) = DT(3,1,1)(DT(1,1,1)(
1

2
I(1) ⊗ 1

2
I(1) ⊗ P (1)

0 ) ⊗ P (1)
0 ⊗ P (1)

0 ).

We have: p1(Hol
γ (α ∧ ¬α)) = 1

4 and p1(Hol
γ (β)) = 0.

(9) α � β � β � α.
Take γ = (α � β) ∧ (β � α) and consider a model Hol such that

Hol(γ ) = DT(2,2,1)[DXOR(1,1)P 1√
2
(|01〉−|10〉) ⊗ DXOR(1,1)(

1

2
I(1) ⊗ 1

2
I(1)) ⊗ P(1)

0 ].

We have: p1(Hol
γ (α � β)) = 1 > p1(Hol

γ (β � α)) = 1
2 .
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(10) α � β � α ∨ β; α � β � ¬α ∨ ¬β.
Take γ = (α � β) ∧ (α ∨ β) and consider a model Hol such that
Hol(γ ) =
DT(2,3,1)[DXOR(1,1)P 1√

2
(|01〉−|10〉)⊗

DNOT(3)T(1,1,1)(NOT(1) ⊗ NOT(1) ⊗ I(1))( 12I
(1) ⊗ 1

2I
(1) ⊗ P (1)

0 ) ⊗ P (1)
0 ].

We have: p1(Hol
γ (α � β)) = 1 > p1(Hol

γ (α ∨ β)) = 3
4 .

In a similar way one can prove that α � β � ¬α ∨ ¬β. �

Since the conjunction ∧ is generally non-associative, brackets cannot be omitted
in the case ofmultiple conjunctions. In the following, wewill use the expression β1 ∧
. . . ∧ βn as a metalinguistic abbreviation for any possible bracket-configuration in a
multiple conjunction whose members are the elements of the sequence (β1, . . . , βn).

The following theorem sums up some basic arguments that hold for the genuine
quantum computational connectives.

Theorem 4.8 (1)
√
id

√
idα ≡ α

(2)
√
idf ≡ √

idt
(3) ¬√

idf ≡ √
idf; ¬√

idt ≡ √
idt

(4)
√
id(α ∧ β) ≡ √

idf
(5)

√¬√¬α ≡ ¬α

(6)
√¬f ≡ √¬t

(7) ¬√¬f ≡ √¬f; ¬√¬t ≡ √¬t
(8) ¬√¬α ≡ √¬ ¬α

(9)
√¬(α ∧ β) ≡ √¬f

(10)
√
id

√¬α ≡ √
idα

(11)
√¬√

idα ≡ ¬√¬α

(12)
√
id

√¬(α ∧ β) ≡ √¬f
(13)

√¬√
id(α ∧ β) ≡ √¬f

Proof (1)
√
id

√
idα ≡ α.

Let α and
√
id

√
idα be subformulas of γ . We have:

√
I

(n) √
I

(n) = I(n)

(Theorem2.2(2)).Whence, byTheorem 4.1(2):Holγ (
√
id

√
idα) = Holγ (α).

(2)
√
idf ≡ √

idt.
By definition of model, by Theorems4.1(2) and by 2.3(9).

(3) ¬√
idf ≡ √

idf ; ¬√
idt ≡ √

idt.
By definition of model, by Theorems 4.1(1, 2) and by 2.3(11).

(4)
√
id(α ∧ β) ≡ √

idf .
By definition of model, by Theorems 4.1(2) and 2.3(13).

(5)
√¬√¬α ≡ ¬α.
By Theorems4.1(1, 3) and 2.2(3).

(6)
√¬f ≡ √¬t.
By definition of model, by Theorems 4.1(3) and 2.3(10).

(7) ¬√¬f ≡ √¬f ; ¬√¬t ≡ √¬t.
By definition of model, by Theorems4.1(1, 3) and 2.3(12).
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(8) ¬√¬α ≡ √¬¬α.
By Theorems4.1(1, 3) and 2.3(7).

(9)
√¬(α ∧ β) ≡ √

idf .
By definition of model, by Theorems4.1(2, 3) and 2.3(13).

(10)
√
id

√¬α ≡ √
id α.

By Theorems4.1(2, 3) and 2.3(8).
(11)

√¬√
idα ≡ ¬√¬ α.

By Theorems4.1(1, 2, 3) and 2.3(8).
(12)

√
id

√¬(α ∧ β) ≡ √¬ f .
By definition of model, by Theorems4.1(2, 3) and 2.3(14).

(13)
√¬√

id(α ∧ β) ≡ √¬ f .
By definition of model, by Theorems4.1(2, 3) and 2.3(14). �

Interestingly enough, some classical arguments that may be violated in the logic
HQCL are instead valid in the logicCQCL, where conjunctions and disjunctions are
always commutative, associative and weakly distributive. As we have seen, unlike
the holistic case, in the compositional semantics all gates that correspond to logical
connectives commute with the contextual meanings of the subformulas of the for-
mulas under investigation (Theorems4.1 and 4.3). As a consequence, the semantic
properties of all connectives turn out to “mirror” the properties of the corresponding
gates.

Theorem 4.9 (1) α ∧ β �CQCL β ∧ α; α ∨ β �CQCL β ∨ α

(2) α ∧ (β ∧ δ) ≡CQCL (α ∧ β) ∧ δ; α ∨ (β ∨ δ) ≡CQCL (α ∨ β) ∨ δ

(3) α ∧ (β ∨ δ) �CQCL (α ∧ β) ∨ (α ∧ δ); (α ∨ β) ∧ (α ∨ δ) �CQCL α ∨ (β

∧ δ)

Proof By definition of the connective ∨, by Theorems4.1, 4.3 and 2.3(4). �

Thus, CQCL is a logic that is stronger than HCQL. We have:

α �HQCL β =⇒ α �CQCL β; α �CQCL β �=⇒ α �HQCL β.

It is worth-while noticing that in the logic CQCL the weak distributive property
holds in the “opposite direction” with respect to the weak distributivity of Birkhoff
and von Neumann’s quantum logic, where:

(α ∧ β) ∨ (α ∧ δ) �QLBN α ∧ (β ∨ δ); α ∧ (β ∨ δ) �QLBN (α ∧ β) ∨ (α ∧ δ).

Quantum events and quantum pieces of information turn out to have a different
behavior with respect to the distributivity-laws.

Apparently, the logicHQCL is very weak: important logical arguments that hold
in classical logic and in many alternative logics are here violated. At the same time,
the situations represented in this semantics seem to be in agreement with a number
of informal ways of reasoning (expressed in the framework of natural languages),
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where conjunctions and disjunctions are frequently used as non-idempotent, non-
commutative and non-associative logical operations.

As is well known, the semantics of natural languages is essentially holistic and
contextual.We need only think how children learn theirmother-language, showing an
extraordinary capacity of understanding and using correctly the contextual meanings
of linguistic expressions that occur in different contexts. And it often happens that the
meaning of a global expression is grasped and used in a clear and correct way, while
the meanings of its parts appear more vague and ambiguous. Possible applications
of the holistic quantum computational semantics to different fields that may be far
from microphysics will be investigated in Chap. 8.
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Chapter 5
Individuals, Quantifiers and Epistemic
Operators

5.1 Introduction

The intrinsic informational content that characterizes quantum computational logics
has naturally inspired some interesting and intriguing epistemic problems. We will
investigate the possibility of a quantum computational semantics for a first-order
language that can express sentences like “Alice knows that everybody knows that
she is pretty”.

As is well known, most semantic approaches to epistemic logics that can be found
in the literature have been developed in the framework of a Kripke-style semantics.
We will follow here a different approach, whose aim is representing both quantifiers
and epistemic operators as “genuine” quantum concepts, living in a Hilbert-space
environment. In this perspective, the basic question will be: to what extent is it pos-
sible to interpret quantifiers and epistemic operators as special examples of Hilbert-
space operations? Interestingly enough, these logical operators turn out to have a
similar semantic behavior, giving rise to a kind of “reversibility-breaking”: unlike
the case of logical connectives, both quantifiers and epistemic operators cannot be
generally represented as reversible gates. The “act of knowing” and the use of uni-
versal or existential assertions seem to involve some irreversible “theoretic jumps”,
which are similar to quantummeasurements (where the collapse of the wave function
comes into play).

A characteristic feature of the epistemic quantum computational semantics is the
use of the notion of truth-perspective: each epistemic agent (say, Alice, Bob,…) is
supposed to be associated to a truth-perspective that is mathematically determined
by the choice of a particular orthonormal basis of the two-dimensional Hilbert space
C

2. Truth-perspective changes give rise to some interesting relativistic-like epistemic
effects: if Alice and Bob have different truth-perspectives, Alice might see a kind of
deformation in Bob’s logical behavior. Epistemic agents are also characterized by
specific epistemic domains that contain the pieces of information that are accessible
to them. Due to the limits of such domains the unrealistic phenomenon of logical
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omniscience is avoided in this semantics: Alicemight know a given sentence without
knowing all its logical consequences.1

As happens in the case of knowledge operators, quantifiers also can be inter-
preted as special examples of Hilbert-space operations that are generally irreversible.
Unlike most semantic approaches, the models of the first-order quantum computa-
tional semantics do not refer to domains of individuals dealt with as closed sets (in a
classical sense). The interpretation of a universal formula does not require any “ideal
test” that should be performed for all elements of a collection of objects (which
might be infinite or indeterminate).

5.2 Truth-Perspectives

In the previous Chapters we have always referred to the canonical bases of the Hilbert
spaces under consideration. But, of course, the choice of a particular basis of a given
Hilbert space is a matter of convention. Consider the space C

2. Any orthonormal
basis of this space can be described as determined by the application of a unitary
operator T to the elements of the canonical basis {|0〉, |1〉}. From an intuitive point
of view, we can think that the operator T gives rise to a change of truth-perspective.
While the classical truth-values Truth and Falsity have been identified with the two
bits |1〉 and |0〉, assuming a different basis corresponds to a different idea of Truth
and Falsity. Since any basis-change in C

2 is determined by the choice of a particular
unitary operator, we can identify a truth-perspectivewith a unitary operator T of C

2.
We will write:

|1T〉 = T|1〉; |0T〉 = T|0〉,

and we will assume that |1T〉 and |0T〉 represent, respectively, the truth-values Truth
and Falsity of the truth-perspective T. The canonical truth-perspective is, of course,
determined by the identity operator I(1). We will indicate by B(1)

T the orthonormal
basis determined byT; whileB(1)

I will represent the canonical basis. From a physical
point of view,we can suppose that each truth-perspective is associated to an apparatus
that allows one to measure a given observable.

Any unitary operatorT ofH (1) (representing a truth-perspective) can be naturally
extended to a unitary operator T(n) of H (n) (for any n > 1):

T(n)|x1, . . . , xn〉 = T|x1〉 ⊗ · · · ⊗ T|xn〉.

1A different approach to epistemic quantum logics has been developed in some important contribu-
tions by A. Baltag and S. Smets (see, for instance, [1–3]). In this approach information is supposed
to be stored by quantum objects; at the same time, epistemic agents are supposed to communicate
in a classical way. On this basis, epistemic operators are dealt with as classical modalities in a
Kripkean framework.
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Accordingly, any choice of a unitary operator T ofH (1) determines an orthonor-
mal basis B(n)

T for H (n) such that:

B(n)

T =
{
T(n)|x1, . . . , xn〉 : |x1, . . . , xn〉 ∈ B(n)

I

}
.

Instead of T(n)|x1, . . . , xn〉 we will also write: |x1T, . . . , xnT〉. The elements of B(1)
T

will be called the T-bits of H (1); while the elements of B(n)

T will represent the
T-registers of H (n).

The notions of truth, falsity and probability can be naturally generalized to any
truth-perspective T.

Definition 5.1 (T-true and T-false registers)

• |x1T, . . . , xnT〉 is a T-true register iff |xnT〉 = |1T〉;
• |x1T, . . . , xnT〉 is a T-false register iff |xnT〉 = |0T〉.
Definition 5.2 (T-Truth and T-Falsity)

• The T-Truth ofH (n) is the projection operator TP (n)
1 that projects over the closed

subspace spanned by the set of all T- true registers;
• theT-Falsity ofH (n) is the projection operator TP (n)

0 that projects over the closed
subspace spanned by the set of all T- false registers.

Definition 5.3 (T-Probability) For any ρ ∈ D(H (n)),

pT1 (ρ) := tr(ρ TP (n)
1 ).

Like in the canonical case, the probability-function pT1 allows us to define a natural
pre-order relation �T on the set D of all possible pieces of quantum information.

Definition 5.4 (The T-pre-order relation) For any ρ, σ ∈ D,

ρ �T σ iff pT1 (ρ) ≤ pT1 (σ ).

All gates can be naturally transposed from the canonical truth-perspective to any
truth-perspective T. Let G(n) be a gate ofH (n) defined with respect to the canonical
truth-perspective. The twin-gate G(n)

T , defined with respect to the truth-perspective
T, is determined as follows:

G(n)

T := T(n)G(n)T(n)† .

As expected, like in the case of the canonical gates, any T-gate G(n)

T will have a
corresponding T-unitary operation DG(n)

T such that for any ρ ∈ D(H (n)):

DG(n)

T ρ = G(n)

T ρ G(n)†

T .
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On this ground, for any choice of a truth-perspective T, the T- Toffoli-gate allows
us to define a T- holistic conjunction:

∀ρ ∈ D(H (m+n)) : DAND(m,n)

T (ρ) := DT(m,n,1)
T (ρ ⊗ TP (1)

0 ).

When T = I, we will also write: DAND(m,n) (instead of DAND(m,n)
I ) and p1 (instead

of pI
1 ).

5.3 A First-Order Epistemic Quantum Computational
Language

We will now introduce the language L1, which is a first-order epistemic extension
of the sentential language L0 (considered in the previous Chapter).
The alphabet of L1 contains the following primitive symbols:

• sentential constants, including the true sentence t and the false sentence f ;
• individual names (a,b, . . .) and individual variables (x, y, . . .);
• m-ary predicates Pm

i (with m ≥ 1);
• the logical connectives ¬,

√
id ,

√¬, 
, ᵀ;
• the universal quantifier ∀;
• the epistemic operators K (to know), B (to believe), U (to understand).

We will use t, t1, t2, . . . as metavariables for individual terms (either names or
variables). The notions of formula and of sentence are defined in the expected way:

• sentential constants and expressions having the form Pm
i t1 . . . tm are (atomic) for-

mulas;
• if α, β are formulas and q is a sentential constant, then the expressions¬α,

√
id α,√¬ α, α 
 β, ᵀ(α, β, q) are formulas;

• for any formula α(x) (where x is a variable occurring free in α), the expression
∀xα(x) is a formula;2

• for any term t and any formula α, the expressions Ktα (t knows α), Btα (t believes
α), Utα (t understands α) are formulas. The subexpressions Kt , Bt , Ut will be
called epistemic connectives.

Sentences are formulas that do not contain any free variable.
Like in the sentential case, wewill useq,q1,q2, . . . asmetavariables for sentential

constants, while α, β, γ, . . . will represent generic formulas. The binary conjunction
∧, the binary inclusive disjunction ∨ and the existential quantifier ∃ are metalinguis-
tically defined as follows:

2For semantic aims it is useful to assume the strict condition according to which quantifiers should
always be applied to variables that occur free in the formulas in question. Accordingly, expressions
like ∀x P1a will not be considered well-formed formulas (in agreement with the common use of
natural languages).
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α ∧ β := ᵀ(α, β, f); α ∨ β := ¬(¬α ∧ ¬β); ∃xα := ¬∀x¬α.

As happens in the sentential case, any formula α of the language L1 can be
decomposed into its parts, giving rise to its syntactical tree STreeα:

Levelαh
. . . . . .

Levelα1

where:

• each Levelαi (with 1 ≤ i ≤ h) is a sequence (βi1 , . . . , βir ) of subformulas of α;
• the bottom level Levelα1 is (α);
• the top level Levelαh is the sequence (atα1 , . . . , atαk ) of the atomic subformulas
occurring in α;

• for any i (with 1 ≤ i < h), Levelαi+1 is the sequence obtained by dropping the
principal logical connective, the principal epistemic connective and the principal
quantifier in all molecular formulas occurring at Levelαi , and by repeating all
atomic formulas that occur at Levelαi .

Like in the sentential case, Height (α) (theHeight of α) is the number h of levels
of the syntactical tree of α.

Example 5.1 Consider the formula

α = Ka¬∀xK xP(1)a

(say, “Alice knows that not everybody knows that she is pretty”).
The syntactical tree of α is the following sequence of sequences of subformulas

of α:

Levelα5 = (P1a)

Levelα4 = (KxP1a)

Levelα3 = (∀xK xP1a)

Levelα2 = (¬∀xK xP1a)

Levelα1 = (Ka¬∀xK xP1a)

We will now define the notion of atomic structure of a formula α, a syntacti-
cal concept that will play an important semantic role. Let us first consider a simple
example: the case of an atomic formula P1t . The basic semantic idea is that the infor-
mation corresponding to P1t can be represented by the state ρ of a quantum system
S consisting of three subsystems: the first one is supposed to store the information
described by the predicate P1, the second one stores the information described by the
term t , while the third one stores the “truth-degree” according to which the object
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denoted by t satisfies the property denoted by P1. Notice that, according to this idea,
the same type of information is supposed to store both predicates and individual
terms. Unlike classical set-theoretic semantics, we do not refer to any ontological
hierarchy.

In the case of an atomic formula whose form is Pmt1 . . . tm , we will need m + 2
systems; while for a sentential constant, one system will be sufficient. Accordingly,
we can assume that the atomic structure of Pmt1 . . . tm is (m + 2), while (1) is the
atomic structure of a sentential constant.

In the general case, the notion of atomic structure of a formula α is defined as
follows.

Definition 5.5 (Atomic structure) Consider a formula α such that:

Levelαh = (atα1 , . . . , atαk ),

where atα1 , . . . , atαk are the atomic formulas occurring in α and h is the Height of α.
The atomic structure of α is a sequence of natural numbers

AtStr(α) = (n1, . . . , nk),

such that for any ni (with 1 ≤ i ≤ k):

ni =
{
1, if atαi is a sentential constant;
2 + m, if atαi = Pmt1 . . . tm .

The atomic structure of any formula α determines its atomic complexity. Let
AtStr(α) = (n1, . . . , nk). The atomic complexity of α is the number

At (α) = n1 + · · · + nk .

Ashappens in the sentential case, the atomic complexity of a formulaα determines
the Hilbert space H α , the semantic space where any possible meaning for α shall
live. Let α be a formula such that

AtStr(α) = (n1, . . . , nk); At (α) = n1 + · · · + nk .

We can write:

H α = H (At (α)) = H (n1) ⊗ · · · ⊗ H (nk ) = H (n1+···+nk ).

Example 5.2 Consider the formula α = ᵀ(P1a,¬P1a, f).
We have:

AtStr(α) = (3, 3, 1); At (α) = 7; H α = H (7).



5.4 A Holistic Quantum Computational Semantics for a Fragment of the Language L1 91

5.4 A Holistic Quantum Computational Semantics
for a Fragment of the LanguageL1

Wewill first introduce the basic semantic concepts for a fragment of the full language
L1. This fragment, indicated by L −

1 , consists of all formulas that do not contain
any occurrence either of quantifiers or of epistemic operators. In such a case, for
any choice of a truth-perspective T, the syntactical tree of any formula α uniquely
determines a sequence of gates, all defined on the semantic space of α.

As an example, consider the (contradictory) formula

α = P1a ∧ ¬P1a = ᵀ(P1a,¬P1a, f).

In the syntactical tree of α the second level has been obtained from the third level by
repeating the first occurrence of P1a, by negating the second occurrence of P1a and
by repeating f , while the first level has been obtained by applying the connective ᵀ to
the sequence of formulas occurring at the second level. Accordingly, one can say that,
for any choice of a truth-perspective T, the syntactical tree of α uniquely determines
the following sequence consisting of two gates, both defined on the semantic space
of α: (

DI(3)
T ⊗ DNOT(3)

T ⊗ DI(1)
T , DT(3,3,1)

T

)
.

Such a sequence is called the T-gate tree of α. This procedure can be naturally
generalized to any formula α. The general form of the T- gate tree of α will be:

(DGα
T(h−1)

, . . . , DGα
T(1)

),

where h is the Height of α.
Now the concepts of holistic map, contextual meaning and holistic model for the

language L −
1 can be defined, like in the sentential case, mutatis mutandis.

Definition 5.6 (Holistic map) A holistic map for L −
1 , associated to a truth-

perspective T, is a map HolT that assigns a meaning HolT(Levelαi ) to each level
of the syntactical tree of α, for any formula α. This meaning is a density operator
living in the semantic space of α.

On this basis, the meaning assigned by HolT to the formula α is defined as follows:

HolT(α) := HolT(Levelα1 ).

Given a formula γ , any holistic map HolT determines the contextual meaning,
with respect to the context HolT(γ ), of any occurrence in γ of a subformula, of a
predicate, of a term.

Definition 5.7 (Contextual meaning of an occurrence of a subformula) Consider a
formula γ such that Levelγi = (βi1 , . . . , βir ). We have:
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H γ = H βi1 ⊗ · · · ⊗ H βir .

Let HolT be a holistic map. The contextual meaning of the occurrence βi j with
respect to the context HolT(γ ) is defined as follows:

Holγ

T(βi j ) := Red( j)
[At (βi1 ),...,At (βir )](HolT(Leveli (γ ))).

Of course, we obtain:
Holγ

T(γ ) = HolT(γ ).

Definition 5.8 (Contextual meaning of an occurrence of a predicate and of a term)
Consider a formula γ such that Levelγi = (βi1 , . . . , βir ) and let βi j = Pmt1 . . . tm .
Consider a holistic map HolT. The contextual meanings of the occurrences of Pm

and of tk (with 1 ≤ k ≤ m) in βi j with respect to the context HolT(γ ) are defined
as follows:

Hol
(γ,βi j )

T (Pm) := Red(1)
[1,m+1](Hol

γ

T(βi j ));

Hol
(γ,βi j )

T (tk) := Red(2)
[k,1,m+2−(k+1)](Hol

γ

T(βi j )).

A holistic map HolT is called normal for a formula γ iff HolT assigns the same
contextual meaning to all occurrences of a subformula, of a predicate, of a term in
the syntactical tree of γ . A normal holistic map is a holistic map HolT that is normal
for all formulas γ .

Like in the sentential case, holistic models of the languageL −
1 can be now defined

as normal holistic maps that preserve the logical form of all formulas, assigning the
“right” meaning to the false sentence f and to the true sentence t.

Definition 5.9 (Holistic model) A holistic model of L −
1 is a normal holistic map

HolT that satisfies the following conditions for any formula α.

(1) Let (DGα
T(h−1)

, . . . , DGα
T(1)

) be the T-gate tree of α and let 1 ≤ i < h. Then,

HolT(Levelαi ) = DGα
T(i)

(HolT(Levelαi+1)).

In otherwords, themeaning of each level (different from the top level) is obtained
by applying the corresponding gate to the meaning of the level that occurs imme-
diately above.

(2) The contextual meanings assigned by HolT to the false sentence f and to the
true sentence t are the T-Falsity TP (1)

0 and the T-Truth TP (1)
1 , respectively.

On this basis, we put:

HolT(α) := HolT(Levelα1 ),
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for any formula α.
As happens in the sentential case, any HolT(α) represents a kind of autonomous

semantic context that is not necessarily correlated with the meanings of other for-
mulas. Generally we have:

Holγ

T(β) �= Holδ
T(β).

Thus, one and the same formula may receive different contextual meanings in dif-
ferent contexts.

Now the concepts of truth, validity and logical consequence for the languageL −
1

can be defined like in the sentential case, mutatis mutandis.

Definition 5.10 (Truth) A formula α is called true with respect to a model HolT

(abbreviated as |=HolT
α) iff pT

1 (HolT(α)) = 1.

