Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9480
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRojas Delgado, Jairo-
dc.contributor.authorTrujillo Rasúa, Rafael-
dc.coverage.spatial7004624en_US
dc.date.accessioned2021-07-14T13:10:44Z-
dc.date.available2021-07-14T13:10:44Z-
dc.date.issued2018-
dc.identifier.citationRojas-Delgado J., Trujillo-Rasúa R. (2018) Training Neural Networks by Continuation Particle Swarm Optimization. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_7en_US
dc.identifier.urihttps://repositorio.uci.cu/jspui/handle/123456789/9480-
dc.description.abstractArtificial Neural Networks research field is among the areas of major activity in Artificial Intelligence. Conventional training approaches applied to neural networks present several theoretical and computational limitations. In this paper we propose an approach for Artificial Neural Network training based on optimization by continuation and Particle Swarm Optimization algorithm. The objective is to reduce overall execution time of training without causing negative effects in accuracy. Our proposal is compared with Standard Particle Swarm Optimization algorithm using public benchmark datasets. Experimental results show that the optimization by continuation approach reduces execution time required to perform training in about 20%−50% without statistically significant loss of accuracy.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.subjectCONTINUATIONen_US
dc.subjectOPTIMIZATIONen_US
dc.subjectNEURAL- NETWORKen_US
dc.subjectTRAININGen_US
dc.titleTraining Neural Networks by Continuation Particle Swarm Optimizationen_US
dc.typeconferenceObjecten_US
dc.rights.holderUniversidad de las Ciencias Informáticasen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-01132-1_7-
dc.source.initialpage59en_US
dc.source.endpage67en_US
dc.source.titleUCIENCIA 2018en_US
dc.source.conferencetitleUCIENCIAen_US
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A028.pdf116.56 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.