Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9482
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLuna Naranjo, David-
dc.contributor.authorCárdenas Peña, David-
dc.contributor.authorCastellanos Dominguez, Germán-
dc.coverage.spatial7004624en_US
dc.date.accessioned2021-07-14T13:24:22Z-
dc.date.available2021-07-14T13:24:22Z-
dc.date.issued2018-
dc.identifier.citationLuna-Naranjo D., Cárdenas-Peña D., Castellanos-Dominguez G. (2018) Entropy-Based Relevance Selection of Independent Components Supporting Motor Imagery Tasks. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_41en_US
dc.identifier.urihttps://repositorio.uci.cu/jspui/handle/123456789/9482-
dc.description.abstractBrain-Computer Interfaces provide an alternative control of devices through the human brain activity. This paper proposes a trial-wise channel filtering by selecting the subset of independent components with the largest entropy. The proposal holds two free parameters: The order for the Renyi entropy weighs the component quantization according to its probability, and the percentage of retained entropy that rules the number of independent components to reconstruct the spatially filtered EEG channels. Both free parameters are tuned using a subject-dependent grid search for the best classification accuracy. The proposed approach outperforms against heuristic channels selection in a binary classification task using the dataset IIa of the BCI competition IV. Attained results prove that using ICA as a spatial filtering allows the feature extraction stage to build more discriminative spaces, reducing the influence of noninformative components. As an advantage, the resulting spatial filtering maintains the physiological interpretation of the EEG channels.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.subjectCOMPONENT SELECTIONen_US
dc.subjectRENYI ENTROPYen_US
dc.subjectBRAIN COMPUTER INTERFACEen_US
dc.titleEntropy-Based Relevance Selection of Independent Components Supporting Motor Imagery Tasksen_US
dc.typeconferenceObjecten_US
dc.rights.holderUniversidad de las Ciencias Informáticasen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-01132-1_41-
dc.source.initialpage359en_US
dc.source.endpage367en_US
dc.source.titleUCIENCIA 2018en_US
dc.source.conferencetitleUCIENCIAen_US
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A030.pdf105.73 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.