Definition 5.11 (Validity)

(1) α is called T-valid (|=T α) iff for any model HolT, |=HolT
α.

(2) α is called valid (|= α) iff for any truth-perspective T, |=T α.

Definition 5.12 (Logical consequence)

(1) β is called a T-logical consequence of α (α �T β) iff for any formula γ such
that α and β are subformulas of γ and for any model HolT,

Holγ

T(α) �T Holγ

T(β).

(2) β is called a logical consequence of α (α � β) iff for any truth-perspective T,
α �T β.

When α �I β, we say that β is a canonical logical consequence of α.
Interestingly enough, the concept of logical consequence turns out to be invariant

with respect to truth-perspective changes.

Theorem 5.1 For any truth-perspective T and for any formulas α, β:

α �T β iff α �I β.

Proof Consider a truth-perspective T. In any space H (n), any ρ ∈ D(H (n)) has a
T-twin Tρ such that:

Tρ = TρT†.

Of course, Tρ = ρ, if T = I. Consider the map

t : D(H (n)) → D(H (n)),

such that t(ρ) = Tρ, for any ρ ∈ D(H (n)). Since T is a unitary operator, the map
t is a bijection fromD(H (n)) onto itself. One can prove that:
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(1) for any gate DG(n) of H (n) and any ρ ∈ D(H (n)),

t(DG(n)ρ) = DG(n)

T t(ρ)

(where DG(n)

T is the twin-gate of DG(n) with respect to the truth-perspective T).
Thus, the map t preserves all gates.

(2) For any ρ, σ ∈ D(H (n)),

ρ �I σ iff t(ρ) �T t(σ ).

Thus, the map t preserves the pre-order relation.

On this basis, one can easily prove the following conditions ((3), (4)).

(3) For any canonical model HolI there exists a T-model (t)HolT such that for any
formula γ and any subformula α of γ ,

Holγ
I(α) = ρ =⇒ (t)Holγ

T(α) = t(ρ).

Whence (by (2)):

Holγ
I(α) �I Holγ

I(β) iff (t)Holγ

T(α) �T
(t)Holγ

T(β).

(4) For any T- model HolT there exists a canonical model (t−1)HolI such that for
any formula γ and any subformula α of γ ,

Holγ

T(α) = ρ =⇒ (t−1)Holγ
I(α) = t−1(ρ).

Whence (by (2)):

Holγ

T(α) �T Holγ

T(β) iff (t−1)Holγ
I(α) �I

(t−1)Holγ
I(β).

Consequently, by definition of T-logical consequence we obtain:

α �T β iff α �I β.

�

An immediate consequence of Theorem5.1 is the following Corollary.

Corollary 5.1 α � β iff α �I β iff α �T β, for some truth-perspective T.

Like in the sentential case, one can prove that the logical consequence-relation is
reflexive and transitive.

Theorem 5.2

(1) α � α;
(2) α � β and β � δ ⇒ α � δ.
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5.5 An Epistemic Quantum Computational Semantics

Wewill now define the basic semantic concepts for a richer fragment of the language
L1. This fragment, indicated by EpL −

1 represents an epistemic extension of L −
1

that includes all quantifier-free epistemic formulas ofL1.
The main intuitive idea of the epistemic quantum computational semantics can be

sketched as follows: any occurrence of an epistemic operator (K , B,U ) in a formula
α is interpreted as a special example of a quantum map, representing an epistemic
operation associated to a given epistemic agent, which is characterized by a particular
truth-perspective. Of course “real” agents evolve in time, changing their epistemic
status. For the sake of simplicity, however, we will abstract from time, considering
all agents during “short” time-intervals, where their epistemic status is supposed to
remain constant.3

We will start by analyzing the most significant epistemic operations, represented
by knowledge-operations.

Definition 5.13 (Knowledge-operation) A knowledge-operation of a Hilbert space
H (n) with respect to a truth-perspective T is a map

K
(n)

T : B(H (n)) → B(H (n)),

whereB(H (n)) is the set of all bounded operators ofH (n). The following conditions
are required:

(1) for any ρ ∈ D(H (n)), K
(n)

T ρ ∈ D(H (n));
(2) K

(n)

T is associated with an epistemic domain EpD(K
(n)

T ) that is a subset of
D(H (n));

(3) pT
1 (K

(n)

T ρ) ≤ pT
1 (ρ), for any ρ ∈ EpD(K

(n)

T ).

As expected, the intuitive interpretation of K
(n)

T ρ is the following: the piece
of information ρ is known according to the truth-perspective T. The knowledge
described by K

(n)

T is limited by a given epistemic domain, which is intended to rep-
resent the information accessible to a given agent, relatively to the space H (n).4

When ρ belongs to the epistemic domain of K(n)

T , it seems reasonable to assume
that the probability-values of ρ and K(n)

T ρ are correlated: the probability of the quan-
tum information asserting that “ρ is known” should always be less than or equal to
the probability of ρ. Hence, in particular, we have:

pT1 (K
(n)

T ρ) = 1 ⇒ pT1 (ρ) = 1.

3See [4–8].
4The epistemic domain of K(n)

T should not be confused with the domain of K(n)
T , which coincides

with the set of all bounded operators of the space: K(n)
T ρ is defined, even if ρ does not belong to the

epistemic domain of K(n)
T .
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But, generally, not the other way around. In other words, pieces of quantum informa-
tion that are certainly known are certainly true (with respect to the truth-perspective
in question). This condition is clearly in agreement with a general principle of stan-
dard epistemic logics, according to which “knowledge implies truth, but generally
not the other way around”.

A knowledge-operation K
(n)

T is called

• non-trivial iff for at least one density operator ρ ∈ EpD(K
(n)

T ),

pT1 (K
(n)

T ρ) < pT1 (ρ);

• strong iff EpD(K
(n)

T ) = D(H (n))

(thus, the agent in question has access to all pieces of quantum information of the
space).

Can knowledge-operations be always represented as (reversible) gates? We will
prove that this question has a negative answer. To this aim, we will first introduce
the concept of probabilistic identity with respect to a truth-perspective T (briefly,
T-probabilistic identity).

Definition 5.14 (T-probabilistic identity) A linear operator A of a space H (n) is
called a T-probabilistic identity iff for any quregister |ψ〉 of the space,

pT
1 (A|ψ〉) = pT

1 (|ψ〉).

Thus, T-probabilistic identities preserve all T-probability values.
Some characteristic properties of T-probabilistic identities of the spaceH (1) are

described by the two following Theorems.

Theorem 5.3 A linear operator A ofH (1) is a T-probabilistic identity iff A can be
represented as a matrix (with respect to the basis B1

T) whose form is:

A =
[
eıθ 0
0 eıη

]
,

where θ, η ∈ R and ı is the imaginary unit.5

Proof 1. Suppose that

A =
[
a b
c d

]

is a T-probabilistic identity. We have:

• A|0〉T = a|0〉T + c|1〉T; A|1〉T = b|0〉T + d|1〉T.

5For the concept of matrix-representation of a linear operator A on a finite-dimensional Hilbert
space see Sect. 10.2 (of the Mathematical Survey in Chap.10).
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• pT
1 (A|0〉T) = pT

1 (|0〉T) = 0; pT
1 (A|1〉T) = pT

1 (|1〉T) = 1.

Hence, b = 0, d = eıη (for some η ∈ R) and c = 0, a = eıθ (for some θ ∈ R).
Thus,

A =
[
eıθ 0
0 eıη

]
.

2. Suppose that

A =
[
eıθ 0
0 eıη

]
.

Consider a generic qubit |ψ〉 = a0|0〉T + a1|1〉T of H (1). We have:

A|ψ〉 = a0e
ıθ |0〉T + a1e

ıη|1〉T.

Thus,
pT
1 (A|ψ〉) = |a1eıη|2 = |a1|2 = pT

1 (|ψ〉).

Hence, A is a T-probabilistic identity.
�

Theorem 5.4 Let U be a unitary operator ofH (1) such that for any qubit |ψ〉 of the
space,

pT
1 (U|ψ〉) ≤ pT

1 (|ψ〉).

Then, U is a T-probabilistic identity ofH (1).

Proof Let

U =
[
a b
c d

]
.

Thus, U|0〉T = a|0〉T + c|1〉T and U|1〉T = b|0〉T + d|1〉T.
By hypothesis we have:

pT
1 (U|0〉T) = pT

1 (a|0〉T + c|1〉T) ≤ pT
1 (|0〉T) = 0.

Hence, pT
1 (U|0〉T) = 0, c = 0 and a = eıθ (for some θ ∈ R). Consequently,

U =
[
eıθ b
0 d

]
.

Since U is unitary, we have: UU† = I(1). Thus,
[
eıθ b
0 d

] [
(eıθ )∗ 0
b∗ d∗

]
=

[
1 0
0 1

]
.
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Hence, dd∗ = 1 and d = eıη (for some η ∈ R). Moreover, b = 0, because
eıθ (eıθ )∗ + bb∗ = 1. Whence,

U =
[
eıθ 0
0 eıη

]
.

Consequently, by Theorem5.3, U is a T-probabilistic identity.
�

Theorem 5.5 Non-trivial strong knowledge-operations of the space H (1) cannot
be represented as unitary operations.

Proof Let K(1)
T be a non-trivial strong knowledge operation ofH (1)and suppose by

contradiction that K(1)
T is a unitary operation. Hence, there exists a unitary operator

U of H (1) such that for any ρ ∈ D(H (1)):

K
(1)
T ρ = UρU†.

If ρ is a pure state P|ψ〉, we have:

K
(1)
T P|ψ〉 = UP|ψ〉U† = PU|ψ〉.

Thus,
pT
1 (K(1)P|ψ〉) = pT

1 (PU|ψ〉) = pT
1 (U|ψ〉).

Since K(1)
T is a strong knowledge operation, any pure state |ψ〉 ofH (1) shall satisfy

the condition:
pT
1 (U|ψ〉) ≤ pT

1 (|ψ〉).

Consequently, by Theorem5.4, the unitary operator U turns out to behave as a T-
probabilistic identity. We obtain:

pT
1 (U|ψ〉) = pT

1 (|ψ〉); pT
1 (K(1)P|ψ〉) = pT

1 (P|ψ〉).

One can show that a similar equality holds for all density operators ρ ∈ D(H (1)):

pT
1 (K

(1)
T ρ) = pT

1 (ρ).

But this contradicts the hypothesis that K(1)
T is a non-trivial knowledge operation. �

Generally, the act of knowing seems to be characterized by an intrinsic irreversibility
that is quite similar towhat happens in the case of quantum-measurement phenomena.

We will now analyze the behavior of two other important epistemic operations:
believing and understanding. As is well known, a rich literature on epistemic logics
has deeply studied the critical relationships between knowledge and beliefs. And
in this connection different intuitive ideas and different abstract approaches have
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been proposed. A crucial question concerns the “degree of rationality” that should
be attributed to beliefs. Shall we assume, for instance, that beliefs always respect
some “minimal” logical requirements? To what extent can beliefs be represented as
particular forms of subjective knowledge?

Wewill followhere a somewhat “pessimistic” view about the rationality of beliefs,
which (unfortunately) seems to be frequently confirmed bymany forms of individual
and collective behaviors in our present society. Epistemic agents seem to be often
inclined to believe a lot of assertions, whosemeanings are not necessarily understood
by them. Beliefs are not generally based either on empirical evidence or on rational
arguments. Accordingly, in the framework of the epistemic quantum computational
semantics the abstract behavior of belief-operations will be sharply distinguished
from the abstract behavior of knowledge-operations. Unlike knowledge-operations,
belief-operationswill not be associated either to epistemic domains or to probabilistic
constraints.

Definition 5.15 (Belief-operation) A belief-operation of a Hilbert spaceH (n) with
respect to a truth-perspectiveT (indicated byB(n)

T ) is anymap that transforms density
operators into density operators of the space.

The expected intuitive interpretation of B(n)

T ρ is: the piece of information ρ is
believed according to the truth-perspective T. Unlike knowledge-operations, belief-
operations (which are not supposed to satisfy any particular restriction) can be rep-
resented as (reversible) gates. A somewhat curious example of a belief-operation
might be the following:

B
(n)
I = DNOT(n)

I .

An agent whose belief-operation is B
(n)
I behaves as a person characterized by a

“perfect spirit of contradiction”. Whenever a piece of information ρ is proposed,
his/her reaction will be an opposition to ρ. Thus, such an agent will certainly believe
some pieces of information that are certainly false!

It is worth-while noticing that the quantum computational approach to epistemic
logic does not oppose beliefs (which may correspond to irrational behaviors) to a
kind of absolute (or dogmatic) concept of knowledge. As we have seen, according
to our definition of knowledge-operation, any K(n)

T turns out to depend on the choice
of a truth-perspective and of a particular information-domain that is assumed to be
accessible to the epistemic agent under consideration. Hence, knowledge is here
described as a probabilistic valuation that is essentially relativistic and context-
dependent, in perfect agreement with the characteristic “spirit” of quantum theory.

Let us now analyze the behavior of our third epistemic operation: understanding.
As happens in the case of knowledge-operations, it seems reasonable to assume
that the understanding-operation U

(n)

T of a given epistemic agent (with respect to a
truth perspective T, in a Hilbert space H (n)) is associated to an epistemic domain
EpD(U

(n)

T ), consistingof all pieces of information that our agent is able to understand.

Definition 5.16 (Understanding-operation) An understanding-operation of a
Hilbert space H (n) with respect to a truth-perspective T is a map
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U
(n)

T : B(H (n)) → B(H (n)),

that satisfies the following conditions:

(1) for any ρ ∈ D(H (n)), U
(n)

T ρ ∈ D(H (n));
(2) U

(n)

T is associated with an epistemic domain EpD(U
(n)

T ) that is a subset of
D(H (n));

(3) ρ ∈ EpD(U
(n)

T ) ⇒ pT
1 (U

(n)

T ρ) = 1.

Thus, the information U
(n)

T ρ (ρ is understood according to the truth-perspective
T) is certain, whenever ρ is a piece of information epistemically accessible to the
agent under consideration.

On this basis we can now define the concept of epistemic situation of a given
agent. Froman intuitive point of view it seems reasonable to assume that the epistemic
situation of an agent i (say,Alice,Bob,…) is characterized by the following elements:

• the truth-perspective of i;
• the pieces of information that are epistemically accessible to i;
• the probabilistic behavior of iwith respect to knowledge, belief and understanding
in any information-environment D(H (n)).

Definition 5.17 (Epistemic situation of an agent) Let i represent an epistemic agent.
An epistemic situation for i is a system

EpSiti = (Ti, EpDi, Ki, Bi Ui),

where:

(1) Ti represents the truth-perspective of i.
(2) EpDi is amap that assigns to any n ≥ 1 a set EpD(n)

i ⊆ D(H (n)) that represents
the information accessible to i in the information-environment D(H (n)).

(3) Ki is a map that assigns to any n ≥ 1 a knowledge-operation K
(n)

Ti
(defined on

H (n)), which describes the knowledge of i with respect to the information-
environment D(H (n)). The epistemic domain associated to the operation K

(n)

Ti

is the set EpD(n)

i .
(4) Bi is a map that assigns to any n ≥ 1 a belief-operationB(n)

Ti
(defined onH (n)),

which describes the beliefs of i with respect to the information-environment
D(H (n)).

(5) Ui is amap that assigns to any n ≥ 1 an understanding-operationU(n)

Ti
(defined on

H (n)), which describes the pieces of information understood by i with respect
to the information-environment D(H (n)). The epistemic domain associated to
the operation U

(n)

Ti
is the set EpD(n)

i .

The following conditions are required:

(a) ∀ρ ∈ D(H (n)) : pTi

1 (K
(n)

Ti
ρ) ≤ pTi

1 (U
(n)

Ti
ρ).
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The probability of knowing a given information is less than or equal to the
probability of understanding it. Hence, in particular, what is certainly known is
certainly understood. But, generally, not the other way around.

(b) ∀ρ ∈ D(H (n)) : pTi

1 (K
(n)

Ti
ρ) ≤ pTi

1 (B
(n)

Ti
ρ).

The probability of knowing a given information is less than or equal to the prob-
ability of believing it. Hence, in particular, what is certainly known is certainly
believed. But, generally, not the other way around.

We can now define the main semantic concepts of the epistemic quantum com-
putational semantics for the language EpL −

1 .
The notions of normal holisticmap (HolT) and of contextualmeanings (Hol

γ

T(t),
Holγ

T(Pm), Holγ

T(β)) can be defined like in the case of the language L −
1 . Before

defining the concept of holistic model for the language EpL −
1 , we will first introduce

the notion of epistemic realization.

Definition 5.18 (Epistemic realization) An epistemic realization for the language
EpL −

1 is a pair
EpReal = (HolT, Ep),

where HolT is a normal holistic map for the language EpL −
1 and Ep is a map that

associates to any pair (α, t) consisting of a formula α and of a term t occurring in an
epistemic connective of α (either Kt or Bt or Ut) an epistemic situation

Ep(α, t) = EpSit(α,t) = (Ti, EpDi, Ki, Bi, Ui),

where i = Holα
T(t) (in other words, i represents the agent that corresponds to the

contextual meaning of the term t in the context HolT(α)).

Notice that generally
T �= Ti.

Thus, the truth-perspective of the agent denoted by the term t (according to the map
HolT) does not necessarily coincide with the truth-perspective of the holistic map
HolT. In the next section we will see how these truth-perspective differences may
cause some interesting relativistic-like epistemic effects.

Any epistemic realizationEpReal = (HolT,Ep) determines for any formula α a
special gate tree, called the EpReal-epistemic pseudo gate tree of α. As an example,
consider the following epistemic sentence:

α = Ka¬KbP1a

(say, “Alice knows that Bob does not know that she is pretty”).
We have: H α = H (3). The syntactical tree of α is:
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Levelα4 = (P1a)

Levelα3 = (KbP1a)

Levelα2 = (¬KbP1a)

Levelα1 = (Ka¬KbP1a)

Consider the two following epistemic situations (determined by EpReal):

EpSit(α,a) = (Ta, EpDa, Ka, Ba, Ua);

EpSit(α,b) = (Tb, EpDb, Kb, Bb, Ub),

where a is the agent (Alice), corresponding to the contextual meaning of the name a
in the context HolT(α), while b is the agent (Bob), corresponding to the contextual
meaning of the name b in the context HolT(α).

In such a case the EpReal-epistemic pseudo gate tree of α can be naturally iden-
tified with the following sequence of operations:

(K
(3)
Tb

, DNOT(3)
T , K

(3)
Ta

).

This procedure can be obviously generalized. For any formula α, the choice of an
epistemic realization EpReal determines the EpReal-epistemic pseudo gate tree of
α, indicated as follows:

(DGEpReal
T(h−1)

, . . . , DGEpReal
T(1)

).

Notice that in such a case T( j) and T(k) (where j �= k and 1 ≤ j, k ≤ h − 1) may be
two different truth-perspectives.

Of course, the elements of epistemic pseudo gate trees are generally irreversible
operations. Furthermore, unlike the case of the languageL −

1 , epistemic pseudo gate
trees are not uniquely determined by the syntactical trees of the formulas under
investigation. Any epistemic realization EpReal chooses for any α a particular inter-
pretation of the epistemic connectives occurring in α.

Now the concept of holistic model for the language EpL −
1 can be defined in the

expectedway. Like in the case ofL −
1 , anymodel shall preserve the logical form of all

formulas and shall assign the “right” meanings to the sentences f and t. Furthermore,
any model shall interpret the epistemic connectives occurring in a given formula as
convenient epistemic operations.

Definition 5.19 (Holistic model of EpL −
1 ) A holistic model of EpL −

1 is an epis-
temic realization

EpReal = (HolT,Ep)

that satisfies the following conditions for any formula α.
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(1) Let (DGEpReal
T(h−1)

, . . . , DGEpReal
T(1)

) be the EpReal-epistemic pseudo gate tree of α

and let 1 ≤ i < h. Then,

HolT(Leveli (α)) = DGEpReal
T(i)

(HolT(i+1) (Leveli+1(α))).

In otherwords, themeaning of each level (different from the top level) is obtained
by applying the corresponding gate (or pseudo gate) to the meaning of the level
that occurs immediately above.

(2) The contextual meanings assigned by HolT to the false sentence f and to the
true sentence t are the T-Falsity TP (1)

0 and the T-Truth TP (1)
1 , respectively.

On this basis the concepts of truth, validity and logical consequence are defined
like in the case of the language L −

1 , mutatis mutandis.
It is interesting to classify some special kinds of epistemic models that satisfy

particular restrictions.

Definition 5.20 (Specialmodels) LetEpReal = (HolT, Ep) be amodel of EpL −
1 .

(1) EpReal is called harmonic iff in all epistemic situations determined by EpReal
all agents have the truth-perspective T.

(2) EpReal is called sound iff all epistemic situations

EpSiti = (Ti, EpDi, Ki, Bi Ui)

determined by EpReal satisfy the following conditions:

(2.1) Ti P (1)
0 , Ti P (1)

1 ∈ EpD(1)
i ;

(2.2) K
(1)
Ti

(Ti P (1)
1 ) = Ti P (1)

1 ; K
(1)
Ti

(Ti P (1)
0 ) = Ti P (1)

0 .

In other words, any agent i has access to the Truth and to the Falsity of his/her
truth-perspective, assigning to them the “right” probability-values.

(3) EpReal is called falsity-based iff for any epistemic situation

EpSiti = (Ti, EpDi, Ki, Bi Ui)

determined by EpReal, the following condition is satisfied:

ρ /∈ EpD(n)

i =⇒ K
(n)

Ti
ρ = 1

2n
Ti P (n)

0

(thus, ρ /∈ EpD(n)

i =⇒ pTi
1 (K

(n)

Ti
ρ) = 0).

(4) EpReal is called perfect iff any agent i of an epistemic situation determined by
EpReal has a perfect epistemic capacity, satisfying the following conditions:

(4.1) for any n ≥ 1, the epistemic domain EpD(n)

i coincides with the set of
all density operators of H (n). Hence, any K

(n)

Ti
is a strong knowledge-

operation;
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(4.2) for any ρ ∈ D(H (n)), K(n)

Ti
ρ = ρ. Hence, the probability of knowing a

given information coincideswith the “right” probability of the information
in question.

Notice that a perfect epistemic capacity does not implyomniscience (i.e. the capac-
ity of semantically deciding any sentence). For, the semantic excluded-middle princi-
ple does not generally hold. Of course, both human and artificial intelligences cannot
be represented as perfect epistemic agents: the global epistemic domain

⋃
n EpD

(n)

i

of a “real mind” is unavoidably finite.
Models that are at the same time harmonic, sound and falsity-based will be called

simple. By simple epistemic (quantum computational) semantics we will mean the
special case of the epistemic semantics based on the assumption that all models are
simple.

When α is valid or β is a logical consequence of α in the simple semantics we
will write:

�Simple α; α �Simple β.

Let us finally sum up some significant examples of epistemic arguments that are
either valid or possibly violated in the epistemic quantum computational semantics.

(1) Ktα � Utα.
Knowing implies understanding. But not the other way around!

(2) Ktα � Btα.
Knowing implies believing. But not the other way around!

(3) Ktα �Simple α.
In the simple semantics, knowing a formula implies the formula itself. Of
course this relation does not hold in the general epistemic semantics,where non-
harmonic models may refer to different truth-perspectives of different agents.

(4) As a particular case of (3) we obtain:
KtK tα �Simple K tα.
Knowing of knowing implies knowing. But not the other way around!

(5) Kt1Kt2α �Simple α.

In the simple semantics, knowing that another agent knows a given formula
implies the formula in question. At the same time, we have:
Kt1Kt2α �

Simple K t1α.
Alice might know that Bob knows a given formula, without knowing herself
the formula in question!

(6) �Simple K tt.
Hence, there are sentences that everybody knows.

(7) Kt (α ∧ β) � Ktα; Kt (α ∧ β) � Ktβ.

Knowing a conjunction does not generally imply knowing its members.
(8) Ktα ∧ Ktβ � Kt (α ∧ β).

