Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.uci.cu/jspui/handle/123456789/9450
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Siegmund, Dirk | - |
dc.contributor.author | Prajapati, Ashok | - |
dc.contributor.author | Kirchbuchner, Florian | - |
dc.contributor.author | Kuijper, Arjan | - |
dc.coverage.spatial | 7004624 | en_US |
dc.date.accessioned | 2021-06-30T13:33:11Z | - |
dc.date.available | 2021-06-30T13:33:11Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Siegmund D., Prajapati A., Kirchbuchner F., Kuijper A. (2018) An Integrated Deep Neural Network for Defect Detection in Dynamic Textile Textures. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_9 | en_US |
dc.identifier.uri | https://repositorio.uci.cu/jspui/handle/123456789/9450 | - |
dc.description.abstract | This paper presents a comprehensive defect detection method for two common fabric defects groups. Most existing systems require textiles to be spread out in order to detect defects. This method can be applied when the textiles are not spread out and does not require any pre- processing. The deep learning architecture we present is based on transfer learning and localizes and recognizes cuts, holes and stain defects. Classification and localization is combined into a single system combining two different networks. The experiments this paper presents show that even without adding depth information, the network was able to distinguish between stain and shadow. This method has been successful even for textiles in voluminous shape and is less computationally intensive than other state-of-the-art methods. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.subject | STAIN DEFECTS | en_US |
dc.subject | TRANSFER LEARNING | en_US |
dc.subject | ADDING DEPTH INFORMATION | en_US |
dc.subject | DISPARTY MAP | en_US |
dc.subject | RELU ACTIVATION FUNCTION | en_US |
dc.title | An Integrated Deep Neural Network for Defect Detection in Dynamic Textile Textures | en_US |
dc.type | conferenceObject | en_US |
dc.rights.holder | Universidad de las Ciencias Informáticas | en_US |
dc.identifier.doi | https://doi.org/10.1007/978-3-030-01132-1_9 | - |
dc.source.initialpage | 77 | en_US |
dc.source.endpage | 84 | en_US |
dc.source.title | UCIENCIA 2018 | en_US |
dc.source.conferencetitle | UCIENCIA | en_US |
Aparece en las colecciones: | UCIENCIA 2018 |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
A041.pdf | 100.26 kB | Adobe PDF | Visualizar/Abrir |
Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.