Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.uci.cu/jspui/handle/123456789/9482
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Luna Naranjo, David | - |
dc.contributor.author | Cárdenas Peña, David | - |
dc.contributor.author | Castellanos Dominguez, Germán | - |
dc.coverage.spatial | 7004624 | en_US |
dc.date.accessioned | 2021-07-14T13:24:22Z | - |
dc.date.available | 2021-07-14T13:24:22Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Luna-Naranjo D., Cárdenas-Peña D., Castellanos-Dominguez G. (2018) Entropy-Based Relevance Selection of Independent Components Supporting Motor Imagery Tasks. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_41 | en_US |
dc.identifier.uri | https://repositorio.uci.cu/jspui/handle/123456789/9482 | - |
dc.description.abstract | Brain-Computer Interfaces provide an alternative control of devices through the human brain activity. This paper proposes a trial-wise channel filtering by selecting the subset of independent components with the largest entropy. The proposal holds two free parameters: The order for the Renyi entropy weighs the component quantization according to its probability, and the percentage of retained entropy that rules the number of independent components to reconstruct the spatially filtered EEG channels. Both free parameters are tuned using a subject-dependent grid search for the best classification accuracy. The proposed approach outperforms against heuristic channels selection in a binary classification task using the dataset IIa of the BCI competition IV. Attained results prove that using ICA as a spatial filtering allows the feature extraction stage to build more discriminative spaces, reducing the influence of noninformative components. As an advantage, the resulting spatial filtering maintains the physiological interpretation of the EEG channels. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer | en_US |
dc.subject | COMPONENT SELECTION | en_US |
dc.subject | RENYI ENTROPY | en_US |
dc.subject | BRAIN COMPUTER INTERFACE | en_US |
dc.title | Entropy-Based Relevance Selection of Independent Components Supporting Motor Imagery Tasks | en_US |
dc.type | conferenceObject | en_US |
dc.rights.holder | Universidad de las Ciencias Informáticas | en_US |
dc.identifier.doi | https://doi.org/10.1007/978-3-030-01132-1_41 | - |
dc.source.initialpage | 359 | en_US |
dc.source.endpage | 367 | en_US |
dc.source.title | UCIENCIA 2018 | en_US |
dc.source.conferencetitle | UCIENCIA | en_US |
Aparece en las colecciones: | UCIENCIA 2018 |
Ficheros en este ítem:
Fichero | Tamaño | Formato | |
---|---|---|---|
A030.pdf | 105.73 kB | Adobe PDF | Visualizar/Abrir |
Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.