Knowledge is not generally closed under conjunction.
(9) �EpReal Kt (α ∧ ¬α), for any model EpReal

Contradictions are never known with certainty.
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(10) In the non-simple semantics (where models are not necessarily harmonic) the
following situation is possible:
�EpReal KaKbf .
In other words, according to Alice’s truth-perspective it is true that Alice knows
that Bob knows Alice’s Falsity. Roughly, we might say: Alice knows that Bob
is wrong, although Bob is not aware of being wrong!

The examples illustrated above seem to reflect pretty well some characteristic
features and limitations of the real processes of acquiring information andknowledge.
“Knowing” and “knowing of knowing” are sharply distinguished: in fact, from an
intuitive point of view, “knowing of knowing” generally corresponds to a stronger
formof knowledge that often involves a kind of “awareness”.Apparently, any abstract
representation of the epistemic operator “to know” as an S4-like necessity-operator
� (such that �α is logically equivalent to ��α) is only compatible with a highly
idealized concept of knowledge.6

Owing to the limits of epistemic domains, quantum knowledge operators are not
generally closed under logical consequence. Hence, the unpleasant phenomenon of
logical omniscience is here avoided: Alice might know a given sentence without
knowing all its logical consequences. We have, in particular, that knowledge is not
generally closed under logical conjunction, in accordance with what happens in the
case of concrete memories both of human and of artificial intelligence. It is also
admitted that an agent knows a conjunction, without knowing its members. Such a
situation that might appear prima facie somewhat “irrational” is instead consistent
with our use of natural languages: in fact, it often happens that agents understand
and use correctly some global expressions without being able to properly understand
their (meaningful) parts.

5.6 Physical Examples and Relativistic-Like Epistemic
Effects

We will now illustrate some examples of knowledge-operations that may be inter-
esting from a physical point of view. To this aim it is expedient to recall an useful
representation of the set of all density operators of the Hilbert space C

2 as vectors
of the three-dimensional Bloch-sphere BS of radius 1 (Fig. 5.1).

For any ρ ∈ D(C2), the corresponding Bloch-vector vρ is a vector of the three-
dimensional real vector space R

3 with norm at most 1, which is determined as
follows:

vρ = (vρ
1 , vρ

2 , vρ
3 ),

6It may be amusing to recall how the difference between “knowing” and “knowing of knowing”
has been used as “an investigation-tool” in some detective-stories by Agatha Christie. In the novel
“The ABC murders” the famous Hercule Poirot says: “I make the assumption that one-or possibly
all of you - knows something that they do not know they know.”
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Fig. 5.1 The Bloch-sphere

where:
vρ
1 = tr(ρ X), vρ

2 = tr(ρ Y), vρ
3 = tr(ρ Z).

The operators X, Y, Z are the three Pauli-matrices that are defined as follows:

X =
[
0 1
1 0

]
; Y =

[
0 −ı
ı 0

]
; Z =

[
1 0
0 −1

]
.

Conversely, for any Bloch-vector v = (v1, v2, v3) the corresponding density oper-
ator ρv is determined by the following matrix:

1

2

[
1 + v3 v1 − ıv2
v1 + ıv2 1 − v3

]
.

We have:
ρ(vρ ) = ρ; v(ρv) = v.

Via the Bloch-representation, any density operator ρ of C
2 can be canonically

represented as a combination of four unitary operators: the identity operator I(1) and
the three Pauli-matrices. For any ρ we have:

ρ = 1

2
(I(1) + vρ

1X + vρ
2Y + vρ

3Z).
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We will now introduce a class of quantum operations that have a special physical
interest. Let a, b, c be complex numbers such that |a|2 + |b|2 + |c|2 ≤ 1. Consider
the following system of Kraus-operators7 of C

2:

E0 = √
1 − |a|2 − |b|2 − |c|2 I(1)

E1 = |a|X
E2 = |b|Y
E3 = |c|Z

Define a,b,cE(1) as follows for any ρ ∈ D(C2):

a,b,cE(1)ρ =
3∑

i=0

Ei ρ E†
i .

We have:

a,b,cE(1)ρ = (1 − |a|2 − |b|2 − |c|2)ρ + |a|2XρX + |b|2YρY + |c|2ZρZ.

One can prove that for any choice of a, b, c (such that |a|2 + |b|2 + |c|2 ≤ 1), the
map a,b,cE(1) is a quantum operation of the space C

2.
Let us now refer to the Bloch-sphere. Any map a,b,cE(1) induces the following

vector-transformation:

(v1, v2, v3) �→ ((1 − 2|b|2 − 2|c|2) v1, (1 − 2|a|2 − 2|c|2) v2, (1 − 2|a|2 − 2|b|2) v3)

(for any vector (v1, v2, v3) of the sphere). Hence, the sphere is deformed into an
ellipsoid centered at the origin.

For particular choices of a, b and c, one obtains some special cases of quantum
operations.

• For a = b = c = 0, one obtains the identity operator.
• For b = c = 0, one obtains the bit-flip quantum operation aBF(1) that flips with
probability |a|2 the two canonical bits (IP (1)

0 and IP (1)
1 ) as follows:

IP(1)
0 �→ (1 − |a|2) IP(1)

0 + (|a|2) IP(1)
1 ; IP(1)

1 �→ (1 − |a|2) IP(1)
1 + (|a|2) IP(1)

0 .

The sphere is mapped into an ellipsoid with x as symmetry-axis (see Fig. 5.2).

• For a = c = 0, one obtains the bit-phase-flip quantum operation bBPF(1) that
flips both bits and phase with probability |b|2. The sphere is mapped into an
ellipsoid with y as symmetry-axis.

7The concepts of quantum operation and system of Kraus-operators have been introduced in
Sect. 1.4.
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Fig. 5.2 The bit-flip
quantum operation

• For a = b = 0, one obtains the phase-flip quantum operation cPF(1) that flips
the phase with probability |c|2. The sphere is mapped into an ellipsoid with z as
symmetry-axis.

• For |a|2 = |b|2 = |c|2 = p
4 (with p ≤ 1), one obtains the depolarizing quantum

operation pD(1). If p = 1, the polarization along any direction is equal to 0. The
sphere is contracted by a factor 1 − p and the center of the sphere is a fixed point.

The quantum operations considered above have been defined with respect to the
canonical truth-perspectiveI. However, as expected, they can be naturally transposed
to any truth-perspective T. Given E(1) such that

E(1)ρ =
3∑

i=0

Ei ρ E†
i ,

the twin-quantum operation E
(1)
T of E(1) can be defined as follows:

E
(1)
T ρ :=

∑
i

TEiT
† ρ TE†

i T
†.

So far we have considered quantum operations of the space C
2. But, of course,

any operation E(1)
T (defined on C

2) can be canonically extended to an operation E(n)

T

defined on the spaceH (n) (for any n > 1). Consider a density operatorρ ofH (n) and
the reduced state Red(2)

[n−1,1](ρ) (which describes the nth subsystem of the composite
system described by ρ). We have:
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pT1 (ρ) = tr(Red(2)
[n−1,1](ρ) TP (1)

1 ).

Thus, the T-probability of ρ only depends on the T-probability of the reduced state
that describes the nth subsystem. On this basis, it is reasonable to define E

(n)

T as
follows:

E
(n)

T = I(n−1) ⊗ E
(1)
T .

Notice that, generally, a quantum operation does not represent a knowledge-
operation. We may have, for instance, for some density operators ρ:

pI1 (
aBF(1)ρ) � pI1 (ρ),

against the definition of knowledge-operation (in the case where ρ is supposed
to belong to the epistemic domain of aBF(1)). At the same time, by convenient
choices of the epistemic domains, quantum operations can be easily transformed
into knowledge-operations. An interesting example is represented by the class of all
bit-flip knowledge-operations.

Definition 5.21 (A bit-flip knowledge-operation aKBF
(n)

T ) Consider a bit-flip oper-
ation aBF

(n)

T (with a �= 0). Define aKBF
(n)

T as follows:

(1) EpD(aKBF
(n)

T ) ⊆ D = {ρ ∈ D(H (n)) : pT1 (ρ) ≥ 1
2 }.

In other words, an agent (whose knowledge-operation is aKBF
(n)

T ) has only
access to pieces of information that are not “too far from the truth”.

(2) ρ ∈ EpD(aKBF
(n)

T ) ⇒ aKBF
(n)

T ρ = aBF
(n)

T ρ.
(3) ρ /∈ EpD(aKBF

(n)

T ) ⇒ aKBF
(n)

T ρ = 1
2n

TP (n)
0 .

Theorem 5.6

(1) Any aKBF
(n)

T is a knowledge-operation. In particular, aKBF
(n)

T is a non-trivial
knowledge-operation, if there exists at least one ρ ∈ EpD(aKBF

(n)

T ) such that
pT1 (ρ) > 1

2 ;

(2) the set D is themaximal set such that the corresponding aKBF
(n)

T is a knowledge-
operation;

(3) let |a|2 ≤ 1
2 and let EpD(aKBF

(n)

T ) = D. The following closure property holds:

for any ρ ∈ D, aKBF
(n)

T ρ ∈ D.

Proof (1)–(2) Suppose that ρ ∈ EpD(aKBF
(n)

T ) ⊆ D and let us represent the den-
sity operator T†Red(2)

[n−1,1](ρ)T as

1

2
(I(1) + v1X + v2Y + v3Z).
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We have:

• pT1 (aKBF
(n)

T ρ) = tr( TP (n)
1

aKBF
(n)

T ρ) =
tr(T IP (1)

1 T† ∑
i TEiT

† Red(2)
[n−1,1](ρ)TE†

i T
†) =

tr( IP (1)
1

∑
i EiT

† Red(2)
[n−1,1](ρ)TE†

i ) = 1−(1−2|a|2)v3
2 .

• pT1 (ρ) = tr( TP (n)
1 ρ) = tr(T IP (1)

1 T†Red(2)
[n−1,1](ρ)) = 1−v3

2 .

Hence, pT1 (aKBF
(n)

T ρ) ≤ pT1 (ρ) ⇔ (1 − 2|a|2)v3 ≥ v3 ⇔ v3 ∈ [−1, 0] ⇔
pT1 (ρ) ≥ 1

2 .

Thus, aKBF
(n)

T is a knowledge-operation and the set D is the maximal set
such that the corresponding aKBF

(n)

T is a knowledge-operation.

(3) pT1 (aKBF
(n)

T ρ) = 1−(1−2|a|2)v3
2 ≥ 1

2 , since |a|2 ≤ 1
2 and v3 ∈ [−1, 0].

�

In a similar way one can define knowledge-operations that correspond to the
phase-flip operation, the bit-phase-flip operation and the depolarizing operation.

Truth-perspectives are, in a sense, similar to different reference-frames in relativity
theory. Accordingly, one could try and apply a “relativistic” way of thinking in order
to describe how a given agent can “see” the logical behavior of another agent.

As an example let us refer to two agents Alice and Bob, whose truth-perspectives
areTAlice andTBob, respectively. Let {|1Alice〉, |0Alice〉} and {|1Bob〉, |0Bob〉} represent
the systems of truth-values of our two agents. Furthermore, for any canonical gate
DG(n) (defined with respect to the canonical truth-perspective I), let DG(n)

Alice and
DG(n)

Bob represent the corresponding twin-gates for Alice and for Bob, respectively.
We have:

DG(n)
Alice = D(T

(n)
AliceG

(n)T
(n)†
Alice); DG(n)

Bob = D(T
(n)
BobG

(n)T
(n)†
Bob).

We will adopt the following conventional terminology.

• When |1Bob〉 = a0|0Alice〉 + a1|1Alice〉, we will say that Alice sees that Bob’s Truth
is a0|0Alice〉 + a1|1Alice〉. In a similar way, for Bob’s Falsity.

• WhenDG(n)
Alice = D(T

(n)
AliceG

(n)T
(n)†
Alice) and

DG(n)
Bob = D(T

(n)
BobG

(n)T
(n)†
Bob) = DG(n)

1Alice

(where DG(n) and DG(n)
1 are canonical gates), we will say that Alice sees Bob using

the gate DG(n)
1Alice in place of her gate

DG(n)
Alice.

• When DG(n)
Alice = DG(n)

Bob we will say that Alice and Bob see and use the same
gate, which represents (in their truth-perspective) the canonical gate DG(n).

On this basis, one can conclude that, generally, Alice sees a kind of “deforma-
tion” in Bob’s logical behavior. As an example, suppose that Alice has the canonical
truth-perspective (i.e.TAlice = I(1)), while Bob’s truth-perspective is the Hadamard-

operator (i.e. TBob = √
I

(1)
). Accordingly, the truth-value systems of Alice and of

Bob are the following:
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• {|1Alice〉, |0Alice〉} = {|1〉, |0〉};
• {|1Bob〉, |0Bob〉} =

{
1√
2
(|0〉 − |1〉), 1√

2
(|0〉 + |1〉)

}
.

In such a case, Alice will see a quite strange behavior in Bob’s use of the logical

connective negation. Since DNOT(1)
Bob = D(

√
I

(1)
NOT(1)

√
I

(1)†
), we will obtain,

for instance, that:

DNOT(1)
Bob

IP (1)
1 = IP (1)

1 = P (1)
1√
2
(|0Bob〉−|1Bob〉).

In other words, Alice sees that Bob’s negation of her Truth is her Truth itself,
which represents instead an intermediate truth-value for Bob.

We can also consider a third agent EVE whose truth-perspective is the following:

TEve =
[

cos( π
8 ) sin( π

8 )

−ı sin( π
8 ) cos( π

8 )

]
.

In such a case,Alicewill see Eve using theHadamard-gate in place of her negation,
i.e.,

DNOT(1)
Eve = D

√
I

(1)
Alice.

As expected, generally, different agents with different truth-perspectives will see
and use different gates. An interesting question is the following: can different agents
(with different truth-perspectives) see and use the same gate corresponding to a given
canonical gate? The following theorem gives a positive answer to this question, in
the case of same special gates.

Theorem 5.7 Let DG(n) be one of the following canonical gates: the negation
DNOT(n), the Hadamard-gate D

√
I

(n)
.

(1) There is an infinite set of agents such that for any i and j belonging to this set:

(1.1) i and j see and use the same gate corresponding to the canonical gateDG(n);
(1.2) if i �= j, then Ti and Tj are not probabilistically equivalent (in other words,

pTi

1 (ρ) �= pTj

1 (ρ), for some ρ).

(2) There is an infinite set of agents (with different truth-perspectives Ti) who see
and use different gatesDG(n)

Ti
, all different from the canonical gateDG(n). In other

words, for any i and j belonging to this set:

(2.1) if i �= j, then DG(n)

Ti
�= DG(n)

Tj
;

(2.2) DG(n)

Ti
�= DG(n).



112 5 Individuals, Quantifiers and Epistemic Operators

Proof (1) Consider the set of truth-perspectives having the following form:

T(θ) =
[

cos( θ
2 ) −ı sin( θ

2 )−ı sin( θ
2 ) cos( θ

2 )

]
.

There are infinitely many θ ∈ [0, 2π) such that:

(1.1) DG(n)

T(θ) = DG(n).
(1.2) If θ �= θ ′, then T(θ) and T(θ ′) are not probabilistically equivalent.

(2) Consider the set of truth-perspectives having the following form:

T′(θ) =
[
cos( θ

2 ) − ı√
2
sin( θ

2 ) − ı√
2
sin( θ

2 )

− ı√
2
sin( θ

2 ) cos( θ
2 ) + ı√

2
sin( θ

2 )

]
.

There are infinitely many θ ∈ (0, 2π) such that:

(2.1) if θ �= θ ′, then DG(n)

T(θ) �= DG(n)

T(θ ′);

(2.2) DG(n)

T(θ) �= DG(n).
�

5.7 Quantifiers as Quantum Maps

Now we want to extend our semantics to the full first-order languageL1. As is well
known, in most semantic approaches the interpretation of the universal quantifier
∀ generally involves an infinitary procedure that cannot be represented as a finite
computational step.

What are the intuitive reasons that induce us to assert the truth of a universal
sentence (say, “All humans are mortal”, “All neutrinos have a non-null mass”,….)?
In the happiest situations we can base our assertion on a theoretical proof (which
generally gives rise to a kind of “by-pass”). In other situations we may refer to
an empirical evidence or to an inductive extrapolation. Sometimes we are simply
proposing a conjecture or even an act of faith.

Consider the following simple example of a universal sentence:

α = ∀xP1x .

We have: AtStr(α) = (3); H α = H (3).
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The syntactical tree of α is:

Levelα2 = (P1x)

Levelα1 = (∀xP1x)

Once chosen a truth-perspective T, is it possible to obtain an appropriate T-gate
tree for α? Any holistic map HolT will assign a density operator to the top level of
the syntactical tree of α:

HolT : (P1x) �→ ρ ∈ D(H (3)).

Hence, we shall look for an operation ∀QT (which is defined onH (3) and depends
on T) such that:

HolT((∀xP1x)) = ∀QTρ.

A very reasonable condition that should be required seems to be the following:

pT
1 (∀QTρ) ≤ pT

1 (ρ).

Semantically, this condition is important because it is connected with the validity of
the Dictum de omni-principle ( ∀xP1x � P1x).

Interestingly enough, one is dealing with a requirement that also characterizes
knowledge-operations. As we have seen, by definition of knowledge-operation, for
any ρ ∈ EpD(K

(n)

T ) we have:

pT
1 (K

(n)

T ρ) ≤ pT
1 (ρ).

And we already know that knowledge-operations cannot be generally represented as
unitary operations (by Theorem5.5). As happens in the case of epistemic operators,
quantifiers also can be interpreted as special examples of operations that are generally
irreversible. Unlike logical connectives, the use of quantifiers seems to involve a kind
of theoretic “jumps”, which are quite similar to what happens in the case of quantum
measurement-phenomena.

Of course, not all universal formulas are so simple as ∀xP1x . Consider, for
instance, the following sentence:

α = ∀x(P1x ∧ P2ax) = ∀x(ᵀ(P1x,P2ax, f))

(say, All are nice and Alice likes them).
We have: AtStr(α) = (3, 4, 1); H α = H (3) ⊗ H (4) ⊗ H (1) = H (8).

Here ∀ binds the variable x in two different occurrences of x in two different
subformulas of α. How can such syntactical features be reflected at a semantic level?
Fortunately (unlike classical semantics), the quantum computational semantics has
an intensional character that allows us to “preserve the memory” of the linguistic
complexity of all formulas.
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In the case of the sentenceα = ∀x(ᵀ(P1x,P2ax, f)), the behavior of the quantifier
∀ can be associated to a syntactical configuration, formally described by the following
conventional notation:

(1[1], 2[2], (3, 4, 1)).

The interpretation of (1[1], 2[2], (3, 4, 1)) is the following: ∀ binds the first variable
of the first atomic subformula occurring in α and the second variable of the second
atomic subformula occurring in α, while (3, 4, 1) is the atomic structure of α.

This notation can be naturally generalized. Any universal formula

α = ∀xδ

can be associated to a syntactical configuration (called quantifier-configuration) that
will be represented as follows:

qcon f α = (m1[ jm1
1 , . . . , jm1

u ], . . . ,mr [ jmr
1 , . . . , jmr

v ], (n1, . . . , nk)),

where: r ≤ At (α) = n1 + · · · + nk .
The interpretation of qcon f α is the expected one: ∀ binds the jm1

1 th variable of
them1th atomic subformula occurring in α, …, the jm1

u th variable of them1th atomic
subformula occurring in α, …. , the jmr

1 th variable of the mr th atomic subformula
occurring in α, …, the jmr

v th variable of the mr th atomic subformula occurring in α;
while (n1, . . . , nk) is the atomic structure of α.

Of course, different formulas may have the same quantifier configuration qcon f .
Since any quantifier configuration qcon f refers to a particular atomic structure, it
turns out that qcon f determines the semantic space Hqcon f of all formulas whose
quantifier-configuration is qcon f .

On this basis, we can now introduce the notions of T-quantifier map and of first-
order epistemic realization for the language L1.

Definition 5.22 (T-Quantifier map) AT-quantifier map is amapQT that associates
to any quantifier-configuration qcon f an operationQT(qcon f ), defined on the space
Hqcon f . The following condition is required for any density operator ρ of Hqcon f :

pT
1 ([QT(qcon f )]ρ) ≤ pT

1 (ρ).

Definition 5.23 (First-order epistemic realization) A first-order epistemic realiza-
tion for the language L1 is a triplet

FEpReal = (HolT,EpReal,QT),

where:

• HolT is a holistic map for the language L1;
• EpReal = (HolT, Ep) is an epistemic realization for the language EpL −

1 ;
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• QT is a quantifier map for the language L1.

As happens for the language EpL −
1 , any first-order epistemic realization

FEpReal = (HolT,EpReal,QT),

determines for any formula α a special gate tree, called the FEpReal-first-order
epistemic pseudo gate tree of α. As an example, consider the sentence:

α = ¬∀xP1x .

The syntactical tree of α is:

Levelα3 = (P1x)

Levelα2 = (∀xP1x)

Levelα1 = (¬∀xP1x)

Accordingly, theFEpReal-first-order epistemic pseudogate tree ofα can be naturally
identified with the following pseudo-gate sequence:

(QT(qcon f ∀xP1x ), DNOT(3)
T ).

This procedure can be generalized to any formula α.
On this basis, we can now define the concept of holistic model for the language

L1.

Definition 5.24 (Holistic model of L1) A holistic model of L1 is a first-order
epistemic realization

FEpReal = (HolT,EpReal,QT)

that satisfies the following conditions for any formula α.

(1) Let (DGFEpReal
T(h−1)

, . . . , DGFEpReal
T(1)

)be theFEpReal-first-order epistemicpseudo
gate tree of α and let 1 ≤ i < h. Then,

HolT(Leveli (α)) = DGFEpReal
T(i)

(HolT(i+1) (Leveli+1(α))).

The meaning of each level (different from the top level) is obtained by applying
the corresponding gate (or pseudo-gate) to the meaning of the level that occurs
immediately above.

(2) The contextual meanings assigned by HolT to the false sentence f and to the
true sentence t are the T-Falsity TP (1)

0 and the T-Truth TP (1)
1 , respectively.

(3) Contextual Dictum de omni
Suppose that ∀xβ(x) and β(t1) ∧ . . . ∧ β(tn) are both subformulas of α. Then,
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pT
1 (Holα

T(∀xβ(x))) ≤ pT
1 (Holα

T(β(t1) ∧ . . . ∧ β(tn))).

The concepts8 of truth, validity and logical consequence for the languageL1 can
be now defined like in the case of EpL −

1 , mutatis mutandis.
It is worth-while noticing that, unlike most first-order semantic approaches, these

quantum models do not refer to domains of individuals dealt with as closed sets (in a
classical sense). Generally, any context γ may contain a finite number of individual
terms for which any model provides contextual meanings. At the same time, the
interpretation of a universal formula does not require “ideal tests” that should be
performed on all elements of a hypothetical domain (which might be highly inde-
terminate). In a sense, we could say that the universe of discourse associated to a
given holistic model behaves here as a kind of open set. This way of thinking seems
to be in agreement with a number of concrete semantic phenomena, where domains
of individuals cannot be precisely determined in an extensional way. In fact, many
universal sentences that are currently asserted either in common-life contexts or in
scientific theories (say, “All teenagers like danger”, “All photons are bosons”) do not
generally refer to closed domains. Such situations, however, do not prevent a correct
use of the universal quantifier.
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Chapter 6
From Qubits to Qudits

6.1 Introduction

All quantum logics (from Birkhoff and von Neumann’s quantum logic to the more
recent quantum computational logics) are characterized by forms of semantics that
are intrinsicallymany-valued.Against the classical tertium non datur-principle quan-
tum logical sentences are not necessarily either true or false. Such a semantic indeter-
mination is a natural consequence of the characteristic quantum uncertainties. As we
have seen (in Chaps. 4 and 5) any interpretation of a quantum computational language
acts on two different levels: the first level refers to pieces of quantum information
(represented by density operators of convenient Hilbert spaces), while the second
level refers to probability-values (real numbers in the [0, 1]-interval). Consider a
model HolT and a sentence α. The density operator HolT(α) (assigned by HolT to
α) represents a kind of intensional meaning that preserves the linguistic complexity of
α. At the same time, HolT(α) determines the probability-value of α (under the inter-
pretationHolT), which can be regarded as a kind of extensional meaning. As happens
in classical semantics, the intension determines the corresponding extension, but not
the other way around. However, unlike classical semantics, the intensional meanings
of quantum computational logics represent concepts that may be vague and ambigu-
ous, while extensional meanings are not necessarily dichotomic. Furthermore, both
intensional and extensional meanings may violate the compositionality-principle,
against Frege’s basic assumption.

