Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9475
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLópez Montes, Camilo-
dc.contributor.authorCárdenas Peña, David-
dc.contributor.authorCastellanos Dominguez, Germán-
dc.coverage.spatial7004624en_US
dc.date.accessioned2021-07-14T12:56:46Z-
dc.date.available2021-07-14T12:56:46Z-
dc.date.issued2018-
dc.identifier.citationLópez-Montes C., Cárdenas-Peña D., Castellanos-Dominguez G. (2018) Sub Band CSP Using Spatial Entropy-Based Relevance in MI Tasks. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_38en_US
dc.identifier.urihttps://repositorio.uci.cu/jspui/handle/123456789/9475-
dc.description.abstractIn motor imagery-based Brain-Computer Interfaces (BCI), discriminative patterns are extracted from the electroencephalogram (EEG) using the Common Spatial Pattern (CSP) algorithm. However, successful application of CSP heavily depends on the filter band and channel selection for each subject. To solve this issue, this work introduces a new supervised spatio-spectral relevance analysis (named HFB) from EEG. The proposal parameters allow controlling the number of selected spatio-spectral components and CSP features. The experimental results evidence an improved accuracy in comparison with CSP, FB and SFB assessed in the BCI competition IV dataset IIa. As a conclusion, focusing on the discriminative channels and sub-bands enhances the MI classification with a neurophysiological interpretation of the components.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.subjectSPATIO-SPECTRAL RELEVANCEen_US
dc.subjectRENYI ENTROPYen_US
dc.subjectBRAIN-COMPUTER INTERFACEen_US
dc.titleSub Band CSP Using Spatial Entropy-Based Relevance in MI Tasksen_US
dc.typeconferenceObjecten_US
dc.rights.holderUniversidad de las Ciencias Informáticasen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-01132-1_38-
dc.source.initialpage334en_US
dc.source.endpage341en_US
dc.source.titleUCIENCIA 2018en_US
dc.source.conferencetitleUCIENCIAen_US
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A056.pdf119.14 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.