Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.uci.cu/jspui/handle/123456789/9487
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorValenzuela, Camilo-
dc.contributor.authorAllende, Héctor-
dc.contributor.authorValle, Carlos-
dc.coverage.spatial7004624en_US
dc.date.accessioned2021-07-14T13:58:24Z-
dc.date.available2021-07-14T13:58:24Z-
dc.date.issued2018-
dc.identifier.citationValenzuela C., Allende H., Valle C. (2018) Multi-horizon Scalable Wind Power Forecast System. In: Hernández Heredia Y., Milián Núñez V., Ruiz Shulcloper J. (eds) Progress in Artificial Intelligence and Pattern Recognition. IWAIPR 2018. Lecture Notes in Computer Science, vol 11047. Springer, Cham. https://doi.org/10.1007/978-3-030-01132-1_36en_US
dc.identifier.urihttps://repositorio.uci.cu/jspui/handle/123456789/9487-
dc.description.abstractWind power is the Non-Conventional Renewable Energy that has become more relevant in recent years. Given the stochastic behavior of wind speed it is necessary to have efficient prediction models at different horizons. Several kind of models have been used to forecast wind power, but using the same kind of model to forecast at different horizons is not recommendable, therefore a multi-model system needs to be implemented. We propose an scalable wind power forecasting system for multiple horizons using open source software, focusing on the forecast model selection, validated with Chilean wind farms data. Showing that RNN models can make significantly better forecasts than traditional models and can scale easily.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.subjectWIND POWER FORECASTen_US
dc.subjectDISTRIBUTED SYSTEMen_US
dc.subjectRECURRENT NEURAL NETWORKen_US
dc.subjectLONG-SHORT TERM MEMORYen_US
dc.subjectECHO STATE NETWORKen_US
dc.subjectARIMAen_US
dc.titleMulti-horizon Scalable Wind Power Forecast Systemen_US
dc.typeconferenceObjecten_US
dc.rights.holderUniversidad de las Ciencias Informáticasen_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-01132-1_36-
dc.source.initialpage317en_US
dc.source.endpage325en_US
dc.source.titleUCIENCIA 2018en_US
dc.source.conferencetitleUCIENCIAen_US
Aparece en las colecciones: UCIENCIA 2018

Ficheros en este ítem:
Fichero Tamaño Formato  
A036.pdf116.75 kBAdobe PDFVisualizar/Abrir


Los ítems del Repositorio están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.