In spite of its strongly non-classical features, quantum computational semantics
includes a subtheory that behaves classically, both froma logical and froma computa-
tional point of view. As we have seen in Chap. 4, the holistic quantum computational
semantics has a special fragment where pieces of information are represented by
classical bits and registers, while the basic Boolean functions are represented as
reversible gates. Of course, in this framework, the cardinality of the set of bits is
determined by the dimension of the Hilbert space C2. One can wonder whether such
a restriction is really useful for the aims of quantum computation. A natural “many-
valued generalization” of the classical part of quantum computation might assume
anyCd (where d ≥ 2) as a basic Hilbert space. In this way, bits might be generalized
to dits, represented by the elements of the canonical orthonormal basis of a space
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C
d . Interestingly enough, such a generalization can give rise to some useful physical

implementations.

6.2 Qudit-Spaces

Consider a Hilbert space Cd , where d ≥ 2. The elements of the canonical basis of
C

d can be regarded as different truth-values, which can be conventionally indicated
in the following way:

|0〉 = | 0
d−1 〉 = (1, 0, . . . , 0)

| 1
d−1 〉 = (0, 1, 0, . . . , 0)

| 2
d−1 〉 = (0, 0, 1, 0, . . . , 0)

...

|1〉 = | d−1
d−1 〉 = (0, . . . , 0, 1).

While |0〉 and |1〉 represent the truth-values Falsity and Truth, all other basis-
elements correspond to intermediate truth-values. For instance, the truth-values of
the space C3 (whose unit-vectors are also called qutrits) will be:

|0〉 = | 02 〉 = (1, 0, 0)
| 12 〉 = (0, 1, 0)
|1〉 = | 22 〉 = (0, 0, 1).

Generally, a qudit-space can be represented as a product-space whose form is:

H (n)
d = C

d ⊗ . . . ⊗ C
d

︸ ︷︷ ︸

n−times

, where n ≥ 1.

While d represents the number of truth-values (corresponding to the dimension of
C

d ), n represents the number of the components of a quantum system that can store
a quantum information living in the space H (n)

d . Of course, qubit-spaces represent
particular examples of qudit-spaces H (n)

d , where d = 2.
The elements |v1, . . . , vn〉 of the canonical basis of H (n)

d represent the registers
of the space and dits are special examples of registers living in the space H (1)

d =
C

d . The quregisters of H (n)
d are identified with the unit vectors |ψ〉 of H (n)

d (or,
equivalently, with the corresponding projections P|ψ〉), while any density operator ρ

of the space will represent a possible piece of quantum information (which may be
either a pure state or a proper mixture).

In any qudit-spaceH (n)
d , each truth-value | j

d−1 〉 determines a corresponding truth-

value projection P (n)
j

d−1

, whose range is the closed subspace spanned by the set of all
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registers |v1, . . . , vn〉 where vn = j
d−1 . From an intuitive point of view, P (n)

j
d−1

rep-

resents the property “having the truth-degree j
d−1 ”. In particular, P (n)

0 = P (n)
0

d−1
and

P (n)
1 = P (n)

d−1
d−1

represent the Falsity-property and the Truth-property, respectively. On

this basis, one can naturally apply the Born-rule and define for any state ρ (ofH (n)
d )

the probability that ρ satisfies the property P (n)
j

d−1

:

p j
d−1

(ρ) := tr
(

ρ P (n)
j

d−1

)

.

The probability tout court of ρ can be then defined as the weighted mean of all
truth-degrees.

Definition 6.1 The probability of a density operator ρ of H (n)
d

p(d)(ρ) := 1

d − 1

d−1
∑

j=1

j p j
d−1

(ρ).

One can prove that:

p(d)(ρ) = tr
(

ρ (I(n−1) ⊗ E)
)

,

where E is the effect (of Cd ) represented by the following matrix1:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 · · · 0
0 1

d−1 0 · · · 0
0 0 2

d−1 · · · ...
...

...
...

. . . 0
0 0 · · · 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

As expected, in the particular casewhereρ corresponds to the qubit |ψ〉 = c0|0〉 +
c1|1〉, we obtain that p(2)(ρ) = |c1|2.

Notice that in the qudit-framework registers represent “classical” pieces of infor-
mation, although based on many-valued systems of truth-values. At the same time,
the probabilistic behavior of registers is generally different in the qubit-case and in the
qudit-case. In qubit-spaces probabilities of registers are dichotomic: for any register
|v1, . . . , vn〉, either p1(|v1, . . . , vn〉) = 1 or p1(|v1, . . . , vn〉) = 0. In the qudit-case,
instead, there are registers |v1, . . . , vn〉 such that p(d)(|v1, . . . , vn〉) �= 1, 0. A typical
example is represented by the dit | 12 〉 of the space C3, where

1The notion of effect has been defined in Sect. 1.5.
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p(3)

(

|1
2
〉
)

= 1

2
.

Thus, in qudit-spaces “classical” pieces of information may have an indeterminate
probability-value.

6.3 Quantum Logical Gates in Qudit-Spaces

In qudit-spaces quantum information is processed by quantum logical gates (as hap-
pens in the case of qubit-spaces). Of course, when the truth-value number d is greater
than 2, one shall take into account the characteristic “many-valued features” of the
space Cd .

Before introducing some interesting examples of qudit-gates it is useful to recall
what happens in the semantics of Łukasiewicz’ logics (which represent special exam-
ples of fuzzy logics).2 In the standardmodels of these logics the setTV of truth-values
is identified either with the real interval [0, 1] or with a finite subset thereof (conven-
tionally indicated as a set

{

0
d−1 ,

1
d−1 , . . . ,

d−1
d−1

}

, where d ≥ 2). For our aims it will
be sufficient to refer to the finite case. The negation-operation is defined like in the
classical case:

v′ := 1 − v, for any truth-value v ∈ TV.

At the same time conjunction is split into two different irreversible operations, the
min-conjunction � (also called lattice-conjunction) and the Łukasiewicz-conjunction
	:

u � v := min(u, v), u 	 v := max(0, u + v − 1), for any u, v ∈ TV.

While � and 	 are the same operation in the two-valued semantics, when d > 2
our two conjunctions turn out to satisfy different semantic properties. The min-
conjunction gives rise to possible violations of the non-contradiction principle. We
may have:

v � v′ �= 0.

Hence, contradictions are not necessarily false, as happens in the case of most fuzzy
logics whose basic aim is modeling ambiguous and unsharp semantic situations.
At the same time, � behaves as a lattice-operation in the truth-value partial order
(TV,≤). The Łukasiewicz-conjunction, instead, is generally non-idempotent. We
may have:

v 	 v �= v.

2See [1, 2, 4].
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Apparently, one is dealing with a kind of conjunction that can be usefully applied to
model semantic situations where “repetita iuvant!”(“repetitions are useful!”).

As expected, the two conjunctions � and 	 allow us to define two different kinds
of (inclusive) disjunctions (via de Morgan-law):

u � v := (u′ � v′)′ = max(u, v); u ⊕ v := (u′ 	 v′)′ = min(1, u + v).

All these logical operations (which are generally dealt with as irreversible) can
be simulated by convenient (reversible) gates.

As happens in the case of qubit-spaces the negation-operation has a natural gate-
counterpart.

Definition 6.2 (The negation-gate on the space H (1)
d ) The negation-gate onH (1)

d
is the linear operator NOT(1) that satisfies the following condition for every element
|v〉 of the canonical basis:

NOT(1)|v〉 := |1 − v〉.

Thus, NOT(1) behaves as the standard fuzzy negation.
The gate NOT(1) can be naturally generalized to higher-dimensional spaces. Like

in the case of qubit-spaces we will indicate by NOT(n) the negation-gate that can be
defined on the space H (n)

d (in terms of NOT(1) and of the identity operator I(n−1)).
How to deal, in this framework, with the irreversible conjunctions � and 	?

A reversible counterpart for these operations can be obtained by using two spe-
cial versions of the Toffoli-gate, that will be called the Toffoli-gate and the Toffoli–
Łukasiewicz gate, respectively.

Definition 6.3 (The Toffoli-gate on the space H (3)
d ) The Toffoli-gate on H (3)

d is
the linear operator T(1,1,1) that satisfies the following condition for every element
|u, v, w〉 of the canonical basis:

T(1,1,1)|u, v, w〉 := |u, v, (u � v +̂d w)〉,

where +̂d is the addition modulo d.

Definition 6.4 (The Toffoli–Łukasiewicz gate on the space H (3)
d ) The Toffoli–

Łukasiewicz gate onH (3)
d is the linear operator TŁ(1,1,1) that satisfies the following

condition for every element |u, v, w〉 of the canonical basis:

TŁ(1,1,1)|u, v, w〉 := |u, v, (u 	 v +̂d w)〉.

Clearly, T(1,1,1) and TŁ(1,1,1) are the same gate when d = 2.
The gates T(1,1,1) and TŁ(1,1,1) can be naturally generalized to higher-dimensional

spaces. Like in the case of qubit-spaces we will indicate by T(m,n,1) and by TŁ(m,n,1)

(respectively) the two Toffoli-gates that can be defined on the space H (m+n+1)
d (in

terms of T(1,1,1), TŁ(1,1,1), the identity operator I(m+n−2) and the gate Swap(m+n+1)
m,m+n−1).
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The two Toffoli-gates naturally give rise to two different kinds of reversible con-
junctions, that will be called the Toffoli-conjunction and the Toffoli–Łukasiewicz
conjunction, respectively.

Definition 6.5 (The Toffoli-conjunction on the space H (m+n)
d ) For any m, n ≥ 1

and for any quregister |ψ〉 of H (m+n)
d ,

AND(m,n)|ψ〉 := T(m,n,1)(|ψ〉 ⊗ |0〉).

Definition 6.6 (The Toffoli–Łukasiewicz conjunction on the space H (m+n)
d )

For any m, n ≥ 1 and for any quregister |ψ〉 of H (m+n)
d ,

ŁAND(m,n)|ψ〉 := TŁ(m,n,1)(|ψ〉 ⊗ |0〉).

The gates Negation, Toffoli and Toffoli–Łukasiewicz are examples of semiclassi-
cal gates, that are unable to “create” superpositions: whenever the information-input
is a register, the information-output also will be a register. How can we generalize
genuine quantum gates to qudit-spaces?

A “natural” Hadamard-gate for a qudit-space H (1)
d = C

d can be defined as fol-
lows.

Definition 6.7 (The Hadamard-gate on the space H (1)
d ) The Hadamard-gate on

H (1)
d is the linear operator

√
I

(1)
that satisfies the following condition for every

element |v〉 of the canonical basis:
√
I

(1)|v〉 = 1√
2
(c|v〉 + |1 − v〉),

where c =

⎧

⎪
⎨

⎪
⎩

1, if v < 1
2 ;√

2 − 1, if v = 1
2 ;

−1, if v > 1
2 .

As happens in the case of the qubit-space H (1)
2 ,

√
I

(1)
transforms each element

|v〉 of the canonical basis of H (1)
d into a superposition of |v〉 and of its negation

|1 − v〉.
As an example consider the qutrit-space C3. We obtain:

• √
I

(1) ∣

∣
0
2

〉 = 1√
2
(
∣

∣
0
2

〉 + ∣

∣1 − 0
2

〉

) = 1√
2
(
∣

∣
0
2

〉 + ∣

∣
2
2

〉

) = 1√
2
(|0〉 + |1〉);

• √
I

(1) ∣

∣
1
2

〉 = 1√
2
((

√
2 − 1)

∣

∣
1
2

〉 + ∣

∣1 − 1
2

〉

) = ∣

∣
1
2

〉

;

• √
I

(1) ∣

∣
2
2

〉 = 1√
2
(− ∣

∣
2
2

〉 + ∣

∣1 − 2
2

〉

) = 1√
2
(
∣

∣
0
2

〉 − ∣

∣
2
2

〉

) = 1√
2
(|0〉 − |1〉).

Of course,
√
I

(1) ∣

∣
1
2

〉

represents a special case of a superposition, whose elements
∣

∣
1
2

〉

and
∣

∣1 − 1
2

〉

are one and the same dit.
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The following Theorem shows that
√
I

(1)
represents a “good” generalization of

the Hadamard-gate of the space C2.

Theorem 6.1 In any qudit-space H (1)
d the gate

√
I

(1)
satisfies the following con-

ditions:

(1)
√
I

(1)
transforms each element |v〉 of the canonical basis of H (1)

d into a super-
position of |v〉 and of its negation |1 − v〉, assigning to both elements of the
superposition the probability-value 1

2 .

(2) When d = 2, the gate
√
I

(1)
coincides the standard Hadamard-gate of C2.

(3)
√
I

(1)√
I

(1) = I(1).

Proof Straightforward.

As expected, the gate
√
I

(1)
can be naturally generalized to higher-dimensional

spaces. Like in the case of qubit-spaces wewill indicate by
√
I

(n)
the Hadamard-gate

that can be defined on the spaceH (n)
d (in terms of

√
I

(1)
and of the identity operator

I(n−1)).
In a similar way one can define a “natural” square root of negation for a qudit

space H (1)
d .

Definition 6.8 (The square root of negation on the space H (1)
d ) The square root of

negation on H (1)
d is the linear operator

√
NOT

(1)
such that for every element |v〉 of

the canonical basis:

√
NOT

(1)|v〉 = 1

2
((1 + ı)|v〉 + (1 − ı)|1 − v〉).

Like
√
I

(1)
, the gate

√
NOT

(1)
can be generalized to higher-dimensional spaces.

We will indicate by
√
NOT

(n)
the square root of negation-gate that can be defined on

the space H (n)
d (in terms of

√
NOT

(1)
and of the identity operator I(n−1)).

So far we have considered examples of gates that are unitary operators of a qudit-
space H (n)

d . But of course, as happens in the case of qubit-spaces, any gate G (that
is a unitary operator of H (n)

d ) can be canonically associated to a unitary operation
DG that transforms all density operators of the space in a reversible way.

An important question concerns the possibility of physical implementations of
qudit-spaces and qudit-gates. We will mention here only one significant example
that concerns the qutrit-space C3. From a physical point of view, this space can be
naturally used to represent the spin-values of bosons. Consider the observable Spinz

(the spin in the z-direction, representing the z-component of the angular momentum
of a boson-particle). The three eigenvectors corresponding to the eigenvalues of
Spinz can be associated to the three elements of the canonical basis of the space C3.
At the same time, the spin-observable in any other direction will be associated to a
different basis of the space. On this ground, qutrits (living in the space C3) can be
naturally stored by pure (or mixed) states of boson particles.
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6.4 Łukasiewicz-Quantum Computational Logics

Qudit-spaces naturally give rise to a special variant of the holistic quantum computa-
tional semantics that will be called Łukasiewicz-quantum computational semantics.3

We consider a “minimal” sentential Łukasiewicz quantum computational language
L Ł, whose alphabet contains atomic formulas, including the two privileged sen-
tences t and f . The connectives of L Ł are: the negation ¬ (corresponding to the
gate NOT(n)), the ternary Toffoli-connective ᵀ (corresponding to the gate T(m,n,1)),
the ternary Toffoli–Łukasiewicz connective ᵀŁ (corresponding to the gate TŁ(m,n,1)),

the Hadamard-connective
√

id (corresponding to the Hadamard-gate
√
I

(n)
), the

connective square root of negation
√¬ (corresponding to the gate

√
NOT

(n)
). The

concept of formula of L Ł is defined in the expected way.
The two Toffoli-connectives allow us to define two binary conjunctions:

α ∧ β := ᵀ(α, β, f); α ∧Ł β := ᵀŁ(α, β, f),

where the false sentence f plays the role of a syntactical ancilla.
The notions of atomic complexity and of syntactical tree of a given formula are

supposed to be defined like in the case of standard sentential quantum computational
languages. On this basis, for any choice of a truth-value number d, the semantic
space H α

d of a formula α is identified with the qudit-space H (At (α))
d , where At (α)

is the atomic complexity of α.
For any number d ≥ 2 and for any formula α, ST reeα (the syntactical tree of α)

uniquely determines the gate tree of α: a sequence of gates all defined on the space
H α

d . Consider, for instance, the formula

α = q ∧Ł ¬q = ᵀŁ(q,¬q, f).

The gate-tree of α can be naturally identified with the following gate-sequence:

(DI(1) ⊗ DNOT(1) ⊗ DI(1), DTŁ(1,1,1)).

This procedure can be generalized to any α, whose gate tree will be indicated by
(DGα

(h−1), . . . ,
DGα

(1)) (where h is the Height of α).
As expected, the basic notions of the Łukasiewicz-quantum computational seman-

tics depend on the choice of the truth-value number d. The concept of (d-valued)
holistic model of L Ł is based on the weaker notion of (d-valued) holistic map for
L Ł. This is a map Hold that assigns to each level of the syntactical tree of any
formula α a density operator living in the semantic space of α. We have:

Hold(Levelαi ) ∈ D(H α
d )

3See [3].
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(for any Levelαi of ST reeα).
The concept of contextual meaning assigned by a holistic map Hold to an occur-

rence of a subformula in the syntactical tree of a given formula α and the concept of
normal holistic map are defined like in the case of the two-valued holistic quantum
computational semantics.

Now the concepts of holistic model, truth and logical consequence (in the
Łukasiewicz-quantum computational semantics) can be defined as follows.

Definition 6.9 (Holistic model) A holistic model of the language L Ł is a normal
holistic map Hold that satisfies the following conditions for any formula α.

(1) Let (DGα
(h−1), . . . ,

DGα
(1)) be the gate tree of α and let 1 ≤ i < h). Then,

Hold(Levelαi ) = DGα
i (Hold(Levelαi+1)).

In otherwords, themeaning of each level (different from the top level) is obtained
by applying the corresponding gate to the meaning of the level that occurs imme-
diately above.

(2) The contextual meanings assigned by Hold to the false sentence f and to the
true sentence t are the Falsity P (1)

0 and the Truth P (1)
1 , respectively.

On this basis, we put:

Hold(α) := Hold(Levelα1 ), for any formula α.

Definition 6.10 (Truth) A formula α is called true with respect to a model Hold

iff p(d)(Hold(α)) = 1.

Definition 6.11 (d-Logical consequence) A formula β is called a d-logical conse-
quence of a formula α (abbreviated as α �d β) iff for any formula γ such that α and
β are subformulas of γ and for any model Hold ,

p(d)(Holγ

d (α)) ≤ p(d)(Holγ

d (β)).

Definition 6.12 (Logical consequence) A formula β is called a logical consequence
of a formula α (abbreviated as α � β) iff for any d ≥ 2, α �d β.

We call d-valued Łukasiewicz-quantum computational logic (dŁQCL) the logic
that is semantically characterized by the d-logical consequence relation (where
d ≥ 2); while the logic characterized by the stronger notion of logical consequence
is termed Łukasiewicz-quantum computational logic (ŁQCL).

Consider now two formulas α and β that belong to the common language of
ŁQCL and of the (sentential) holistic quantum computational logic HQCL. We
have (trivially):

α �ŁQCL β ⇒ α �HQCL β.
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The validity of the inverse implication represents a reasonable conjecture that is,
so far, an open problem.
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Chapter 7
What Exactly Are Quantum
Computations? Classical and Quantum
Turing Machines

7.1 Introduction

Classical computers have a perfect abstract model represented by the concept of
Turing machine. Due to the intuitive strength of this concept and to the high sta-
bility of the notion of Turing computability (which has turned out to be equivalent
to many alternative definitions of computability) for a long time the Church-Turing
thesis (according to which a number-theoretic function f is computable from an
intuitive point of view iff f is Turing-computable) has been regarded as a deeply
reasonable conjecture. This hypothesis seems to be also confirmed by a number
of studies about alternative concepts of computing machine that at first sight may
appear “more liberal”. A significant example is represented by the notion of non-
deterministic (or probabilistic)Turingmachine. Interestingly enough, one has proved
that non-deterministic Turing-machines do not go beyond the “limits and the power”
of deterministic Turing machines; for, any probabilistic Turing machine can be sim-
ulated by a deterministic one.

To what extent have quantum computers “perturbed” such clear and well estab-
lished approaches to computation-problems? After Feynman’s pioneering work,1 the
abstract mathematical model for quantum computers has been often represented in
terms of the notion of quantum Turing machine, the quantum counterpart of the clas-
sical notion of Turing machine.2 But what exactly are quantum Turing machines?
So far, the literature has not provided a rigorous “institutional” concept of quantum
Turing machine. Some definitions seem to be based on a kind of “imitation” of the
classical definition of Turing machine, by referring to a tape (where the symbols
are written) and to a moving head (which changes its position on the tape). These
concepts, however, seem to be hardly applicable to physical quantum computers.
We need only think of the intriguing situations determined by quantum uncertainties
that, in principle, should also concern the behavior of moving heads.

1See [4, 5].
2See, for instance, [2, 3, 6–9].
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Both in the classical and in the quantum case, it is expedient to consider a more
abstract concept: the notion of state machine, which neglects both tapes and moving
heads. Every finite computational task realized in different computational models
proposed in the literature can be simulated by a state machine.3 In order to compare
classical and quantum computations, we will analyze the concepts of (classical)
deterministic state machine, (classical) probabilistic state machine and quantum
state machine. On this basis we will discuss the question: to what extent can quantum
state machines be simulated by classical probabilistic state machines?

Each state machine is devoted to a single task determined by its program. Real
computers, however, behave differently, being able to solve different kinds of prob-
lems, which may be chosen by computer-users. In the quantum case, such concrete
computation-situations can bemodeled by themathematical notion of abstract quan-
tum computingmachine, whose different programs determine different quantum state
machines. We will see how quantum computations performed by quantum comput-
ing machines can be linguistically described by formulas of quantum computational
logics.4

7.2 Classical Deterministic and Probabilistic Machines

We will first introduce the notion of deterministic state machine. On this basis,
probabilistic statemachineswill be represented as stochastic variants of deterministic
machines that are able to calculate different outputs with different probability-values.

Definition 7.1 (Deterministic state machine) A deterministic state machine is an
abstract system M based on the following elements:

(1) A finite setS of internal states, which contains an initial state sin and includes
a set of halting statesShalt = {shalt j : j ∈ J }.

(2) A finite alphabet, which can be identified with the set {0, 1} of the two classical
bits. Any register represented by a bit-sequence w = (x1, . . . , xn) is a word (of
length n).5 Any pair (s,w) consisting of an internal state s and of a word w
represents a possible configuration of M, which is interpreted as follows: M is
in the internal state s and w is the word written on an ideal tape.

(3) A set of words that represent possible word-inputs forM.
(4) A program, which is identified with a finite sequence (R0, . . . , Rt ) of rules. Each

Ri is a partial function: a well-determined instruction that transforms configu-
rations into configurations. We may have: Ri = R j with i �= j . The number i ,

3See, for instance, [10].
4See [1].
5In order to emphasize the comparison between deterministic state machines and quantum state
machines, words are here identified with registers (although, in the framework of classical compu-
tation, the concept of “word” is often defined as a sequence of registers).
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corresponding to the rule Ri , represents the i th step of the program. The follow-
ing conditions are required:

(4.1) The rule R0 is defined for any configuration (s0,w0), where s0 is the initial
state sin andw0 is a possibleword-input.Wehave: R0 : (s0,w0) �→ (s1,w1),

where s1 is different from the initial state and fromall halting states (if t �= 0).
(4.2) For any i (0 < i < t), Ri : (si ,wi ) �→ (si+1,wi+1), where si+1 is different

from all si , . . . , s0 and from all halting states.
(4.3) Rt : (st ,wt ) �→ (st+1,wt+1), where st+1 is a halting state.

Each configuration (si+1,wi+1) represents the output for the step i and the input
for the step i + 1.

Apparently, each deterministic state machine is devoted to a single task that is
determined by its program. The concept of computation of a deterministic state
machine can be then defined as follows.

Definition 7.2 (Computation of a deterministic state machine) A computation of a
deterministic state machine M is a finite sequence of configurations ((s0,w0), . . . ,

(st+1,wt+1)), where:

(1) w0 is a possible word-input of M.
(2) s0, . . . , st+1 are different internal states of M such that: s0 = sin and st+1 is a

halting state.
(3) For any i (such that 0 ≤ i ≤ t), (si+1,wi+1) = Ri ((si ,wi )), where Ri is the i th

rule of the program.

The configurations (s0,w0) and (st+1,wt+1) represent, respectively, the input and the
output of the computation; while the words w0 and wt+1 represent, respectively, the
word-input and the word-output of the computation.

Let us now turn to the concept of probabilistic state machine. The only difference
between deterministic and probabilistic state machines concerns the program, which
may be stochastic in the case of a probabilistic state machine (PM). In such a case,
instead of a sequence of rules,wewill have a sequence (Seq0, . . . , Seqt ) of sequences
of rules such that: Seq0 = (R01 , . . . , R0r ), . . . , Seqt = (Rt1 , . . . , Rtl ). Each rule Ri j
(occurring in the sequence Seqi ) is associated to a probability-value pi j such that:∑

j pi j = 1. From an intuitive point of view, pi j represents the probability that the
rule Ri j be applied at the i th step. A deterministic state machine is, of course, a
special case of a probabilistic state machine characterized by the following property:
each sequence Seqi consists of a single rule Ri .

Any probabilistic state machine naturally gives rise to a graph-structure for any
choice of an input-configuration con f0 = (s0,w0). As an example, consider the fol-
lowing simple case: a probabilistic state machine PMwhose program consists of two
sequences, each consisting of two rules: Seq0 = (R01 , R02), Seq1 = (R11 , R12), such
that p01 = p02 = p11 = p12 = 1

2 . The graph associated to PM for the configuration
con f0 is illustrated by Fig. 7.1.
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Fig. 7.1 The graph of the
machine PM

How do probabilistic machines compute? In order to define the concept of com-
putation of a probabilistic machine, let us first introduce the notions of program-path
and of computation-path of a given probabilistic machine.

Definition 7.3 (Program-path and computation-path) Let PM be a probabilistic
state machine with program (Seq0, . . . , Seqt ).

• A program-path ofPM is a sequenceP = (R0h , . . . , Ri j , . . . , Rtk ) of rules, where
each Ri j is a rule from Seqi .

• For any choice of an input (s0,w0), any program-pathP determines a sequence of
configurations CP = ((s0,w0), . . . , (si ,wi ), . . . , (st+1,wt+1)), where
(si+1,wi+1) = Ri j (si ,wi ) and Ri j is the i th element ofP . This sequence is called
the computation-path of PM determined by the program-pathP and by the input
(s0,w0).
The configuration (st+1,wt+1) represents the output of CP .

Any program-path P = (R0h , . . . , Ri j , . . . , Rtk ) has a well determined
probability-value p(P), which is defined as follows (in terms of the probability-
values of its rules): p(P) := p0h · . . . · pi j · . . . · ptk . As expected, the probability-
value of a program-path P naturally determines the probability-values of all
corresponding computation-paths. It is sufficient to put:p(CP) := p(P).Consider
now the set PPM of all program-paths and the set CPPM of all computation-paths of
a probabilistic machine PM. One can easily show that:

∑

i

{p(Pi ) : Pi ∈ PPM} =
∑

i

{p(CP i ) : CP i ∈ CPPM} = 1.

On this basis the concept of computation of a probabilistic state machine can be
defined as follows.

Definition 7.4 (Computation of a probabilistic state machine) A computation of a
probabilistic state machine PM with input (s0,w0) is the system of all computation-
paths of PM with input (s0,w0).

Unlike the case of deterministic state machines, a computation of a probabilistic
state machine does not yield a unique output. For any choice of a configuration-
input (s0,w0), the computation-output is a system of possible configuration-outputs
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(sit+1,w
i
t+1), where each (sit+1,w

i
t+1) corresponds to a computation-path CP i . As

expected, each (sit+1,w
i
t+1) has a well determined probability-value that is defined

as follows: p((sit+1,w
i
t+1)) := ∑

i {p(CP i ) : the configuration-output of CP i is
(sit+1,w

i
t+1)

}
.One can easily show that the sum of the probability-values of all

configuration-outputs of any machine PM is 1.

7.3 Quantum State Machines

Wewill now introduce the concept ofquantum statemachine, which can be intuitively
regarded as a kind of quantum superposition of “many” classical deterministic state
machines. For the sake of simplicity, we will consider here quantum state machines
whose possible inputs and outputs are represented by pure states of a qubit-space. A
generalization to the case of density operators and to qudit-spaces can be obtained
in a natural way.

Definition 7.5 (Quantum state machine) A quantum state machine is an abstract
systemQM associated to aHilbert spaceH QM = H H ⊗ H S ⊗ H W ,whoseunit-
vectors |ψ〉 represent possible pure states of a quantum system that could physically
implement the computations of the state machine. The following conditions are
required:

(1) H H (which represents the halting-space) is the space H (1)(= C
2), where the

two elements of the canonical basis ({|0〉H , |1〉H }) correspond to the states “the
machine does not halt” and “the machine halts”, respectively.

(2) H S (which represents the internal-state space) is associated to a finite setS of
classical internal states. We require thatH S = H (m), where 2m is the cardinal
number of S . Accordingly, the set S can be one-to-one associated to a basis
ofH S .

(3) H W (which represents the word-space) is identified with a Hilbert space
H (n) (for a given n ≥ 1). The number n determines the length of the regis-
ters |x1, . . . , xn〉 that may occur in a computation. Shorter registers |x1, . . . , xh〉
(with h < n) can be represented in the space H (n) by means of convenient
ancillary bits. Let BQM be a basis of H QM, whose elements are unit-vectors
having the following form: |ϕi 〉 = |hi 〉|si 〉|xi1 , . . . , xin 〉, where |hi 〉 belongs to
the basis ofH H , while |si 〉 belongs to the basis ofH S . Any unit-vector |ψ〉 of
H QM that is a superposition of basis-elements |ϕi 〉 represents a possible com-
putational state of QM. The expected interpretation of a computational state
|ψ〉 = ∑

i ci |hi 〉|si 〉|xi1 , . . . , xin 〉 is the following: themachine in state |ψ〉might
be in the halting state |hi 〉 and might correspond to the classical configuration
(si , (xi1 , . . . , xin )) with probability |ci |2. Hence, the state |ψ〉 describes a kind
of quantum co-existence of different classical deterministic configurations.

(4) The set of possible inputs of QM is identified with the set of all computational
states that have the following form: |ψ〉 = ∑

i ci |0H 〉|sin〉|xi1 , . . . , xin 〉 (where
|sin〉 is the initial internal state in S ).
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(5) Like a deterministic statemachine, a quantum statemachineQM is characterized
by a program. In the quantum case a program is identified with a sequence
(U0, . . . ,Ut ) of unitary operators of H QM, where we may have: Ui = U j with
i �= j . The following conditions are required:

(a) for any possible input |ψ0〉, U0(|ψ0〉) = |ψ1〉 is a superposition of basis-
elements having the following form: |h1i 〉|s1i 〉|x1i1 , . . . , x1in 〉, where all s1i are
different from sin and |h1i 〉 = |0H 〉, if t �= 0.

(b) For any j (such that 0 < j < t), U j (|ψ j 〉) = |ψ j+1〉 is a superposition of
basis-elements having the following form: |0H 〉|s j+1

i 〉|x j+1
i1

, . . . , x j+1
in

〉.
(c) Ut (|ψt 〉) = |ψt+1〉 is a superposition of basis-elements having the following

form: |1H 〉|shalt j 〉|xt+1
i1

, . . . , xt+1
in

〉 (where |shalt j 〉 is an internal halting state
inS ).

The concept of computation of a quantum state machine can be now defined in a
natural way.

Definition 7.6 (Computation of a quantum state machine) Let QM be a quantum
state machine, whose program is the operator-sequence (U0, . . . ,Ut ) and let |ψ0〉
be a possible input of QM. A computation of QM with input |ψ0〉 is a sequence
QC = (|ψ0〉, . . . , |ψt+1〉) of computational states such that: |ψi+1〉 = Ui (|ψi 〉), for
any i (0 ≤ i ≤ t). The vector |ψt+1〉 represents the output of the computation, while
the density operator Red3(|ψt+1〉) (the reduced state of |ψt+1〉 with respect to the
third subsystem) represents the word-output of the computation.

Consider now a quantum state machine whose program is (U0, . . . ,Ut ). Each Ui

naturally determines a corresponding word-operator UW
i , defined on the word-space

H W . Generally, it is not guaranteed that all word-operators are unitary. But it is
convenient to refer to quantum state machines that satisfy this condition. In this
way, any quantum state machine (whose word-space isH (n)) determines a quantum
circuit, consisting of a sequence (UW

0 , . . . ,UW
t ) of gates,where n represents thewidth,

while t + 1 represents the depth of the circuit. Conversely, we can assume that any
circuit (UW

0 , . . . ,UW
t ) gives rise to a quantum state machine, whose halting states and

whose internal states are supposed to be chosen in a conventional way.
Towhat extent can quantum state machines be simulated by classical probabilistic

state machines? It is interesting to discuss this question by referring to the Mach-

Zehnder circuit (
√
I

(1)
, NOT(1),

√
I

(1)
), where:

√
I

(1)
NOT(1)

√
I

(1)|0〉 = |0〉; √
I

(1)
NOT(1)

√
I

(1) − |1〉 = |1〉.

As we have seen in Sect. 2.4 this characteristic quantum circuit can be physically
implemented by aMach-Zehnder interferometer (Fig. 7.2).

One is dealing with a physical situation that for a long time has been described as
deeply counterintuitive. For, according to a “classical way of thinking” one would
expect that when a photon-beam has entered into the interferometer along the x-
direction, the outcoming photons from the second beam splitter should be detected



7.3 Quantum State Machines 133

Fig. 7.2 The Mach–Zehnder
interferometer

with probability 1
2 either along the x direction or along the y-direction. And, in fact,

this is precisely what happens whenever a measurement is performed inside the
interferometer-box; in such a case, photons are detected either along the x direction
or along the y-direction with a frequency that is approximately equal to 1

2 .
Is it possible to describe the behavior of the Mach–Zehnder circuit by means of a

classical probabilistic state machine? Is there any natural “classical counterpart” for
the Hadamard-gate? A natural candidate might be a particular example of a prob-
abilistic state machine that can be conventionally called the classical probabilistic
NOT-state machine (PMNOT). Such machine can be defined as follows:

• The set of possible word-inputs of PMNOT is the set of words {(0), (1)}.
• The program of PMNOT consists of the following sequence of rules:

Seq0 = (R01 , R02),

where:

R01 : (sin, (x)) �→ (shalt j , (x)) and p01 = 1
2 ;

R02 : (sin, (x)) �→ (shalt j , (1 − x)) and p02 = 1
2 .

Consider, for instance, the input (sin, (0)). The output will be the following set:

{
(shalt j , (0)), (shalt j , (1))

}
.

On this basis, a “classical probabilistic Mach–Zehnder state machine” would deter-
mine (for the word-input (0)) the word-graph illustrated by Fig. 7.3.

Such amachine turns out to compute both thewords (0) and (1)with probability 1
2 .

And, interestingly enough, this is the same probabilistic result that is obtained in the
quantum case, when a measurement is performed inside the interferometer-box. The
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Fig. 7.3 A word-graph for a
“classical probabilistic
Mach–Zehnder state
machine”

example of theMach–Zehnder circuit seems to confirm the following conjecture: the
characteristic superposition-patterns, that may occur during a quantum computation
(when no measurement is performed during the computation-process), cannot be
generally represented by probabilistic state machines. This conclusion seems to be
in agreement with a position defended by Feynman:

Can a quantum system be probabilistically simulated by a classical (probabilis-
tic, I’d assume) universal computer? In other words, a computer which will give
the same probabilities as the quantum system does. If you take the computer to be
the classical kind I’ve described so far [....] and there’re no changes in any laws,
and there’s no hocus-pocus, the answer is certainly, No! This is called the hidden-
variable problem: it is impossible to represent the results of quantummechanics with
a classical universal device.6

The basic reason why quantum parallelism and classical parallelism are deeply
different depends on the fact that quantum parallelism is essentially based on super-
positions, which give rise to a strange co-existence of different alternatives. For
instance, in the Mach–Zehnder interferometer photons behave as if each photon
should travel along the x-direction and along the y-direction at the same time. While
the parallel configuration of different computational paths in a classical probabilis-
tic machine can be easily transformed into a linear order, in the case of quantum
machines such a linearization cannot be generally performed, without destroying the
quantum probabilistic predictions.

6See [4].
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7.4 Abstract Quantum Computing Machines

Statemachines represent rigid systems: eachmachine has a definite program, devoted
to a single task. Real computers, however, behave differently, being able to solve dif-
ferent kinds of problems (which can be chosen by computer-users). We will now
investigate a “more liberal” concept of machine that will be called abstract quan-
tum computing machine. The intuitive idea can be sketched as follows. Consider
a finite gate-system G = (G(n1)

1 , . . . ,G(nt )
t ), where each G(ni )

i is defined on a word-
space H (ni ).7 The system G determines an infinite set of derived gates that can be
obtained as appropriate combinations of elements ofG, by using gate-tensor products
and gate-compositions. An interesting example is represented by the gate system

G∗ = (I(1),NOT(1),
√
I

(1)
,T(1,1,1)).

As we have learnt in Sect. 2.2, for any n,m ≥ 1, the gates NOT(n),
√
I

(n)
, T(m,n,1) can

be represented as derived gates of the system G∗.
Any gate-system G gives rise to an infinite family CG of circuits

GC (n)
j = (GG(n)

1 , . . . , GG(n)
t ),

where each GG(n)
i is a derived gate of G, defined on the space H (n). For instance,

theMach–Zehnder circuit (
√
I

(1)
, NOT(1),

√
I

(1)
) represents an example of a circuit

that belongs to CG∗
(the circuit-family determined by the gate-system G∗).

On this basis, it seems reasonable to assume that any choice of a finite gate-system
G determines an abstract quantum computing machine AbQCMG whose programs
correspond to the circuits that belong to the family CG. Since any circuit can be
associated to a particular quantum state machine, any abstract quantum computing
machine can be also regarded as an infinite family of quantum state machines, corre-
sponding to different programs that the abstract machine can perform. Accordingly,
any circuit GC ∈ CG, applied to an appropriate input, represents a computation of
the abstract machine AbQCMG. We can say that AbQCMG computes the output
|ψ〉out for the input |ψ〉in iff there is a circuitGC ∈ CG such thatGC |ψ〉in = |ψ〉out .

Abstract quantum computingmachines clearly representmathematicalmodels for
possible physical quantum computers. A unitary operator U = Ut . . .U0 determined
by a program (U0, . . . ,Ut ) of an abstract machine AbQCMG can be regarded as the
mathematical description of a possible time-evolution of a quantum system S that is
able to implement such a program for convenient inputs.

A crucial problem (which does not represent a difficulty in the case of classical
computers) concerns the reading of the result of a computation performed by a
quantum computer. While the physical process that corresponds to the performance

7For the sake of simplicity, we are considering here gates G that are unitary operators (of a given
Hilbert space). Of course, the procedure can be easily generalized to the case of gates DG that are
unitary quantum operations.
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of a given computation is a reversible phenomenon (mathematically described by a
unitary operator), the final reading of the computation-result involves ameasurement,
which gives rise to a (generally irreversible) collapse of the wave function. Such
a reading-measurement can be performed by an apparatus that is associated to a
particular basis of the Hilbert space associated to the quantum state machine under
consideration.

Consider a computation determined by the program (U0, . . . ,Ut ) of a quantum
state machine QM (with associated Hilbert space H QM) and let |ψ〉in a possible
input for QM. The output of the computation will be the state

|ψ〉out = U|ψ〉in,

where U = Ut . . .U0. For any choice of a basis B of the Hilbert space H QM the
state |ψ〉out can be represented as a superposition ∑

i ci |ϕi 〉 of elements of B, where
each |ϕi 〉 has the form |1H 〉|shalt j 〉|xi1 , . . . , xin 〉. Hence, any reading-measurement M
(associated to the basis B) will determine a state-transformation

∑

i

ci |ϕi 〉 �→M |ϕi 〉.

Accordingly, in order to obtain an experimental result that can approximately repro-
duce the probabilistic predictions of the superposition

∑
i ci |ϕi 〉, we shall repeat our

measurement (a given number of times), always using equi-prepared input-states.
A peculiar difficulty of the reading-procedure in quantum computation concerns

the choice of the “right time” when the final measurements should be performed.
In some cases the reading-measurement is not problematic. For instance, in the
computation of theMach–Zehnder circuit one shall simplywait for the “clicks” of the
detectors located along the x-direction and along the y-direction. Generally, however,
the situation may be more complicated and the choice of the right time when the final
measurement should be performed (in order to obtain the expected result) may be
critical. Of course, the number of computational steps of a program (U0, . . . ,Ut )

does not generally determine the length of the time-interval during which a physical
machine S evolves to a final halting state

∑
i ci |1H 〉|shalt j 〉|xi1 , . . . , xin 〉. And, unlike

the case of classical computers, one cannot look inside the “computer-box”; for, any
observation would generally destroy the superpositions that determine the quantum
parallel configurations. Different tools have been proposed and discussed in order
to overcome this special experimental difficulty. An ingenious method proposed by
Feynman can be roughly illustrated as follows. One introduces an auxiliary quantum
system C, called the clock, whose aim is keeping track of the time-evolution of the
quantum system S that performs the computation (from the initial time to the time
when the system S reaches a halting state). The states of the clock C are supposed
to be entangled with the states of the system S. Hence, by performing on the clock a
measurement that yields a discrete result j , one obtains that the state of S collapses
into a corresponding state |ψ j+1〉 = U j . . .U0|ψ0〉. In this way, any measurement on
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the clock does not destroy the superpositions representing the state of the quantum
system that is performing the computation.

An interesting question concerns the possibility of a universal abstract quantum
computing machine that could play the role of the universal Turing machine in clas-
sical computation. This question has a negative answer. As we have seen in Sect. 2.2,
by trivial cardinality-reasons it is impossible to define all gates of a space H (n) by
means of a finite set of gates. As a consequence, no abstract quantum computing
machine can be perfectly universal.

In spite of this negative result, one can usefully have recourse to the notion of
approximately universal gate system, which is justified by the Shi- Aharonov Theo-
rem (Theorem 2.4). Consider the gate-system

G∗ = (I(1),NOT(1),
√
I

(1)
,T(1,1,1)).

As we have learnt in Sect. 2.2, for any gate G of a Hilbert space H (n) and for any
choice of a non-negative real number ε there is a finite sequence of gates (G1, . . . ,Gu)

(of H (n)) such that: 1) (G1, . . . ,Gu) is a circuit belonging to the family CG∗
; 2) for

any vector |ψ〉 of H (n), ‖G|ψ〉 − G1 . . .Gu |ψ〉‖ ≤ ε.

Thus, the family CG∗
has the capacity of approximating with arbitrary accuracy

any possible gate. On this basis, the machine AbQCMG∗
can be reasonably repre-

sented as an approximately universal abstract quantum computing machine. Notice
that all circuits in the family CG∗

(hence all programs of AbQCMG∗
) can be syn-

tactically represented by means of formulas expressed in the language L0 of the
sentential version of holistic quantum computational logic. Both CG∗

and the set of
all formulas of L0 are denumerable sets. At the same time, the set of all possible
inputs and outputs of quantum computations is, obviously, non-denumerable. Unlike
classical computations, quantum computations cannot be faithfully represented in a
purely syntactical way (in the framework of a denumerable language). One of the
basic tasks of quantum computational semantics is creating a link between the (denu-
merable) world of circuits and the (non-denumerable) world of possible inputs and
outputs of quantum computations.

What can be said about the computational power of AbQCMG∗
? One can easily

realize that AbQCMG∗
is able to compute in an exact way all recursive numerical

functions. For, any sequence of natural numbers can be represented as a register
and any computation of a recursive function (applied to a register-input) can be
represented as an appropriate combination of the “Boolean” gates (the negation and
the Toffoli-gate). Thus, the machine AbQCMG∗

is able to compute whatever the
universal Turingmachine is able to compute. IsAbQCMG∗

able to compute anything
else in the domain of natural numbers? As we have seen, the Hadamard-gate (which
plays an essential role in quantum computation) seems to be hardly realizable (in a
faithful way) by a classical probabilistic state-machine. But, of course, this argument
is not sufficient to prove that abstract models of quantum computers go beyond the
computational capacities of classical Turingmachines. In order to show that quantum
computation theories bring about a refutation of the Church-Turing thesis, we should
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provide an example of a non-recursive function f that is, in principle, computable
by an abstract quantum computing machine. As far as we know, no examples that
have been proposed and discussed in the literature have found a definite approval of
the scientific community.
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Chapter 8
Ambiguity in Natural and Artistic
Languages: A Quantum Semantic
Analysis

8.1 Introduction

In the previous chapters we have seen how the mathematical formalism of quantum
theory and of quantum information have inspired new forms of quantum seman-
tics. Interestingly enough, some phenomena that had for a long time been regarded
as strange and mysterious in the domain of physical objects appear instead quite
natural and, in a sense, expected in the framework of some “human” conceptual
domains, where ambiguity, vagueness, holism, and contextuality play an essential
semantic role. Some characteristic ideas of the quantum-theoretic formalism have
recently been applied to a number of fields that are far apart frommicrophysics: from
economy to social and political sciences, from cognition and perception-theories to
the semantics of natural and artistic languages.1

As is well known human perception and thinking seem to be essentially synthetic.
We never perceive an object by scanning it point by point. We instead form right
away a Gestalt, i.e. a global idea of it. Rational activity as well seems to be often
based on gestaltic patterns. We need only think, for instance, of what happens in the
case of chess games: strong players certainlymust perform some rapid computations,
but above all they must be able first to perceive a Gestalt of the position and then to
assess by experience the probability of its different issues.2

In this chapter we will discuss the possibility of applying some basic concepts of
the quantum computational semantics to a general theory of vague possible worlds.
We will see how in this framework one can develop a formal representation of
some characteristic features of musical languages. This approach will also allow
us to understand some abstract reasons why a “metaphorical thinking” often plays
an important role in the languages of art and sometimes even in the field of exact
sciences.

1See, for instance, [1, 2, 7, 10].
2See [12].
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8.2 Vague Possible Worlds and Metaphors

In the tradition of scientific thoughtmetaphorical arguments have often been regarded
as fallacious and dangerous. There is a deep logical reason that justifies such “suspi-
cions”. Metaphors and allusions are generally based on similarity-relations: when an
idea A is used as a metaphor for another idea B, the two ideas A and B are supposed
to be similar with respect to something. And we know that similarity-relations are
weak relations: they are reflexive and symmetric; but generally they are not transitive
and they do not preserve the properties of the objects under investigation. If Alice is
similar to Beatrix and Alice is clever, it is not guaranteed that Beatrix also is clever.
Wrong extrapolations of properties from some objects to other similar objects are
often used in rhetoric contexts, in order to obtain a kind of captatio benevolantiae.
We need only think of the soccer-metaphors that are so frequently used by many
politicians!

In spite of their possible “dangers”, metaphors have sometimes played an impor-
tant role even in exact sciences. An interesting example in logic is represented by
the current use of the metaphor of possible world, based on a general idea that
has been deeply investigated by Leibniz. In some situations possible worlds, which
correspond to special examples of semantic models, can be imagined as a kind of
“ideal scenes”, where abstract objects behave as if they were playing a theatrical
play. And a “theatrical imagination” has sometimes represented an important tool
for scientific creativity, also in the search for solutions of logical puzzles and para-
doxes. A paradigmatic case can be recognized in the discussions about a celebrated
set-theoretic paradox, the Skolem-paradox. Consider an axiomatic version of set the-
ory T (say, Zermelo–Fraenkel theory) formalized in (classical) first-order logic and
assume that T is non-contradictory. By purely logical reasons, we know that T has
at least one “strange” model M ∗, where both the domain and all its elements are
denumerable sets. In this model M ∗ the continuum (the set R of all real numbers)
seems to be, at the same time,

• denumerable, because everything is denumerable inM ∗;
• non-denumerable, becauseM ∗ must verify Cantor’s theorem, according to which
the continuum R is non-denumerable.

In order to “see” a possible way-out from this paradoxical conclusion, we can
imagine an ideal scene where all actors are denumerable sets. Some actors are sup-
posed to “wear a mask”, playing the role of non-denumerable sets. As happens in
real theatrical plays, characters and actors do not generally share the same proper-
ties. The actor who plays the role of Othello is not necessarily jealous himself! In the
same way, a denumerable set can play the role of the non-denumerable continuum
on the stage represented by the non-standard modelM ∗. The Skolem-paradox is one
of the possible examples that show us how a recourse to a “metaphorical thinking”
may sometimes improve abstract imagination-capacities even in the field of exact
sciences.

To what extent is “a logic of metaphors” possible? The quantum computational
semantics seems to provide a useful tool for discussing this question. Aswe have seen
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in the previous chapters, the basic idea of this semantics is that the meanings of well-
formed linguistic expressions can be formally represented as (pure or mixed) states
of special quantum systems. Of course, like formulas, sequences of formulas also can
be interpreted according to the quantum computational rules. As expected, a possible
meaning of a sequence (α1, . . . , αn) of formulas will be a density operator ρ(α1,...,αn)

living in a Hilbert space H (α1,...,αn), whose dimension depends on the linguistic
complexity of the formulas α1, . . . , αn . In this framework one can naturally develop
an abstract theory of vague possible worlds. Consider a pair

W = ((α1, . . . , αn), ρ(α1,...,αn)),

consisting of a sequence of formulas and of a density operator that represents a
possible meaning for our sequence. It seems reasonable to assume that W describes
a vague possible world, a kind of abstract scene where most events are characterized
by a “cloud of ambiguities”, due to quantum uncertainties. In some cases W might
be exemplified as a “real” scene of a theatrical play or as a vague situation that is
described either in a novel or in a poem. And it is needless to recall how ambiguities
play an essential role in literary works.

As a simple example, consider the following vague possible world:

W = ((Pab), ρ(Pab)),

where Pab is supposed to formalize the sentence “Alice is kissing Bob”, while ρPab

corresponds to the pure state

|Ψ 〉Pab = |ϕ〉 ⊗ 1√
2
(|0, 1〉 + |1, 0〉) ⊗ |1〉,

where |ϕ〉 lives in the spaceH (1) = C
2,while |Ψ 〉Pab lives in the spaceH (4) = C

2 ⊗
C

2 ⊗ C
2 ⊗ C

2. Here each reduced state of |Ψ 〉Pab that describes the pair consisting
of the two individuals Alice and Bob is an entangled Bell-state; consequently, the
reduced states that describe the two subsystemsAlice andBob are two identicalmixed
states. In the context |Ψ 〉Pab Alice and Bob turn out to be indistinguishable: it is not
determined “who is who” and “who is kissing whom”. It is not difficult to imagine
some “real” theatrical scenes representing ambiguous situations of this kind.

The quantum-theoretic formalism can be naturally applied to an abstract anal-
ysis of metaphors. Both in the case of natural languages and of literary contexts
metaphorical correlations generally involve some allusions that are based on par-
ticular similarity-relations. Ideas that are currently used as possible metaphors are
often associated with concrete and visual features. As observed by Aristotle, a char-
acteristic property of metaphors is “putting things under our eyes”.3 Let us think,
for instance, of a visual idea that is often used as a metaphor: the image of the sea,

3See Aristotle, Meteorologica, 357.
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correlated to the concepts of immensity, of infinity, of obscurity, of pleasure or fear,
of places where we may get lost and die.

The concept of quantum superposition can represent a natural and power-
ful semantic tool in order to represent the ambiguous allusions that characterize
metaphorical correlations. Consider a quregister

|ψ〉 =
∑

i

ci |ψi 〉, where ci �= 0.

In such a case any |ψi 〉 turns out to be non-orthogonal to |ψ〉. We have:

|ψi 〉 �⊥ |ψ〉

(i.e. the inner product of |ψi 〉 and |ψ〉 is different from 0). And we know that the non-
orthogonality relation �⊥ represents a typical similarity-relation (which is reflexive,
symmetric and generally non-transitive). Hence, in particular semantic applications,
the idea |ψi 〉 (which |ψ〉 alludes to) might represent a metaphor for |ψ〉, or vice
versa.

8.3 A Quantum Semantics for Musical Languages

Musical languages represent an interesting field where the basic concepts of the
quantum computational semantics can be applied in a natural way.4 Any musical
composition (say, a sonata, a symphony, a lyric opera,...) is, generally, determined
by three elements:

• a score;
• a set of performances;
• a set of musical thoughts (or ideas), which represent possible meanings for the

musical phrases written in the score.

While scores represent the syntactical component of musical compositions, per-
formances are physical events that occur in space and time. From a logical point of
view, we could say that performances are, in a sense, similar to extensional mean-
ings, i.e. well determined systems of objects which the linguistic expressions refer
to. Musical thoughts (or ideas) represent, instead, a more mysterious element. Is it
reasonable to assume the existence of such ideal objects that are, in a sense, similar
to the intensional meanings investigated by logic? Is there any danger to adhere, in
this way, to a form of Platonism? When discussing semantic questions, one should
not be “afraid” of Platonism. In the particular case of music, a composition can-
not be simply reduced to a score and to a system of sound-events. Between a score

4See [4–6]. For some other applications of quantum ideas to a formal analysis of music see, for
instance, [3, 8].
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(which is a system of signs) and the sound-events created by a performance there is
something intermediate, represented by the musical ideas that underlie the different
performances. This is the abstract environment where normally live both composers
and conductors, who are accustomed to study scores without any help of a material
instrument.

Following the rules of the quantum computational semantics, musical ideas can
be naturally represented as superpositions that ambiguously describe a variety of
co-existent thoughts. Accordingly, we can write:

|μ〉 =
∑

i

ci |μi 〉,

where:

• |μ〉 is an abstract object representing a musical idea that alludes to other ideas |μi 〉
(possible variants of |μ〉 that are, in a sense, all co-existent);

• the number ci measures the “importance” of the component |μi 〉 in the context
|μ〉.
As happens in the case of composite quantum systems, musical ideas (which

represent possible meanings of musical phrases written in a score) have an essential
holistic behavior: the meaning of a global musical phrase determines the contextual
meanings of all its parts (and not the other way around).

As an example, we can refer to the notion of musical theme. What exactly are
musical themes? The term “theme” has been used for the first time in a musical
sense by Gioseffo Zarlino, in his Le istitutioni harmoniche (1558), as a melody that
is repeated and varied in the course of a musical work. Generally a theme appears in a
musical compositionwith different “masks”. In somecases it can be easily recognized
even in its transformations; sometimes it is disguised and can be hardly discovered.
Of course, a theme cannot be identified with a particular (syntactical) phrase written
in the score; for, any theme essentially alludes to a (potentially) infinite set of possible
variants. One is dealing with a vague musical idea that cannot be either played or
written. At the same time, it is interesting to investigate (by scientific methods)
the musical parameters that represent a kind of invariant, characteristic of a given
theme. In different situations the relevant parameters may concern the melody or the
harmony or the rhythm or the timbre.

The ambiguous correlations between a theme and its possible variants turn out to
be exalted in the fascinating musical form that is called Theme and Variations. By
using the superposition-formalism, we can represent the abstract form of a theme as
follows:

|μ〉 = c0|μ0〉 + c1|μ1〉 + · · · + cn|μn〉,

where:

• |μ0〉 represents the basic theme (a precise musical idea, written in the score).
• |μ1〉, . . . , |μn〉 represent the variations of |μ0〉.
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• |μ〉 represents an ambiguous musical idea that is correlated to the basic theme and
to all its variations.

Of course the basic theme |μ0〉 has a privileged role, while the global theme |μ〉
seems to behave like a kind of “ghost”, which is somehowmysteriously present even
if it appears hidden.

As is well known, an important feature of music is the capacity of evoking extra-
musical meanings: subjective feelings, situations that are vaguely imagined by the
composer or by the interpreter or by the listener, real or virtual theatrical scenes
(which play an essential role in the case of lyric operas and of Lieder). The interplay
between musical ideas and extra-musical meanings can be naturally represented in
the framework of our quantum semantics, where extra-musical meanings can be dealt
with as special examples of vague possible worlds.We can refer to the tensor product
of two spaces

M Space ⊗ W Space,

where:

• M Space represents the space of musical ideas |μ〉;
• W Space represents the space of vague possible worlds, dealt with as special
examples of abstract objects |w〉 that can be evoked by musical ideas.

Following the quantum-theoretic formalism, we can distinguish between fac-
torized and non-factorized global musical ideas. As expected, a factorized global
musical idea will have the form:

|M〉 = |μ〉 ⊗ |w〉.

But we might also meet “Bell-like” entangled global musical ideas, having the form:

|M〉 = c1(|μ1〉 ⊗ |w1〉) + c2(|μ2〉 ⊗ |w2〉).

In the case of lyric operas and of Lieder musical ideas and vague possible worlds
are, in fact, always entangled (in an intuitive sense). We need only think how some
opera-librettos may appear naive and, in some parts, even funny, if they are read as
pieces of theatre, separated from music. Also Lieder, whose texts have often been
written by great authors (Goethe, Schiller,Heine, etc.) give rise to similar “entangled”
situations. Generally a musical intonation of a given poem transforms the text into
a new global semantic object that somehow absorbs and renews all meanings of the
original literary work.

To what extent can some musical ideas be interpreted as musical metaphors for
extra-musical meanings?5 Is it possible to recognize any natural similarity-relations
that connect ideal objects living in two different worlds that seem to be deeply far
apart? In order to discuss this question it is expedient to refer to some interesting
musical examples. Significant cases can be found in the framework of Schubert’s

5For an interesting discussion of this problem see [11].
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Lieder, where some musical figures and themes based on sextuplets often evoke
images of water and of events that take place in water. Let us refer, for instance, to the
celebrated Lieder-cycle “Die SchöneMüllerin” (“The BeautifulMiller’s Daughter”).
The story told in the poems of the German poet Wilhelm Müller is very simple. A
young man, a miller, falls in love with the beautiful daughter of the mill’s owner. But
the girl refuses him and prefers a wild hunter. The young miller cannot overcome his
love’s pains and finally dies. During his Wandern (wandering) his only true friend
is der Bach, the mill’s brook that has a constant dialog with him. The flowing of the
brook’s water represents a clear poetic and musical metaphor for the flowing of time
and for the changing feelings of the young lover.

When in the second Lied of the cycle, “Wohin” (“Whereto”), the miller meets
the brook for the first time, singing “Ich hört’ ein Bächlein rauschen wohl aus dem
Felsenquell” (“I heard a brooklet rushing right out of the rock’s spring”), the piano-
accompaniment begins playing a sequence of sextuplets that will never be interrupted
until the end of the Lied. Even the graphical shape of the sextuplets in the score
suggests a natural similarity with a sinusoidal form representing the water’s wave-
movement (Fig. 8.1).

This creates a complex network of dynamic interactions amongdifferent elements:

• the musical thoughts that become “real” musical events during a performance of
the Lied;

• the graphical representation of the musical phrases written in the score;
• the poetic metaphors, suggested both by the text and by the music, that allude to
the flowing of time, to changing subjective feelings and to a mysterious fear for
an uncertain future.

In many of his Lieder Schubert has often associated sextuplet-figures with images
of water and with abstract ideas that refer to the flowing of time. Wonderful (and
famous) examples are, for instance, the two Lieder “Auf dem Wasser zu singen”
(“Singing on the water”) and “Die Forelle” (“The Trout”).

We will now consider another significant case that concerns Robert Schumann’s
compositions. We will refer to a very special musical theme that has been called
“Clara’s theme”.6 Clara is Clara Wieck, the great pianist and composer who has
been the wife of Schumann. One is dealing with a somewhat mysterious theme that
appears as a kind of “hidden thought” in different works by Schumann, by Clara
herself and by Johannes Brahms, three great musicians whose lives have been in a
sense “entangled” even outside the sphere of music.

Unlike the basic theme of a “Theme and Variations”- composition, Clara’s theme
cannot be identified with a precise musical phrase written in a particular score: many
different variants of this theme have been recognized in different contexts, associated
to different semantic connotations. It is well known that Schumann liked the use of
“secret codes”: special musical ideas whose aim was an ambiguous allusion to some
extra-musical situations. The code of Clara’s theme is based on the letters that occur
in the name “CLARA”, where “A” and “C” correspond to musical notes, while “L”

6See [9].
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Fig. 8.1 Sextuplets in the Lied “Wohin”

and “R” do not have any musical correspondence. In spite of this, one can create
some interpolation, giving rise to different variants, all inspired by the name “Clara”.
An interesting example is the following note-sequence, which belongs to the F sharp
minor-tonality:
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C � (B) A (G �) A

[ C L A R A ]

Like in the case of Schubert’s sextuplets we can ask: is it reasonable to interpret
Clara’s theme as a kind of musical metaphor? Using a code (in a musical form)
clearly suggests a reference to some extra-musical ideas. But what exactly is evoked
by means of this special code? Of course, the aim cannot be a realistic description of
the person denoted by the name “Clara” (a kind of extensional reference in logical
sense). Let us consider some significant examples where Clara’s theme has played an
important role. In 1853 Clara Wieck composed the piano-piece Variationen op. 20,
über ein Thema von Robert Schumann, ihm gewidmet, dedicated to her husband in
occasion of his birthday. One year later Brahmswrote his ownVariations on the same
theme and dedicated his composition to Clara. Schumann’s theme, which Clara and
Brahms present exactly in the same way, is drawn from Bunte Blätter, a composition
that Schumann wrote in 1841 (Fig. 8.2).

One can easily see that this “Schumann’s theme” is based on one of the possible
variants of Clara’s theme (in F sharp minor):

C � C � C � (B) A (G �) A.

Is it possible to recognize, in a natural way, some extra-musical meanings, con-
nected with Clara’s personality, that might be correlated as vague allusions to the
musical features of Schumann’s theme? A reasonable conjecture seems to be the
following: Clara is here evoked as a kind of “consoling figure”, who inspires serene
and peaceful feelings. It is not a chance that in one of the most famous Schumann’s
Lieder, “Widmung” (“Dedication”), the voice sings with the words of the poet Rück-
ert “Du bist die Ruh, du bist der Frieden” (“You are the rest, you are the peace”),
while in the piano conclusion the consoling theme of Schubert’s Ave Maria, which
is repeated twice, suddenly appears as a somewhat hidden quotation. The hypothesis
that a vague consolation-idea represents an important semantic connotation associ-
ated to Clara seems to be confirmed by some Lieder where Clara’s theme can be
easily recognized. Of course, metaphorical correlations that emerge in Lieder are
often somewhat cryptic, also because musical metaphors turn out to be ambiguously
interlaced with the poetic metaphors that are expressed in the literary text. An inter-
esting example is represented by the eighth Lied (“Und wüssten’s die Blumen”) of
the famous Lieder-cycle “Dichterliebe” Op. 48, based on Heine’s poems. Clara’s
theme appears here at the very beginning of the first phrase sung by the voice. In the
version “für mittlere und tiefe Stimme” (baritone and bass) we find the same tonality
of Schumann’s theme (F sharp minor) and the same descending note-sequence that
in this case reaches the tonic (Fig. 8.3).

The leading idea expressed by Heine’s poem is the search for a consolation that
might be offered by a friendly Nature:
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Fig. 8.2 Schumann’s theme

Fig. 8.3 Und wüssten’s die Blumen

Und wüssten’s die Blumen, die kleinen,
Wie tief verwundet mein Herz,

Sie würden mit mir weinen,
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Zu heilen meinen Schmerz.7

One first addresses the flowers that could “heilen meinen Schmerz”, but then the
same request is turned to the nightingales and to the golden stars:

Sie kämen aus ihrer Höhe,
Und sprächen Trost mir ein.8

And significantly enough the first three stanzas ofHeine’s poem are all set tomusic by
means of one and the same musical phrase (based on Clara’s theme) that is repeated
three times.

We have seen how metaphorical correlations can be described, from an abstract
point of view, as very special cases where ideas belonging to different conceptual
domains are connected by means of vague allusions. The occurrence of a metaphor
in a given context is generally characterized by a “cloud” of ambiguity and indeter-
mination that can be naturally analyzed by using quantum-theoretic concepts. The
strength of the quantum computational semantics depends on the fact that meanings
are, in this framework, represented as relatively simple and cognitively accessible
ideal objects that ambiguously allude to a potentially infinite variety of alternative
ideas.We know that any pure state of a Hilbert space can be represented as a superpo-
sition of elements of infinitelymany possible bases of the space. Andwe have seen (in
Chap.5) how any choice of a particular basis can be intuitively regarded as a possible
perspective from which we are looking at the phenomena under investigation.

As is well known, semantic phenomena of ambiguity and vagueness have been
investigated in the literature by a number of different approaches. In classical logical
frameworks one has often referred to complex systems of possible worlds, where
each particular world is characterized by sharp and deterministic features, according
to the excluded-middle principle. This gives rise to a “multiplication of entities” that
may represent a shortcoming from a cognitive point of view. More natural theories
of vagueness have been developed in the framework of fuzzy logics. But what is
generally missing in the standard many-valued semantics is the capacity of repre-
senting holistic aspects of meanings, which play an important role either in natural
languages or in the languages of art. Of course, recognizing the advantages of a quan-
tum semantics does not imply any “ideological” conclusion, according to which the
quantum-theoretic formalism should have a kind of privileged position in the rich
variety of semantic theories that have been proposed in the contemporary literature.
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Chapter 9
Quantum Information in the
Foundational and Philosophical Debates
About Quantum Theory

9.1 Information Interpretations of Quantum Theory

The intense investigations that have recently been developed in the field of
quantum information and quantum computation have naturally stimulated new
debates about foundational and philosophical questions of quantum theory. “Informa-
tion interpretations”, according to which quantum theory should be mainly regarded
as a “revolutionary information theory” that has deeply changed some classical ideas
about knowledge, have sometimes been opposed tomore traditional “realistic views”,
according to which the pure states of the quantum-theoretic formalism should always
“mirror” objective properties of physical systems that exist (ormay exist) in the phys-
ical world.

One of the most influential defenders of an information interpretation of quantum
theory is Anton Zeilinger, the Austrian physicist who has played a leading role in
some important quantum experiments performed by scientific teams of the “Institute
for Quantum Optics and Quantum Information” in Innsbruck and of the “Institute
for Experimental Physics” in Vienna. The basic idea of Zeilinger’s philosophical
position is that we cannot have any direct access to what is usually called “reality”,
which can only be grasped by means of images, ideas, thoughts constructed on the
basis of our experiences. All that we have at our disposal are pieces of informa-
tion, impressions, answers to questions that have been formulated by us.1 In this
respect Zeilinger’s general views seem to be close to Kant’s basic ideas, according
to which knowledge can only concern phenomena, while the ontological “things-in-
themselves” (noumena) are inaccessible to human minds.

At the same time, the information interpretation of quantum theory can be also
regarded as a new development of the “Copenhagen interpretation” that had been
proposed by Niels Bohr between the Twenties and the Thirties (of the last Cen-
tury). And it is not by chance that in his book “Einstein’s Schleier” (“Einstein’s
Veil”) Zeilinger begins his discussion about “information and reality” by quoting an

1See [24].
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assertion by Bohr: it is wrong to think that the task of physics is to find out how
Nature is. Physics concerns what we can say about Nature.

As is well known, a core-idea of the Copenhagen interpretation is that quantum
systems do not generally possess independent objective properties. What we call
“quantumproperties” are, in fact, relationswithpossible observers andmeasurement-
apparatuses. The collapse of the wave function-principle has brought into light the
role of observers, whose choices can, in some situations, determinewhich observable
(from a system of pairwise incompatible observables) has an actual value, even in
the case of physical systems that are far apart from the observers. And we have seen
(in Chap.3) how such subjective choices had worried Einstein, Podolsky and Rosen
in their celebrated paradoxical argument.2

9.2 The Collapse-Problems

To what extent shall the collapse of the wave function be necessarily performed by
a human intelligence? This question had been deeply discussed in the early debates
about the foundations of quantum theory, giving rise to some interpretations that
have been regarded as “strongly idealistic”. A significant example is represented
by the position of the scientist who has introduced the collapse-principle as an
axiom of quantum theory: John von Neumann.3 The basic idea of von Neumann’s
interpretation is that the collapse of the wave function does not represent a physi-
cal phenomenon, but rather an “epistemic event” that occurs inside the observer’s
consciousness; and this provides a solution for the quantum measurement-paradox.
Consider a composite system S + A (consisting of a quantum system S and of an
apparatusA that performs a measurement of an observable O on S) and suppose that
the initial state of this system is pure. As we have seen (in Chap.1), Schrödinger’s
equation and the collapse-principle generally predict two different time-evolutions
for the initial state of our system. While the Schrödinger-evolution may leave inde-
terminate the value of O for S, the collapse-principle transforms the initial state
of the composite system into a factorized state that assigns a definite value to O .
According to von Neumann this logical conflict can be solved by interpreting the
collapse-phenomenon as a purely epistemic event: the observer’s consciousness is
something external with respect to the physical system S + A and it is not necessary
to assume that human minds are submitted to the laws of quantum physics.

Such an “idealistic” solution of the measurement-problem has raised a number
of objections in the physical community. Interestingly enough, however, von Neu-
mann’s interpretation can be transformed into a purely logical argument, which turns

2An “extreme” formof informational approach to quantum theory has been proposed by the so called
“QuantumBayesianism” (briefly, “QBism”), developed on the lines of a subjectivistic interpretation
of probability theory (Ramsey, de Finetti). The basic idea of “quantum bayesianists” is that quantum
states have to be interpreted as “belief-degrees” of particular epistemic agents. See, for instance, [9].
3See [22, 23].
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out to be independent of the philosophical discussions about the dilemma “idealism
or realism?”. The basic idea of a possible “logical reinterpretation” of vonNeumann’s
solution can be sketched as follows. Any application of the collapse-principle shall
refer to an apparatus A that is external with respect to the quantum systems under
consideration. Such an apparatus turns out to have a kind of metatheoretic role with
respect to the universe of the object-systems investigated by the theory. Of course,
nothing forbids us to consider the apparatus itself as a particular quantum object,
by studying the behavior of S + A. In such a case, however, in order to apply the
collapse-principle to S + A, we shall use a different apparatus A′ that should be
external with respect to the universe of discourse (which S + A belongs to). One
obtains in this way a kind of regressus ad infinitum that allows us to locate where we
want the dividing line between object-physical systems and metatheoretic systems.
Such a representation of quantum phenomena seems to be close to some situations
that arise in logic as a consequence of the celebrated limitative theorems (proved by
Gödel and by Tarski). The quantum uncertainty about the value of the observable O
(value that is not decided by the pure state predicted by Schrödinger’s equation and
can be decided by collapse of the wave function by means of an external apparatus
A′) can be compared to the logical status of a sentence asserting the consistency of
a given mathematical theory (sentence that is undecidable in the framework of the
theory and becomes decidable in a convenient metatheory).

In more recent times different interpretations of the collapse-principle have been
proposed and developed. One has pointed out that measurement-procedures do not
necessarily require a human awareness. What is really important is the role of a mea-
suring apparatus (associated to a basis of a given Hilbert space) that detects a final
result. All these questions have, of course, a bearing for quantum computation the-
ory. As we have seen (in Chap. 7) quantum computers represent special examples of
quantum systems, whose states finally collapse, giving rise to the reading of a given
computation-output; and such a “reading” is not necessarily bound to a human con-
sciousness. The apparatus itself or a “robot-reader” can perfectly do the required job.
The physical interaction that occurs between a quantum system S and an apparatus
A (which is performing a measurement on S) can be naturally described as a spe-
cial example of an interaction between a micro-system and its macro-environment.
During the last decades such interactions have been intensively investigated in the
framework of the so called “decoherence theories”.4

9.3 Determinism, Indeterminism, Realism

In contrast with the “Copenhagen-spirit” and with all information interpretations of
quantum theory, other approaches have defended the thesis according to which, in
spite of the apparently strange behavior of the quantum world, quantum theory is
compatible with a “realistic conception” of physics.

4See, for instance, [25].
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Many debates about the dilemma “realism or anti-realism?” have often referred
to the historical controversy between Einstein and Bohr. The discussions between
these two great physicists had animated their extraordinary relationship for many
years, since the Solvay-congress (1927) until the early Forties, when both Einstein
and Bohr (who had left Europe under the Nazi domain) were working at the “Institute
for Advanced Study” in Princeton. And, significantly enough, their deeply divergent
ideas about some basic questions concerning physics and philosophy never cast shad-
ows on their warm friendship, their sense of humour and their open-minded critical
attitude. As is well known, Einstein never accepted the essential indeterminism of the
quantum world, which represents instead a characteristic feature of quantum theory
according to Bohr’s views. To Einstein’s famous claim “I cannot believe that God
plays dice!” (so often repeated in the philosophical debates about quantum theory)
Bohr’s ironical response had been “Don’t give orders to God!”.

Is there any natural correlation between a deterministic conception of the physical
world and a realistic philosophical position? Apparently, one is dealing with two
different assumptions that are characterized by different logical properties. While
determinism admits precise scientific explanations, realism, instead, seems to be a
more vague and nebulous philosophical concept, which has been associated to a
number of somewhat ambiguous interpretations.5

What does it mean that a given physical theory T (say, classical particle mechan-
ics or special relativity or quantum mechanics) is deterministic or indeterministic?
A reasonable answer to this question (which seems to be in agreement with what is
generally accepted by the scientific community) can be formulated as follows.

T is a deterministic physical theory iff for any physical system S (which belongs
to the universe of systems investigated by T) and for any possible pure state s (which
represents a maximal information about S) s decides all relevant physical events X
that may occur to S (when S is in the state s). In other words, s determines whether
X holds for S or X does not hold for S.6

Accordingly, physical determinism seems to be strongly connected with the valid-
ity of a classical logical principle: the semantic “tertium non datur!”. Probability-
values (different from the two extreme values 0 and 1) do not play any role for the pure
states of a deterministic theory. In such a case “God does not play dice!” according
to Einstein’s desire. Of course, this idea of determinism does not forbid success-
ful applications of probability theory in the framework of deterministic theories. In
such cases, however, non-trivial probability-values only concern proper mixtures,
which can always be interpreted as “imperfect” pieces of information due to human
ignorance.

5For an interesting discussion about the possibility of “realistic” interpretations of quantum theory
see, for instance, [21].
6It is worth-while noticing that this definition of deterministic theory corresponds to a form of
determinism that is sometimes called “static”. By “dynamic determinism” one usually means the
idea according to which the dynamic equations of the theory under consideration determine for any
pure state s(t) (representing the state of a system S at time t) the pure state s(t ′) of S at any other
time t ′ (where t < t ′ or t ′ < t). In this sense one can say that Schrödinger’s equation guarantees a
form of probabilistic dynamic determinism for quantum theory.
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While classical particle mechanics or special relativity can be naturally
represented as important examples of deterministic theories, quantum theory (accord-
ing to its standard axiomatization) is clearly non-deterministic. We know that, due
to the uncertainty-principles, no pure state |ψ〉 of a quantum system S can decide all
relevant physical events that may occur to S.

A possible way-out from the essential indeterminism of quantum theory had been
discussed byEinstein, Podolsky andRosen in their celebrated article.Aswehave seen
(in Chap.3), the basic aim of the paper was proving (by a contradiction-argument)
that quantum mechanics is a physically incomplete theory, whose pure states cannot
represent maximal pieces of information about quantum objects.7

To what extent is a deterministic completion of quantum theory logically possible,
since the uncertainty-principles are theoremsof the theory?Themost serious attempts
to restore determinism in quantum theory have been proposed by the hidden-variable
approaches, whose basic ideas can be sketched as follows.8

(1) Quantum theory is a physically incomplete theory, whose pure and mixed states
only provide statistical predictions (as happens in the case of classical statistical
mechanics).

(2) It is possible to add to quantum theory a set Λ of parameters (hidden variables)
in such a way that:

(2.1) for every pure quantum state |ψ〉 there exists a dichotomic (dispersion-
free) state (|ψ〉, λ) (with λ ∈ Λ), which decides all events that may occur
to the physical system S described by (|ψ〉, λ);

(2.2) the statistical predictions of standard quantum theory shall be recovered
by averaging over these dichotomic states;

(2.3) the algebraic structures determined by the events that may occur to quan-
tum systems shall be preserved in the hidden-variable extensions.

The hidden-variable theories based on assumptions (1) and (2) are usually called
“non-contextual”, because they require the existence of a unique hidden-variable
space Λ that determines all dispersion-free states. A weaker position is represented
by the so called “contextual hidden-variable theories”, according to which the choice
of Λ may depend on the choice of the observables that are considered in particular
situations.

The logical possibility of a non-contextual hidden variable theory (satisfying
conditions (1) and (2)) has been put in question by some important mathematical
theorems that have been called “no-go theorems”.9 In the late Sixties (of the last
Century) Kochen and Specker published a series of articles developing a purely
logical argument for a no-go theorem, whose proof is based on a variant of Birkhoff
and von Neumann’s quantum logic, called partial classical logic (PCL).10 While

7See [8].
8See [4–6, 13].
9The first no-go theorem has been proved by von Neumann. His proof, however, is based on some
general assumptions that have later been considered too strong.
10See [16, 17].
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Birkkhoff and von Neumann’s quantum logic (as well as abstract quantum logic)
are total logics in the sense that meanings of sentences are always defined in any
semanticmodel, themolecular sentences ofPCLmaybe semantically undefined. The
crucial relation in the semantics of PCL is represented by a compatibility-relation
that may hold between the meanings of two sentences. As expected, from an intuitive
point of view, two sentences α and β are supposed to have compatible meanings if
and only if α and β can be simultaneously tested for a quantum system. Models
of PCL are special kinds of algebraic models, based on partial Boolean algebras,
where the operations infimum and supremum are only defined for pairs of compatible
elements.11 One can prove that for any quantum system S (with associated Hilbert
spaceHS) the setP(HS) of all projections ofHS (representing the set of all possible
sharp events that may occur to S) can be naturally structured as a special example of
a partial Boolean algebra.

The no-go theorem proved by Kochen and Specker asserts that:
All quantum systems S, whose associated Hilbert space HS has a dimension

greater than 2, do not admit dichotomic states (|ψ, λ〉) that satisfy conditions (1)
and (2).

As a consequence, one can conclude that non-contextual hidden variable theories
are logically incompatible with standard quantum theory. Interestingly enough, these
investigations have brought into light a deep logical connection between the two
following questions12:

(I) is quantum theory compatible with a non-contextual hidden-variable theory?
(II) Does PQL satisfy the metalogical “Lindenbaum-property”? In other words,

can any non-contradictory set T of sentences of PQL be extended to a logically
complete set T ′ (such that for any sentenceα ofPQL, eitherα ∈ T ′ or¬α ∈ T ′)?

At the same time, Kochen and Specker’s theorem does not forbid the logical
possibility of contextual hidden-variable theories. From an intuitive point of view,
however, contextuality-assumptions seem to be somewhat far from the “spirit” of a
deterministic conception of physics.

Besides the logical incompatibilities shown by the no-go theorems, other difficul-
ties for the hidden-variable approaches have emerged at an experimental level. Some
important optical experiments (performed in the Eighties by a team of physicists of
the “Institut d’Optique Théorique et Appliquée” in Paris) have confirmed the sta-
tistical predictions of standard quantum theory against the corresponding statistical
predictions that can be derived in the framework of non-contextual hidden-variable
theories.13

While the advocates of the hidden-variable approaches have been inspired by
Einstein’s views and by the thesis defended in the EPR-paper, Einstein himself did
not adhere to any hidden-variable program. During the last period of his life his main

11For the concept of partial Boolean algebra see Definition 10.9 (in the Mathematical Survey of
Chap.10).
12See [13].
13See [1–3].
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interests and efforts were devoted to a more general project: the creation of a unified
field theory. And we know that he died without accomplishing his ambitious project.

Deterministic conceptions of physics have often been associated with “realistic”
philosophical positions; although determinism and realism are, clearly, two indepen-
dent ideas. A position that appears at the same time “strongly realistic” and “strongly
indeterministic” has recently been defended by a scientist who has played a lead-
ing role in quantum computation theory: David Deutsch. His approach represents a
development of themany-worlds theories, which have proposed a very peculiar inter-
pretation of quantum superpositions.14 Aswe have seen (in Chap.1), according to the
standard interpretation of the quantum formalism, any superposition |ψ〉 = ∑

i ci |ϕi 〉
(where every amplitude ci is different from 0) can be intuitively regarded as a descrip-
tion of a “cloud of potentialities”. Each superposition-component |ϕi 〉 corresponds
to a possible state of affairs that becomes actual, if the physical system described by
|ψ〉 interacts with a measuring apparatus (or, more generally, with an environment)
that gives rise to a collapse:

∑

i

ci |ϕi 〉 �→M |ϕi 〉.

The many-worlds theories assert, instead, that all superposition-components |ϕi 〉
describe real physical objects that live in different parallel universes; in the same
way as the superpositions that describe different computational paths of a quantum
computer perform, at the same time, “real” computations in parallel. There is no col-
lapse that transforms potential states of affairs into actual ones, because all quantum
possibilities are equally real. The world turns out to be split into different alternative
worlds and such a splitting concerns even the observers. Consider, for instance, the
case of the Mach–Zehnder interferometer. As we have seen (in Chap.2), all photons
that have entered into the interferometer-box through the first beam-splitter have an
indeterminate trajectory: each photon seems to behave as if it could simultaneously
go along the x-direction and along the y-direction. However, if an observer (say,
Alice) performs a measurement inside the box, the superposition disappears and
each photon is detected either along the x-direction or along the y-direction (and
“or” corresponds here to an exclusive disjunction). According to the many-worlds
interpretation, instead, both photon-trajectories (along the x-direction and along the
y-direction) are equally real. Consequently, also the observer (Alice) shall be split
into two different observers: Alicex and Alicey. While Alicex will “see” the photon
travelling along the x-direction, Alicey will “see” the photon travelling along the
y-direction. All human beings have, in fact, a number of different “counterparts”,
living in different universes. Such a strange “multiplication of entities”, which appar-
ently contradicts Ockham’s “razor-principle” (“entia non sunt multiplicanda praeter
necessitatem”) has naturally raised a number of objections of the scientific commu-
nity. Another difficulty is due to the fact that the many-worlds theories cannot be

14See [7].
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either confirmed or refuted by experimental evidence: Alicex will never meet her
counterpart Alicey, who lives in a parallel universe.15

A completely different approach (which has raised a great attention) is the dynamic
reduction theory, proposed in a series of articles by GianCarlo Ghirardi, Alberto
Rimini and TullioWeber.16 This theory (often termed “GRW” in the physical jargon)
is based on a stochastic and non-linear correction of Schrödinger’s equation, where
dynamic evolutions turn out to inglobe the casual irreversible transformations that are
induced by measurement-procedures. This allows us to overcome the logical conflict
between Schrödinger’s equation and the collapse-principle, which gives rise to the
measurement-paradox. The collapse-principle disappears as an independent axiom
of quantum theory and a single equation turns out to govern all quantum dynamic
processes.

A similar approach has been proposed by Roger Penrose,17 who has often pointed
out that the most unsatisfactory feature of the standard versions of quantum theory is
the conflict between Schrödinger’s equation and the collapse-principle. According
to Penrose, one should try and solve this conflict in the framework of a new unified
theory, where the collapse-phenomena might be explained as due to gravitational
effects. However, unlike the case of the GRW-theory, Penrose’s project has never
been developed in a precise mathematical form.

Both theGRW-theory andPenrose’s proposal have often been represented as based
on a conception of the quantum world that is at the same time “indeterministic” and
“realistic”. One should notice, however, that the physical interest of these approaches
is, in fact, independent of any philosophical assumption about realism.

Surprisingly enough, a number of foundational and philosophical debates about
quantum theory have dealt with the concept of “realism” in a somewhat naive and
rough way, in contrast with the rigorous analysis that has been devoted to the basic
logical, mathematical and physical concepts of the theory. As observed by Bas van
Fraassen, in this field many discussions about the dilemma “realism or anti-realism”
seem to be inspired by a kind of “pre-Kantian” philosophical attitude.

Is it possible to assign precise meanings to “realistic assertions” in the framework
of physical theories? Of course, it is quite improbable that scientists working in the
physical community deny the existence of an external world. What physicists often
call “Nature” cannot be reasonably represented as amere “creation ” of humanminds.
At the same time, the “external world” appears as a kind ofmagma that is not intrinsi-
cally organized as a systemof sharply distinguishedmaterial objects.What physicists
usually do in their experimental activity is isolating some special fragments of such a
“magmatic reality”, by choosing some relevant parameters (observables), which can

15One can recognize some significant similarities between the many-worlds interpretations and
the consistent-histories approaches to quantum mechanics. These latter theories, however, are not
necessarily bound to the strong ontological assumptions that characterize the many-worlds inter-
pretations. See, for instance, [14, 15].
16See [10–12].
17See [19, 20].



9.3 Determinism, Indeterminism, Realism 159

bemeasured on the physical systems individuated by them.18 On this basis, as a result
of the interaction with some measuring apparatuses, they can assert that some phys-
ical systems (isolated from the original magna) have been prepared in some experi-
mental states, which are determined by special sequences of measurement-outputs.
Then, at a finer theoretic level, experimental states are associated to abstract states:
special mathematical objects representing pieces of information in the mathematical
formalism of a given theory. In this way, experimental structures are embedded into
a theoretical framework. And it is well known that experiments cannot generally
determine the choice of a “correct” theory. Different (even incompatible) theories
can be verified by one and the same experimental evidence. The division of the world
into sharply distinguished material objects seems to be only a “projection” of human
experimental and theoretic constructions over an original magmatic reality. Asking
“does a wave function mirror objective properties of some material entities living
in the real world?” seems to be a somewhat naive question that does not admit any
reasonable precise answer.

9.4 A “Quantum Logical Thinking” in Different Fields

In this book we have tried to show how the quantum-theoretic formalism (which
in the early debates about quantum theory had often been described as “strange”
and “potentially paradoxical”) may have a universal value, giving rise to interesting
applications even beyond the domain of microphysics.

The developments of quantum mechanics and of quantum information theory
have led us to overcome a “classical attitude” both in physics and in logic. An
interesting view, in this connection, has been recently proposed by PeterMittelstaedt,
the German physicist who has represented an important point of reference in the
quantum-logical investigations. In his last book “Rational Reconstruction ofModern
Physics” Mittelstaedt has observed:

The three leading theories of modern physics, Special Relativity, General
Relativity, Quantum Mechanics cannot be adequately understood as an increase of
knowledge about various empirical facts. In contrast, the very progress of these tran-
sitions consists of a stepwise reduction of prejudices, i.e. of quite general hypothetical
assumptions of classical mechanics, that can be traced back to the metaphysics of
the 17th and 18th centuries. [....] The classical ontology assumes that there are
individual objects Si and that these objects possess elementary properties Pλ. An
elementary property Pλ refers to an object such that either Pλ or the counterproperty
Pλ pertains to the system. [....] The strict postulates of classical ontology are neither

18As is well known, the concept of isolated physical system is an approximated concept: all phys-
ical systems are, in fact, embedded in an environment and the borders between a system and its
environment cannot be generally determined in a sharp way. The approximation involved in this
particular case depends on the choice of the relevant parameters and by the resolving power of the
instruments used in the measurement-procedures.
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both intuitive and plausible nor can they be confirmed and justified by experimental
means.19

Both classical physics and classical logic seem to be based on a kind of over-
simplified representation of the world and of our way of reasoning about the world.
Of course, this does not force us to abandon either classical physics or classical logic
that preserve their validity in special theoretic domains where some “simplifications”
turn out to be useful. As is well known, contemporary logical investigations have
taught us that pluralism in logic and in science (in general) does not represent a
“danger” for rationality. In the wide “population” of different logics, studied by
logicians, classical logic still preserves a central role, representing also a useful
metalogical tool.

A question that has often been discussed in connection with the logical prob-
lems of quantum theory concerns the compatibility between quantum logics and the
mathematical formalism of quantum theory, based on classical logic. Is the quantum
physicist bound to a kind of “logical schizophrenia”? At first sight the co-existence
of different logics in one and the same theory may give a sense of uneasiness. How-
ever the splitting of the basic logical operators into different abstract operations
with different meanings and uses is now a well accepted logical phenomenon that
admits consistent descriptions. Classical logic and quantum logics turn out to apply
to different sublanguages of quantum theory, that must be carefully distinguished.

We have seen (in Chaps. 4 and 5) how quantum computational logics have nat-
urally emerged from the mathematical formalism of quantum computation theory.
Unlike Birkhoff and vonNeumann’s quantum logic (and its further developments), in
these logics the basic logical operators (connectives, quantifiers, epistemic operators)
have dynamic meanings that correspond to different ways of processing pieces of
quantum information.We have also seen how these logics can be naturally applied to
some “human” conceptual domains, where ambiguity, vagueness, holism and con-
textuality play an essential role (natural languages, cognitive and social sciences,
literature, music).

As happens in the case of many-valued and fuzzy logics, quantum computational
logics provide a rigorous abstract framework that allows us to develop an exact
scientific analysis for some inexact concepts and problems that play an important
role inmanyfields.According to some traditional philosophical views, ambiguity and
holism represent characteristic features of human thought that cannot be adequately
analyzed in the framework of scientific theories, whose semantics is supposed to be
essentially “sharp” and “analytical”. Interestingly enough, fuzzy logics and quantum
logics (in their different versions) have provided a significant bridge that might fill a
gap between humanistic and scientific disciplines.

While fuzziness, vagueness and ambiguity have become an important object of
scientific investigations, paradoxically enough an oversimplified dichotomic way of
reasoning (which systematically avoids any shade or nuance) seems to be a winning
trend in our present society. Even school-systems and academic institutionsmake too
often recourse to simple yes-no tests, a kind of “caricature” of classical semantics,

19See [18].
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in contrast with any search for a deeper critical thinking. We all know how nowadays
the quick communications based on modern technologies have favoured such simple
ways of reasoning, whichmay even influence political behaviors, possibly perturbing
the rules of democracy. In this situation, trying to educate people to simple forms
of “quantum thinking” might perhaps help us in the search for some useful social
transformations.

References

1. Aspect, A.: Experimental tests of Bell’s Inequalities with correlated photons. In: Pratesi, R.,
Ronchi, L. (eds.)Waves, Information andFoundations of Physics.ATribute toGiulianoToraldo
di Francia on his 80th Birthday. Italian Physical Society, Bologna (1998)

2. Aspect, A., Grangier, P., Roger, G.: Experimental tests of realistic local theories via Bell’s
theorem. Phys. Rev. Lett. 47, 460–463 (1981)

3. Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein-Podolosky-Rosen-
Bohm Gedankenexperiment: a new violation of Bell’Inequalities. Phys. Rev. Lett. 49, 91–94
(1981)

4. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38,
447–452 (1966)

5. Beltrametti, E., Cassinelli, G.: TheLogic ofQuantumMechanics. Encyclopedia ofmathematics
and its applications, vol. 15, Addison-Wesley, Cambridge (1981)

6. Bohm, D.: Quantum Theory. Prentice-Hall, Englewoods Cliffs (1951)
7. Deutsch, D.: The Fabric of Reality. Penguin Books, London (1997)
8. Einstein, A., Podolsky, B., Rosen, N.: Can quantum mechanical description of reality be con-

sidered complete? Phys. Rev. 47, 777–780 (1935)
9. Fuchs, C.,Mermin, D., Schack, R.: An introduction toQBismwith an application to the locality

of quantum mechanics. Am. J. Phys. 82(8), 749–754 (2014)
10. Ghirardi, G., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic sys-

tems. Phys. Rev. 34 D, 470–491 (1986)
11. Ghirardi, G., Rimini, A., Weber, T.: A general argument against superluminal transmission

through the quantum mechanical measurement process. Lettere al Nuovo Cimento 27, 293–
298 (1980)

12. Ghirardi, G., Rimini, A., Weber, T.: A model for a unified quantum description of macroscopic
and microscopic systems. In: Accardi, L., et al. (eds.) Quantum Probability and Applications.
Springer, Berlin (1985)

13. Giuntini, R.: Quantum Logic and Hidden Variables. Bibliographisches Institut, Mannheim
(1991)

14. Griffiths, R.B.: Consistent histories and the interpretation of quantum mechanics. J. Stat. Phys.
36, 219–272 (1984)

15. Isham, C.J.: Quantum logic and the histories approach to quantum theory. J. Math. Phys. 35,
2157–2185 (1994)

16. Kochen, S., Specker, E.P.: Logical structures arising in quantum theory. In: Addison, J., Henkin,
L., Tarski, A. (eds.) The Theory of Models, pp. 177–189. North-Holland, Amsterdam (1965)

17. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math.
Mech. 17, 59–87 (1967)

18. Mittelstaedt, P.: Rational Reconstruction of Modern Physics. Springer, Heidelberg (2011)
19. Penrose, R.: The Emperor’s New Mind. Oxford University Press, Oxford (1990)
20. Penrose, R.: Shadows of the Mind. Oxford University Press, Oxford (1994)
21. van Fraassen, B.C.: QuantumMechanics. An empiricist view. Clarendon Press, Oxford (1991)
22. von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)



162 9 Quantum Information in the Foundational and Philosophical Debates …

23. von Neumann, J.: Mathematical Foundations of Quantum Theory. Princeton University Press,
Princeton (1996)

24. Zeilinger, A.: Einsteins Schleier. Verlag C. H. Beck oHG, München, Die neue Welt der Quan-
tenphysik (2003)

25. Zurek, W.H.: Decoherence and the transition from quantum to classical - Revisited (2003).
arXiv:quant-ph/0306072

http://arxiv.org/abs/quant-ph/0306072


Chapter 10
Mathematical Survey

10.1 Introduction

This chapter is devoted to a survey of the definitions for the basic mathematical
concepts used in this book. We will first define the algebraic concepts that play an
important role in the quantum-theoretic formalism and in the semantics of quantum
logics. Then, we will introduce the notion of Hilbert space and we will define the
Hilbert-space concepts that represent themain “mathematical characters” of quantum
mechanics and of quantum information theory.

10.2 Algebraic Concepts

Definition 10.1 (Pre-ordered sets and partially ordered sets) Let A = (A, R) be a
structure where R is a binary relation defined on A.

• A is called a pre-ordered set iff R satisfies the following conditions:

(1) ∀a ∈ A : Raa (reflexivity);
(2) ∀a, b, c ∈ A : Rab and Rbc =⇒ Rac (transitivity).

• A is called a partially ordered set (briefly, poset) iff A is a pre-ordered set where
R satisfies the condition:

∀a, b ∈ A : Rab and Rba =⇒ a = b (antisymmetry).

Definition 10.2 (Lattice) A lattice is a structure

A = (A,�,�),

where � and � are two binary operations that satisfy the following conditions for
any a, b ∈ A:
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(1) a � b = b � a; a � b = b � a (commutativity);
(2) a � (b � c) = (a � b) � c; a � (b � c) = (a � b) � c (associativity);
(3) a � (a � b) = a; a � (a � b) = a (absorption).

One can prove that the lattice-operations � and � are idempotent:

∀a ∈ A : a � a = a and a � a = a.

A partial order relation � can be defined in any lattice A = (A,�,�) as follows:

∀a, b ∈ A : a � b iff a � b = a.

One can prove that for any a, b ∈ A, a � b and a � b represent respectively the
infimum and the supremum (of a and b) with respect to the partial order �. We have:

• ∀a, b, c ∈ A : c � a and c � b =⇒ c � a � b;
• ∀a, b, c ∈ A : a � c and b � c =⇒ a � b � c.

Definition 10.3 (Distributive lattice) A lattice A = (A,�,�) is called distributive
iff � distributes over � and � distributes over �:

∀a, b, c ∈ A : a � (b � c) = (a � b) � (a � c);

∀a, b, c ∈ A : a � (b � c) = (a � b) � (a � c).

Definition 10.4 (Complete lattice and σ -complete lattice) Let A = (A,�,�) be a
lattice.

• A is called complete iff for any X ⊆ A the infimum ⊔X and the supremum
⊔

X
belong to A. Thus, for any a ∈ A we have:
∀x ∈ X (a � x) =⇒ a � ⊔X; ∀x ∈ X (x � a) =⇒ ⊔

X � a.
• A is called σ -complete iff for any denumerable subset X of A, the infimum ⊔X
and the supremum

⊔
X belong to A.

Definition 10.5 (Bounded lattice) A bounded lattice is a structure

A = (A,�,�, 0, 1), where:

(1) (A,�,�) is a lattice;
(2) 0 and 1 are special distinct elements that represents the minimum and the maxi-

mum with respect to the partial order �. Thus:

∀a ∈ A : 0 � a and a � 1.

Definition 10.6 (Ortholattice) An ortholattice is a structure

A = (A,�,�, ′, 0, 1), where:
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(1) A = (A,�,�, 0, 1) is a bounded lattice;
(2) ′ is a 1-ary operation, called orthocomplement (or orthocomplementation), that

satisfies the following conditions for any a, b ∈ A:

(2.1) a′′ = a (double negation);
(2.2) a � a′ = 0 (non-contradiction);
(2.3) a � a′ = 1 (excluded middle);
(2.4) a � b =⇒ b′ � a′ (contraposition).

Definition 10.7 (Orthomodular lattice) An orthomodular lattice is an ortholattice

A = (A,�,�, ′, 0, 1)

that satisfies the orthomodular property:

∀a, b ∈ A : a � b =⇒ b = a � (b � a′).

Definition 10.8 (Boolean algebra) A Boolean algebra is a distributive ortholattice.

Any Boolean algebra is an orthomodular lattice, but not the other way around.

Definition 10.9 (Partial Boolean algebra) A partial Boolean algebra is a partial
structure

A = (A, ♥, �, �, ′, 0, 1),

where ♥ is a binary relation on A (called compatibility), � and � are two partial
binary operations whose domain is♥, 0 and 1 are special distinct elements ofA. The
following conditions are required:

(1) ♥ is reflexive and symmetric;
(2) ∀a ∈ A : a♥0 and a♥1;
(3) ∀a, b, c ∈ A : a♥b, a♥c, b♥c =⇒ (a�b)♥c, (a�b)♥c, a′♥b;
(4) ∀a, b, c ∈ A : if a♥b, a♥c, b♥c, then theBoolean polynomials in a, b, c form

a Boolean algebra with minimum 0 and maximum 1. In other words, the set
{a, b, c} generates a Boolean algebra with respect to the operations �, �, ′.

Definition 10.10 (Effect algebra) An effect algebra is a partial structure

A = (A, �, 0, 1),

where� is a partial binary operation onA, while 0 and 1 are special distinct elements
of A. When � is defined for a pair a, b ∈ A, we write: ∃(a � b). The following
conditions are required:

(1) ∃(a � b) =⇒ ∃(b � a) and a � b = b � a (weak commutativity);
(2) ∃(b � c) and ∃(a � (b � c)) =⇒ ∃(a � b) and ∃((a � b) � c)

and a � (b � c) = (a � b) � c (weak associativity);
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(3) For any a ∈ A, there exists a unique x such that a � x = 1 (strong excluded
middle);

(4) ∃(a � 1) =⇒ a = 0 (weak consistency).

An orthogonality relation ⊥, a partial order � and a generalized complement ′
(which generally behaves as a fuzzy complement) can be defined in any effect algebra
A = (A, �, 0, 1) as follows:

• ∀a, b ∈ A : a ⊥ b iff ∃(a � b);
• ∀a, b ∈ A : a � b iff ∃c ∈ A[a ⊥ c and b = a � c];
• ∀a ∈ A : a′ is the unique element such that a � a′ = 1.

Definition 10.11 (Group) A group is a structure

A = (A, +, −, 0),

where + is a binary operation, − is a unary operation, 0 is a special element. The
following conditions hold:

(1) the operation + is associative:

∀a, b, c ∈ A : a + (b + c) = (a + b) + c;

(2) 0 is the neutral element:
∀a ∈ A : a + 0 = a;

(3) for any a ∈ A, −a is the inverse of a:

a + (−a) = 0.

We abbreviate a + (−b) by a − b.
An abelian group is a group where the operation + is commutative:

∀a, b ∈ A : a + b = b + a.

Definition 10.12 (Ring) A ring is a structure

A = (A, +, · , −, 0)

that satisfies the following conditions:

(1) A = (A, +, −, 0) is an Abelian group;
(2) the operation · is associative:

∀a, b, c ∈ A : a · (b · c) = (a · b) · c;
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(3) the operation · distributes over + on both sides:

∀a, b, c ∈ A : a · (b + c) = (a · b) + (a · c) and (a + b) · c = (a · c) + (b · c).

A commutative ring is a ring in which the operation · is commutative.

Definition 10.13 (Ring with unity) A ring with unity is a structure

A = (A, +, · , −, 0, 1), where:

(1) A = (A, +, ·, −, 0) is a ring;
(2) 1 is a special element that is the neutral element for the operation · . Thus:

∀a ∈ A : a · 1 = a.

A ring with unity is called non-trivial iff 0 
= 1.

Definition 10.14 (Division ring) A division ring is a non-trivial ring with unity
A = (A, +, · , −, 0, 1) such that any non-zero element is invertible with respect to
the operation ·. In other words:

∀a ∈ A : a 
= 0 =⇒ ∃b ∈ A(a · b = b · a = 1).

Definition 10.15 (Field) A field is a commutative division ring.

Both the set R of the real numbers and the set C of the complex numbers give
rise to a field. An example of a genuine division ring (where · is not commutative) is
given by the set of the quaternions.

10.3 Hilbert-Space Concepts

Before introducing the concept of Hilbert space we will first recall the definition of
vector space.

Definition 10.16 (Vector space) A vector space over a division ringA = (A, +, · ,
−, 0, 1) is a structure

V = (V,+, −, 0)

that satisfies the following conditions:

(1) V = (V,+, −, 0) (the vector structure) is an Abelian group, where 0 (the null
vector) is the neutral element;

(2) for any element a ∈ A (called scalar) and any vector v ∈ V, aV (called the
scalar product of a and v) is a vector in V. The following conditions hold for
any a, b ∈ A and for any u, v ∈ V:
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(2.1) a(u + v) = au + bv;1
(2.2) (a + b)v = av + bv;
(2.3) a(bv) = (a · b)v;
(2.4) 1v = v.

We can now introduce the notion of pre-Hilbert space. Hilbert spaces are then
defined as special examples of pre-Hilbert spaces. For the sake of simplicity, we will
always refer to pre-Hilbert spaces and to Hilbert spaces whose division ring is either
the field of the real numbers or the field of the complex numbers. By adopting Dirac’s
notation, the vectors of pre-Hilbert spaces and of Hilbert spaces will be indicated by
|ψ〉, |ϕ〉, |χ〉, . . . .

Definition 10.17 (Pre-Hilbert space) LetA = (A, +, · , −, 0, 1) be either the real
or the complex field. A pre-Hilbert space over A is a vector space

H = (VH ,+, −, 0),

equipped with an inner product, a map that associates to any pair of vectors |ψ〉 and
|ϕ〉 of VH a scalar 〈ψ | ϕ〉 of the field A. The following conditions hold for any
|ψ〉, |ϕ〉 ∈ VH and any a ∈ A:

(1) 〈ψ | ψ〉 ≥ 0;
(2) 〈ψ | ψ〉 = 0 iff |ψ〉 = 0;
(3) 〈ψ | aϕ〉 = a〈ψ | ϕ〉;
(4) 〈ψ | ϕ + χ〉 = 〈ψ | ϕ〉 + 〈ψ | χ〉;
(4) 〈ψ | ϕ〉 = 〈ϕ | ψ〉∗, where ∗ is the identity if A is the real field and the complex

conjugation if A is the complex field.

The inner product permits one to generalize some geometrical notions of ordinary
3-dimensional spaces.

Definition 10.18 (Normof a vector) The norm || |ψ〉 || of a vector |ψ〉 is the number√〈ψ | ψ〉.
Note that the norm of any vector is a real number greater than or equal to 0.
A unit vector is a vector |ψ〉 such that || |ψ〉 ||= 1.
Two vectors |ψ〉 and |ϕ〉 are called orthogonal iff 〈ψ | ϕ〉 = 0.
A set of vectors is called orthonormal iff its elements are pairwise orthogonal unit

vectors.
In any pre-Hilbert space H the norm || . || induces a metric d:

∀|ψ〉, |ϕ〉 ∈ VH : d(|ψ〉, |ϕ〉) = || |ψ〉 − |ϕ〉 || .

We say that a sequence {|ψi 〉}i∈N of vectors of a pre-Hilbert space H converges
to a vector |ψ〉 of H iff limi→∞ d(|ψi 〉, |ψ〉) = 0. In other words,

1Since no confusion is possible, it is customary to use the same symbol + for the vector-sum and
for the ring-sum.
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∀ε ∈ R
+∃n ∈ N∀k > n : d(|ψk〉, |ψ〉) < ε.

A Cauchy sequence is a sequence {|ψi 〉}i∈N of vectors of H such that

∀ε ∈ R
+∃n ∈ N∀h > n ∀k > n : d(|ψh〉, |ψk〉) < ε.

It is easy to see that whenever a sequence {|ψi 〉}i∈N converges to a vector |ψ〉 of
VH , then {|ψi 〉}i∈N is a Cauchy sequence. The crucial question is the converse one:
which are the pre-Hilbert spaces in which every Cauchy sequence converges to an
element of the space?

Definition 10.19 (Metrically complete pre-Hilbert space) A pre-Hilbert space H
with inner product 〈. | .〉 is metrically complete with respect to the metric d induced
by 〈. | .〉 iff every Cauchy sequence of vectors inH converges to a vector inH .

On this basis we can finally define the notion of Hilbert space.

Definition 10.20 (Hilbert space) A Hilbert space is a metrically complete pre-
Hilbert space.

A real (complex) Hilbert space is a Hilbert space whose division ring is the real field
(the complex field).

Since the set of vectors of a Hilbert space H has a group-structure, any finite
sum of vectors of H is a vector of H . When |ψ〉 = a1|ψ1〉 + . . . + ak |ψk〉, we
say that |ψ〉 is a superposition (or a linear combination) of |ψ1〉, . . . , |ψk〉, with
scalars a1, . . . , ak . Instead of a1|ψ1〉 + . . . + ak |ψk〉 we also write:

∑
i∈I ai |ψi 〉,

where I = {1, . . . , k}.
If I is an infinite set of indexes, the superposition

∑
i∈I ai |ψi 〉 does not generally

exist in H . One can prove that the expression
∑

i∈I ai |ψi 〉 represents a vector |ψ〉
ofH iff the set of vectors {ai |ψi 〉}i∈I satisfies the following convergence-condition:
∀ε ∈ R

+ there exists a finite J ⊆ I such that for any finite subset K of I including
J :

|| |ψ〉 −
∑

i∈K
ai |ψi 〉 ||≤ ε.

Definition 10.21 (Orthonormal basis) An orthonormal basis of a Hilbert spaceH
is amaximal orthonormal set {|ψi 〉}i∈I ofH . In otherwords, {|ψi 〉}i∈I is an orthonor-
mal set such that no orthonormal set includes {|ψi 〉}i∈I as a proper set.

One can prove that every Hilbert space H has an orthonormal basis and that all
orthonormal bases of H have the same cardinality. The dimension of H is then
defined as the cardinal number of any orthonormal basis of H .

Let {|ψi 〉}i∈I be any orthonormal basis of H . One can prove that every vector
|ψ〉 of H can be expressed in the following form:

|ψ〉 =
∑

i∈I
〈ψi | ψ〉|ψi 〉.



170 10 Mathematical Survey

Thus, |ψ〉 is a superposition of {|ψi 〉}i∈I with scalars 〈ψi | ψ〉 (also called Fourier-
coefficients).

A Hilbert spaceH is called separable iffH has a countable orthonormal basis.
Since quantum theory only uses separable Hilbert spaces, in the following we will
always refer to Hilbert spaces whose orthonormal bases are countable.

Definition 10.22 (Closed subspace) A closed subspace of a Hilbert space H is a
set of vectors X that satisfies the following conditions:

(1) X is a subspace ofH . Hence, for any vectors |ψ〉, |ϕ〉 and for any scalars a, b:

|ψ〉, |ϕ〉 ∈ X =⇒ a|ψ〉 + b|ϕ〉 ∈ X;

(2) X is closed under limits of Cauchy sequences. In other words, if each element
of a Cauchy sequence belongs to X , then also the limit of the sequence belongs
to X .

The set of all closed subspace of H will be indicated by C (H ). For any vector
|ψ〉, we will indicate by X |ψ〉 the unique 1-dimensional closed subspace that contains
|ψ〉.
Definition 10.23 (Operator) An operator of a Hilbert space H is a map

A : Dom(A) → VH ,

where Dom(A) (the domain of A) is a subset of VH .
When Dom(A) = VH , A is called everywhere defined.

Definition 10.24 (Eigenvector and eigenvalue) Let A be an operator of a Hilbert
space H . A non-null vector |ψ〉 ∈ Dom(A) is called an eigenvector of A with
eigenvalue a iff

A|ψ〉 = a|ψ〉.

Definition 10.25 (Linear operator) A linear operator of a Hilbert space H is an
operator A that satisfies the following conditions:

(1) Dom(A) is a closed subspace of H ;
(2) for any vectors |ψ〉, |ϕ〉 in the domain of A and for any scalars a, b:

A(a|ψ〉 + b|ϕ〉) = aA|ψ〉 + bA|ϕ〉.

Thus, the characteristic property of linear operators is preserving all finite linear
combinations.

Linear operators of finite-dimensional Hilbert spaces can be usefully represented
as special matrices. Let A be a linear operator of a space H whose dimension is n.
For any choice of an orthonormal basis B = {|ϕ1〉, . . . , |ϕn〉} of H , we have:
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A|ϕ1〉 = a11|ϕ1〉 + . . . + a1n|ϕn〉

. . . . . . . . . . . . . . . . . .

A|ϕn〉 = an1|ϕ1〉 + . . . + ann|ϕn〉.

Accordingly, the operator A can be represented as the following matrix (with
respect to the basis B):

A =
⎡

⎣
a11 . . . an1
. . . . . . . . .

a1n . . . ann

⎤

⎦ .

Conversely, any n × n matrix of H determines a linear operator ofH .

Definition 10.26 (Bounded operator) A linear operator A of a Hilbert spaceH is
called bounded iff there exists a positive real number a such that for every vector
|ψ〉 of H :

|| A|ψ〉 || ≤ || a|ψ〉 || .

Definition 10.27 (Positive operator) A bounded operator A of a Hilbert space H
is called positive iff for every vector |ψ〉 of H :

〈ψ | Aψ〉 ≥ 0.

One can prove that for any positive operator A there exists a unique positive
operator (denoted by A

1
2 ) such that:

(A
1
2 )2 = A.

Definition 10.28 (Densely defined operator) Adensely defined operator of aHilbert
space H is an operator A that satisfies the following condition:

∀ε ∈ R
+∀|ψ〉 ∈ VH ∃|ϕ〉 ∈ Dom(A) : d(|ψ〉, |ϕ〉) ≤ ε.

Definition 10.29 (The adjoint operator) Let A be a densely defined operator of a
Hilbert space H . The adjoint of A is the unique operator A† such that:

∀|ψ〉 ∈ Dom(A)∀|ϕ〉 ∈ Dom(A†) : 〈Aψ | ϕ〉 = 〈ψ | A†ϕ〉.

Notice that the adjoint A† of a densely defined operator A is not necessarily
densely defined. Moreover, if A is a (not necessarily positive) bounded operator,
then A†A is positive.

Definition 10.30 (Self-adjoint operator) A self-adjoint operator is a densely defined
linear operator A such that A = A†.
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If A is self-adjoint, then ∀|ψ〉, |ϕ〉 ∈ Dom(A) : 〈Aψ | ϕ〉 = 〈ψ | Aϕ〉.
If A is self-adjoint and everywhere defined, then A is bounded.
One can prove that any self-adjoint operator A of a finite-dimensional Hilbert

space H satisfies the following conditions:

• there is an orthonormal basis ofH in which each element is a unit eigenvector of
A;

• all eigenvalues of A are real numbers.

Definition 10.31 (Projection operator) A projection operator (briefly, projection)
ofH is an everywhere defined self-adjoint operator P that satisfies the idempotence-
property:

∀|ψ〉 ∈ VH : P|ψ〉 = PP|ψ〉.

There are two special projections O and I, called the null projection and the
identity-projection that are defined as follows:

∀|ψ〉 ∈ VH : O|ψ〉 = 0 and I|ψ〉 = |ψ〉.

Any projection other than O and I is called a non-trivial projection.
The set of all projection operators of a Hilbert space H will be indicated by

P(H ). One can prove that the setP(H ) and the setC (H ) of all closed subspaces
of H are in one-to-one correspondence. Let X be a closed subspace of H . By the
projection-theorem every vector |ψ〉 of H can be uniquely expressed as a linear
combination |ψ1〉 + |ψ2〉, where |ψ1〉 ∈ X , while |ψ2〉 is orthogonal to all vectors of
X . Accordingly, one can define an operator PX on H such that

∀|ψ〉 ∈ VH : PX |ψ〉 = |ψ1〉

(in other words, PX transforms any vector |ψ〉 into the “X -component” of |ψ〉). It
turns out that PX is a projection ofH .

Conversely, we can associate to any projection P its range:

XP = {|ψ〉 ∈ VH : ∃|ϕ〉 ∈ VH (P|ϕ〉 = |ψ〉)} ,

which turns out to be a closed subspace of H .
For any closed subspace X and for any projection P , we have:

X(PX ) = X; P(XP ) = P.

Definition 10.32 (Unitary operator) An operator U of a Hilbert space H is called
unitary iff U satisfies the following conditions:

(1) U is defined on the whole space;
(2) U is linear;
(3) UU† = U†U = I.
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One can show that any unitary operator U satisfies the following conditions:

1. U preserves the inner product:

∀|ψ〉, |ϕ〉 ∈ VH : 〈Uψ | Uϕ〉 = 〈ψ |ϕ〉.

Consequently, U preserves the length of all vectors;
2. U is reversible:

U−1U = UU−1 = I (with U−1 = U†).

Definition 10.33 (Trace-class operator) A linear bounded operator A of a Hilbert
space H is called a trace-class operator iff for some orthonormal basis {|ϕi 〉}i∈I ,

∑

i∈I
〈(A†A)

1
2 ϕi | ϕi 〉

is a finite number.

One can prove that for any trace-class operator A ofH , the number

∑

i∈I
〈A ϕi | ϕi 〉

is finite and independent of the choice of the basis {|ϕi 〉}i∈I .
On this ground one can define the notion of trace-functional.

Definition 10.34 (The trace-functional) Let {|ϕi 〉}i∈I an orthonormal basis for a
Hilbert spaceH and let A be a trace-class operator ofH . The trace of A (indicated
by tr(A)) is defined as follows:

tr(A) :=
∑

i∈I
〈Aϕi | ϕi 〉.

Due to the properties of trace-class operators, the definition of trace-functional
turns out to be independent of the choice of the basis.

Definition 10.35 (Density operator) A density operator of aHilbertH is a positive,
self-adjoint, trace-class operator ρ such that tr(ρ) = 1.

Definition 10.36 (Effect) An effect of a HilbertH is a self-adjoint operator E that
satisfies the following condition for any density operator ρ of H :

tr(ρE) ∈ [0, 1].

One can prove that the set of all projections ofH is a proper subset of the set of all
effects of H .

Any pair of Hilbert spaces H1 and H2 (over the same field) gives rise to a new
Hilbert space H1 ⊗ H2 that represents the tensor product of H1 and H2.
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Definition 10.37 (Tensor product) Let H1 and H2 be two Hilbert spaces over the
same field (the real or the complex field). A Hilbert space H is the tensor prod-
uct of H1 and H2 iff there is an injective map ⊗ that associates to every element
(|ψ(1)〉, |ϕ(2)〉) of the cartesian product VH 1 × VH 2 an element |ψ(1)〉 ⊗ |ϕ(2)〉 of
VH . The following conditions are required:

(1) for any vector |ψ(1)〉 of H1, for any vector |ϕ(2)〉 ofH2 and for any scalar a:

a(|ψ(1)〉 ⊗ |ϕ(2)〉) = a|ψ(1)〉 ⊗ |ϕ(2)〉 = |ψ(1)〉 ⊗ a|ϕ(2)〉;

(2) for any vectors |ψ(1)〉, |ϕ(1)〉 of H1, for any vectors |σ (2)〉, |τ (2)〉 of H2 and for
any scalars a, b:

• |ψ(1)〉 ⊗ (a|σ (2)〉 + b|τ (2)〉) = (|ψ(1)〉 ⊗ a|σ (2)〉) + (|ψ(1)〉 ⊗ b|τ (2)〉);
• (a|ψ(1)〉 + b|ϕ(1)〉) ⊗ |σ (2)〉 = (a|ψ(1)〉 ⊗ |σ (2)〉) + (b|ϕ(1)〉 ⊗ |σ (2)〉);

(3) every vector ofH can be expressed as a finite or infinite superposition of vectors
of the set {|ψ(1)〉 ⊗ |ϕ(2)〉 : |ψ(1)〉 ∈ VH 1 , |ϕ(2)〉 ∈ VH 2

}
.

One can prove that the tensor product H = H1 ⊗ H2 is unique up to isomor-
phism.

If
{
|ψ(1)

i 〉
}

i∈I
is an orthonormal basis for H1 and

{
|ϕ(2)

j 〉
}

j∈J
is an orthonormal

basis of H2, then the set

{
|ψ(1)

i 〉 ⊗ |ϕ(2)
j 〉 : i ∈ I, j ∈ J

}

is an orthonormal basis for the product space H1 ⊗ H2.
While every vector of H1 ⊗ H2 can be expressed as a superposition of vectors

|ψ(1)〉 ⊗ |ϕ(2)〉, there are vectors of H1 ⊗ H2 that cannot be written as a single
product |ψ(1)〉 ⊗ |ϕ(2)〉, for any |ψ(1)〉 ∈ VH 1 , |ϕ(2)〉 ∈ VH 2 . These vectors (which
play an important role in quantum entanglement) are called non-factorizable.
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